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Any fool can make something complicated.
It takes a genius to make it simple.

-Woody Guthrie





SUMMARY

Snow is a natural hazard to human life and infrastructure. This motivates current re-
search efforts to understand the granular material. The material point method models
snow as a continuum. Application length scales range from the microstructural level
to full scale avalanches. This conventional numerical method relies on solely spatially
local information to make local updates. The recent graph neural network machine
learning model is shown to include both local and global information in making local
updates. This model’s promising attribute motivates its use to replace the conventional
snow simulation method. However, it is uncertain if current graph neural network appli-
cations to learn physical simulations truly learn the underlying physics. This work is in-
spired by the finite element community’s patch-test proposed in the 1960s. This insight
is used to reimagine the means a graph neural network model is evaluated. Through
this novel evaluation choice, may the model be investigated on the core properties of
numerical methods. Further, a state-of-the-art graph neural network model is improved
to utilize unnormalized features and targets in making stable predictions. Future re-
search recommends these machine learning models in this application make architec-
ture design choices such that the core properties of conventional numerical methods are
met.
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1
INTRODUCTION

T HIS work ties together the two fields of computational snow science and machine
learning (ML). At the macroscopic level, snow is modeled using the material point

method (MPM). The computational efficiency of this model makes it popular for model-
ing large domains. However, shortcomings in this model persist. The Graph Neural Net-
work (GNN) model offers the ability to improve these existing shortcomings. This work
reimagines the convention that ML models in this application are evaluated on single
scalar error metrics. Instead, curated benchmark tests are used to isolate physical quan-
tities of interest. This provides a platform to investigate if these GNN models can truly
learn the underlying physics. Further, parallels with the finite difference community are
drawn to test for core properties numerical methods should posses.

The earliest micrographs of snow crystals dates back to the 19th century with the work of
Wilson A Bentley [2]. Ukitirô Nakaya’s work in the 1930’s brought about a formal classifi-
cation of snow crystals [3] and as the field grew, formal review books emerged for the field
[4, 5]. In the 70s Cundall and Strack introduced Discrete Element Method (DEM) to com-
putationally model granular materials, and was eventually adopted by the snow science
community [6]. In 2013 Stomakhin et al. [7] introduced MPM to the visual animation
community for modeling the granular material, and MPM was later implemented by the
snow science community [8].

1
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Figure 1.1: Overview of the GNN model

In parallel with these recent advances in snow science comes the emergence of the spe-
cific ML model, GNNs, and its field of geometric deep learning (GDL). An overview of
the GNN model is shown in Figure 1.1 This model is particularly advantageous due to
the following:

1. As inputs GNNs structure data into nodes, edges and globals. This is a similar for-
mat seen in the ground truth simulation of particles, relations and system values.

2. They allow spatially local domain updates to be made using both local information
and global information.

3. They exploit symmetries in the domain by using the same neural network to up-
date all nodes in the graph.

This thesis balances the limitations of MPM with the idealistic promises of GNNs. Chap-
ter 2 explains the current status in the snow science for modeling the material mechan-
ically and dynamically, followed by a motivation for GNNs. Chapter 3 is inspired by the
finite element community’s patch test to evaluate the GNN model on first principles a
numerical method ought to meet. Chapter 4 shows the reduction of noise in the model
can be made by training to position data. Chapter 5 discusses key findings of these re-
sults, and why they matter for the current state of the art.



2
LITERATURE REVIEW

This works aims to improve predictions of snow behavior via computer simulations en-
hanced by ML. Snow is a naturally occurring geographic material which stretches to ev-
ery corner of this planet. Therefore there are different kind of regimes and conditions
under which snow needs to be predicted, such as snowflakes dancing in the sky as they
fall to the ground, the destructive impact of avalanches ripping through forests, or the
behavior of fallen snow as a neighbor shovels it from their sidewalk. However, there are
important limitations when predicting snow behavior by state-of-the-art methods, as
reviewed in Section 2.1. ML offers a new route that can potentially address these chal-
lenges, as discussed in Section 2.2. This literature review ends with the identification of
a knowledge gap that motivates this thesis.

2.1. STATE-OF-THE ART SNOW MODELING
Snow as a material is a porous ice medium full of ice crystal aggregates, with the pores
filled with air and water vapor [4, 9]. A defining characteristic of snow compared to other
engineering materials is its largely irreversible compression [5]. Wet snow takes the vari-
ation of being grains coated with liquid water [4], where the degree of water present
alters its mechanical behavior [9]. Snow is often referred to as a granular material [6, 9],
a collection of macroscopic particles which are dissipative in nature when interacting
[9]. Further, snow is considered thermodynamically unstable at normal environmental
conditions [4], leading to its willingness to melt. This work focuses on simulations of
the macroscopic dynamics and deformation of snow. This is analogous to the physical
situation of throwing a snowball, or rolling over a snowman (Figure 2.3).

In this context, the first and prominent method group to introduce are meshfree meth-
ods. These methods’ most notable advantage are their ability to capture large and lo-
calized deformations accurately due to nodal connectivity occurring as part of the com-
putation, in contrast to being defined a priori [10, 11]. Figure 2.1 depicts the manner
in which a field variable is updated: (i) an area of interest (support domain) is drawn

3
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around a point of interest (ii) all nodes within this support domain are used to define
a shape function (iii) the shape function is used to update the node’s field variable (iv)
repeat for all nodes. For an in-depth description, please see [10, 12].

(a) (b)

Figure 2.1: (a) Meshfree method weighted support domain (b) Meshfree support domain
[12]

MPM, developed in 1994 by Sulsky et al. [13], is a prominent meshfree snow simula-
tion tool. MPM is derived from the particle-in-cell (PIC) method, proposed in 1957 to
simulate compressible fluid dynamics problems [14]. MPM is widely applied in the geo-
sciences arena by capturing large deformations at sizeable length scales [15, 16]. MPM
uses a background Eulerian mesh which remains unchanged through the entire run-
time, while the particles are tracked from a Lagrangian perspective. The Eulerian side is
used to compute gradients, and the Lagrangian side tracks the movement of mass and
history dependent phenomena, such as plasticity. Being a meshfree method, it handles
large deformations well [17]. Figure 2.2 shows 1. the material points at the start of a time
step, 2. the transfer to the Eulerian frame via a kernel operation, 3. calculation of the
gradients, and 4. return transfer to the Lagrangian frame. See the following texts for an
in-depth description of MPM [13, 18, 19].

Node
Material Point

Particle to Grid1. Initiate time step 2. Gradients3. Grid to Particle4. MPM in 4 Steps

Eulerian frame

Lagrangian frame

Figure 2.2: The 4 steps of MPM transferring to and from the Eulerian frame

Stomakhin et al. [7] use MPM to simulate snow in a dynamic environment. In collabora-
tion with Disney this work was used in the film Frozen. Figure 2.3 displays MPM’s ability
to capture the appearance of snow as it deforms when interacting with solid objects and
itself. MPM is used in other dynamic snow situations and scales to larger dimensions,
most notably avalanches [8, 20–22]. Gaume et al. [8] showed the application of MPM to
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Figure 2.3: Material Point Method Application [7]

an avalanche with a system size of 30 million particles, requiring 5 days to simulate the
10 second video at 48 frames per second.

