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Abstract

In this paper we aim to construct infinite dimensional versions of well established Piecewise
Deterministic Monte Carlo methods, such as the Bouncy Particle Sampler, the Zig-Zag Sampler and
the Boomerang Sampler. In order to do so we provide an abstract infinite dimensional framework
for Piecewise Deterministic Markov Processes (PDMPs) with unbounded event intensities. We further
develop exponential convergence to equilibrium of the infinite dimensional Boomerang Sampler, using
hypocoercivity techniques. Furthermore we establish how the infinite dimensional Boomerang Sampler
admits a finite dimensional approximation, rendering it suitable for computer simulation.
©2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

MSC: primary 60G53; secondary 65C05; 46N30

Keywords: Piecewise Deterministic Markov Processes; Infinite Dimensional Stochastic Process; Hypocoercivity;
Uniform in time approximation

1. Introduction

A piecewise deterministic Markov process (PDMP) in a topological space Z is a Markov
process with deterministic trajectories, with random jumps at random times. The deterministic
trajectories are described by a deterministic semigroup flow ¢; : Z — Z, t > 0. The random
times are distributed according to a space-dependent event rate A : Z — [0, 00). At these
random times the process jumps according to a Markov transition operator Q : Z x B(Z) —
[0, 1]. Together the flow (¢;),;>0, the jump intensity A and the transition operator fully describe
the dynamics of the piecewise deterministic Markov process.
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PDMPs have been introduced in the probability literature in the work by Davis [14,15],
motivated as providing a versatile probabilistic model in operations research. Later PDMPs
have found many other applications in, e.g., mathematical biology [22], finance and statistical
survival analysis [25]. Recent years have seen a strongly emerging interest in PDMPs from the
field of computational statistics [8,10], where PDMPs are considered as viable alternatives for
classical Markov Chain Monte Carlo methods such as the Metropolis—Hastings algorithm and
the Gibbs sampler.

Traditionally PDMPs have been considered on (subsets of) a finite dimensional space Z.
However PDMPs can naturally be defined on, e.g., nonlinear manifolds or infinite dimensional
spaces. In this work we carry out the latter task of defining and analysing PDMPs on infinite
dimensional Banach spaces. To our knowledge the only work concerning PDMPs on infinite
dimensional spaces so far [27,28], restricts the jump intensities to be globally bounded. One of
the key aspects in this work is therefore the extension to unbounded intensities, which is highly
relevant from a practical perspective, especially for applications in computational statistics. For
much of this work we have in mind an infinite dimensional extension of piecewise deterministic
Monte Carlo methods; in particular extensions of the Zig-Zag process [8], the Bouncy Particle
Sampler [10] and the Boomerang Sampler [9]. As it turns out these processes are not all easily
extendable to infinite dimensions.

1.1. Structure of this work

In Section 2 we provide the general construction of a PDMP assuming values in a Banach
space. Also, we construct the accompanying extended generator and establish the Feller
property under the stated assumptions.

Next in Section 3 we determine a general condition for an infinite dimensional PDMP to
have an invariant measure with a Gibbs density relative to a reference measure.

In Section 4 we discuss several examples of infinite dimensional extensions of (traditionally)
finite dimensional PDMPs: the Zig-Zag Sampler [8], Bouncy Particle Sampler [10], and the
Boomerang Sampler [9]. As it turns out the Zig-Zag Sampler can be put into an infinite
dimensional framework, but the Bouncy Particle Sampler does not satisfy the conditions of
the general theory: a natural bound to use for contour reflections is the Cameron—Martin norm
however this is only finite on a space of measure zero. The Boomerang Sampler is particularly
well suited for extension to infinite dimensions, as it allows a Gaussian reference measure
which remains well-defined in an infinite dimensional space. In the remainder of this work,
we will therefore focus on the Boomerang Sampler. In Section 5 we establish that cylindrical
functions (see (3) for a definition) are a core for the generator of the Boomerang Sampler. In
Section 6 we provide conditions under which the Boomerang Sampler converges exponentially
fast in L?(u), with p the stationary measure, based on the hypocoercivity approach initiated
by [16], while being careful about its extension to an infinite dimensional setting.

Finally in Section 7 we consider how infinite dimensional PDMPs may be approximated in
finite dimensions, allowing for direct computer simulation. This may be motivated from the
viewpoint of e.g. [29], where the approach in Bayesian inverse problems is to formulate these
in an infinite dimensional setting, design a suitable infinite dimensional sampling algorithm,
and only at the time of implementation consider a suitable finite dimensional approximation.
In Section 8 we have collected the remaining proofs.
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1.2. Notation

For a given topological space, measurability is always considered relative to the Borel
o-algebra, unless stated otherwise.
Given two normed vector spaces H;, H, we define the following function spaces:

e The set of all bounded and measurable (respectively continuous) functions f : Hy — H,
we denote B,(H,; H,) (resp. Cp(H|; Hy)) and we endow this space with the supremum
norm, if H, = R then we write B,(H,;) (resp. C,(Hy));

e For k > 1 or k = oo we denote by C ,’; (H;) the space of k times differentiable bounded
functions with bounded derivatives up to order k (here and throughout when we say
differentiable we mean in the sense of the Fréchet derivative). Similarly we denote
by Cf(Hl) to be the set of k times continuously differentiable functions with compact
support.

e Given a measure . we denote the space of square integrable functions f : Hy — H, by
L} (Hy; Hy), if Hy = R write L?,(H;) and will often abbreviate this to L?;

As explained in the introduction, we will mostly be working in appropriate Hilbert spaces.
However, the results of Section 2 are stated in the setting of more general Banach spaces.
Throughout the paper we denote by (Z, || - ||z) a (possibly) infinite dimensional Banach
space and let (#, (-, -), || - ||) be an infinite dimensional separable Hilbert space. Consider the
probability measure 7w on H, defined as follows:

AT exp—®). 7= N0, ). (1
d7'[0

That is, 7 is absolutely continuous with respect to a Gaussian measure my with mean zero
and covariance operator X'. Here @ is a real valued functional defined on H. Measures of the
form (1) naturally arise in Bayesian nonparametric statistics and in the study of conditioned
diffusions [24,29]. The covariance operator X' is a positive definite, self-adjoint, trace class
operator on H, with eigenbasis {yjz, el

2 .
Yej=yiej, VjeN, )
and we assume that the set {e;} ey is an orthonormal basis for H, so that every x € H can be
expressed as x = ) .| x;e;, where x; := (x, ¢;) and the norm of x € H is

172
o0

el = {3 |x

j=1

For a function ¢ : H — R we will write d,,¢(x) = (Vo(x),e;) = lim;_,¢ w,
whenever the limit exists.

If A, B € R we write A < B if there exists a constant K > 0 such that A < K B. Finally,
for any a € R, at = max(a, 0) and a~ = max(—a, 0) denote the positive and negative part of
a, respectively.

For a Hilbert space H let FC;°(H) (respectively FC.°) denote the set of all functions F
of the form

F(Z)zf((hl’Z>Ha"'v<hnvz>H) (3)

for some n € N, hy, ..., h, € H and f € C°(R") (respectively f € C°(R")).
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2. Construction of infinite dimensional PDMPs

Let us first describe how we can construct a PDMP on an infinite dimensional space. We
will follow the construction given by [15]. Let Z be a Banach space, equipped with its Borel
o-algebra. We can define a PDMP by its characteristics (X, A, Q), where X denotes the vector
field of the deterministic flow, A denotes the jump intensity and Q denotes the jump kernel.
More specifically, X : Z — Z is a vector field on Z which generates a flow map {¢;};>0,
ie., ¢, : Z — Z for each t > 0, and for each ¢ > 0,

d
Efpz(z) = X@(2), @o(2) =z

Note that we are assuming that ¢, is well-defined for all ¢+ > 0, that is, there is no finite time
explosion of the flow ¢;(z) for any z € Z. The function A maps from Z into [0, c0) and has the
property that for each z € Z there exists some e(z) > 0 such that s — A(gp;(z)) is integrable
on [0, £(z)). Q is a transition kernel such that

(1) For every Borel measurable set A € Z the map z — Q(z, A) is measurable.
(2) There are no phantom jumps, i.e. Q(z, {z}) =0 for all z € H.

Let (2, 7, P) denote the Hilbert cube, that is the canonical space for a sequence of i.i.d.
uniformly distributed random variables {U,};2 ; taking values on [0, 1]. Fix an initial condition
z € Z, and set

t
F(t,z) = exp <—/ k(%(Z)MS)-
0
That is the survivor function of the first jump time 7;. Set
Vi(u, z) = inf{r : F(t,2) < u}

where we use the convention that inf¢) = +o00. Define T)(w) = ¥ (U;(w), z). Now by [27,
Lemma 2.1.1] there exists a Borel measurable function 3 : [0,1] — Z such that the
pushforward of the Lebesgue measure with respect to ¥ on H equals Q(z, -). We define the
sample path up to the first jump time by

@:1(2), 0=t <Ti(o)

Z; = .
(w) { ;/’Tl(w)( )(Uz(a))), [ = Ty(w).

We now iterate this procedure to construct Z;(w) for all t > 0 provided sup, 7, = +00, that
is the process is non-explosive. If A is bounded then the process is non-explosive. In order to
consider unbounded A we will split the transition kernel Q into two parts Q. and Qp which
will later correspond to a refreshment kernel and a reflection kernel respectively.

We will associate with this PDMP (at least formally) a generator

Lf(z)=Lxf(2)+ /\r(Z)/(f(y) — f(2)) 0z, dy) + kb(Z)/(f(y) — f(2))Ov(z, dy),
z€Z.
4

Here Ly is a linear differential operator on a space of functions from Z to R defined by

=df(z; X(2)),

1=0
where df(z, -) denotes the Fréchet derivative of f at z, whenever this is well-defined.

d
Lxf(z)= Ef(%(z))
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Assumption 2.1 (Wellposedness of Abstract PDMP). With the notation introduced so far, we
make the following assumptions.

(i) The intensities A, : Z — [0, 00) and X, : Z — [0, 00) are measurable.

(i1) for any fixed z € Z, QOu(z, ), O:(z, -) are Markov transition kernels on Z, such that
z+> Opf(z) and z —~ Q,f(z) are measurable for every bounded measurable function
fon Z;

(iii) the reflection Markov kernel Qy is non-expansive with respect to the norm || - || z i.e.

Ov(z. {yeZ:lylz=lzllzh =1 forallze Z;

(iv) the refreshment Markov kernel Q. is locally uniformly bounded in probability, i.e., for
all ¢ > 0 there exists a R > 0 such that

Q.(z, Bg) > 1 —¢ for all z € Bg,

where By denotes the open ball with radius R in Z with respect to the | - || z-norm,
(v) the total reflection intensity Ap(z) is bounded on bounded sets in Z, i.e. for all R > 0

sup Ap(z) < 00;
z€BR

(vi) the total refreshment intensity A.(z) is globally bounded: there is a constant M > 0 such
that A.(z) < M for all z € Z,

(vii) there is a continuous function ¢ > ¢; € (0, co) such that the flow ¢,(z) grows at a rate
¢; with respect to the || - || z-norm, i.e. for z € Z,

le: Dl z < c:(1 + Izl 2).

(viii) the functions A, A, are continuous and for any continuous function f we have that
Ovf, O, f are both continuous.

Remark 2.2 (On Assumption 2.1). These conditions are intended to be as general as possible.
From a practical viewpoint it seems that (iii) is the most difficult condition to satisfy. In
particular, we will see in Section 4 that this condition is not satisfied by the Bouncy Particle
Sampler. A

The purpose of this section is to prove the following statement.

Theorem 2.3. Suppose Assumption 2.1 is satisfied. Then there exists a cadlag Markov process
(Z:)1>0 in Z with characteristics (X, A, Q).

Proof. At the beginning of this section we gave a construction of the PDMP; however this
construction is only valid for ¢t < sup, 7, therefore it remains to show that sup, 7, = oo. This
is a consequence of Proposition 2.4. The proof that this construction of a PDMP is a strong
Markov process is analogous to [15, Theorem 25.5]. U

Proposition 2.4.  Suppose Assumption 2.1 is satisfied. Write Texploge = sSup;s Ti. Then

(i) For all ¢ > 0, t > 0 and initial condition zo € Z there exists an R > 0 such that
P, (Texplode > t and Zs € By for all s € [0,t]) > 1 —&.
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(1i) Texploge = OO almost surely.
(iii) For all t > 0,r >0
lim sup P, (T, > 1) = 1.
n—o0o 20€Br
Statement (ii) of Proposition 2.4 is equivalent to saying that only finitely many events can
occur in any finite time interval.

Proof. Supposer > 0,n € N and ¢ > 0, and let » > O sufficiently large so that zo € B,. Let M
be an upper bound for the total refreshment intensity, using Assumption 2.1(vi). Let N denote
a Poisson random variable with parameter Mt and let k, € N such that P(N > k,) < ¢/3.
By Assumption 2.1(vi) with probability at least 1 — ¢/3 there will be fewer than k, jumps
due to the refreshment kernels. Using Assumption 2.1(iv), let R" be sufficiently large so that
r < R and Q.(z, Bgr) > (1 —&/3)!/% for all z € By, so that with probability at least 1 —&/3
all the observed refreshments map into Bg/. Conditional on the event that all refreshments
map into By, since all reflections are norm preserving (using Assumption 2.1(iii)) it follows
from Assumption 2.1(vii) that ||Z,]] < ¢(1 + R’). Since A, is bounded on bounded sets
(Assumption 2.1(v)), it follows that there is a constant k; such that with probability at least
1 — &/3 there are at most k;, reflection events. We conclude that, for all ¢ > 0 and t > 0 we
have

P, (Tk,,+k, >t and Z; € B.,1+r, for all s € [0, t]) >1—¢,

establishing the first statement of the lemma. The second statement follows from the first since
for all ¢ there exists R > O such that

on(Texplode >1) > on(Texplode >tand Z, € Bg) > 1—¢

where ¢ is arbitrary and & can be chosen arbitrarily small. Moreover, as R = ¢,(1 + R') is
independent of the choice of zo in B, we have that

sup P, (ka+kr > t) >1—e
z0€Br

As k, and k;, are deterministic and depend only on ¢, r, R’ for each ¢ > 0 we may take n
sufficiently large that n > k, + k; which gives

lim sup P, (T, > 1) >1—e.

n—oo 20€Br
Now since ¢ was arbitrary we get the third statement of the lemma. [J

Define the semigroup {P,;};>¢ on the space B,(Z), the set of all bounded and measurable
functions f : Z — R endowed with the supremum norm, by setting

Pif(2) = E[f(Z))]. (&)

Lemma 2.5. If Assumption 2.1 holds, then {P;};>¢ defined by (5) is a Feller semigroup,
i.e. P(Cp(2)) C Cp(2).

Proof of Lemma 2.5. Note that P, is a contraction with respect to the supremum norm so it
is sufficient to show that P, f is continuous for any f € C,(Z). We will follow the strategy
of [15, Theorem 27.6]. Fix f € C,(Z2) and define for any g € C,([0, c0) x Z)

Gg(t,2) =E [ f(Z)Li<r, + 80t — T, Zp)1jopn ]
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Here 14 denotes the characteristic function on the set A. With this notation we can also express
Gg(t, z) as

Ga(t,2) = f(pi(z))e Jores@s 4 / Qg(t — s, Y@My (2))e~ o Hor@Hr g g
0

Notice that Gg(¢, x, v) is continuous in (x, v) provided f, g are both continuous. Following
the proof of [15, Lemma 27.3] we have

|G"g(t,2) = P f(2)| < 2cP(T,, <1)

where ¢ = max(|| f||oo, l|€llco)- By Proposition 2.4 we have that G"g(¢, z) converges to P, f(z)
uniformly on bounded sets; therefore P; f(z) is continuous. [J

2.1. Extended generator

For PDMPs the domain of the extended generator can be explicitly characterised as shown
in [15,27]

Definition 2.6. Let D, denote the set of measurable functions f : H — R with the property
that there exists a measurable function 7 : Z — R such that t — h(Z,) is integrable almost
surely and the process

¢l = F(z) - F(Zo) - /0 h(Z,)ds ©)

is a IP,-local martingale. Then we set Lf = h and call (£, Dey) the extended generator.

Theorem 2.7. Let Z, denote the PDMP with characteristics (X, A, Q) and assume that
Assumption 2.1 holds. Then the domain of the extended generator Dey is given by all
measurable functions f such that

(i) For each z € Z the function t — f(¢:(2)) is differentiable for almost every t;

(ii) (z,t, w) — f(2)— f(Z,_(w)) is a valid integrand for the compensating measure p. Here
~ t
p(t, A) = fo 0(Zs, A))\(Zs)ds

Then, for f € Dey the extended generator is given by

Lf(z)=Lxf(@)+Az) /Z(f(y) — f(@)0Q(z, dy). )

This follows from the proof of [27, Theorem 2.2.1]. We note that [27] assumes that A is
bounded, however for characterising the extended generator they only use that A is bounded
to ensure the process is well-defined. Since we have established the PDMP is well-defined the
proof of [27, Theorem 2.2.1] holds. From [15, Remark 26.16] if f is bounded and measurable
then condition (ii) is satisfied.

Recall the semigroup {P,},;>0 defined by (5) defined on the space B,(Z). Note that {P;};>0
is a contraction semigroup however it need not be a strongly continuous semigroup, therefore
we shall consider a smaller space on which {P;};>¢ is strongly continuous. By Lemma 2.5 if
Assumption 2.1 holds then {P;},>¢ is a Feller semigroup, i.e. for every ¢+ > 0 we have that
Pi(Cpr(2)) C Cp(Z). Set Co(2) = {f € Cp(2) : limy0 ||P, f — flloo = 0}. Note this space
is closed by the same arguments used in [15, pg 28-29] and as {P,};>¢ is a Feller semigroup
Pi(Co(2)) € Co(2) for every t > 0. On the space Cy(Z) the semigroup {P;},>0 is strongly
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continuous. Let (£, D¢,) be the generator of {P,;},~o on the space Cy(Z). We can see from the
definition of the extended generator that £ is the restriction' of the extended generator L to
the set Dg,.

3. Invariant measure of PDMP

In this section we give conditions to ensure a PDMP has an invariant measure p. The
measures we consider will be absolutely continuous with respect to a probability measure g
and we will assume there exists a lower semicontinuous function ¢ : Z — R which is bounded
from below such that

du e P
(2)

a7 8
dpo [ e=?@u(dz) ®

Example 3.1 (Inverse Problem for a Diffusion Coefficient). This example is based on [29,
Section 3.3]. Consider the inverse problem of determining the diffusion coefficient from
observations of the solutions of the PDE

d dv _0 9
T (K(I)E) =0, 9

v(0)=0,v(1) =1. (10)

We make observations {v(tk)}Z=1 subject to Gaussian measurement error. Write observations
as

yi=vitp)+n;,j=1,....q

where n; are i.i.d. and distributed according to N(0, 1). To ensure that « is strictly positive we
set u(x) = In(k(x)) and view u € L?((0, 1)). Now define J, : L*((0, 1)) = R by

Ji(w) = / exp(—w(z))dz.
0

Then the solution of (9) may be written as

_ Ji(u)
=g
Set
1 & i) |?
Q) = EZ A

j=1

Now we place a Gaussian prior 7y on the space L?((0, 1)) with mean zero and covariance
operator B(—A)~*. Here we set the domain of A to be

{Au —u", D(A) = {u e H2((0, 1)) : u(0) = u(1), [ u(s)ds = 0} .

I Let f € D¢, and set C,f " to be defined as in (6). Then we have
BIC/172] = Poes (20~ 1(Z0) - [ P L2 - / " Li@r.
As f € D¢, we can write [} P, L[f(Z)dr = Pi—s f(Zs) — f(Z;) which gives
EIC] |7 = £(Z0) — f(Zo) - /0 " Lfzdr =l

Therefore f € Dext.
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From [29, Lemma 6.25] we have that 7y(C([0, 1])) = 1 provided o > 1/2. Then by [29,
Theorem 3.4] the posterior distribution 7¥(du) = P(du|y) given the data y is absolutely
continuous with respect to mp and

dm?
—(u) xexp(—Pu)). A
dJT()

Theorem 3.1. Assume that Assumption 2.1 holds. Suppose Z is equipped with a probability
measure |Ly. Define a transition kernel Q* by

//g(y,z)Q*(y,dZ)uo(dy)=/ / gy, 20(z, dy)po(dz) (1)
ZJZ ZJZ

for all g € Cy,(Z x Z). Let pu denote a probability measure satisfying i o e~ . Assume
that

ePOL% (e ")) + / A(3)e PPN 0* (7, dy) — A(z) = 0. (12)
Z

Here L% denotes the adjoint of (Lx, D(Lx)) as an operator acting on the space Lio. Then n
is formally an invariant measure for the semigroup P; in the sense that

/Z LF(2u(dz) =0 (13)
for all f € D(Lx)N Dc¢,.

In order to verify that u is an invariant measure it is necessary that (13) holds for all f in
a core for (£, D¢,). In general for PDMP it is extremely difficult to determine a core for the
generator, in Section 5 we prove that sufficiently smooth functions are a core for the Boomerang
Sampler and find the invariant measure.

Proof of Theorem 3.1. Fix f € D(Lx)N D¢, then we have
f Lf(2)u(dz) = / F@ L5 (e ") 2)po(dz) + / / M) F()O(z, dy)e” T po(dz)
Z Z ZJZ
- f M) f(@)e” PO po(dz)
Z

= f f@ [e¢‘Z>L;<e—¢<'>>(z>+ / x(y)egb‘“—@(”Q*(z,dy)—A(z)}
Z Z

X u(dz)
=0. O

Example 3.2. Suppose the transition kernel Q corresponds to a deterministic transition,
i.e. Q(z,dy) = 8g()(dy) for some invertible function R. Assume that

(1) The measure p is invariant under R, i.e. oo R = Wo;
(2) The mapping @ is invariant under R~!, i.e. $o R~! = &;
(3) The map z > e~ ?@ belongs to the domain of L%, and
e?Lie ™ + 1o R -1 =0. (14)
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Then u(Lf) =0 for all f € D¢,. Indeed, in this case Q*(y, dz) = 8g(,) and we can rewrite
the left hand side of (12) as
—&(- _ _ —l¢,

eq)(Z)L;(e @())(Z) + AR l(z))e¢(z) D(R™(2)) _ 12).
Using that @ is invariant under R~! this simplifies to

e?@L%(e™")@) + MR (@) — M)
which is equal to zero by (14) therefore the measure e~ %1 is an invariant measure. A
Example 3.3 (Finite Dimensional Zig-Zag Process). We now consider a finite dimensional
example, set Z = R? x R4, and for any z € RY x R? we write z = (x,v) for some
x € R4, v € RY. Suppose we wish to sample from the measure 7 (dx) = e~ ?™dx, which

we extend to a measure 1 on R? x R? by u(dx, dv) = m(dx)vo(dv) where vy is the uniform
distribution on {1, —1}¢. Let

7 (2)=0)

and set
L)
z,dy) = : "
0(z. dy) gm F
where Fi(x,v) = (X,vi,..., Vi—1, =Vi, Vigl, ..., V), AM(2) = Zleki(z) and A;(x,v) =

(v; 9y, P(x))*. Note that Ly has an invariant measure 19 = vo(dv)dx which is not a probability
measure. By [15, Theorem 27.6] the semigroup associated to this process is a Feller semigroup.
For this example we have that
d

Q*(z.dy) =)

i=l1

Li(Fiz)

MFz)

in which case, showing that (12) holds reduces to
O, P(xX)v; + Ai(Fiz) — Ai(z) = 0.

It is immediate to check that this holds for our choice of %;. A

4. Examples of infinite dimensional PDMPs

4.1. Zig-Zag sampler in infinite dimensional Hilbert spaces

In this section we present an infinite dimensional version of the Zig-Zag Sampler, which we
refer to as IDZZ, evolving in the Hilbert space (H, (-, -)). This algorithm is designed to target
the measure 7 as defined in (1), however as in the finite dimensional ZZ we extend the space
to be of the form (x, v). That is, we set the state space to be

ZZHXVZZS (15)
where
szs:{ve'H:E’lve'H},

and we recall (from Section 1.2) that ' is a self-adjoint trace class operator on H. We equip
Vzzs with the inner product (v, w) — (X “ly, X w), making it into a Hilbert space. Note that
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in order to ensure well-posedness of the IDZZ we require that the auxiliary variable v belongs
to a smoother space than H, indeed the space Vzzs is also contained within the Cameron—
Martin space of my and hence is a null set with respect to y. On this extended state space Z
we design the IDZZ to have invariant measure p defined by (8) where

oo
o =m0 X v, where 7o~ N0, £), vy = Q)58 + 384). a € Vazs. (16)
i=1
Note here that different choices of a can lead to different invariant measures so the process we
define is not ergodic on the space H x Vzzs. This could be resolved by restricting Vzzs to the
space
veH:v==w)Z,, v € {a;, —a;}}

for some fixed a = (4;)72, € Vzzs. However to remain consistent with the framework of this
paper it is more convenient to have that Vzzgs is a Hilbert space.

In this section we will make the following assumptions on the functional @. Suppose @ is
everywhere Fréchet differentiable. For each x € H the Fréchet derivative d #(x) is identified
with an element V @(x) of H.

Assumption 4.1. The functional @ satisfies the following:
(1) Domain of @: the functional @ is defined everywhere on H and
0= &(x) S 1+ x|

(2) Derivatives of ¢: The function @ is differentiable and V, @ is locally (on bounded
sets) Lipschitz and grows at most linearly:

IVy @Ol S 1+ [lx]l- a7

(3) Growth of &: The functional ¢ can be written as ¢ = &, + &, where &, is convex and
bounded from below, and @, is bounded with bounded first and second order derivatives.

The generator of the IDZZ is then defined as follows:
Lfx,v)=(Vf(x),v)+ Zki(x, v) (f(x, Fiv) = f(x,v)), (x,v) € H xVzzs (18)
i=1

where f is in a class of suitably smooth functions. The switching intensities are given by

X +
)»,'()C, v) = (U,' (—12 + 8_,51. @(X))) .
Vi

In terms of the abstract framework in Section 2, we have
o0
Maxv) =Y hix,v), Qilx, v, dw) = 8p,(dw),
i=1

1

Ox,v,dy,dw) = o)

D kilx, 0)8dY) Qilx, v, dw).
i=1
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Remark 4.2. As X is defined by an infinite series we must verify that it is well defined for
all (x, v) € H x Vzzs. Note that

ZA (x,v) < Z 'y"| 1|+Z|v,||ax, S| < I1Z 7 wllllx ]| + vV ). (19)

L i=1

Therefore A is well defined. A

Theorem 4.3. Let Assumption 4.1 hold. Then there exists a piecewise deterministic Markov
process in H xV with (formal) generator (18). Moreover, for any a € Vzzs the product measure
w given by (8) with po given by (16) is invariant for such a process.

Proof. The proof is deferred to Section 8.1.1. [

4.1.1. Choice of velocities

In the following example we discuss how to choose optimal velocity magnitudes (a;) for
the infinite dimensional zig-zag process, in order to minimise the computational complexity
for estimation of the functional x +— ||x||f, where for r > 0

Ix)? = (£ x, x).

Le., we will derive below the limiting normal distribution of

1 T
ﬁfo HIXI2 = 7ol - 12} ds

as T — oo, depending on the choice of (a;), and determine how to choose (a;) in order to
minimise the asymptotic mean squared error given a fixed computational budget (i.e., for a
fixed maximum number of switches).

Let oj% denote the asymptotic variance for a one-dimensional canonical (i.e., no refresh-
ments) Zig-Zag process with position (X(¢));>o and velocities V(t) € {—1, 1} targetting the
standard normal distribution, evaluated with respect to the function f, i.e.

1 /T d )
— | {(f(X(s)ds —n(f)} ds — N(0,07),
Nl ! !
where 7 denotes the standard normal distribution. Write 77, for the distribution N(O, yz).

Lemma 4.4. A one-dimensional Zig-Zag process with velocities {—a,a} with stationary
distribution i, = T, ® Umform({ a, +a}) and canonical swztchmg intensities, evaluated
with respect to the function f (x) = cf(x/y) has asymptotic variance c> Yoy 2 /a. The expected
number of switches compared to the canonical Zig-Zag process with unit speed velocities is
proportional to a/y (per unit time, in stationarity).

Proof. Let X (t) denote the Zig-Zag process as specified. The stationary distribution of X ®/y
is then a standard normal distribution, and the process X(¢)/y has velocities £a/y. Slowing
down the clock by a factor a/y, the process =(t) := X(yt/a)/y is a Zig-Zag process at unit
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speed targetting the standard normal distribution. We compute

r T
%/O {Cf()N((S)/V) - Enyf()?/)/)} ds = %A {cf(E(as]y)) —cm(f)}ds

y aT/y
/ (cf(5() — ex(f)) dr
aT Jo

B2l
= Ve VF
N N, czya‘%/a).

T
/0 (FEE) —n(f)dr

The number of switches follows directly from the slowing down factor. [J

Example 4.1. Define v? to be the asymptotic variance of the canonical Zig-Zag process with
unit velocities targetting the standard normal distribution, evaluated with respect to the function
x +— x%. By [7, Example 1], we have v> = 4./2/m, but the exact value is of no importance
here. If we consider now a zigzag process targetting N'(0, y?) with speeds {—a, a} evaluated
with respect to the function x — x2/y? = cx?/y? for ¢ = y>!="), we obtain from Lemma 4.4
that the associated asymptotic variance is y>~*v?/a. A

We will now consider an infinite dimensional Zig-Zag process targeting the function x +—
|lx||2, for r > 0. To ensure that all the required operations are welldefined, we introduce the
following assumption.

Assumption 4.5.  Suppose r € [0, 1) is such that 370, 7" < oo.

2 2

Example 4.2. In the case of a Wiener process in L2[0, 1], we have y? = (i—1/2)2n 2 ~i 72
Consequently, for any r < 1/4 we have Y -, yi274’ < 00, so that Assumption 4.5 is

satisfied. A

Proposition 4.6. Suppose Assumption 4.5 is satisfied. Consider the zigzag process of Theo-
rem 4.3 with ®(x) = 0 for all x. The asymptotic variance o} of the Zig-Zag process with
respect to the function x + ||x||? is given by o> = vy 0, yi574’/ai, where V2 is as defined
in Example 4.1. The expected number of switches per unit time interval is proportional to

2?21 ai [ vi.

Proof. Note that the generator of the Zig-Zag process can be interpreted as a sum of infinitely
many one-dimensional Zig-Zag processes. By this factorisation property and Example 4.1, the
asymptotic variance decomposes as

[o.¢]
2 5—4r 2
o; =Zyi "v/a;.
i=1
The proportionality factor of the number of switches is a direct consequence of the second

statement of Lemma 4.4. [

Suppose now that we have a fixed computational budget of (approximately) N operations,
and we wish to minimise the approximate standard error €, = o,/ VT, where T is the length
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of the time interval we will simulate within N operations. We may then phrase the question
of choosing optimal velocities (a;) as follows:

e 1 2 = 5-4 . >
minimise v 2% " subjectto T zai /vi <N.
1= 1=

Resolving the constraint by setting 7 at its maximal possible value, T = Z“#
il

. C —14i/vi
transforms into the minimisation problem

])2 o0 o0
minimise N (; yi54r/a5> (; ai/)/i> .
Minimisation with respect to a; (using a Cauchy—Schwarz argument) yields

3-2r
a;, = C)/l-

, the problem

for some constant C, where the choice of the constant C does not affect the minimisation
objective.
We find that, for this choice of (a;), the expected number of switches is finite,

o0 oo o0
N=TY a/y=T 27w < (max .2’> 274~ 0
; /v ; v axy; ; v,
by Assumption 4.5. Furthermore the Zig-Zag process is well-defined using Theorem 4.3 since
[eS) a2 3]
1P =)L =) y"" <o
izt Vi i=1
by Assumption 4.5.

Note that, for large r, the functional x + ||x||2 is sensitive to the high frequency components
of x (i.e. the large indices in the expansion x = Y .2, x;e;). Also, for large r, the high frequency
velocities a; = yf*z’ are relatively larger, so that the high frequency components are explored
more.