The Discrete Element Method (DEM) is a fully Lagrangian particle simulation method
for granular materials [23], originally proposed in 1979 by Cundall & Strack [24]. The
geometry of a system is discretized into individual particle elements. Each particle con-
tains relevant translational and rotational dynamic attributes such as velocity, accelera-
tion and angular velocity. The particles may assume non-spherical shapes, which have
stress and strain computed during collisions [25, 26]. The process cycles between a force-
displacement law to compute contact forces at particle collisions, and Newton’s 2nd law
to update particle motion[23]. Figure 2.4 shows the contact diagram for two particles.
See the following literature for an extensive explanation of DEM [24, 27].

DEM is used in simulating snow with investigations to the mechanical constitutive mod-
els which govern the inter-particle interactions [28, 29]. DEM simulates a range of length
scales, from snow microstructure [30] to avalanches [29]. Further, correlation work with
experimentally determined failure mechanisms shows DEM’s ability to simulate the me-
chanical behavior of snow [28]. DEM is more computationally expensive than MPM [31],
resulting in MPM being chosen at times instead of DEM [29].

Smoothed Particle Hydrodynamics (SPH) is a relevant particle based method originally
proposed in the astrophysics field [32, 33]. SPH is a meshfree Lagrangian particle based
method used to solve such fluids dynamic problems as the Navier-Stokes partial differ-
ential equations [34]. Particle interactions are computed via a kernel function, creating
the smoothing effect attributed to the method [34]. SPH is shown in the snow physics
community to capture snow avalanches [35, 36], and recently compressible snow be-
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Figure 2.4: DEM force & displacement diagram [24]

havior [37]. In capturing avalanches, particle size and count are varied, capturing up to
256k particles [38]. Known limitations exist with respecting physical boundaries from
kernel truncation errors [39].

The Moving Particle Semi-Implicit (MPS), originally developed to simulate incompress-
ible flow, can simulate snow. Proposed in 1996 by Koshizuka and Oka [40], MPS com-
putes interactions of neighboring particles with the constraint of a constant fluid density.
User defined governing equations are discretized via particles and solved [41, 42]. The
incompressibility assumption restricts this method to applications involving large scale
deformations and free surface flows [41, 43, 44]. MPS is applied in simulating avalanches
[43, 44], fluidized snow [45] and other geomaterials [46]. The method has fewer sources
utilizing it compared to other particle methods such as MPM, DEM and SPH. Snow is
characteristic of its irreversible compressibility [5], which is contradictory to MPS’s in-
compressible formulation.

Mesh based methods, such as finite element analyses, are used to model snow [47, 48].
The finite element method (FEM) discretizes the entire geometry into smaller compo-
nents, elements, which represent algebraic expressions to solve for desired values through-
out the problem domain [49]. FEM is used for both mechanical behaviour and thermal
analysis.

Finite elements are used to express snow’s mechanical performance [47, 48, 50], with
a popular application being automotive tire interaction with snow [51, 52]. However,
mesh distortion from large continuum deformations is a known method limitation [53].
The SNOWPACK model [54–56] predicts snow mass settlement through the course of a
winter. Heat and diffusion transport equations effectively capture the phase transforma-
tions of ice, water and corresponding air, while snow accumulation is tracked via a finite
element method. The SNOWPACK model tracks large scale snow cover over days and
winters to address avalanche risks [54].
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Table 2.1: Comparison of parallel computing speedups

Implementation Model # CPUs # GPUs Speedup

Wang et al. [58] MPM - 4 4x

Shigeto et al. [59] DEM 16 - 5.4x

Yang et al. [60] SPH 1024 - 900x

Ihmsen et al. [61] SPH 24 - 10x

Although having different computational complexities, all above-mentioned methods
require significant computational resources in practice. Therefore, they are often com-
puted using multiple CPUs or even GPUs in parallel. Parallel computing is necessary
for today’s modern computation to reduce calculation times as hardware reaches a limit
[57]. Table 2.1 gives example speedup magnitudes in current parallel simulation litera-
ture. This shows that reducing computational costs through code architecture is a valid
avenue.

2.1.1. METHOD COMPARISON AND PHYSICAL MODEL SELECTION
A number of simulation methods have been presented including MPM, FEM and MPS
to name a few. These methods show their aptitude to capture the simulation of snow
from both phenomenological and physical perspectives. In narrowing the scope of this
work, simulation methods are selected based on their ability to capture the macroscopic
large deformations and dynamics without considerations of thermal components. This
constricts the scope to MPM, DEM, SPH and MPS, which are shown to handle large de-
formation situations well [7, 29, 35, 44].

SPH, DEM and MPM contain compressibility options to some degree [37, 62, 63]. In
contrast, MPS is rooted as an incompressible derivation [40] which is not in alignment
with the characterizing tendency of snow to be irreversibly compressible [5]. For this
reason, MPS will not be considered. Further, as SNOWPACK and the numerical scheme
including heat transport equations do not account for large deformations [54–56, 64,
65], they are not selected for further consideration. Lastly, as finite element methods
deal with mesh distortion issues at large deformations, they are not considered for this
application.

What remain are 3 particle based methods which are shown to simulate large defor-
mation dynamic snow movement well, namely MPM, DEM and SPH. Table 2.2 details
a comparison between all models, listing DEM and MPM as well performing models.
MPM has a wider supported snow simulation open source code base in contrast to that
of DEM. Due to the open-sourced code for MPM pertaining to snow [66], the method
will be used in this work.

2.2. STATE-OF-THE-ART RELEVANT MACHINE LEARNING
A variety of ML methods exist when considering both domains of supervised and un-
supervised learning. Relevant ML models are detailed herein. Aptitude is determined



2

8 2. LITERATURE REVIEW

Table 2.2: Comparison of prominent snow simulation methods - adapted from Stom-
akhin et al. [7]

Method
Volume
Preserva-
tion

Plasticity Fracture
Boundary
Compliance

Computational
Complexity

FEM ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ OpNW 2q
[67]

MPS ˚ ˚ ˚ ˚ ˚ ˚ OpN 2q [68]

SPH ˚ ˚ ˚ ˚ ˚ ˚ ˚ OpN 1.5q [69]

DEM ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ OpN 2q [27]

MPM ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ OpNq [70]

from the ability to predict relevant particle dynamics for the particle based simulation
methods of MPM, DEM and SPH.

ML is the programming of computers such that they learn from the data presented to
them [71]. The three main segments of the ML realm are supervised, unsupervised and
reinforcement learning [72]. Supervised, unsupervised and reinforcement learning are
optimal for different applications, and herein supervised learning will be used, as the
simulation datasets are assumed labeled. Supervised learning maps inputs (features) to
outputs (labels, targets) [72]. This domain is directly applicable to particle based simu-
lators, as a current state (feature) is being used to predict the next time step state (tar-
get).