We have shown how, for a particular example of a functional x ||x||f relative to a
Gaussian target we may choose velocities to minimise the statistical error when using the IDZZ
as a sampling method, for a fixed computational budget. It is an interesting research problem,
but beyond the scope of this work, how this may be extended to other functionals, general
target distributions and other sampling methods.

4.2. Bouncy particle sampler in infinite dimensional Hilbert spaces
In this section we introduce an extension of the BP algorithm which is well-defined in the
infinite dimensional Hilbert space
Z ="H X Vpps.
As with IDZZ the velocity component needs to be smoother than the position component, set
Veps = {veH: X v eH).
We will design the IDBP to have invariant measure u defined by (8) where

o = 7o X vy, Wwhere my ~ N, X), vy~ N, Z%) (20)
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and ¢ > 2. Note that as ¢ > 2 then vo(Vpps) = 1 therefore p can be viewed as a probability
measure on H X Vgps.
The generator of IDBP is defined, on a set of suitably regular functions, as

Lf(x,v) = (v, Vi f(x,)) + Ax, v)[f(x, R(x)v) — f(x,v)]
+ e /V LF(x, w) = f(x, )] vo(dw), 1)
BPS
where
2(v, V¥ (x))

| D62V & (x)?
Mefr > 0 1S a positive constant, ¥ is been defined by

Ax,v) = (v, V&, Rxw:=v— X5V I (x), (22)

T (x) = P(x) + %(Z’_lx,x). (23)

Remark 4.7. Note that ¥(x) is not well defined for all x € # since X~' is an unbounded
operator however this is to be viewed as just a formal definition. Indeed, the IDBPS does
not rely on ¥ itself but only on V¥, which always appears with a term to smooth it. In
Proposition 4.10 we show that all the terms that appear are well defined for all x € H and
v e Vgps. A

We will show in Proposition 4.10 that the resulting algorithm generates a continuous-time
dynamics (X;, V;) € H x Vgps with invariant distribution w. Here well-posedness is in the
sense of Propositions 4.8 and 4.10.

Proposition 4.8. Let Assumption 4.1 hold. For any ¢ > 4 and for every x € H, v € Vgps, we
have

(1) the intensity A(x, v) is well defined (in the sense that the scalar product (v, V¥ (x)) is
finite);
(2) R(x)v € Vgps.

Proof. The proof is deferred to Section 8.1.2. [

Remark 4.9. To explain the choice of scaling of the covariance operator in (21)—(22) and at
the same time show properties of IDBP, let us consider the following (formal) generator

Lf(x,v) = (v, Vi f(x, ) + A0x, V)[f(x, R(X)v) — f(x, V)]
+ Arer [(Q)(x, ) — fx, V)], 24
with
2(v, XV W)
[ Zrv?
where 8, 1, €, y, B are arbitrary positive parameters. Then in order to have that R(x) is an

involution, the measure vy is invariant under R(x) and that w is an invariant measure it is
necessary that 8 = 2y, € = n = 0, which gives (21). A

AMx,v) = (2", V)T, Rx)v:=v— v, (25)

Proposition 4.10. With the notation introduced above,
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(1) The reflection operator is involutive, i.e. R(x)[R(x)v] = v, for every x € H,v € Vpps;
(2) The reflection operator satisfies the following property

(R, V) = —(v, V). (26)

(3) The Gaussian measure is invariant under reflections, i.e., the centred measure vy with
covariance X% and the measure vg = vy o R(x) coincide on H;
(4) The measure [ is invariant for the operator L in (24)—(25).

Proof of Proposition 4.10. The proof is deferred to Section 8.1.2. [J

Lemma 4.11. With the notation introduced above, for each o € R define || x|, = || X*x]||. Set
& = 0. Then

IRl = vl for any (x,v) € H x Vgps 27
holds if and only if o« = —¢ /2. Therefore Assumption 2.1 cannot be satisfied for any o > —1.

Remark 4.12. We have shown that if IDBPS is well posed then it has the correct invariant
measure. However as shown in 4.11 even for the quadratic problem where ¢ = 0 in order
to satisfy Assumption 2.1 we need to work in a space that has measure zero with respect
to the measure w. Hence we cannot apply Theorem 2.3 in this case. Therefore it remains to
show that IDBPS is well posed, in particular one needs to show that it is not possible to have
an infinite number of reflections in a finite time interval. This problem can be alleviated by
replacing the reflection operator R(x) by R(x)v = —uv, i.e. to introduce pure reflections in the
IDBPS. Establishing wellposedness for R(x) as given by (22) is beyond the scope of this work;
however we will give here a heuristic argument to show why we can expect IDBPS to exist
under Assumption 4.1.

We estimate the expected number of reflections per unit time by considering the rate in
stationarity, that is we will bound

E, [AMX, V)] =E,[(V,VO(X)+ X' X)*].
By Assumption 4.1 we have that V @ grows at most linearly and therefore we have the bound
EuMX, VI < ELLIVIA+ XD+ 127" VXL

By independence of X, V and using that X ~'V is Gaussian with covariance X2, these terms
are bounded. A

4.3. Boomerang Sampler

We now introduce the Boomerang Sampler which differs from IDZZ and IDBP by having
circular deterministic dynamics instead of linear motion. As with IDZZ and IDBP we will
extend the state space H to include a velocity component and we define the IDB on the infinite
dimensional Hilbert space

Z=HxH.

In contrast to the IDZZ and IDBP settings we may allow the velocity to belong to the same
space as the position component. We design the IDB to have invariant measure given by (8)
where g = my x vg for some Gaussian measures 7y = N(0, X,), vo = N (0, 2).
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4.3.1. Definition and well posedness of the Boomerang Sampler

The dynamics of the Boomerang Sampler are composed of three different mechanisms: the
deterministic flow which is chosen to be a Hamiltonian flow, designed to preserve the reference
measure [o; reflections which will preserve the same Hamiltonian as the deterministic flow; and
refreshment which will happen at a constant rate. First we describe the deterministic dynamics.
Fix two bounded positive self-adjoint linear operators 2", & and take ¢ to be the flow map
associated to the Hamiltonian dynamics described by

d
ot =% 7)o (8)

Recall that ¢, takes values in H x H so we can view ¢,(x, v) as two dimensional vector whose
components belong to H. These dynamics correspond to the Hamiltonian

EZZ(x,v) = (Zx,x)y + (Pv, v)y. (29)

There are two natural choices for EZ % (x, v), one is the H x H norm which corresponds
to taking 2" = & = 1 and we will see that this requires that X, = X,. Another natural
choice is to take 2 = X! and & = X! however the Hamiltonian is then only defined
on the Cameron Martin Space which has measure zero with respect to . This gives many
technical difficulties and even well-posedness of the process may not hold (see Example 4.3)
so we shall restrict ourselves to the case where 2", &2 are bounded operators which implies
that the Hamiltonian is everywhere defined. Define the operators

d
Lefo= 5| flot )= <(_‘§i’x) , (3;3 ;’;>> 2 (30)
t=0 v ’ H
Lef oy = [ 17w = fix ol G1)
Lofr ) = Y M e RiCov) — f(x. vl (32)

i=1

Here A, is a positive constant, A; : H X H — [0, oo) for each i € N and for eachi € N, x € H,
R;(x) is a bounded linear operator. We formally summarise the Markov process (X;, V;) by the
generator

£=L%+Lr+Lb

Such a process exists by Proposition 2.4 provided the following Hypothesis 4.13 holds. This
process is a PDMP defined on Z = ‘H x H with characteristics

x Pv
X (U) - <_ %x>, (33)

Alx, v) = Z)w‘(x, V) + A,

i=1

l oo
O((x, v), A) = D ki, )8,k o) (A)

Do a0, v) + A

i=1

(8x % vo)(A).

Ar
+ -
ZJ )\'j(x’ U) + )‘-r
From now on we will assume the following hypothesis holds.
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Hypothesis 4.13. Assume that:

(1) The intensities X, and A are continuous and bounded by the Hamiltonian EZ?(x,v)
(recall this is defined by (29)), that is

D haxv) €A+ EP P (x,v)). (34)

n=1

(2) The flow map ¢, is given by the solution of (28) for some bounded linear operators
Z, & which are self-adjoint and commute;
(3) Each reflection operator R;(x) is a linear bounded operator for any x € #, and satisfies

(ZPR;(x)v, Ri(x)v)y < (Pv,v)y, forall x,veH. (35)

Moreover, assume that (x, v) — R;(x)v is continuous.

Remark 4.14. We shall now comment on each of these assumptions in turn.

(1) Since 2", & are bounded ¢ is well defined and for each initial condition (x, v) the map
t — ¢:(x,v) is smooth.

(2) Requiring that the reflections R; do not increase the Hamiltonian allows us to prove that
the process is non-explosive, i.e. sup; T’ = oo almost surely. The strategy for showing
this relies on the fact that except for refreshment jumps the dynamics is bounded by the
Hamiltonian E% - (x, v) therefore the jump rates are bounded since (34) holds.

(3) Under Hypothesis 4.13 we have that Assumption 2.1 also holds, in particular the
Boomerang Sampler is well-defined by Theorem 2.3. Since &, 2  are bounded we
can work with the seminorm E#? in which case Assumption 2.1(iii) follows from
(35) and Assumption 2.1(vii) is satisfied with ¢ constant since the flow ¢, preserves the
Hamiltonian. A

Definition 4.15. Given a Hilbert space H, a covariance operator X, and a function @ we say
that the process {X;, V;};>¢ is a Boomerang Sampler with characteristics (X, Z', &, {Ai}i, Ar,
{R;};) if Hypothesis 4.13 is satisfied and (X;, V;) is the PDMP constructed in Section 2 with
characteristics given by (33). The generator of this process acts on sufficiently smooth functions
by

Lf(x,v) =(Pv, Vi flx, ) = (Zx, Vy flx,v))n -H»rﬁd fx,w) = fx, v) vo(dw)

+ ) kil F G, Ri(x)v) — fx, v)]
i=1
We call the Boomerang Sampler with characteristics (X, 1, 1, ((V, @(x), v)3)+, Ar, U >
—v) the pure reflection Boomerang Sampler, here A; = 0 for i > 1 so we have not included
them in the notation.

The following example shows that if we drop the assumption that 2", & are bounded then
we can still define a weak solution to the dynamics. For simplicity we will take 2" = & =
-l
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Example 4.3. Suppose that 2" is an (unbounded) self-adjoint positive operator which is
diagonalisable, that is there exists an orthonormal basis of eigenvectors. Then there is a process
(X;, V;) such that

t
X: — Xo =3&”/ Vids (36)
0

t
V,— Vo = —3{/ X, ds. (37)
0

We will construct this process by converting the problem into an infinite system of two
dimensional ODEs. Fix an orthonormal basis {e;};2, of eigenvectors of £ and let y,? be the
eigenvalue associated to ey.

Consider the system

d i 2vsi d i 2vi
EX,=)/,~V,, E‘/t:_%Xt
with initial condition Xf) =x!, Vé = v'. The solution of this system is given by
X x cos(y?t) + vsin(y2t)
D= . 12 ! 2 . (38)
v, —x sin(y;t) + v cos(y;’t)

We also have that
IXIP+ VP =[x )2+ o'

In particular, this gives us that ZIN:I Xfe,- and ZZN:I er,- converge to some X;, V, € H for
each ¢t > 0. So we have

N N N
X, — Xo= ngnm;(& —x)e; = ngr;o;/o Vivierds = lim 2 (;/0 Vxe,»ds>
Since 2" is a closed operator fot V,ds, fol X,ds € D(Z") and
t t
X,—on(%/ Vids, V[—V()Z%/ X,ds.
0 0

Therefore we have weak solution to (28) but a weak solution is the most we can expect. To
have a strong solution we require that X, € D(Z") and V, € D(Z?). However X,, V, € D(Z)
if and only if

N
D VAUXIP VP < oo
i=1

Using the expressions for X!, V/ given by (38) we can rewrite this as

N N
DOVAAXIP+ VI =) v P+ .
i=1 i=1
Therefore X,, V, € D(Z") if and only if x, v € D(Z"). Now as 2 is a closed densely defined
operator we have that D(2") = H if and only if 2" is bounded. A

4.3.2. Invariant measure

In the previous section we constructed the PDMP and showed that the construction was
well defined for all ¢+ > 0, now we show that it has the desired invariant measure. Recall the
definition of the semigroup was given by (5), here we take Z = H x H and Z; = (X,, V}).
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Hypothesis 4.16. We shall assume that:

(1) Hypothesis 4.13 holds;
(2) The operators 2", &2 satisfy the consistency condition:

PL, =X (39)

(3) The function @ satisfies 4.1 and the following relation is satisfied:

o0
D 0w (x,v) = Anlx, Ry(x)0) = (Vy B(x), Pv)3; (40)
n=1
(4) The reflection operators R;(x) are involutive (i.e. R;(x)R;(x)v = v for all x, v € H) and
invariant under the measure v, that is

/ F(R;(x)v)vp(dv) =/ f)vg(dv), forall f € L%O,x eH,i>1. 41
H H

Proposition 4.17. Fix a Hilbert space H, a covariance operator X, and a potential function ¢
and let {X,, Vi};>0 be a Boomerang Sampler with characteristics (X, 2y, P, {}i}is Ars {Ri}i)-
Assume that Hypothesis 4.16 holds then u is formally an invariant measure for {X;, Vi};>¢ in
the sense that (13) for all f sufficiently smooth.

Proof of Proposition 4.17. The proof is deferred to Section 8.1.3. [J

4.3.3. Pure reflection Boomerang Sampler

In this section we take A, = O for n > 1 and consider choices of A = A; and R = R;.
Observe that we may always choose R(x)v = —wv, due to the symmetry of vy and the
Hamiltonian E% -7 we have that this choice preserves both vy and E# . With this choice
of R we must take A to be

Mx,v) = (V, D(x), o))" + v(x,v)

where y(x, v) = y(x, —v) for all x, v € H and is non-negative. Let us consider another choice
of R(x). To ensure that R(x) preserves vy it is sufficient to test (41) for any f, of the form
Jfq(v) = exp(i(v, g)3) for every g € H. In which case, f,(R(x)v) = exp(i{R(x)v,q)n) =
Sreeq(V), e

vo(g) = Vo(R(x)"q)

where vy denotes the Fourier transform of vy. Using that vy is normally distributed with
covariance operator Y, we can rewrite this as

1 1 . .
exp (_E(qu’ q);.[) = exp <—§(ZUR()C) q, R(x) q)H> .
Therefore the measure vy is invariant under R(x) if and only if

(Xvq, q)u = (RO)L,R(X)"q, 4)n (42)

Remark 4.18. In finite dimensions we may take

o (Vi 2(x), Pv)
R(x)v=v Z(EUQZVX 500). V. 0) 2y PV, P(x). (43)

356




P. Dobson and J. Bierkens Stochastic Processes and their Applications 165 (2023) 337-396

Indeed, for this choice we have

(X, PV, d(x), v)
(Zy PV, D(x), PV, D(x))
Now we can check that (42) holds.

Rx)'v=0v—2 PV, B(x).

(X, PV, D(x), v)

(2R 0, R(x)*v)p = <2uv e i) S P Ve P
(5, PV, B(x), v)
AR O AR m%

— (Em@vx QS(X), U)

= (Evv, U)H - 4<ZDBZVX @(x), '@Vx @(‘x» <Evgvx QS(X), v)H
X, PV, d(x), v)*

* 4(2 ,;V D(x) ;;v;(x)>2(2vﬂvx D(x), PV, P(x))n

= (v, v)y.

However in infinite dimensional space (35) does not hold. Instead (35) holds in finite
dimensions when the inner product is taken to be the Cameron Martin space inner product
which is equivalent to the original inner product since in this case X!, X! are bounded. A

4.3.4. Factorised Boomerang Sampler

For this section we consider an alternate choice for A,, R,. As in the pure reflection
Boomerang Sampler we take 2" = & = 1, X, = X, = Y. Let {¢;}72, be an orthonormal
basis of eigenvectors of ' and set R;(x)v = v — 2(v, ¢;)ne;, and set

Ai(x, v) = (v; 9y, PN + yi(x, v)

where v; = (v, ¢;)y and y : H x H — [0, o0) satisfies y;(x, v) = y;(x, R;v).
Assume that & € L}ro is smooth and V, @ is globally Lipschitz then Hypothesis 4.16 is
satisfied and we have that p is an invariant measure by Proposition 4.17.

5. Core for the generator of Boomerang Sampler

In this section we will give conditions under which we have a core for the generator £ in
Li. Even in finite dimensional situations it is difficult to determine when a set is core for the
generator of a PDMP, conditions are given in [17] for the set CC' to be a core in Co(RY). In
particular they verify these conditions for BPS and in [3] they verify the conditions of ZZS. In
both cases, the strategy is to first consider the case of a smooth intensity rate A and show that
P,(CHRY)) C CH(RY) then extend these results to the canonical intensity rate. See [1, Section
4.1] for a discussion of cores for PDMP in a finite dimensional setting.

For the remaining sections we will only consider the Boomerang Sampler and will concen-
trate on the Pure Reflection Boomerang Sampler and Factorised Boomerang Sampler. Let us
first introduce a framework which will include both Pure Reflection Boomerang Sampler and
Factorised Boomerang Sampler. For this section we restrict to the Boomerang Sampler with
characteristics (X, 1, 1, {A,}n, Ar, {R,}) where

An(x,v) = %((Vx D(x), v — Ryv)z)™ (44)
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Here R; is a linear operator on H, with Rﬁ = 1, ||R,v|| = ||v| for any v € H, satisfies (42)
and
oo
DI = Ryvl* = 4w, (45)
n=1

In this setting the generator acts on smooth functions by

‘C’f(x’ U) = <U7 fo(x5 U))’H - (x7 va(x5 U))’H + )“F /;—l[f(x’ w) - f(xv U)]Vo(dw)

o0
+ D halx V)F(, Ryw) = flx, )], (46)
n=l1
Observe that here A is the canonical rate, that is there is no y; terms, this is to simplify
the exposition however the same results hold for any bounded function y; with y(x, R;(v)) =
Yi(x, v).

Lemma 5.1. Suppose that @ satisfies Assumption 4.1. Let (X;, V;) be the Boomerang Sampler
with characteristics (X, 1, 1, {X;}i, A, {R;};) where \; are given by (44), and let R; satisfy the
above conditions. Then Hypothesis 4.16 holds, hence (X;, V;) is well-defined.

In this section we aim to show the set FC°(H x H) is a core for the generator £ as given
by (46). The proof that FC°(H x H) is a core is split into 4 steps:

° Step~ 1:~We consider a PDMP (f(,, \7,) with smooth intensities z}nd no refreshments
ie. (X;, V;) is a Boomerang Sampler with characteristics (X, 1, 1, {X;};, 0, {R;};) where

don(x, v) = —log(@(exp(— (Vi ¥(x), v — Ryv)3)), o) =r(1+r)"". (47)

It is a simple calculation to verify that Hypothesis 4.13 is satisfied so we have that X, V)
admits a strongly continuous semigroup 7; on the space Co(H x H) and with generator
given by (£, D(L)). Moreover for sufficiently smooth f € D(L) we have

Lf@.v)=LxfG.v)+ Y k(e ) fx. Ryw) = fx.v)]. (48)

n=1

This choice of A, is motivated by [3] where they use an analogous choice to obtain
a smooth and strictly positive intensity for a finite dimensional ZZS. The advantage
of working with (X,, V,) is that the semigroup is differentiable since the intensity is
differentiable, and as there are no refreshments the process remains on a sphere in H x H.
For this PDMP we prove that the set

€ ={f € CL)(H x H) : Ir > 0 with supp(f)  B,} (49)

is a core for [l, see Theorem 5.5.

e Step 2: We show that since % is a core for (f, D(Z)) we also have that ¥ is a core
for (£, D¢,). This is proven in Corollary 5.3 and the proof follows from showing that the
difference between £ and £ is a bounded operator.

e Step 3: Prove that i is an invariant measure for (X,, V;) and that we can extend P, to
a strongly continuous semigroup (which as an abuse of notation we still denote as P;) on
Li, and we denote its generator by (L, D 12 ).

e Step 4: We show that FC°(H x H) is a core for (L, DL,ZL)'
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Theorem 5.2. Let {P,} be the semigroup corresponding to the generator (48), assume that
@ satisfies Assumption 4.1 and that ¢ is twice continuously differentiable with Vf@ bounded
on bounded sets. For any f € C}(H x H) with supp(f) C B, for some r > O then there exists
a constant C(r) which depends on r such that

IVP; flloo < IV flloo + ||f||ooC(r)t%- (50
Moreover, € is a core for (£~, D(£~)).

Proof of Theorem 5.2. First we show that (50) holds. Fix f € %. In order to prove that
P, f is differentiable we will condition on the number of jumps. We can then express the law
of (X;, V,) explicitly and differentiate this directly. For this approach we need to be able to
differentiate the intensity rate A; and the reflection operator R;v. For this reason we replaced
A; with the differentiable rate )25. Since R; and X are linear operators we have that (x, v) — R;v
and (x,v) — ¢@,(x,v) are both differentiable. Define the operator 53; to be the reflection
operation and 3! as the derivative of 3;, that is,

Big(t, x,v) = g, x, Rjv)

. (10
s5=(y 5)

Recall we denote by T; the ith event time. We shall set J; = n if at T; the velocity changes
according to R,. Note that the probability of more than one event occurs at some time 7; is
zero so we do not allow this event to occur. Define the processes &;, C; by

Nt S t
&= Cr,Vlog(hy,) Xz, Vi) = ) < / CVihi(Xs, vads) (51)
m=1 i=1 0

C: = Vor, (x, U)B/Jl - Vory, —1y, X1y, VTN,_.)B/JM Voi_1y, X1y, V1y,) (52)

and note that C, is a random orthogonal matrix. Note here if # < T then we set C; = Vg, (x, v).
With this notation we can write the derivative of the semigroup as

VP, f(x,v) = E[C,V f (X, V)1 + E[& f (X, V). (53)

The proof of (53) is deferred to Proposition 8.1. Observe that since C; is an orthogonal matrix
we can bound the first term by the supremum-norm of V f. Therefore to show (50) it remains
to find a bound for &, i.e. it suffices to show

sup E[l1& I3,3] = C(r)t (54)

X, VEB,

where r > 0 is such that supp(f) € B,. The proof of this bound is deferred to Proposition 8.2.

In order to prove % is a core for (£, D(L)) it is sufficient to show that the semigroup P,
preserves ¢ then by [21, Proposition 3.3] we have that 4 is a core for L. We have that P,
preserves Cp(H x H) by Lemma 2.5, and since there are no refreshments the process preserves
the norm || - || hence the sem1gr0up also preserves the property of having bounded support.
It remains to show that P, fec) »(H x H) for any f € €. From (53), C; is orthogonal, the
support of f is contained in B,, and Cauchy—Schwarz we have

~ 1 1
IVP: flloe < IV flloo + 1 llso sup Euo [I1& 15002 ]> < IV flloso + [ fllocCr)E2. (55)

X, VEB,
Therefore % is a core for (Z, D¢y). O
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Corollary 5.3. Suppose the assumptions of Theorem 5.2 hold. Then € is a core for (L, Dc,).

Proof. Note that

(F = L) f(r,v) = i fH LF(x w) — Fx, 0)vo(dw)

+ Y (i(x,v) = Mix, VILF (X, Riv) = fx, )],

i=1

Observe that (f—ﬁ) f corresponds to a Boomerang Sampler with characteristics (X, 0, 0, (hi—
Aiti, 0, {R;};). Note that this is a pure jump process with bounded rates and hence corresponds
to a strongly continuous contraction semigroup in Cp(H x H). Indeed this follows from
Theorem 2.7: since there is no deterministic motion we have that C,(+ x H) is contained within
the domain of the extended generator. It is then straightforward to check that the semigroup
corresponding to a Boomerang Sampler with characteristics (X, 0,0, {A; — A;};, 0, {R;},) is
strongly continuous and contractive in C,(H x #). In particular, by the Hille—Yosida Theorem
L—Lis dissipative in Cp(H x H). Now since £ — L is a bounded and dissipative operator
in Cp(H x H), by [20, Theorem 2.7] we have that (ﬁ, Dc¢,) generates a contraction semigroup
on the space Co(H x H). Since € C D(L) is a core for (£, D(L)) and € C D¢, then using
that £ is closed we see that D(ﬁ) C D(L). Therefore the semigroup generated by (L, Dc¢,)
is an extension of the semigroup generated by (L, D(L)) and therefore must coincide and in
particular we have D(L) = D(ﬁ). Therefore we have that € is a core for (£, D¢,). O

Corollary 5.4.  Suppose that the assumptions of Theorem 5.2 hold, the assumptions of
Theorem 3.1 hold then | is an invariant measure for P;. Moreover, there is an extension of 'P;
to Li which is strongly continuous and has generator given by (L, D 2 ).

Proof of Corollary 5.4. By Proposition 4.17 if Hypothesis 4.16 holds then (13) for all
f € D¢, N D(Lx), therefore it is remains to show that (X;, V;) satisfies Hypothesis 4.16
and that € € D(Lx). Hypothesis 4.16 is verified in Lemma 5.1. To see that € € D(Lx), fix
f € € and observe that by Taylor’s theorem for any ¢ > 0 there exists some s € (0, t)

1 tX 0 tX
;(f(e x)— fx)—Lxfx)= Ef(e X)|i=s — Lx f(x)
= (X(e**x), Vf(e'Fx)) — (X(x), Vf(x))

Note that the right hand side is bounded and converges to zero as ¢t — 0 therefore by the
dominated convergence theorem

1
lim [ (¢"%x) = F(0) = La f0)l 2, = 0.

Hence u is an invariant measure for P;.

To see that P, extends to a Cp-semigroup on Li follows from the proof of [13, Theorem 5.8].
The only difference is that [13, Theorem 5.8] is stated for semigroups defined on Cp(H x H).
However it is clear that the proof still holds for semigroups defined on Co(H x H) provided
Co(H x H) is dense in Li. We show that Co(H x H) by showing that € C Dg,. Fix f € €
then by Theorem 2.7 we have

Pofe.v) — Flx,v) = / PoLF(x. v)ds.
0
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Therefore to show that P, f — f converges to zero as ¢t — 0 it remains to show L f(x, v) is
bounded uniformly in (x, v). Let K > 0 be such that supp(f) € Bk then

1L lloo < 2K1IV flloo + 24l Flloo + 20 f oo sup Y~ An(x, v).

(x,v)eBg n=1

By Hypothesis 4.13 which holds by Lemma 5.1 we have that Y A, is bounded on By so we
have that ||£f||loc < 0o. Therefore € C Co(H x H). Since € is dense in Li we have that
Co(H x H) is dense in L7.. As {P;};»0 is strongly continuous on L? it has a generator given
by (L, DLﬁ) which is an extension of (£, D¢,). U

Theorem 5.5. Suppose that the assumptions of Corollary 5.4 hold then FC°(H x H) is a
core for (L, DLﬁ)'

Proof of Theorem 5.5. Note that FCp°(H) and FC(H) are both dense in L7, (and Lj ),
see [26, Lemma 2.2].

e fx,v) = flpi(x, v)

Since e'L* preserves the set F CX(H x H) we have by [21, Proposition 3.3] that this set is a
core for Lx.

Fix f € ¥, it is immediate to check that f € DLﬁO(ng) so there exists f, € FCX(H x H)
such that f, - f and Ly f, — Lxf in Lio. As @ is bounded from below we also have that
fon— fand Ly f, > Lxf in Li and that f, — f in Li. Now

ICf = Ll <ILxf = Lafully + 1D m(fC R = ful Rl

i=1

H DM = ol + 20 = Full2

i=1

Using Cauchy—Schwarz, and that p is invariant under R; we can bound this by

1 1
ILf = Lfullz = ILxf = Lafallz + 2 X;Ai||zﬁ||(f - fn)”zﬁ + 20l f = Sullz -
Note here A € Li by (100). Letting n tend to co we have that Lf,, — Lf in Li. That is
the closure FCX(H x H) of FCX(H x H) in the graph norm of £ with respect to the Li
topology contains ¢". Now ¢ is a core for (£, D¢,) and since convergence with the supremum
norm implies convergence in Li-norm we have that D¢, € FCP(H x H). Again by [21,

Proposition 3.3] we have that D¢, is a core for (£, DL,%) and hence FC°(H x H) is a core
for (L, DL,%)' O

6. Exponential convergence to equilibria

In this section we will employ the strategy of [2,16] to give conditions under which we
have exponential convergence to equilibria. Let (X,, V;) be the Boomerang Sampler with
characteristics (X, 1, 1, {A;};, A, {R;};) where A; are given by (44), and let R; satisfy the
following conditions.
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Hypothesis 6.1. Suppose R; is a linear operator on H, with R? = 1, ||R,v| = |v|| for any
v € H, satisfies (42) and (45). Moreover suppose that for any v € ‘H
Z(l — Ry)v =2v, (56)
n=1
1 o0
72— R Z(A—R) =2, (57)
n=1
(1—=R)*Y(1 — R,) =0 for m # n, (58)

Here (1 — R,)* denotes the adjoint of (1 — R,) as a linear operator from H to H.

For simplicity we have canonical rates, that is we have set y; = 0 where y; is as in
Sections 4.3.3 and 4.3.4. Note that if ¢ satisfies Assumption 4.1 then Hypothesis 4.16 is
satisfied and hence Hypothesis 4.13 also, see Lemma 5.1.

Example 6.1 (Pure Reflection Boomerang Sampler). We can express the Pure Reflection
Boomerang Sampler in the above notation by setting Ry = —1, R, =1 foranyn > 1. A

Example 6.2 (Factorised Boomerang Sampler). Alternatively we can also express the Fac-
torised Boomerang Sampler by taking R,v = v —2(v, e, )1 e,. Indeed in this case (58) follows
immediately as e,, e,, are orthogonal for n # m and diagonalise X', moreover we have

(1 = R)*2(1 — Ry)v = 4v,¥7€,80.m-

Taking n = m and summing over n gives

(o] (o]
DU =R)'EA—R)v =4 veeyy, =45v.

n=1 n=1

Finally checking (56)

o0 o0
Z(l —R)v = 22 Unen =2v. A
n=1 n=1

The conditions we will require for exponential convergence can be expressed in terms of
the second order differential operator defined on smooth functions g : H — R by

Ag(x) = Tr(EVIg(x)) = (x, Vg (0))p — (Ve B(x), ZV,g(x))y, - (59)

Note that this is an operator only on the x variable.

Theorem 6.2. Let P; be the semigroup corresponding to the Boomerang Sampler which is
described by the generator (46). Assume that Assumption 4.1 is satisfied, and that ® is twice
continuously differentiable with bounded Hessian, and there exist ¢c; > 0, ¢; > 0 such that
Ad(x) < ¢, — 1| D2V, D(x)||3,. (60)
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Also assume that e=® € L'(wy) where mop = vo = N0, %), and set 7 to be the measure

defined by (1) and = 1 X vy. Then there exist constants C, k > 0 such that
1P f = m(Hllg = Ce ™I f = u(Hllz (61)
forall f e Li.

Corollary 6.3. Let ® be a twice continuously differentiable function satisfying Assumption 4.1,
has bounded Hessian and is such that (V, ®(x), x)y > C for some C € R. Then ® satisfies
the assumptions of Theorem 6.2. In particular, this is satisfied if @ is convex, bounded from
below and has bounded Hessian.

Proof of Corollary 6.3. To show that (60) holds, observe that
Ad(x) = Te(EV; B(x)) — (x, Vo B(x)) 3 — (Vi D(x), ZV, D(x))3, .

since ¢ has bounded Hessian we have that Tr(EVf @(x)) is bounded so it is sufficient that
(x, V,®(x))y = C for some C € R. We now show this holds if & is convex, and bounded
from below. Fix x € H, by Taylor’s theorem there exists z(x) such that

P(0) = (x) — (Ve (x), x)3 + %(Vﬁ P(z(x))x, X) 3.