A description of rudimentary Neural Networks is shown in Appendix A. Next, networks
with an aptitude to learn granular material simulators are addressed.

CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNNs) are a neural network type commonly applied to
image pattern recognition [73]. The data input is structured as a grid. CNNs are intended
for systems where features are spatially dependent, thus the presence of a feature is of
interest and not its location [74]. With this feature presence detected, a feature map is
yielded as output [72](p.465).

CNNs have shown success in the application of learning fluid simulations [75, 76]. They
are shown to learn and predict turbulent flow [75], generalize outside their training do-
main [77] and reduce the ground truth model computational costs by one to two order
of magnitude [76].

GRAPH NEURAL NETWORKS

Instead of the structured data format suited for CNNs, graphs are a discrete data format
built of nodes and edges. Figure 2.5 shows two example graphs. In tying this to particle
simulations, it is intriguing to note the Eulerian background mesh that MPM uses, and
the Lagrangian side which tracks particle movements. Figure 2.6 shows the essential
nodes vi , and edges ek connecting said nodes which, together with the global proper-
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Figure 2.5: Example Graph Visual Representation [78]

Figure 2.6: Graph Network Example [84]

ties u, make up the graph structure. Graphs are distinct from structured images in that
they can be heterogeneous, that each node has a varying amount of edges connected to
it. In contrast images and such structured data types have a uniform amount of edges
attached to every node.

The first GNN models are rooted in the idea that graph nodes represent objects and
edges represent their relationships [79, 80]. This idea is later pursued with interaction
networks, which reason the way objects in a physical system interact [81]. Li et al. [82]
introduced DPI-Nets to model deformable particle based physical simulators. Proroga-
tion networks extends this by looking at the extension of just pair-wise interactions and
considering the propagation of signals through the nodes of the system [83]. A distinct
parallel is seen with particles and their relations, that they are discretized separately,
analogous to a graph’s nodes and edges. This information format correlation makes
GNNs apt to learn and predict complex physical systems [81].

Of notable interest to this project are Graph Network-based Simulators (GNS) proposed
by Sanchez-Gonzalez et al. [85] and shown in Figure 2.7. The model learns and predicts
particle based fluid simulations, such as MPM, SPH and Particle Based Dynamics (PBD)
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Figure 2.7: GNS Method Framework [85]

for such materials as water, sand and goop. The method uses an Encoder, Processor
and Decoder framework which explicitly predicts the next state of particles based on
current and previous time steps. The work shows higher performance over ConvNets
[77] and DPI-Nets [82]. However, recent work does challenge the GNS model’s true ability
to learn underlying physics [86, 87]. A similar framework to GNS is adopted specifically
for Lagrangian fluid simulation [88].

In contrast to predictions of the explicit update to the particle based on the state dynam-
ics, is learning the underlying physical constraints. Yang et al. [89] first introduced this in
learning physical systems. Rubanova et al. [90] drew upon this to develop a Constraint-
based Graph Network Simulator (C-GNS) to learn the constraint function landscape, and
using its minimum to define the implicit solution update.

PHYSICS INFORMED NEURAL NETWORKS

The models discussed so far have not utilized any existing governing equations as a-
priori information in training and roll out. Physics-informed neural networks (PINNs),
introduced by Raissi et al. [91] in 2017, use governing partial differential equations (PDEs),
such as the Navier-Stokes equations as a regularizer in the training stage. When data is
lacking for a problem, PINNs are shown to perform with higher accuracy and efficiency
compared to a computational fluid dynamics (CFD) solver [92].

Solving a PDE with a neural network requires the parameterized PDE, accounting for the
spatial-temporal function, initial conditions, boundary conditions and spatial bound-
aries. This is converted to a optimization problem to minimize the loss (L), where µ is
iteratively updated [92]:

L “!1LPDE `!2Ld at a `!3LIC `!4LBC (2.1)

Figure 2.8 shows the framework for a PINN model. This feedforward model approx-
imates the governing equation(s) with a neural network (blue box), feeding into au-
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Figure 2.8: PINNs Method Framework [92]

Table 2.3: Example inductive biases found in deep learning models - adapted from [84]

Component Entities Relations Rel. inductive bias Invariance

Fully connected Units All-to-all weak -

Physics informed Units All-to-all PDE -

Convolutional Grid elements Local Locality Spatial translation

Recurrent Timesteps Sequential Sequentiality Time translation

Graph network Nodes Edges Arbitrary Node, edge permutations

tomatic differentiation (AD)(yellow box) to find partial derivatives of the neural net-
work outputs for its inputs, which are then used as residuals in the loss function eval-
uation. This process learns the unknown parameters of the neural network and the gov-
erning PDE. Recently, Shukla et al. [93] stressed the importance of physics informed
graph networks (PIGNs) may have in reducing roll-out error and scaling to larger di-
mensions.

MACHINE LEARNING MODEL SELECTION

In taking a page out of linguistics theory, the Sapir-Whorf hypothesis states that the spo-
ken language one uses alters their perception of the world around them [94]. In the con-
text of ML, the idea of inductive bias has recently been presented, which lays the basis
that the type of neural network one uses alters the potential information the ML model
captures from the dataset [84, 95]. In the work of Battaglia et al. [84] the inductive bias
of GNNs, CNNs and Recurrent Neural Networks (RNNs) are introduced, and shown in
Table 2.3.

Battaglia et al. [84] explains that as fully connected layers have all nodes intertwined,
allowing the full input signal to reach the output without reuse, there is little inductive
bias imposed on the prediction. By contrast, the structured data format input for CNNs
results in a spatial translation equivariance, while RNNs use a uniform rule for state up-
dates with time, yielding a time invariant inductive bias. GNNs work to learn the edge
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Figure 2.9: Illustration of a simple message passing layer [96]

(connection) relationship, leading to a bias invariant to the input node combination or
amount of nodes, instead focusing on how objects interact. Cranmer et al. [95] utilizes
the inductive bias of GNNs to symbolically derive the algebraic expression for Newto-
nian particle interactions.

Remark 1 GNNs are the ML surrogate model of choice for particle based simulations due
to their imperviousness to input permutations and inductive bias of spatial and temporal
freedom.

2.2.1. RECENT GRAPH NEURAL NETWORK DEVELOPMENTS
Figure 2.6 shows the essential nodes vi , and edges ek connecting said nodes which, to-
gether with the global properties u, make up the graph structure. However, this is only 3
out of the 4 data types captured by graphs. The fourth is connectivity, the nodes in the
graph which are and are not connected.

Graphs, being representations of nodes interconnected, hold information embedded in
these data types. Using the embedded information of GNN model inputs, a proceeding
state is predicted. For example, a molecular dynamics simulation may be modeled as
a graph where the molecules are nodes of position and velocity, the edges act as the
Lennard-Jones potential and the global property is the total system energy. This physical
information is used by the surrogate model to update the next position.