Using that @ is convex

P(0) = P(x) — (Vi P(x), X) .
Finally rearranging we have

(Vi @(x), x)3y = @(x) — 2(0)

which is bounded from below as @ is bounded from below. [

Example 6.3. Fix T > 0 and consider the one-dimensional SDE with initial and terminal
condition
dy, =b(Y,)dt +dwW,, te€ (0, T
t ( t ) + t ( ) (62)
Yo=Yr =0.
Here W, is a one-dimensional Brownian motion, » : R — R is a smooth function and o is
some positive constant. We shall assume that b € C,f (R), i.e. that b is bounded and has bounded
first and second order derivatives. Denote by  the law of Y defined on the space L*([0, T]),
the aim is to sample from 7. We shall do so by using a Girsanov transformation to write the
measure 7 as a Radon-Nikodym derivative of the measure my, where m is the law of the
one-dimensional Brownian Bridge on [0, T']. Set % = L*([0, T]) and define the operator
:Ax@ = Lx"(®), x € D(A),

D(A) = H*(0, 1) N H} (0, 1), (63)

where H* are the usual Sobolev spaces and
Hy(0,T)={x € H'(0, T) : x(0) = x(T) = 0}.

Let X; be a one-dimensional Brownian bridge, then set

E =exp ( / b(X,)dX, — 1 / b(XS)st) )
0 2 Jo
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By Girsanov’s theorem the process
t

W, = X, —/ b(X;)ds
0

is a Brownian motion under w where ;Tﬂo = &r. Note that by rearranging we have that X,

solves (62) under . Now let B = fot b(y)dy, then by Itd’s formula we have

T T
B(X7)— B(Xo) — % / B(X,)ds = / b(X,)dX,.
0 0

Recall that X7 = Xy = 0 so we can now write £ as

17 1 [ )
Er =exp _E/ b'(X)ds — E/ b(X)ds ).
0 0

Therefore we have that

dm
d—(x) = exp(— P(x))
o

1 [T 1 [T
P(x) = - f b'(Xy)ds + = / b(X,)*ds
2 Jo 2 Jo
Note that & is smooth and

Ve @(0)(1) = %b”(xt) + b(x)b' (x,)
Vo)1) = %b”’(m + b(x)b" (x;) + 26 (x,).

As b e C;(R) we have that ¢ is bounded with bounded first and second order derivatives,
therefore by Remark 6.10 all the assumptions of Theorem 6.2 are satisfied so the Boomerang
Sampler converges exponentially in the sense of (61).

To keep calculations short we are only working in 1-d, but similar arguments can be applied
in higher dimensions. In [6, Equation 1.5] it is shown that if we consider the SDE

dX, = f(X,)dt + BdW,
where f = —BBTV,V then the corresponding @ is given by

"1 1
P(x) = [ 5|B*‘f<xt>|2+E(vx-f)(x,)dt. A
0
6.1. Hypocoercivity

We shall prove Theorem 6.2 by applying the Abstract Hypocoercivity Theorem introduced
in [16]. We shall use the formulation from [19] which has been developed for infinite
dimensional stochastic differential equations.

Assumption 6.4.

D1) Set H = Li and let (L, D(L)) be a linear operator on H generating a Cy-semigroup
{P,};>0. Where {P,};>0 is conservative, i.e. P,1 = 1 for all + > 0 and has invariant
measure (L.

(D2) Let ¥ € D(L) be a dense subspace of H which is a core for the operator (L, D(L)).
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(D3) Let (S, D(S)) be symmetric and let (A, D(A)) be a closed and antisymmetic operator
on H such that € C D(S)N D(A) as well as L| = § — A.
(D4) Let II : H — H be an orthogonal projection which satisfies II(H) € D(S), SII =0
as well as II(%) C D(A), AII(¥) C D(A).
Assumption 6.5.

(H1) Assume that ITAIl|¢ = 0.
(H2) There exists A,, > 0 such that

—(Sf, fYu = Anll(1 = I f|* for all f € €.

(H3) Define G = ITA*Il on €. Assume that (G, D) is essentially self-adjoint on H and
assume that there exists A, such that

IAIL£117, = A T f 1, for all f €%

(H4) Define B to be the unique extension to a bounded linear operator on H of the operator
(B, D(AII)*) where

B = (I + (AID*(AIT)""(AIl)* on D((AIY").

Assume that the operators (BS, %) and (BA(1 — II), €) are bounded and there exist
constants ¢y, ¢c; < 0o such that for all f € €

I1BSflln =clld—=IDflln, and [|BA(L—IDfllg < coll(1 = ID fllx-
Theorem 6.6. Assume that Assumptions 6.4 and 6.5 hold. Then there exist positive constants
C, k > 0 such that for any function f € Li, andt > 0,
1P f = u(Dllae < Ce ™ NI f = n(Hlln
where u(f) = [ fdu.

Then Theorem 6.2 follows from Theorem 6.6 once we verify these conditions for the
Boomerang Sampler. Before we verify these conditions we state the following lemma which
is quoted from [19, Lemma 1].

Lemma 6.7. For the Gaussian measure vy and vy, v, v3, V4 € H we have that
/ (u, vi)x (u, v2)yvo(du) = (Xvi, va)n,
H

/ (u, V1) (U, v2) 3 (U, V3) 9 (U, V) vo(du) = (K, V2) 3 (XV3, va)
H

+ (X, v3) (X, va)u
+ (X, v (X, v3)u.

Proof of Theorem 6.2. To simplify notation we will only consider f such that u(f) = 0, the
result then follows by setting f = f — w(f). Let us first consider Assumption 6.4, note that
(D1) is immediate, and (D2) follows from Theorem 5.5.
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Define (S, D(S)) and (A, D(A)) as the closure of the operators (S, FC;°(H xH)), (A, FC5°
(H x H)) where

1 oo
Sf(x,v) = E(ﬁ + L f(x,v) = Z?»f,(x, VLf(x, Ryv) — f(x, )] + Le f(x, v),

n=1

feFCOH xH) (64)

1 oo
Af(x,v) = S(L = LYF(,0) = Le f(6,0) + 34706 0L (x Ryv) = 3, 0)],

n=1

f € FCP(H x H). (65)
Here
Ay (x,v) = %(?»n(x, V) + Ap(x, Ryv)) = %I(Vx P(x), v — Ryv)y| + va(x, v), (66)
Ap(x,v) = %(Xn(x, V) = An(x, Ryv)) = ;‘(Vx P(x), v — Ryv)yn. (67)
For f € L7 set
I(f)x) = A f(x, v)vo(dv). (68)

Note that since (S, FC;°(H x H)) and (A, FC;°(H x H)) are the restriction of the operators
(8*, D(S*)) and (—A*, D(A*)) to the set FC,°(H x H) which is dense we have that
(S, FC°(H x H)) and (A, FC°(H x H)) are closable. It is immediate to verify that II is an
orthogonal projection on Li therefore all of these operators are well-defined and we have that
(D3) is satisfied.

Let us now verify (D4). Fix g € H(Li) and take g, € FC°(H x#H) such that g, — g which
exists since FC°(H x H) is dense in Li. Then IIg, € FC;°(H xH), and we have S(g,) = 0.
Since (S, D(S)) is closed we have that H(Li) C D(S)and SII =0. Fix f € FC;°(H x H)
then II f € FC;°(H x H) € D(A) and

All f = (v, Vo Il f(x, v))9. (69)

We can establish that AIl f € D(A) by following the same argument as in [19, Lemma
6]. Since the details are the same we will simply sketch the strategy here. It is sufficient

to construct a sequence f, € FC;°(H x H) such that f,, — AIlf in Li and Af, is
convergent in Li. Since f € FC;°(H x H) there is n € N and a projection P, such that

f only depends on the variables (P,(x), P,(v)), we can construct the sequence {f,}, by
setting f,,(x, v) = @), (P,(v))AII f(x, v) for a suitable cut-off function ¢, € C°(R"). This
sequence of functions converge pointwise to AIl f and one can show convergence in Li by
the Dominated Convergence Theorem.
Let us now verify Assumption 6.5. Note that Assumption 6.5(H1) is verified immediately.
Assumption 6.5(H2) follows from Lemma 6.8.
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In order to verify Assumption 6.5(H3) we must first derive an expression for the operator
G.Fix f € FC;°(H x H) and let g = II f then we by applying A to (69) we have

(A%g)(x, v) = (v, Vi (v, Veg(xX)) g 3 — (X, Vig())n

= Y A ) (1= Ry)v, Vieg(x))y (70)

n=1

= (v, V2g()),, — (x, Veg@))a me V) {(1 = R, Vig(@))y (71)

n=1

Using (67) and Lemma 6.7 we have

1
0506, ) (L= R)v, VeIT f(0) 3] = 2TV @, (1= R)v)an
X (1= Rp)v, Vi IT f(x)) 3]
1
= {0 = R)Vy 2(x), L1 = RV L f(x))y

Here we have used that II denotes integration with respect to vy and vy has mean zero and
covariance operator Y. Summing over n and using (57) we have

Z a5, ) (1= R)v, VoI f(x)) 3] = (Ve D(x), ZV L f(x))

By applying II to the first term in (71) we find
I (v, VI f(x)v),, = Te(EVIII f(x)).
Therefore
HAIf = Te(ZVILF(x)) = (x, VoIl £ ()3 — (Ve @(x), VT f(x))

Therefore, we have Gf = IIT?II f = Ag for any f € FC*(H x H).

By [19, Theorem 1] G is essentially m-dissipative in Li and hence essentially self-adjoint
in Li. From [19, Proposition 4] we have that (G, FC;°(H)) satisfies the Poincaré inequality
for all g € FC°(H)

/H (g(x) — m()’m(dx) < Ay A (ZV.8, Viglnm(dx) = —(Ag, &) 2

Note that [19] requires that the function & is convex however if & = ¢; + ¢, with & convex
and &, bounded then the Poincaré inequality still holds, this can be seen by first applying [19,
Proposition 4] for @, and then by the same argument as in [4, Proposition 4.2.7] the Poincaré
inequality holds for &.

Therefore taking g = II f for f € Li we have that Assumption 6.5(H3) holds.

As explained in [23, Remark 2.17] we can replace Assumption 6.5(H4) with

(B(S— A —ID)f, 11 f) < e3ll(A = IDfIIL ]l (72)

for some constant c3 > 0 and for all f € FC;°(H x H). Therefore it suffices to prove that
(72) holds which we defer to Proposition 6.11. O
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Lemma 6.8. Assume that the assumptions of Theorem 6.2 hold and let S and II be the
operators defined by (64) and (68) respectively . Then for any f € D(S) we have

—(S£, )iz = = IDFI,

In particular, we have that Assumption 6.5(H2) of Theorem 6.6 holds.

Proof of Lemma 6.8. Note that

57 f1y == 2 [ [ G R = fx )
n=1 HIH

+L: f(x, ) f(x, v)vo(dv)m (dx).

Since vy and A; are both invariant under R, we have

/ Iy VL (x, Rov) = fx, 0)Pvo(dv) = / 205, x, v) f (x, v)?

" —HZ)»fl(x, v) f(x, R,v) f(x, v)vy(dv)
= —Zf A VLG, Ryv) = f(x,v)]
X f(q;, v)vo(dv).

Therefore we have for any n € N

(A, VLf (x, Ryv) = fx, 0)], f) 2 < 0.
Which gives

~(SF. )i = —\Lef. P

=Ml = IDf, f)3

The result follows since /I is an orthogonal projection. [J

Proposition 6.9. Let P, be the semigroup corresponding to the Boomerang Sampler which
is described by the generator (46). Assume that @ is twice continuously differentiable with
bounded Hessian and there exist ¢co > 0,c¢1 > 0 such that (60) holds. Also assume that
e~ ? e L (my) where my = vog = N(0, ), and set  to be the measure defined by (1) and
w=m xv. Fix g € FC;°(H) and set h = g — Ag then we have

1
124 Vegllz < lll2, (73)
IV 5Vegll,2 < killalz (74)
1 1 1 1
$1V.g NIV, ® H < H SV, gl DIV, & <)kl . 75

[z3v.e 2 e [RR AT v = 2l 75)

K2

Here Iclz =24c¢, —Cop < Vf@(x)for all x € H and K22 = 4c_21 + %
1

We defer the proof of Proposition 6.9 to Section 8.3.

Remark 6.10. In the context of Proposition 6.9 if we assume that V, @ is bounded then (75)
follows immediately from (73). Therefore we can remove the assumption that (60) holds in
Theorem 6.2 if V, @ is bounded. A
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With these estimates to hand we can show that Assumption 6.5(H4) of Theorem 6.6 holds.
These are based on [2, Lemma 12 & 13].

Proposition 6.11. Letr S, A, II be defined by (64), (65) and (68). Define B as in Theorem 6.6.
Assume that estimates (73), (74) and (75) hold then we have for all f € FC)°(H x H)

1
(BSf I f)y] = <\/§K2 + ﬁxr) 1A =D f 13 1F 12 (76)
(BA(L = I ITf)1 < V201 + 62 1= D fll3 £ 13 - )

42 . . .
Here ko = [+ + —2 and k1 is defined as in Proposition 6.9.
v 2
1

Proof of Proposition 6.11. The proof is deferred to Section 8.3. [

7. Finite dimensional approximation

In this section we wish to construct a finite dimensional approximation to the Boomerang
Sampler. We shall achieve this by taking a finite dimensional approximation of @ and then
constructing a Boomerang sampler to sample from this measure. Let us assume we have a
potential function ¢ : H — R continuously differentiable and measures 7y, vy, 7, (o, 4 as in
Section 3.

Fix an orthonormal basis, {e;}7°,, of eigenvectors of Y. Denote by Proj, the orthogonal
projection onto Hy = span{ey, ..., ey}, and define

Py (x) = B(Projy(x).

Note that the projection of my (respectively vg) to the space Hy is still a Gaussian measure
as linear transformations preserve Gaussianity and is centred with covariance operator X, y =
Projy o X, (resp. X, v = Projy o 2},). Now we can consider the problem of how to sample
from the measure py defined by

duy _ exp(— Py (x))
(dx,dv) =
dpo,n [ exp(— Dy (y)o,n(dy, dw)

where o y(dx, dv) = 7o y(dx)vy n(dV), moy = N, Xy ) and vo y = N(0, X, ). Note
that although these measures are supported on the finite dimensional space ’HIZV we can also
view them as measures on H>.
Let us introduce some more notation for any x € H we denote by
N

N . : .
x" = Projyx = E Xn€n, X, = (X,e,),

n=1
N ._ N _
X =x—x" = E Xp€n,

n>N

and similarly we define vV := Projyv, v) = v —v".

Let {X;, V;} denote the Boomerang Sampler whose generator is given by (46). We shall
construct an N-dimensional process {XZN , VZN }s>0 which takes values in Hy x Hp, although
this process takes values in the space Hy x Hy it is convenient for the analysis to view it as a
process taking values in H x H. We first consider two examples before giving a more abstract
framework, which is the pure reflection Boomerang Sampler and the Factorised Boomerang
Sampler.
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Example 7.1. Let {X,, V,};>¢ denote the pure reflection Boomerang Sampler whose generator
is given by (46)

Lprfx,v) = (v, Vi f(x,v)n — (x, Vo f(x, )} +/\r/H[f(x, w) — f(x, v)]vo(dw)
+ (Ve (), v)3) [f (x, =) = flx, V)]

To construct a finite dimensional approximation we need to specify the deterministic dynamics,
the reflections and the refreshments. For the deterministic dynamics act on the first N compo-
nents in the same way as the full process but leave all other components fixed. Reflections will
only reflect the first N components instead of the entire velocity and refreshments will refresh
with the measure vy . That is the process X, VN will have generator given by

LypfG,v)= ", Vi fx, ) — (N, V, fx, )
Y /H LF (. w) — F(x. 0)]vo.x(dw)

+ (Vi Dy (x), vM) )T f (e, =0 +0)) = Fx, v)].