Using this graph structure, Figure 2.9 shows the 3 prediction types which GNNs make.
These are edge en, node vn and global un updates. This figure also shows the specific ex-
ample of mapping the current state un to following state un`1 without interaction from
the other graph features (nodes and edges). This direct transformation is the simplest
GNN prediction. In contrast, allowing the features of the graph to interact during pre-
diction defines the message passing concept.

Gilmer et al. [97] introduced message passing after a recognition of commonalities be-
tween existing GNN frameworks. Message passing is proposed as an aggregation of in-
herent node information, detailed as the following [78, 84, 97, 98]:
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Figure 2.10: Illustration of Graph Nets message passing layer [96]

• Each node vi receives a message from all neighbors connected.

– Nodes further from adjacent nearest neighbors may be done so by adding
additional layers which recognize nodes at further distances.

• All received messages are aggregated.

• The node state is updated based on this information.

• The graph’s global properties u act as a readout state.

Battaglia et al. [84] extended this initial message passing work to learn edge represen-
tations, in addition to nodal and global properties. Their work created Graph Nets, an
open source GNN library available through Github. Graph Nets allow the connection
of all 3 graph features, as shown in Figure 2.10, and the information sharing between
them exemplifies message passing.

A key component of message passing is the need to aggregate information between dif-
ferent features. Nodes and edges contain different embedded information. Falling back
on the molecular dynamics example this is the difference between the molecule veloc-
ity and the inter-molecule potential. To transfer information between these two, or the
global property, a defined function is necessary in their conversion. Aggregation is the
gathering of the information from selected neighboring features in a permutation invari-
ant way, such as summation, minimum and maximum operations.

An ongoing challenge is aggregation between nodes not connected, and far away on a
graph [99, 100]. Message passing allows the information of a node to be propagated
through the network at each GNN layer. That is, if the GNN aggregates information at
each node from neighboring nodes, this will diffuse k node steps away after k GNN lay-
ers. To resolve this issue, Sanchez-Lengeling et al. [96] acknowledges the use of virtual
edges, which is the addition of edges to connect every single node on the graph. However,
this method is known to be computationally unsuitable for large graphs and is consid-
ered an open-research area [96].



2

14 2. LITERATURE REVIEW

Figure 2.11: Illustration of graph and adjacency matrix correlation [96]

Figure 2.12: RNN & GNN Bottleneck [98]

Neighbor sampling is the method by which surrounding nodal information is chosen to
be aggregated in concentrating the information on a single local node. Figure 2.11 is
an example sample method of choosing the nearest neighbor Image Pixels. The adja-
cency matrix in Figure 2.11 is a matrix of binary expressions detailing which nodes are
and are not connected [96]. Neighbor sampling in graphs is identified as a current open
research question [96], with a variety of techniques currently identified [101]. This is par-
ticularly advantageous when working with large graphs, and the number of neighbors to
consider can be computationally expensive [102].

A bottleneck of GNNs is introduced by Alon & Yahav [98]. During the aggregation stages,
both neighboring nodes and/or long distance nodes may send messages, resulting in
their summation on a local node. The conglomeration results in a large amount of in-
formation trying to be expressed by the state of a single node. The inability of a single
node to express such a breadth of information is referred by Alon & Yahav [98] as over-
squashing. Figure 2.12 gives a visual of this phenomena.

Alon & Yahav [98] additionally acknowledge under-reaching, in which the chosen dis-
tance of neighboring nodes, the size of the minimum image, is not able to capture the
physical essence of the system at hand. Thus, there exists a trade-off between the dis-
tance of neighboring nodes which are aggregated to find a sweet-spot between under-
reaching and over-squashing. This over-squashing phenomena is not seen in all work,
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Figure 2.13: Diagram example of Encoder-Processor-Decoder Constructions [84]

Table 2.4: Overview of Encoder-Processor-Decoder Strategies

Model Encoder Processor Decoder

GNS [85]

Particles are represented
as nodes, with every node
within a radius R con-
nected and encoded as
into latent space via MLPs

Stack of M GN Blocks,
all in series, which pre-
dicts the future state
GM “ProcessorpG0q

A MLP takes GM as input
and outputs acceleration,
followed by Euler integra-
tion for velocity and posi-
tion

C-GNS [90] Similar to GNS

Similar to GNS, with
added output of a scalar
c of the constraint land-
scape, which the mini-
mum of determines the
implicit update

The optimized update to
minimize c is decoded
similar to GNS

Mesh-Based
[103]

Domain relevant mesh
information is encoded
into both Eulerian and
Lagrangian frames

Similar to GNS, except
both Eulerian and La-
grangian edges are taken
as input

The predicted state is ex-
pressed as output fea-
tures and Euler integra-
tion yields desired quan-
tities

and instead only under-reaching [85].

Remark 2 The method by which the neighborhood nodes are chosen for aggregation ap-
pears to greatly affect the GNN performance. Node selection is analogous to importance
sampling in Monte Carlo methods. This is an open range of study in literature, and explic-
itly acknowledged as such by Sanchez-Lengeling et al. [96].

The Encoder-Processor-Decoder process, conceptualized in Figure D.5, is a common
GNN architecture used when acting as surrogate models for physical simulations [85,
90, 103]. The nodes of the graph store embedded information, exemplified in Figure
2.11 where the image pixels may be encoded as RGB values per pixel. The Encoder
phase maps the physical phenomena of the simulation to an embedded latent space
with nodes and edges as representatives. The Processor uses the encoded information
as inputs for the GNN model, which predicts a future state. The use of this latent space is
intended to alleviate the over-squashing phenomena. The method and underlying archi-
tecture used here varies by model, with a few prominent ones documented in Table 2.4.
A common use among the models described are multi-layer perceptrons (MLPs) acting
as the encoder and decoder, while layers of GN blocks act as the processor.

There are two ways in which physical updates are made, explicit [81, 85] and implicit
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[89, 90]. Kolter at al. [104] describes the update differences between explicit and implicit
formulations well. In short, an explicit update determines the output based on a defined
function of the input. In contrast, an implicit update determines the output based on a
definition that the input and output must meet together. Thus, there is not an explicit
determination of the update, but instead a quest for a condition to be met.

GNNs have shown the benefit of maintaining the data structure of particle based fluid
simulators, however at the cost of unfeasible scaling [78]. Current research is working to
tackle this domain and scale GNNs to larger node counts [99, 105–107]. Noteworthy, is
the creation of the OGB Large-Scale Challenge as a global competition to develop Graph
Network models which perform adequately on large scale datasets [107].

Such a competition requires an evaluation metric to quantify models in ranking. This
challenge uses the mean reciprocal rank (MRR) and mean absolute error (MAE). This
single scalar value quantifies the performance of these large scale GNN models on stan-
dardized datasets. A similar trend is seen in the use of GNNs to learn complex physics
simulations. Table 2.5 shows a range of single scalar error metrics which these models
use to quantify performance. Many other error metrics exist [108].

Table 2.5: Current models in literature and their performance metric

Model Error metric

GNS [85] MSE

C-GNS [90] MSE

MeshGraphNets [103] root MSE

EGNNs [109] MSE

DPI-Nets [82] MSE

MultiScale MeshGraphNets
[106]

MSE

This section on recent GNN developments shows the current practices seen in literature.
The graph structure can be adapted to complex physical simulations, molecule classifi-
cation and large scale graphs. Message passing appears to improve model performance
and exact implementation methods is an active area of research. The bottleneck of prop-
agating high volumes of information in a graph is introduced. This empirical finding is
alleviated using an encoder, processor, decoder structure. Last, the performance metric
to evaluate these models are introduced.

KNOWLEDGE GAP
GNN architectures leverage the inductive bias of permutation invariance. Current works
in GNN literature apply learning complex physical systems to show the expansive phys-
ical ranges captured via the ML model, including sand collisions, fluid simulations and
solid mechanics models [77, 85, 90, 103]. These models evaluate their performance on
the metric of single scalar values, as shown in Table 2.5. By definition the MSE value
quantifies how well the tuned function fits the data it is provided. These do not inform
the user if the underlying physics is met. The current numerical methods used in snow
simulations, shown in Table 2.2, are all evaluated in their ability to meet physical phe-
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nomena. The ability of GNN models to meet these same metrics is unknown. This yields
the 1st research question:

Are GNNs trained to learn physics simulations able to capture the underly-
ing physics?

Another limitation of this error metric is that it does not give physical information based
on its magnitude. This makes it impossible to judge if changes at the input to the GNN
yield any significant changes in the output. This yields the 2nd research question:

Are GNNs in this application robust to their inputs?

2.3. CONCLUSION
The snow science community has seen significant advances in the last decade to reduce
the computational time to model the granular material. The use of MPM over DEM fa-
cilitates this computation cost reduction. However these methods continue to rely on
the conventional use of local information to make local updates. In parallel, the insur-
gence of scientific ML shows that complex physics simulations may be learned via the
availability of sufficient data to train models [77, 81]. GNNs utilize global information
in making local updates. This makes the ML model an ideal replacement to extend on
MPM’s locality limitation. The GNN model’s natural representation of particle domains,
the architecture’s inductive bias and its recent promise to capture complex physical se-
tups place it in the center light to learn complex snow simulations. However, the lack of
understood physics captured by this new method makes its implementation in the snow
science community uncertain.





3
CONSISTENCY, STABILITY AND

CONVERGENCE

This chapter assumes the reader is familiar with the GNS model1 of Sanchez-Gonzalez et
al. [85]. For background on the model, the reader is encouraged to read Appendix D for a
streamlined overview. For a detailed description, see the original publication.

INTRODUCTION

T HIS work is inspired from two landmark papers to reimagine how GNN models in
this application are evaluated. One, the numerical properties of consistency, stabil-

ity and convergence are vital components any numerical method should meet [110]. See
Appendix C for the definitions of these 3 terms used in this work. Two, through imple-
mentation of curated benchmark examples, these properties are investigated [111].

The research questions stated at the end of Chapter 2 are addressed by redefining the
way which these models are evaluated. This is done through two keys steps. One, model
robustness is investigated by creating numerical studies which address stability and con-
vergence. Two, the patch test in the finite elements community provides a way to define
the error based on physical laws which should be met.

1For clarity, GNS is a specific GNN implementation created by Sanchez-Gonzalez et al. [85].

Table 3.1: MPM and GNN method equivalents

MPM GNN

Continuum discretization Material points Nodes

Global domain structure Eulerian mesh Graph connectivity

Local domain structure Shape function Message passing architecture

19
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Material Point

Eulerian frame

Lagrangian frame

B-Spline Quadratic Kernel 

Top view Front view

Figure 3.1: Visualization of the MPM continuum domain discretization, and the overlap
of kernel nodes

g
v

v0=0

(a) initial conditions (b) boundary conditions (c) gravitational field (d) deformations

Figure 3.2: Example basic physics of interest

Section 2.2 illustrates GNNs have promising capabilities to learn conventional numerical
solutions to PDEs. This places them in the center light in the exploration of ML scientific
computing. The popular MPM model in the snow science community [7, 8] requires
the continuum body to be discretized with Lagrangian points, a background Eulerian
mesh and shape functions (kernels) defined a priori at the mesh nodes (Figure 3.1). In
contrast, a state of the art open source GNN model [85] requires the position data for
an entire trajectory to be available for model training and an optimal GNN connectivity
and message passing architecture defined a priori. A comparison of these two methods’
basic building blocks is shown in Table 3.1.

Chapter 2 shows a common practice in current ML physical simulation literature is to
quantify model performance over a single scalar MSE. However, by definition this quan-
tifies how well the trained ML model fits the provided data. This single value does not
capture if the underlying physics of interest in a problem is met. Figure 3.2 illustrates a
range of physical phenomena that are of scientific interest. However, whether these are
met can not be affirmed by the MSE value alone. An example is now given.

Figure 3.3 showcases visually appealing results, similar to what is done in the GNS im-
plementation [85] and other prominent models [81–83, 89, 90, 103]. These visual results
are obtained via a dataset created by the MLS-MPM code of Hu et al. [66], and the demo
model of their GitHub page. The GNS model was trained on the dataset. An example of
inference is shown in Figure 3.3. See Appendix F for an explanation of the example setup
and the GNS model implementation.

https://github.com/yuanming-hu/taichi_mpm
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The error metrics used in the GNS implementation are shown in Table 3.2. These metrics
are evaluated for N particles, over k time steps, j dimensions, their position x, normal-

ized acceleration2 ˆ̃:xtk
i , GNN acceleration prediction dµpxtk

i q and position prediction x1
i

after twice pseudo Euler integration from acceleration3. The Loss (L2 Norm Accelera-
tion) is used to train the model. These error metrics are explained more in depth in
Section 3.2 and Chapter 4.

Table 3.2: Error metrics

Metric Evaluation

Loss (L2 Norm Acceleration) 1
K

1
N ||dµpxtk

i q´ ˆ̃:xtk
i ||2

Acceleration MSE 1
j

1
K

1
N

∞K
k“1

∞N
i“1pdµpxtk

i q´ ˆ̃:xtk
i q2

One step position MSE 1
j

1
K

1
N

∞K
k“1

∞N
i“1px̂k

i ´ xk
i q2

The final acceleration MSE is computed on per-particle normalized acceleration, and
results shown in Table 3.3. This highlights that both visual results (Figure 3.3) and nu-
merical results (Table 3.3) can be given without any understanding whether the physics
of interest (Figure 3.2) is met. This thesis places a spotlight on this paradox.

Fortunately, a solution exists which is inspired from the finite element community. The
patch-test was introduced in the ’60s to the finite element community as a means to
verify if a finite element design accurately captures the physical problem for which it is
applied [112, 113]. The test examines that both physical quantities of interest at nodes
and points internal to elements meet continuity requirements. A concrete example is
shown in Figure 3.4, where a plate in bending with constant curvature K applied at the
external nodes (red) yields the same curvature at the internal nodes (blue). A newly de-
fined element passes the consistency condition of the patch-test if it approximates the
uniform curvature within an acceptable tolerance at all nodes (red & blue).