It is immediate to check that Hypothesis 4.16 so this process is well posed and has py as an
invariant measure. A

Example 7.2. Let {X,, V,};>0 denote the Factorised Boomerang Sampler whose generator is
given by (46)

Lpflx,v)= (v, Vi f(x, )y — (x, Vo f(x, ) +)»r/7{[f(x7 w) — f(x, v)]vo(dw)

[o.¢]
+ D (B, D@V TS (x, Ryv) = fx,0)].

n=1
Here R,v = v —2(v, e,) e,. The finite dimensional approximation is constructed analogously
to Example 7.1 except for the reflections. In this case the first N reflections are the same
as the Factorised Boomerang, that is the reflection operator RY changes the sign of the nth
component for n < N. All other reflections are set to the identity, that is we only have N
reflection operators. The process X, VN will have generator given by

LY fx,v) = (W, Vo fx, ) — (&N, V, fx, 0))n

o /H LF(x, w) — £r, »)]von(dw)

N
+ Y (B, Dy V)L, Ryv) — f(x, V)],
n=1
It is immediate to check that Hypothesis 4.16 is satisfied so that this process is well posed and
has puy as an invariant measure. A

Now we introduce a framework which will allow us to tackle both the situations of
Examples 7.1 and 7.2 simultaneously. Let {X;, V;},>¢ denote the Boomerang Sampler with
generator (46). We shall assume throughout this section that the assumptions and notation stated
at the start of Section 6 hold. Let {X, V,N},-o be the Boomerang Sampler with characteristics
(X, n, Projy, Projy, (A%}, Ar, {R}}n) which samples from the measure 1y on the space H2.
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Here 1Y and R, are approximations of A, and R, respectively and we shall require that

o
1> 0w = 2P < C(0) > 2 (78)
n=1 n>N
o0
1D ke IRy = RY vl < CIZVL 7, 3y, (79)
n=1 n>N

Moreover we shall assume that RYv) = v and that AN (x,v) = A", v") so that the
process {X", VN} only changes the first N components. As in Section 5, Hypothesis 4.16 is
satisfied for these choices with respect to potential function @y and by Proposition 4.17 we
have that puy is an invariant measure for this process. Note this process corresponds to the
generator

Ly fx,v) = ", Vi fx, v — &V, V, £(x, 0)) 3

+ A / Faw £ oY) fx, vy (dw)
H

+ Y A RY ) — flx, v)] (80)

n=I1

for x,v € H and f € D(Ly). Define P} as follows
P flx,v) = BLAXNE, Vo) (81)

and recall that P, is the semigroup associated to the process {X;, V,};>0.
In order to prove convergence of PV to P; in a suitable topology we shall rely on the
following estimate.

Lemma 7.1. Let {P;} be semigroup corresponding to the generator (46). Assume that
@ is twice continuously differentiable, bounded from below and has bounded Hessian. Let
{PN}i>0 be the semigroup defined by (81) with generator Ly defined by (80). Then there
exists a constant C which may depend on @ but is independent of t and N such for each
fe Cbl(’Hz), N e N, t > 0 we have

00 2
1Ly = LIPY fllz < € UV flloo + VoS oo + 11f o) ( > yﬁ) :

i=N+1

Proof. To simplify notation let us set ftN (x,v) = PZN f(x, v) and notice that as the process
(XN, VN) only lives in 1% and does not depend on x! or v} we have fori > N

8, £V (6 v) = (Ve N eiya = PN (0, ). v), (82)

Ay, [, v) = (Vi £ ei)y = PN (@3, f)(x, v). (83)
In particular, for f with bounded derivatives we have the estimates

(1 = Projy) V. £;¥ (x, 2 32:90) < VxS lloos

(1= Projy )V £V, 0)ll 22700 < IV flloe
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Fix g € C;(’H,z) then
N N
[Lg(x,v) — Lygx, v)| < [(v), Vaglx, V)l + [{x], Vuglx, v))ul ()

+ A / g(x,w)vO(dw)—/ g, w" + o) n(dwy)| ()
H H

+ ) Ihalx, v)lg(x, Ryv) — glx, v)]

n=1

— A, vigx, RYv) — g(x, )]l (%)

Replacing g with f;¥ in (*)-(***), taking the L7-norm and using the triangle inequality we
have

ILfYGeov) = L fM G olla < Il Ve ¥ G o)adlz + 1 Vo Y G vl

()
o) [t cwmtaw = [+ o (+)
H H L%
Y (e LAY Ryv) = £ G 0)] = A G, o)UY Gy RYv) = £V (x, 0)])
n=1 let
(11

o0

First let us consider (1), by expanding in terms of {e;}{2, and using (84) we have

Il Ve Y @ ol = fH D i S P udx dv) S IV SIS Y v (85)

i=N+1 i=N+1
o0
I, Vo £ e, o) alls = / D x5 @y £ uldx, dv) < [V fIlS Y2, (86)
. H2 NG "

Since we are assuming that & is bounded from below we can estimate ||xiV I L2(H:H)» let
Cs = inf,cyy P(x) then

o0
N2 —C 2
112 iy < €7 D VP (87)
i=N+1

Therefore applying (87) to (86) we have

Il Ve ¥ sl + s Vo fY G, o)l 2 (88)
1
0 2
= (IVeflloo + €329, f 1) ( 2 Vf) ' (89)
i=N+1

By the Fundamental Theorem of Calculus for any g € C ,l(’H) we have

1
lg(x, w) — g(x, w" + v 5/ (Vyg(x, sw) + (1 — sl +w™), wl —vl)ds
0
< (1 = Proj ) Vogllcollw) — v [13. (90)
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If we apply this with the function g replaced by £ then
LAY Geow) = £ G w® + 0] < IV Fllsollw] = o e

Now integrating with respect to i we obtain an estimate for (7t)

I(HDI* < A7 fH fH LN e, w) — £ e, w4+ o) Puddx, dv)vg(dw)

o0
<2V [ [ o - o Prntdun@n) < 221901 3 7.
HIH

i=N+1
It remains to consider (f T T).
Z (hn e, LAY G Ry) — £ (e, 0)] = A (e, LY (e, RYv) = £ (x, v)])
n=1 L[ZL

< 1Y 0w, v) =AY G LN G, RY ) = fN G o)

n=1

1Y M LAY (e, Ryw) — NG, R, 0]l

n=1
<20 flloo | DG = 2 O1)
n=1 L;ZL
+ 1D Ml N, Ry = £, RY W) 92)
n=1 L;2/.

We can bound these terms using (78) and (79).
So combining all these estimates we have

ILfN Gy = L fM G )l

o >
< C(Iflloo + 1V Flloo + Vo Flloo + 1V flloo) ( > yf) .o
i=N+1
Now we will prove for every f € CL(H x H) that PN f converges to P, f in Li, uniformly
for ¢ in compact intervals.

Theorem 7.2. Let {P;} be semigroup corresponding to the generator (40). Assume that @ is
twice continuously differentiable, convex, bounded from below and has bounded Hessian. Let
{PN}i>0 be defined by (81). Then for each f € CL(H?), PN f converges to P, uniformly in
time, that is for any T > 0 and f € Cg(?-lz)

lim sup ||P.f—PYf|,. =0

N—o0 tel0,T] [
Moreover, fix T > 0 then for any f € Cg(?—[z) there is a constant C = C(f, @) such that for
N sufficiently large

1

0 2
sup [P f =P fllz < C(f. DT ( > yf)

O=e=T i=N+1
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Proof of Theorem 7.2. Fix f € CL(H?), we can write the difference of the semigroups in
terms of their generators using as follows:

t
IPif =P fll = II/ PP fdsl 3
0

t
< [ WPn = 0P s
0

Now since P; is a contraction semigroup on Li we have

t
IPf =P Fl = [ 1w = OPY Flds
0

By Lemma 7.1 we bound this with
1

||P,f—7>,Nf||LﬁsCt(||vxf||oo+||vpf||oo+||f||oo)(Z yf) - O

i=N+1

Example 7.3. Set H = £ to be the space of square integrable sequences and fix s > 1 and
define the operator

Y=m"x)0,-

Note this is a bounded, self-adjoint, positive operator of Trace class. Set 7o = N(0, X) and
define &(x) = ||)c||§2 /2. Then the measure 7 is given by

Ty = P ﬁ(l +n")
dTL’o wel

It is immediate to check that @ is smooth, bounded below and has bounded Hessian so

the conditions of Theorem 7.2 are satisfied. Therefore we can construct the pure reflection

Boomerang sampler for this setting and a finite dimensional approximation with the canonical

basis which converges on compact time intervals. As & is convex we will also obtain

convergence uniform in time by Theorem 7.3. The rate of convergence is determined by
=1

> 5 =N+,

i=N+1

Here ¢ is the Hurwitz zeta function. To leading order (s, N + 1) & N'=%/(1 — s) so we may
choose s to obtain any polynomial rate. A

So far we have proven convergence for any finite time, but as we are interested in
convergence to equilibria uniform in time estimates are more helpful. In order to prove these
estimates we shall use the Hypocoercivity of Section 6. The following theorem is inspired
by [11] in which exponential decay of the derivatives of a semigroup are used to prove uniform
in time convergence of the weak error between an Euler scheme approximation and an SDE.
This technique is also used in [5] to show uniform in time convergence between a SDE on a
fast dynamical network and an averaged SDE. In both of these papers the results rely upon
obtaining exponential decay of the derivatives of the semigroup, conditions for such an estimate
are given in [12]. In contrast for a PDMP the semigroup need not be even differentiable in all
directions so we cannot hope to have an estimate which decays exponentially. Instead of the
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derivative estimate we shall use the exponential convergence from the Hypocoercivity theory
established in Section 6. This has the advantage that we do not require derivative estimates
however we instead need control on the error between the approximate invariant measure [y
and the invariant measure for the infinite dimensional process (.

Theorem 7.3. Let {P,} be semigroup corresponding to the generator (40). Assume that @ is
twice continuously differentiable, convex (or bounded with bounded derivative), bounded from
below and has bounded Hessian. Let {P"},>o be the corresponding to the finite dimensional
approximation constructed and suppose that

=0. 93)

2
LMN

Then for each f € C,l(?—[z), PN f converges to P, uniformly in time, that is for any f bounded
and measurable

li —PfN),. =0.
Jim sup [Pof =P f™
Moreover, for any f € CL(H?) there is a constant C = C(f, ®) such that for N sufficiently

large

1
00 2 d
IIP,f—PfollLﬁSC(f,gp)(Z Vf) +'_“_1

i=N+1 dpy

2
LMN

Proof of Theorem 7.3. Fix f € CJ(H?), we can write the difference of the semigroups in
terms of their generators as follows:

t
1Pif =Pr fll = II/ O Pi—sP fdsl 2
0

t
< [ WPtn = 0P s
0

We wish to use hypocoercivity to control this, to which end we add and subtract u((Ly —
L)YPY f). Note that u(LPY f) = 0 since w is an invariant measure for P;.

t
IPf =P fllyg < / 1P (Ln = LPY f = w(wPY Pl + ILnPY flds
0

By Theorem 6.2 we have
t
1Pf =P fllz < / Ce ™ N(Ly = LPY f = wyPY Pz + 1Ly P flds
0

t
< [ et INLy ~ PN Flly + (€ + DLy Dids.
0

Let us consider the term |u(LyPY £)].
IWLNPY O] = ILNPY f) = un(LyPY )

d
=y ((ﬁNPSN £ (d—“ - 1))
UN

du
< ILNPY fligs, |

— — 1|2
dun L

N
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Under our assumptions we have that P} is hypocoercive with constants independent of N,
therefore

d
I(CNPY ) < CeP Ly fll 2 |
N duy

— g,

Hence
1Pef =P fllz
! ) cic+1n du
—k(t—s) _ N _
< fo Ce Ly = LPY fllpds + ———1Lw iz, I = i, -
It remains to show that

t
lim sup / e I\(Ly — L)PY flzds =0.
0

N—o00 ;>0

This follows since we can bound the integrand using Lemma 7.1 which gives

t t
/ ULy = LPY fll o ds < / e dsC (IV flloo + 1V flloo + 11 flloo)
0

0
1
oo 2
g ( J/i2>
i=N+1

1
= = e DC(IVx flloo + 1Vuflloo + 11 f o)

1

X (i yf)z 0

i=N+1

Example 7.4 (Example 7.3 continued). We showed in Example 7.3 how to construct an example
with an arbitrarily chosen polynomial rate of convergence. We wish to continue this example
to show in this case that we get the same order of convergence uniform in time. Note that as
& is convex we have that all the conditions of Theorem 7.3 are satisfied provided (93) holds.
If we show that

12 e, <c i v?
LT :
dpy N i=N+1

holds then (93) is satisfied and the rate of convergence of PV f is the same as in Example 7.3.
Note that if we do not require the rate of convergence then it is immediate to check that (93)
holds since dut/duy is bounded uniformly in N by 2 so the results follows by the dominated
convergence theorem. For this example

du  dm exp(=Ilx)113,/2)

duy —dry  molexp(—IlxV13,/2)
Then we can write
2
I, = o132 F_eei By
dun Liiy H no(exp(—||xi\'||%_[/2)) no(exp(—||xN||%_L/2))
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2

Under 7y x" is independent of xﬁ’ so this simplifies to
exp(—|lx¥ 12, /2
xp( ”xl ”H/ ) 7o(dx)

du )
”_ - 1||L2 = N2 -
dun v Ja lmo(exp(—lIx i 115,/2)

= exp(—|lx7'lI3,) B
- /H mo(exp(—llxY 13,/2))* mo(dx) = 1.

Again using the independence structure of my we can rewrite this as

du [ mo(exp(—x?))
o= =2, =] Lzz]—l
duy v 2 Lo(exp(—x;7/2))

1

As m is a Gaussian measure we can evaluate this integrals and obtain

du vy +1 1
=== =[[| == |-1~52» &
K NN 2R+ 2N

7.1. Finite dimensional approximation of pure reflection Boomerang Sampler

In this section we verify that (78) and (79) both hold for the approximation of the Pure
reflection Boomerang Sampler given in Example 7.1.

Lemma 7.4. Let Ry and Ay be as in Example 7.1 then (78) and (79) hold.

Proof. First consider (78). In this case the left hand side of (78) simplifies to

1Y "o = AN = (Ve 80), v)30)5 — (Ve Ben), vn)20)+ |

n=1

< {V, B(x) — V, B(xy), v}l
< VT D)V, B(x) — V, B(xy)|
S VTHD)V: Plloollx — xy].

Then (78) follows by (87).
Now consider (79) the left hand side of which is

o0
D G IR = RY vl 2 = 20V 22, )30+ oY 3¢ 2

n=1
1

=2 22/2(3x,~ B(x))*v;vipu(dx, dv)
H

i=1 j>N
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2

Now since e; are eigenvectors of X' we have that f v; vfdv = Bij3y;‘ + yizyjz(l —8;j) so

o0
D e IR = RYvllael

n=1

1
2

=2\ v ) 7 /H (0, P)mdx) + ) 3y} /H (B, ()7 (dx)

j>N :;} j>N

1
2
<4zl (D ovi] O
j>N

7.2. Finite dimensional approximation of Factorised Boomerang Sampler

In this section we verify that (78) and (79) both hold for the approximation of the Factorised
Boomerang Sampler given in Example 7.2.

Lemma 7.5. Let Ry and Ay be as in Example 7.2 then (78) and (79) hold.