2Acceleration is normalized to unit variance and zero mean using statistics computed over the entire training
dataset.

3Pseudo refers to an integration being performed assuming ¢t is 1, regardless of what the actual time step is.

Table 3.3: Snow blocks implementation loss values

Dataset Training steps Acceleration MSE

snow blocks v1 105 0.0089343

snow blocks v1 106 0.0057879

snow blocks v2 105 0.0087074

snow blocks v2 106 0.0058148
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Figure 3.3: Snow blocks visual implementation

K

K

Figure 3.4: Example patch-test for a uniform plate in bending

Thus, the patch-test provides the key to traverse from evaluating this ML model against
fitting data, and instead against an external error metric which captures physical under-
lying principles. The true power of this is realized when taking a next step, and using this
external error metric to evaluate this ML model against the core properties a numerical
method must meet: consistency, stability and convergence.

A similar evaluation concept is used in the meshfree field [114–116]. The basic premise
uses a simple problem where assumptions allow an analytical solution. An example is a
beam in bending, the numerical solution is compared with the exact assumed analytical
solution [117]. This does limit example problems to those which meet the simplifica-
tion requirements of the analytical solution. The comparison is a metric to quantify the
quality of the meshfree scheme used in the proposed application.

This requires that simplified problems are defined to be setup in MPM. This is resolved
via the original benchmark functions to evaluate the model’s performance [13, 17]. These
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Table 3.4: Summary of current benchmark tests

Benchmark Property investigated Boundary condition Plasticity

Vibrating elastic cylinder
[13, 118]

System kinetic energy &
strain energy

None No

Elastic bodies [13]
System kinetic energy,
strain energy & momen-
tum

None No

Inelastic bodies [13]
System kinetic energy,
strain energy & momen-
tum

None Yes

Hollow cylinder [17] Visual Neumann No

Rolling disk on incline
plan [70]

Center of mass Neumann No

Bar in tension [119] Stress at Eulerian node Neumann & Dirichlet No

Plastic bar in tension
[119]

Stress at Eulerian node Neumann & Dirichlet Yes

Self weight compression
[120]

Stress at material point Neumann & Dirichlet Yes

are basic physical tests, such as rotating an object, or sending two elastic bodies into a
collision. With the development of the method and its variants came more benchmark
functions to showcase the capabilities and limitations of the method. These are shown
in Table 3.4.

The selection of benchmark tests is to address the knowledge gap of underlying physics
currently not captured by GNN models in literature, as discussed in the end of Chapter
2. This is done by choosing the physical principles which are expected to be a challenge
in the ground truth data. That is, for the ultimate goal of a GNN model to replace the
MPM method, it ought to be tested against the current limitations of MPM. Energy dis-
sipation consistent with hybrid Eulerian-Lagrangian methods and difficulties imposing
boundary conditions are the two physical phenomena chosen. Their motivation is now
given.

Literature shows MPM and its variants have a history of energy dissipation. The orig-
inal proposal of MPM [13] is rooted in PIC [14], an early hybrid Eulerian-Lagrangian
approach. A recognition of the numerical dissipation effects in PIC is resolved with the
proposed Fluid Implicit Particle (FLIP) method, which focuses on conserving energy and
momentum [121]. Upon proposal of MPM [13], Sulsky et al. include a benchmark test
to quantify the numerical dissipation of the new method (Figure 3.5a). In later years,
this numerical dissipation of MPM and other hybrid Eulerian-Lagrangian methods is
explored by Jiang et al. [122], leading to their own resolution. Thus, this long stand-
ing struggle of hybrid Eulerian-Lagrangian approaches to conserve energy makes this
benchmark test an ideal standard.

The rolling disk on an inclined plane (Figure 3.5b) was created by Bardenhagen et al.
[70] to test the paper’s friction model presented for inter-material point contact. This
requires a zero velocity boundary condition is applied at the contact of the disk with the
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Figure 3.5: Proposed benchmark tests

plane. Meshfree methods commonly struggle to impose boundary conditions. Examples
are truncation error in SPH [39], the resolution of this with reproducing kernel meth-
ods [123], or the element-free Galerkin methods using Lagrange multipliers to enforce
boundary conditions [117]. This historical phenomena of meshfree methods makes this
test, where a boundary condition on the nodes is implemented, attractive. However, a
drawback is this test does not directly quantify compliance with the stick boundary con-
dition. Instead it only quantifies the disk’s position against the analytical solution. This
test is ideal by requiring only positional data to evaluate, which is the sole quantity the
current open-source GNS model predicts [85].

MODELS USED

The open source c++ code formulation of MLS-MPM proposed by Hu et al. [66]4 imple-
ments the constitutive model for snow proposed in the paper of Stomakin et al. [7]. This
damage based model is detailed in Appendix B, as well the MLS-MPM implementation
is described in Algorithm B.1. The model is used in this work for implementing both
the benchmark tests, and creating the datasets for the GNS model. It is the ground truth
model.

For implementing a GNN, the state of the art model written in python by Sanchez-
Gonzalez et al. [85] is used. The primary reason for its selection is the open code pub-
licly available. Secondary, the model is shown in its publication to learn the dynamics of
sand, a granular material as snow.

Both the GNS model and MLS-MPM sample code used here are minimally documented
by the respective authors. To make this thesis possible, fundamental understanding of
both code bases is accomplished via extensive documentation. The documented code

4Please see Appendix G for an analysis on the discretization assumptions made by this method.
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(a) MPM data generation (b) data storage (c) GNN implementation (d) benchmark evaluation

TFRecord

x1,...., xt 

t

x

Figure 3.6: Project computational pipeline

is available on GitHub through the BessaResearchGroup.5

Parameters are subdivided into two regimes, GNS model hyperparameters and dataset
definition parameters. Due to the custom data creation component of this work via
benchmark tests, the way these datasets are defined is an independent variable of the
author. The resulting computational pipeline is: using the MLS-MPM method to imple-
ment benchmark tests, creating data from these benchmark simulations, organizing into
datasets, training the GNS model, predicting trajectories and finally processing these
predictions into the physical quantities relevant to each benchmark. This project flow is
shown in Figure 3.6.

Dataset storage uses TensorFlow’s TFRecord binary data format. This is for two key rea-
sons: (i) The data may be directly read into the GNS model which is built on TensorFlow
1, (ii) The binary format provides a compact means to transfer data.

For repeatability in results, a seed is set for TensorFlow, which the GNS model is built
on. This fixes the random initialization of the following three items: (i) the weights and
biases of the neural network, (ii) dataset shuffling during training, (iii) the random walk
noise sequence added to the training data.

Implementing the GNS model is a computationally expensive process, with setups re-
quiring training times from hours to days. The resources available through the high per-
formance computer (HPC) at Delft University of Technology’s ICT Department made this
work possible.