Proof. First consider (78). In this case the left hand side of (78) simplifies to

o0
1Y 1 = A1 = / D P, v) = Y )l (x, v) = A, vl da, dv)
n=1 H n,m

= [ X o= A2 0 =
H

n,m<N
+ / S = AN e — 2Nl
H2 n,m>N
b2 S = A A
H? n<N,m>N
< / D [vavnlld, 26) = By, POy, D) = By, Pxw)ld e
H n,m<N

nUm |0y, P(X)[|0x,, P(x)|d
*/HZZ'“” 2 D13y, P00)ld

n,m>N

+ 2/ Z |Un V|02, P(x) — By, P(xn)|[0x,, P(x)|d 1t
H2

n<N,m>N

Note that v is independent of x under p and vo(|v,v,|) < +/V2V2-

[e ]
1Y T = AP < / D VYR8, Bx) — By, POew)| 19y, Bx) — B, Plxw)ldrw
— H

n,m<N

+ / > JvEv2lay, d(olldy, D(x)ldr
H

n,m>N
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+ 2/ D Y210, B(x) — Oy, P(xn)| |0y, Bx)|d
H

n<N,m>N

2
< (Z Y2118, Bx) — By, @(xan%)

n<nN

2
+<Z y,$||axr,sb(x>||L%) +20 ) Jriv2lis, 9() — b, SGw)ll 2

n>N n<N,m>N

X |8y, POl 2

Now use the Mean value theorem

00 2 2
1Y 1w = AN < (Z y,,2||vxax,,¢||oo||x—xN||L%> +<Z yznaxné(xnu,z,)
n=1

n<N n>N

+2 ) Jr2IVady, Blleollx — xnll 2 18y, DGO, 2

n<N,m>N

Using Cauchy—Schwarz

o0
1 1 = AN < (Z yﬁ) (Z 1V, @né) e = xx
n=1

n<N n<N
+ (Z yf) (Z 185, 20117 )
n>N n>N
+ 20 —xwllz [ v2 Y IV, 12 [ v
n<N n<N m>N
x [ l1dy, 2@WI3,
m>N

< TV @I Il — xn 3> + (Z yﬁ) IV Cl3,

n>N

+ 20lx = xyll 2 VT VEBlloe | D 721V 8() 2
m>N

Then (78) follows by (87).
Now consider (79) the left hand side of which is

[e ]
1D A IRy = RY vl

n=1
o0 o0
= [ 3 ka0 DR, = RY vl R = RY vl (o)
H n=1 m=1
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Now if n < N then R,],V = R, so all terms vanish except when n > N and m > N. In that

case RY =10 R,v — RNv = —2v,e,, thus we have
o0
132 ke R = B ulaly =4 [ 57 3 (0, 000 @, 610"
n=1 H n>N m>N

X |vp|[vm |7 (dx)vo(dv),

< 4/# S5 lo,, 800118, 50|

n>N m>N
2 2
X |vp|”|vm| " (dx)vo(dV).

Now [vividv = 68;3y;} + y7yj(1 — &), in particular [ vividv < 3y2y}.

N 2 2.2
I3 Jn )Ry = RY vl < 12/7{ 3 Vvt @@)l[dy, S(x)|7(dx)

n>N n>N m>N

2
<12 (Z y210,, @(x)|> 7(dx)
H

n>N

<12 (Z ynz) f (Z Y210y, @(x)lz) 7 (dx)
M

n>N n>N

< 122V, 9@}, (Z yi) . O

n>N

8. Proofs
8.1. Proofs of Section 4

8.1.1. Proofs of Section 4.1

Proof of Theorem 4.3. To prove well-posedness of the piecewise deterministic Markov process
we shall apply Theorem 2.3, to this end we show that Assumption 2.1 holds.

(i,viii) Using Fréchet differentiability of &, this follows from the estimate

[vi
[Ai(x, v) = A (y, V)| < 7|xi — Yil 4 [i]]9y; @(x) — 9y, D(Y)I.

1

Now summing over i and using the Cauchy—Schwarz inequality we have

4G, v) = 2, ] < 127 vl e = vl + [0l Vig ) = Vi)l

Therefore x — A(x, v) is continuous, continuity in the v component is similar.
(i) This is immediate from the definition of (Q;).
(ii1) Is immediate since the absolute value of velocities is preserved by reflections.
(iv) There are no refreshments.
(v) This follows from (19) and Assumption 4.1(3).
(vi) There are no refreshments.
(vii) The flow is given by ¢,(x, v) = (x + tv, v) so we have that (vii) holds with ¢, growing
linearly.
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To show that u is an invariant measure we shall appeal to Theorem 3.1, so we must show that
(12) holds. In this case Ly f = (v, V, f)# then by [13, Proposition 10.20] the adjoint of Ly
in Lio is given by

Ly f =—(Vefiv)u +(Z v, x)u f.
Note that X~'v € H so the above expression is well defined. Therefore we have
e?I L (e” M) (x, v) = ((Ve @), vy + (7 v, x) ) - (94)

Next we have

; = hilx, Fo)
0*((x, v), dw) = ; T oy S

Indeed we can verify (11) holds, the left hand side of (11) is

Ai (x Fiv)
f/g(v w) Q*((x, v), dw)po(dx, dv) = Z// A Fo0) 8, Fiv)uo(dx, dv).

As F; leave g invariant we can do a change of variables v — F;v for each i.

. _ = Ailx,v)
fH /H ¢(v, w)Q ((x,vxdwmo(dx,dv)—; /H /H L (v, ool dv)

=/ / g(w, v)Q((x, v), dw)o(dx, dv).
HIn
Thus (11) holds. Now

. _ o Ai(x, Fyv) L
/H Ax, w)Q*((x, v), dw) — A(x,v) = IZ:I: —A(x, Fo) AMx, Fiv) — A(x, v)
Now using the definition of A; we have
/ Alx, w)Q*((x, v), dw) — A(x, v) = — (v, V, P(x))y — (X1, X)H. (95)
H

Finally combining (94) and (95) we have (12) holds. Then by Theorem 3.1 we have u is
formally an invariant measure for the Zig Zag process. [

8.1.2. Proofs of Section 4.2

Proof of Proposition 4.8. Fix x € H# with ¥~'x € H. Under our assumptions, V¥ is
VU =Vox)+ X 'x.
Therefore
(v, V&) = (v, VP) + (¥ v, x). (96)

By Assumption 4.1 the first addend on the right hand side of the above is well defined and
since X~'v € H the second addend is also well defined for all x € H, v € Vgps. Now by
continuity we have that (v, V&) is well defined for all x € H, v € Vgps, and hence A is also.

In order to prove the statement (2) it suffices to show that X~!X¢V W(x) € H for every
x € H. Indeed, if this is the case, then it is easy to see that also || X¢/>V ¥|| is finite. To show
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that X'V ¥ (x) € H we act as above and write for every x € H,v € Vgps with Y lxeH
that

YWV = 25V e(x) + 6%

Imposing that { > 2 we ensure this is well defined. [

Proof of Proposition 4.10. To show (1),

RO — R 2, V)
(X)[R(x)v] = R(x) |:U TSV R

B 20, V¥) . vV

—U T v B PEETAE
(v, V)
,VU) - 22— ——
8 (“’ N SIETTE
ALY (v, V&)
= —_
ZaveR sV e
Therefore the claim follows. As for point (2):

B 2w V),
(R(x)v, V&) = (v, V) —||24/2v¢/||2<2 VU, V).

Hence, under the constraints on the parameters stated in point (2), (26) holds. To prove the
statement in point (3), recall that the Fourier transform b of a measure v on H

b(E) = / e'E5du(z)
HAE

PV W]

(Vv U, W‘/))

<2<vw,v¢/>] VU =,

and that a measure vy is a centred Gaussian with covariance operator X¢ on H if and only if
N _1
o(§) = e 288,

Because Fourier transforms characterise measures (see [13, Proposition 1.7]), we just need to
impose 7y = Dg. To this end, start by defining the formal adjoint operator R/, of R(x), namely
the operator

(5, 2VY)
—————V V.
| Ze/2v w2

With this definition one has

(R(x)z,§) = (z, R(x)'§) .

Let us now calculate Dg:

ﬁR(g):/ ei<z'§)dvR(z):/ ¢! (RO dyi(2)
H H

:/ FUERE) () = o BT RELRLE)
H

RE=£-2

where in the first equality we have used the involutivity of R,, which gives the standard change
of variables formula

/g(Z) d(vo R:)(z) = /(g o R)(z) dv(2).
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In order to have vp = Dy, we then need to have

(XS(RLE), (R.E)) = (X, &), for every & € H.

Because
(£, 2V U)
e i / _ 4 _ ¢
(L°(R.6), (R §)) = (L°8,§) 4—||25/2Vy7||2<2 £, Vy)
g v .
4W(2 V¥, V) = (1, §),

thus the reflection invariance of vy does hold.

To prove statement (4) we show that (12) holds. Since IDBPS fits in the setting of
Example 3.2 it is sufficient to verify the conditions given in that example, note that the first
two conditions are satisfied since the reflection operator only acts on the v component and
by statement (3) of this proposition so it sufficies to show that (14) holds. As in the proof of
invariance for the IDZZS we have that (94) holds so it remains to show that

(Ve D(x), v) + (27, x) + A(x, R(x)v) — A(x,v) =0 7
By (26) we have that

Ax, ROXOV) — A(x, v) = — (X0, V) = —(V, D(x), v) — (5", x).
Therefore (97) holds. [

Proof of Lemma 4.11. Since ¢ = 0 we can write
2(v, ¥ 1x)

¢—1
[ 2e/21x |12

Rx)v=v—

Then we have

AT ) e ATV e
m” I° = ooz (& x, L%).

2 _ 2
IRG)WIZ = [[v]2 + T
Therefore (27) holds only if

(271, x) _ _
mllﬂg Moy < (B¢ ey, Do),
This is equivalent to requiring
||E§—l+otx”2 . r 421
<U, m x— X x) < 0.

As this must hold for all v € Vpps it is necessary and sufficient to have
| D¢ a2
| 242 1x |12

This holds if and only if « = —¢/2. O

x = 2{+20¢71x.

8.1.3. Proof of Section 4.3

Proof of Proposition 4.17. Note that refreshment clearly preserves the invariant measure so
without loss of generality we may set A, = 0. We first prove that (13) holds by applying
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Theorem 3.1. To do so we must determine L% and Q¥. First let us consider Lx. By
Hypothesis 4.16 and Lemma A.2 we have that e% € D(L*) and hence L’gge"i5 =—Lye %
Similar to Example 3.3 we have that

o Ai(Ri2)
0%z, dy)= ) = S,z
; MRiz)
Now we can write the left hand side of (12) as
e? L% (e ")) + f A()eTDPW 0*(z, dy) — A(z) (98)
- H
= Lx(0)(2) + ) hi(Ri2)e? @ 7R —}(z) (99)

i=1
Recall ¢(R;z) = &(x, Rjv) = @(x) as R; only acts on the p component. Therefore (99)
simplifies to

Lx(P)(2) + ARi2) — A(2).

This is equal to zero by (40) since Lx ® = (V, @, & p)4. By Theorem 3.1 we have that (13)
holds for all f € Co(#?). We can extend this to hold for all f € Li by density. O

8.2. Proofs of Section 5

Proof of Lemma 5.1. In order to verify that Hypothesis 4.16 holds. The only assumption
which does not follow immediately is (34). By Cauchy—Schwarz and (45) we have

=1
M) =)0 S (Ve ®). v = Ryva)*
n=1

1 e e}
SNVl 3 1A = Ryl

n=1

IA

IA

1 oo
ARSI DI = RvI3, < (Ve P3N0l

n=1

Then by Assumption 4.1
Ax) S A+ lxllzolivllg (100)
and (34) follows. [

Proposition 8.1. Let {P,} be the semigroup corresponding to the generator (48) and assume
that X; is continuously differentiable for all i. Then for any t > 0, f € €, x,v € H we have
that (53) holds.

Proof of Proposition 8.1. Define the total rate of events to be

A, v) =) /0 Ri(@s(x, v)ds.
i=1
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Set
Foy = Fo(x,v) = By o[z, 7, () f (X, V)]

then we have
Pif,v)=> Fy.
n=0

Next we observe that forn > 1 F,, = QF,_; (¢, x, v) where

Qg(tv X, U) = Ex,v[]lT1<tg(t - Tl’ Xt’ ‘/t)]
& t
= Z/ e MR (@ (x, V)Big(t — s, ¢5(x, v))ds. (101)
i=1 0

We shall make the following inductive hypothesis.
VF,: = Ellg, 1, )OCV f(X:, V)]

-E [( / C,VAX;, vg>ds) Lz, 7,00 f (X, v»] (102)
0
+E [Z Cr,,-Vlog (rs,) (X1, V1, )iz, 1, (0 f (X, V»} (103)
m=1

We shall first show that (102) holds for n = 0. For n = 0 we can write
Fo. = flgi(x, v)e i,
We can differentiate this to obtain
VFo = Ve, v)(V ) (@i, v)e™ M — f (g (x, v) VA (x, v)e 0.
Rewriting this in terms of expectations we have
VFo = ElLizr, )(O)(Ve (x, v)(V )(Xs, Vi) = f(Xi, VOV A(x, )]
Let us assume that (102) holds for some n > 0. We can differentiate (101) to find

VQg(t, x,v) =) /O e BV (s (x, V)V (x, VIV Big)t — 5, ¢5(x, v)ds
i=1
-y / VA (x, v)e 0% (i (x, v)Big(t — 5, ¢y(x, v)ds
i=1 Y0

o t
+y / e BV (x, V) VA (x, V)Big(t — s, y(x, v))ds
i=1 Y0

We can rewrite these in terms of expectations using the definition of Q, J;.
VOg(t, x,v) = By [11, < Vor, (x, v)(VBy )¢ — T1, X1y, Vi, )]
— Evo [17, < VA7 (x, 0)g(t — T1, X7y, V)]
+ Evo [ 11,2 Von (x, 0)(V log i )(Xr,, Vi, )t = T, Xy, V)]
Now if J; =i for some i > 1 we have
(VBig)(s, y, w) = V[g(s, y, Riw)] = Bi(Vg)(s, y, Ryw) = BiBi(Vg)(s, y, w)
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where
B = ((1) I(e)i) .
With this notation in mind we can write
VQg(t.x,v) = Evy | 11, Vr, (x, 0B, (Ve)t = Ti. Xr,. Vi)
— K, [I]-T1<tVAT1 (x,v)gt =T, X7y, VTI)]
+ Evo [ 11, Veor, (v, v)(V log L)Xy, Vi )g(t = Ti. Xy, Vi)
Now setting g(¢, x, v) = F, ,(x, v) and using the inductive hypothesis (102) we have

VQg(t,x,v) =Eyy [ 17,7, /(OCV (X, V)]

+ Ex'v |:Z CTW_VIOg (X'Jm) (XTm’ VTm—)]l[TnxTnJrl)(t)f(Xt’ ‘/l):|
m=2

— Evo []I[Tn+1~Tn+2)(t)VAT1 (x, v) f(Xy, Vt)]

t
— Eyp |:</ Cr, Vo, VA(Xs, Vs)ds) 1,070 @) f(Xs, Vt)i|
T

1
+ E;. [ﬂ[T.,TZ)(f)V<PT. (x, v)(V1og Ay ) Xr,, Vi, )g(t — Ty, Xr,, Vr, )] .
Combining these terms we have that (102) holds for n + 1, therefore holds for all n > 0. [
Proposition 8.2. Let {P,} be the semigroup corresponding to the generator (48) and assume

that @ is twice continuously differentiable with both V, ®, V2 & bounded on bounded sets. For

any [ € Cg(?—l x H) with supp(f) C B, for some r > 0 then there exists a constant C(r)
which depends on r and ® such that (54) holds.

Proof of Proposition 8.2. We shall define an extended PDMP which will also keep track of
component of the latest jump and the pre-multiplier C;,

Z~t = (Xla ‘/ta Cta JTNI)

this is a PDMP with rate A, deterministic motion ¢, and jumps according to the Markov kernel
O where
G (x, v, ¢, j) = (@i(x, v), Ve (x, v), j)
o da(x, )

0 ((x,v,¢, ), (dy,dw,de, di)) = ) | ——=——
X, U,C, ] y w, ac,dil ;Zm:l)\m(x’v)

The random counting measure, p, determined by Z, is

oo
pP= E ‘ST,,,ZT",
n=1

8X’an’63;1,m(dy, dw, dc, di).
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where §, here represents the Dirac Delta measure which has 6,({z}) = 1. By [25, Equation
(7.32)] the random counting measure p has compensating measure p which is given by
pdt, dz) = MZ,)Q(Z,-. d2)d.

That is p — p is a local martingale (with filtration given by the natural filtration of Z).
Notice that for integrable g : [0, 00) x H x H x H>*2 x N — R we have

o0
fgdp = Zg(Tn, Xr,, Vr,, Cr,, Jn)

/ ZA (X5, Vi )g(s, Xy, RuVs_, Cs_B.,, m)ds.

Fix ¢ > 0 and set g; to be
gi(s,x,v,c, j)= cB}Vlog Xj(x, Rjv)1,<,.
With this choice of g we have that

Nt

f gdp = ZCT B, Vlogi, (X, Ry, Vr,)

/ Z Im(Xy, Vi )Cy_ B, B,V log h(X,, RAV_)ds

m=1

t
—Zcrm Vlogh,, (Xt,, Vi,-) — / CVA(X,, Vy)ds = &

m=1

is a local martingale. Moreover, by [25, Proposition 4.6.2] we have

Jlf o]

HxH |

= B[ Iglundil

Therefore, for this choice of g we have

E (1181137 ] = E fZ (Xs, VOICVIog A;(X,, Vy)Pds

VA (X, VP2
E —_—d 104
= / ; Ai(Xs, Vi) ’ (109

Recall A j 1s given by (47) so
Vi, 0P ¢/ (Ve D), v — Rjv)3)? | V(V, B(x), v — Rjv)pl?

vy — log (¢(exp(—(V, &(x), v — R;v)3,)))
where
Y (s) = log (p(exp(—s))) .
Note that for the choice of ¢(r) = +—— we have that for all s € R

V/(s)? <1
= —log(¢(exp(—s)) ~ 2’
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Using this bound we obtain

IVii(x,0)* 1 1
L < S V(VLB(x), v—Ru)u | = <(IV; S(x)(v—R;v)[*+](1=R )V, D(X)?).
Aj(x,v) 2 2
Summing over j we have and using (45) we have
.-
|VA;(x, v)]?
D <231V @RI + IV, 801 (105)
j:1 )\,j(.x, U)
Therefore

E[I&113,%] < 2E [ /O IVZRXDIVlI* + 11V @(Xanz)ds} :

Since there are no refreshments, plus both ¢, and R; preserve the norm we have that
(X5, VOlluxn = II(x, v)|lx- That is, the process always remains on the sphere centred
at zero with radius ||(x, v)||%x. Moreover as f has support contained within B, we need
only consider (x, v) € B, so (X, Vi) € B,. Since we have that V, &, Vf @ and V; are bounded
on bounded sets there exists a positive constant C(r) such that

E[l1&3xr] < €. O (106)
8.3. Proofs of Section 6.1

Proof of Proposition 6.9. By [18, Theorem 3.7] we have for any g € FCy°(H) and h = g—Ag
it holds

| & 45V Vagudn = [ ghan (107
H H
/ 122V, gl3, + Tr(ZV2 @)1+ (V28EV, g, BV, g)pdr = / (Ag)’drm. (108)
H H
As shown in [18, Remark 3.8] (107) implies
f g2+ <vag» ng)HdT[ S/ ]’lzdﬂ'. (109)
H H

Note that although [18] typically assumes @ is convex the results we used above do not require
convexity. Therefore (73) follows.

Since V2@ is bounded there exists ¢ > 0 such that E%V)% @(x)E% > —cg for all x € H.
Then we can use this bound in (108) to obtain

f 152V, g3, + TH{(2V2 g)*ldm < f (Ag)dm +cq / (Vig, SV, g)ndn.
H H H

It remains to bound the right hand side. For the first term we use that Ag = g — h and
||g||L;Z < ”h”L%' For the second term we use (109). These give

| 154900+ T gl < @4 ca) [ i
H H

It remains to show that (75) holds.
Fix ¢ € C*(#), and note that by Young’s inequality we have

1 1 1 1
2(p(22V) P, (22V,)p) 2 <7 (D2 Vpllg; +ello(Z2 V) D17,
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where ¢ > 0 will be chosen later. Also we have

1 1 1 1
2p(X22V) @, (22V)9) 2 = (Z2V) 8, (Z2V)(9) 2
= (-AD.¢%) .
Now using (60) we get
1 1 1
2p(22V), (Z21V09),2 = Cilip(Z1V) 8|2, - Callgl2,.

Now by setting ¢ = C;/2 we get

1 4 1 2C,
lp(Z2V) 2|3, < Eu(maniz + - llels (110)
T 1 T 1 T

Choose ¢(x) = \/5 T+ (Z2V,)g, (57V,)g)% and observe that

(Y ZVi)g. (22 V.)g) el

157 V)l =
Vo (208, (5100 n
1
122 V:glin
< VX Vegllan —
Vo (EHVz. (VR
< IV EViglin:

With this choice of ¢ we have that (110) gives

|

Finally by (73),(74) and taking § — O we have

4 2C
‘ < (ﬂ.,._z) ||h|| m

CZ
Proof of Proposition 6.11. Let us first show that (76) holds. Fix f € FC°(H x H) and
observe that

.+ Gy
C,

2 4 )
2 = IVl

KBSS, I f)y3] = I(f, SBILf) 3.

Since II is an orthogonal projection onto the kernel of S we can rewrite the right hand side of
the above expression as

KBSSILf)p )l = KA = IDS SBYTf) 2| < 1A= IDfIISB*f1 3
Therefore (76) follows provided we have
I(BSYgll,2 < callglyz- (111)

For f € FC*(H x M) let uy € L2(H) be the function that satisfies (1 — G)u; = II f. This
is an abuse of notation as we defined u, above for g € L2, as II f can be viewed as belonging
to L2 we should use the notation u r however to simplify the exposition we drop the II in
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the notation. Then SB* f = SAus. As u; does not depend on v we can write SAus as

SAuy = S(v, quf(x))H

== 2500 ) ((1 = Ro)v, Viup(0)),, + AT = D {v, Veuyp(x)),, -

n=1

Recall that A{(x,v) = %l((l — R)v, Vi, D(x)) 1| + Yu(x,v) and II acts by integration with
respect to a centred Gaussian measure. This gives

1 o0
SAuy = -7 Z|<(1 — RV, Ve )| (1 = Ro)v, Ve p (), = A (v, Ve p (1)), -
n=1

Taking the L7 norm we have

oo

1
7 240 = R, Ve @(0)3 (1 = R, Vit (1)),

n=1

ISAusl,3 <

Ly
+ )\r” (U, quf(x))H ”L;Z/.

Using that vy is a Gaussian measure with covariance X' we can write the second term (by
Lemma 6.7) as

1
(v, Vet )y, 1172 = / (Ve (x), Vit () 270 (dx) = | 22 Vg7,
" H s

By Lemma 6.7 the first term can be written as

oo

1
I3 D0 (= R V@) (v, (1 = R Vi (), U7

n=I

1 o]
= / [0 (0 = RV @) av, (1= Ro)* Vit (),
H

n,m=1

x{v, (1 — RV, @(x));.[(v, 11— Rm)*vxuf(x»q_[] w(dx, dv)

1 [o¢]
=16 > L(E(l — RV, 8(x), (1 — R,)*Vou p(x))p

n,m=1

x (XA - RV, D(x), (1 — Rm)*vxuf(x»?-[n(dx)

Ly Y1 =RV, D 1—R,)*V,®
+EZ/H<(_ DV B(), (1= Ry)* Vi B()) 5

n,m=1
x (2(1 o R”)*V)‘Mf(x)7 (1- R'n)*vxuf(x)>H m(dx)
Ly YA —R)*'V,® 1 — R, )V
+ Engl/;{< ( - n) x (.X),( - m) fo(.X))q.L

X (X(1 = Ry)*Viu p(x), (1 = Ry)" Vi D(x)) 377 (dx)

_ / (V. B(x), Veu 1 (0))27(dx)
H

1 . .
+ B;/ﬂw(l — R)* Vi &(x), (1 = Ry)*V, &(x)) %
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X (Z(1 = R Veup(x), (1 = Ry)* Vo p(x)),, 7w(dx)

| &
+ R ;L(Z(l — RV, ®(x), (1 — Rn)*vxuf(x))%_tf[(dx)

Now using Cauchy—Schwarz we have

oo

1

I3 220 (1= R Ve 80)ie (v, (1 = R) V(o)) 117
n=1

< [ 1ZA BB Y )
H
] o0

i fH I 221~ Ry)*Va B3 1 521 — Ry) Vi ()37 (d).

n=1

Fix a function F : H — H then by (57) we have the following bound

o0
1 1
I52(1 = R)*Fl3, < Y _I152(1 = R)*Fl3 (112)
n=1
o0
= Z((l — R)X(1 = R)'F, F)y (113)
n=1
— 4| Z2F|3 (114)
By setting F(x) = V,®(x) in (112)-(114) we have ||E%(1 — R)*V, @(x)||%_t <
4| $2V, &(x)|32, which gives
1 o0
b Z(v, (1 = R Ve @) (v, (1 — Ry Veup(x)),, IIiIZL
n=1

1 1
< / 123V, G215 Vo s (1) 20 (dx)
H

s 1 1
32 [ I EWIRITA - R Vo)
H

n=1

1 1
<3 / 123V, SO SF Vo () 2 ().
H
Therefore we have

1 1
1SAusly; < V3| |24V Al Z Vet 2 e

‘ SV, B(x)
H

L2(H:H)

Now by (73) and (75) we can bound these terms by

1
4 )2 1
SAus|?, < (V35 +— —r 2,
I uf||L§_(f<c%+q> + = )nfan
That is (111) holds.
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Now we prove that (77) holds. Observe that
WBA(L—IDf I f) 2| = KA = IDf, (1 = IDAB™II f) 3 |
= (1 = IDf. (1 = I)A%uy),2 |
<= I3 0C1 = DA% 5.
Recall from (71) that
Azuf = (v, Vfuf(x)v)?_[ — {x, Viup(x))n

1 [e¢]
= 7 2 (Ve @0, (1= Ry (1= Ra)v, Vet p(x), -
n=I
Applying (1 — IT) gives
(1 — A uy = (v, Vius(o),, — Ti(EVius(x))

1 oo
= 7 2 (Ve @), (1= Ry (1 = RaJv, Ve p(x),,

n=I

1 = * *
+ 7 2 (FA = RV 8(), (1 = R Vit (1)),

n=I

We can simplify this expression using (57)

(1 — MA%uy = (v, Viup(x)v), — Tr(ZVius(x))
1 o0
= 7 2 (Ve @), (1= Ry (1= Ru)v, Vot () +{EV2 2(x), Vet (1),
n=1

Using that I] is an orthogonal projection we can write

Il (v, Vius(xyv), — Tr(Z’Vfuf(x))Hi%L
= / (v, Viuf(x)v); — Te(EVu £(x))* u(dx, dv).
'HZ
By Lemma 6.7 we have

/ (v, Vfuf(x)v); wu(dx, dp) = 2/ Tr (Viup(x) 2*Viu p(x)) w(dx)
H2 H

+ / Tr(XV2u r(x))* 7 (dx).
H
Thus
(v, Viupx)v), — Tr(E'V)%uf(x))Hi%L = 21 2Vu O 12 iy

We can treat the second term similarly, by Lemma 6.7 we write the norm of this term as

o0

1
”Z Z(Vx QB(x), (1 - R,JU)’H ((1 - Rn)v’ quf(x))H - (va é(x)’ quf(x)>H ”ilzt

n=1

1 oo
= / / e 2 (Ve@0), (1= Rl (1 = Ru)v, Ve (),
HIH

n,m=1

X (Vi @), (1 = Rp)v)3 (1 = R, Ve p(x),,
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— (EV, B(x), Veu s (x))3v0(dv)m (dx)

l oo
= fH e 2o (B = RV @), (1= Ry) Ve, ()

n,m=1
x (X1 - Ry)'V,P(x), (1 — Rm)*quf(x)m:r(dx)
1 = * *
+ /H Eﬂ;wa — RV B(0). (1 — RV, ()
X {D(1 = RVt p(x), (1 — Ryt () 370 (dx)
1 - £ *
+ /H Eﬂ;lw(l — RV, O, (1 — Ry) Vet ;)3

X (Z(1 = Ry)*Viup(x), (1 = Rp)" Vi D(x)) 37 (dx)

- / (EV, &(x), Vit p(x))5,7(dx)
H

= / L S HE = R)' VL B(x), (1 — RV, $(0))
5 16 =
(21 = R Vot 4(x), (1 — Ry)*Viu 1 () (dx)
] oo
+ /H 16 (T = Ry Va 800). (1= Ra) Vaut ()
n=1
x (X1 - R,,)*quf(x), (1 =RV, D(x))pm(dx)
< ZL 122V, S 13,11 87 Vot ()12, (dx).
Thus,

1 1
11— IDA%us N5 < V2IEV2ugl 1 + V2 |15 Ve, (0l 549, 00)

2
By (74) and (75) we can bound this by
ICE = DA ll2 < V201 + k)T fll 2. O
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Appendix. Differentiability in the direction 2

Define the set C to be the set of all bounded f : H> — R for which the following limit is
well-defined and bounded:

.1 d
L f(x, v) = lim =1/ (i(x, v) = f(x, )] = =0/ (@1 (x, V).
Lemma A.1. Assume that (39) holds, then flow ¢, is invariant under the probability measure
Ho-

Proof of Lemma A.1. Fix y, w € H and define the function

Yx, v) = exp(i (x, y)# + i (v, w)n).

Then since ¢, is a bounded linear operator on the space H?> we have

Y (@i (x, v) = exp(i (9] (v, w), (x, v)),2)-

Here ¢ denotes the H? adjoint of ¢,, when viewed as a linear operator. Now integrating with
respect to o we have

/7-[2 V(@i (x, v)ro(dx, dv) = o] (y, w))

where Iy denotes the Fourier transform of the measure g. As g is a Gaussian measure we
have

L /3. 0Y) . *
A2 W(ﬁor(xv U))/_L()(d.x, dl)) = exp(_§<( 0 Ev> z (ys w)? 2 (y’ w))?{z)

Differentiating this expression we have

d 1 X 0\d , .
7 /7-12 Y (@i(x, v)po(dx, dv) = —= <<< 0 EU> AN A w)>

Y 0 ., d
+<< O Ev> got (ya w)» Ew; (y, w)>7_[2)
1
X exp<_§<<20x EO)(pt*(y, w)»‘P,*(% U))> 2)
v H
L[ ON[O0O -2V . .
=73 o o) ez o <p,(y,w),<pt(y,w)ﬂ2
¥ _
+<<0" Zo)sot*(y,w),<; (‘)%)wi‘(y,w)> 2)
v H
1
X exp <—§<<on g)fﬂ,*(y, w), ¢ (y, w)> 2)
v H
1 -X
=3 (<<EUO=@ 6%) o (v w), 97 (v w)>

0 @21) * *
+<<—%Ex 0 )90, (v, w), ¢, (y,w)>H2>

1 Ex 0 * *
X eXp <_§ << O 2];) wt (y7 U)), (pr (y7 w)>7_£2>
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_y
=— (<<Eu09 (’)‘%) oF (v, w), 7 (y, w)>H2)

L[/, 0Y ., N
X exp (_E << 0 Ev) @y (y’ w)9 @y (y, w)>H2>

Now for any x’, v’ € H we have

0 _ZX%' x x! = o
(2 57) () (), -5 -

which is equal to zero by (39). [
Lemma A.2. Assume (39) holds, then for any f, g € C then

/ Lz f(x, v)g(x, v)uo(dx, dv) = —/ S, v)Lxg(x, v)uo(dx, dv).
H2 2

Proof. Recall that Ly is the directional derivative with respect to the integral curve ¢, so we
have

1
/ Lx f(x, v)g(x, v)uo(dx, dv) = lim — (/ S (@ (x, v)g(x, v)uo(dx, dv)
H2 t—0t H2

- / f(x,v)g(x, v)poldx, dv)) :
H2

Note that exchanging the limit and the integral is justified by the Dominated Convergence
Theorem which is justified since Ly f is bounded. Using Lemma A.1

1
/ Ly f(x,v)g(x, v)oldx, dv) = lim — (/ fx,v)glo—i(x, v)oldx, dv)
H2 t—0t H2
—/ fx,v)g(x, v)uo(dx, dv))
7_[2

= —/ fx, v)Lxg(x, v)po(dx, dv).
H2

As above exchanging the limit and the integral is justified by the Dominated Convergence
Theorem which is justified since Lxg is bounded. [

Corollary A.3. Assume Hypothesis 4.16 holds. Then for any f, g such that t — f(¢,(x, v))
and t — g(@.(x, v)) are differentiable wo-a.e. then

/ fo(x,v)g(x,v)u(dx,dv)=—/ f&x,v)Lxg(x, v)uldx, dv)
Hz 7‘[2
+ /(Vx D(x), Zp) f(x,v)g(x, v)u(dx, dv).
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