5The repository is currently held private. Access may be granted upon request.

https://github.com/bessagroup
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Figure 3.7: Visualization of the elastic bodies benchmark test

3.1. ELASTIC BODIES BENCHMARK TEST
SETTING

Figure 3.5a shows the physical setup for the elastic bodies benchmark created by Sulsky
et al. [13]. This test contains two elastic bodies, each with the initial condition of the
identical velocity magnitude, only opposite in direction. The two bodies impact and
then rebound, moving away to the opposite corners. During collision, all kinetic energy
is transferred to strain energy, and then returned to kinetic energy as the bodies move
away. This setup isolates energy quantities. A perfect score on the test is the sum of kinetic
and strain energy remaining constant during the entire simulation. This evaluates that
no dissipative mechanisms are found, as no dissipative mechanisms are intentionally
implemented.

MLS-MPM IMPLEMENTATION

Figure 3.7a shows the setup described by Sulsky et al. [13] to implement the benchmark
test. Table 3.5 lists the definitions and values given for the variables in Figure 3.7. Note
units are intentionally not given, as they are not provided in the benchmark publication.
For this reason, terms of unit length, unit time, unit energy etc. are used when describing
this benchmark. The benchmark is implemented as closely as described by the publica-
tion, with the only deviations described here.

The total particle count nor particle count per cell is given. Thus, a particle spacing is
assumed at 0.020 unit length yielding a total particle count of 552. This value is chosen
as it produces converged energy results. A coarser resolution yields additional energetic
loss. An exact radius for the bodies is not given by Sulsky et al., instead 0.19 unit length
is assumed from the figures presented in the publication.

Sulsky et al. [13] do provide a density value of 1000 unit density. However, without a
known radius makes this intrinsic quantity’s use uncertain. A total mass of 256 unit mass
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Table 3.5: Elastic bodies benchmark parameters

Parameter Value

Total time 1.0

Time step 1e-3

Young’s modulus E 1000

Poisson’s ratio ∫ 0.30

Total mass 256

Radius r 0.19

Total material points 552

n 0.05

v0 0.1
?

2

µ º/4

is chosen, which correlates with the total system kinetic energy graphically reported in
the reported benchmark.

As the base MLS-MPM code of Hu et al. [66] does not make use of the particle strain
energy ™ during computation, a means to compute it is required. The MLS-MPM code
of Hu et al. [66] uses the gradient of the fixed corotated energy density function™ [124]
to compute force. This is an isotropic hyperelasticty model developed for large defor-
mations [124]. The model is shown in Equation 3.1. See Appendix B for a description of
the variables and finite strain decomposition. To follow continuity with the force calcu-
lation, this model is used to compute the strain energy.

™pFE ,FP q “µpFP q||FE ´ RE ||2
F ` 1

2
∏pFP qpJE ´ 1q2 (3.1)

Figure 3.8 shows the results of the benchmark test. Following the original benchmark
implementation, the energy and momentum are plotted. Figure 3.8a shows the kinetic,
strain and total energy of the system with time. There is a clear drop in the total system
energy. Th Figure 3.8b shows the x-component of momentum for the lower left circle
with time.

There is a distinct difference in the total collision time between this implementation
with MLS-MPM and regular MPM as done by Sulsky et al. [13]. An investigation of this
variance is given in Appendix J.

DESIGN OF EXPERIMENTS

The goal of this chapter is to evaluate the GNS model performance when compared to
the MLS-MPM method. This is done by creating a design of experiment (DoE) which
evaluates the stability property of the numerical method in this benchmark.

Appendix C lists the definitions for the consistency, stability and convergence. However,
these definitions assume an approximation function Fn is known. In the case of GNNs,
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(a) System Energy (b) Lower left circle x-component of momentum

Figure 3.8: MLS-MPM Elastic Bodies Benchmark Implementation

the neural network approximation function is fully defined from training. It is not known
a priori, only its architecture is known. A key component of training is defining the opti-
mization problem to tune the network parameters on some loss, as defined in Equation
A.6.

A knowledge gap identified in Chapter 2 is the error metrics do not directly express physi-
cal information of the problem. The same logic applies to this scalar loss value. It should
be affirmed the optimization problem is consistent with the physical quantities evalu-
ated in this benchmark. In other words, as the training steps increase in the problem,
there ought to be an improvement in the benchmark performance.

Stability is defined in Equation C.4. Stability is qualitatively described as small pertur-
bations at the input level yields small variants in the output. Here, it is empirically eval-
uated by imposing small perturbations to the input data, and observing the resulting
outputs. In this case, a simple small input perturbation is changing the particle label
associated with the given dataset. As discussed in Appendix D, this is an arbitrary clas-
sifying label given to a particle which is meant to represent the type of material. As this
label choice is arbitrary, the selection ought to have no effects on the output.

The trained neural network is defined based on the data it is trained to. This means
the approximation function is dependent on the data. Varying the underlying data thus
alters the definition of the approximation function. It is thus of interest to see if the
means to create the approximation function can handle perturbations in the domain
data.

GNS IMPLEMENTATION

For the elastic bodies benchmark, two datasets are designed. Figure 3.7 shows the two
dataset variants built, v1 and v2. One dataset is the standard benchmark implementa-
tion. The second version is the original benchmark, with the bodies rotated at an arbi-
trary angle¡. Table 3.6 lists the dataset parameters held constant between both datasets,
and the particular parameters relating to each individual dataset. The variables of x1, x2,
v0 and ¡ are all generated from a random uniform distribution according to the bounds
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Table 3.6: Elastic bodies GNS model implementation

GNS Hyperparameters Dataset Parameters

GNN Architecture Interaction Network Total time 1.0

Loss function L2 Norm Acceleration Dataset time step 0.001

Learning optimizer Adam Train/Test 300/20

Learning rate
exponential decay from

10´4 to 10´6 Trajectory length 1000

Training steps 105 Dataset v1

Message passing steps 10 x1 & x2 [0.290
?

2, 0.310
?

2 ]

NN Architecture
2 hidden layers

128 layer neurons
v0 ˘v0pcosµ, sinµq

Noise std 6.7e-4 Dataset v2

Input sequence length h 6 x1 & x2 [0.270, 0.300]

Seed 33 ¡ [-0.1º, 0.1º]

Connectivity radius 0.0565 v0 ˘v0pcospµ`¡q, sinpµ`¡qq

Table 3.7: DoE Set #1 - Elastic Bodies from Setup v1

Experiment
Training

steps

Particle

label

Acceleration

MSE (¨10´3)

One step

Position MSE

(¨10´10)

#1.1 105 5 0.41187 1.0468

#1.2 106 5 0.17930 0.71993

#1.3 105 7 0.40105 0.89963

#1.4 106 7 0.17973 0.73982

#1.5 105 5 & 7 0.34078 0.62333

#1.6 106 5 & 7 0.17448 0.44220

set in Table 3.6.

The particle label is administered as a uniform label between both bodies for all experi-
ments, with the exception of #2.3 and #2.6. In these two experiments, one body is unan-
imously labeled a 5, and the other body is labeled a 7. The choice of these particle la-
bels are arbitrary. They are only a means to provide a minute perturbation at the input
level.

The GNS model used in these experiments predicts solely normalized acceleration. The
model was extended to predict directly normalized acceleration and strain energy. This
extension yielded grossly inaccurate results at 106 training steps. For this reason the
standard GNS model which predicts only normalized acceleration is used here.

RESULTS

Table 3.7 and Table 3.8 shows the resultant GNS model error values for the elastic bodies
benchmark. These error metrics are defined in Table 3.2. The minimum of each error
column is highlighted in bold. There is a distinct difference in the magnitude of the loss
values between dataset v1 and dataset v2. There is a variance in the reported loss value
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Table 3.8: DoE Set #1 - Rotated Elastic Bodies from Setup v2

Experiment
Training

steps

Particle

label

Acceleration

MSE (¨10´3)

One step

Position MSE

(¨10´10)

#1.7 105 5 1.7356 6.5566

#1.8 106 5 0.81389 5.1727

#1.9 105 7 1.7583 6.8231

#1.10 106 7 0.82089 4.1139

#1.11 105 5 & 7 1.6112 5.5408

#1.12 106 5 & 7 0.70821 3.0655

(a) Dataset v1 (b) Dataset v2

Figure 3.9: GNS model predictions for the lower left body momentum x-component

based on the particle type given.

Figure 3.9a shows the trained GNS model predictions for the experiments described
in Table 3.7. This is trained on dataset v1 for the original benchmark implementation
shown in Figure 3.7a. Figure 3.9 shows the x-component of momentum for the lower left
disk. To pass this test, predictions must follow the momentum in time defined by the
MLS-MPM method.

There is a key recognition that across both plots in Figure 3.9, there is a failure of collision
dynamics. If collision dynamics were met, the GNS prediction would match the MLS-
MPM curve. Additionally, both plots show variance in the benchmark metric when the
particle label is changed. Figure 3.9a does show a conservation of linear momentum for
all implementations in the Figure. The linear momentum of the other body and kinetic
energy plots are shown in Appendix H.

The training and inference times for the GNS model are listed in Table 3.96. The MLS-

6These times are for 12 Intel Xeon CPU E5-2620 0 @ 2.00GHz.
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Table 3.9: Training and inference times for the elastic bodies benchmark

Experiment
Training

steps

Training time/

step (s)

Inference time/

step (s)

#1.1 105 1.469 229.4

#1.2 106 1.470 227.7

#1.3 105 1.470 227.6

#1.4 106 1.469 220.7

#1.5 105 1.462 221.4

#1.6 106 1.367 217.7

#1.7 105 1.469 220.7

#1.8 106 1.466 217.0

#1.9 105 1.462 221.4

#1.10 106 1.469 226.0

#1.11 105 1.367 217.7

#1.12 106 1.464 215.6

MPM implementation in c++ requires 2.9 seconds7.

A visualization of Experiment #1.1 is shown in Figure 3.10. The MLS-MPM model shows
the two bodies initially start at opposite corners, and move towards each other with
equal velocity magnitudes. They then collide, and rebound without touching. The two
bodies then move in the opposite direction. This is expected8. The GNS prediction
shows the two bodies coming into contact, and then moving in unison to the bottom
left corner. This is distinctly different than the ground truth dataset.

Figure 3.11 gives a visual of Experiment #1.8. In this case, the MLS-MPM method shows
the two bodies approach and rebound in a similar fashion as Figure 3.10. However, a
key difference here, is at an offset angle ¡, the bodies rebound with rotational motion.
Strikingly, the GNS model rotates both bodies prior to impact. Appendix I quantifies
this difference in rotational motion between the MLS-MPM simulation and the GNS
model.

DISCUSSION OF RESULTS

A discussion is now given on why no improvement is seen with an increase in training
steps, and why the stability condition is not met. A lack of improvement with training is
due to graph construction. The stability condition is failed due to the inadequate data
provided during training. Momentum conservation is observed in the results, and is
explained by addressing invariants in the domain.

There is no improvement found with an extension of training steps. The GNS model is
the approximation function to the true underlying domain described by the benchmark
formulation. At an increase of training steps from 105 to 106, Figure 3.9 shows the col-
lision dynamics continue to fail. This is a clear indication that the chosen optimization

7This is on 1 Intel(R) Core CPU i7-6700HQ @ 2.60Ghz.
8Appendix J extensively explores and explains this collision in the ground truth model.
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Figure 3.10: Visualization of experiment #1.1

Figure 3.11: Visualization of experiment #1.8
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Figure 3.12: Collision dynamics failure visualization

formulation is not consistent with the benchmark performance.

This inability arises from the construction of the graph. GNNs require graphs as inputs to
the model. This means that one must express their physical domain, in this case snow, as
a graph. Chapter 2 highlights that graphs can naturally represent the Lagrangian formu-
lation of MPM. That is the nodes of the graph represent material points, and the graph
edges represent how these material points interact.

Figure D.6 shows the graph construction process, and is described in Appendix D. Figure
3.12a shows a visual of the collision, with the MLS-MPM simulation on the top row, and
the GNS model along the bottom row. It is found that the the two bodies do not come
into contact during the MLS-MPM simulation. This characteristic of the ground truth
simulation is extensively explained in Appendix J. Here, the minimum distance w which
the two bodies come together during impact does not decrease below 0.107 unit length.
Yet, the connectivity radius is set in Table 3.5 at 0.0565 unit length. Thus, the two bodies
are never connected during the training phase. Edges are fundamental for GNNs to learn
relations between objects. Without edges, the GNN model is not able to learn the relation
between these two bodies. This yields a failure in the collision dynamics.

The original GNS publication emphasized the substantial effects the connectivity radius
has on results. The effects of altering the connectivity radius are note explored here.
The reason being, this chapter is not to evaluate the GNS model, but to showcase that
GNN models can be evaluated on numerical first principles by reenvisioning the error
metric. Two potential avenues to explore the error metric here are: (i) Extending the
radius, which risks over-squashing, as discussed in 2.2, (ii) include hierarchical message
passing between objects [87].

The GNS model is unstable in this benchmark implementation. Figure 3.9b shows sig-
nificant variance in the benchmark result as the particle label is changed, especially at
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106 training steps. The basic building block behind this entire approximation function is
a neural network. Under sufficient training steps, it is anticipated this tunable function
can express any underlying function expressed by the data [125]. In the case of GNNs,
this requires the data is properly formulated into a graph which expresses the domain.
It is shown the graph construction strategy does not represent the relations between the
objects. The flaws in the graph construction described thus also hinder the stability of
the model.

The linear momentum conservation for dataset v1 shown in Figure 3.9a is caused by the
architecture of the GNN model, the physical root of this conservation, and the provided
training data. Section 2.2 introduced the concept of inductive bias. This is the ability of
a given ML architecture to exploit symmetries which exist in the domain [126].

The GNS model feature choices are spatially invariant, as shown in Table D.1. They are
not dependent on the spatial location of the node.9 Then, the neural network function
is also not dependent on the spatial location of the node, as it has no information on
the absolute position of the node. A governing equation of MLS-MPM is conservation
of linear momentum. The ground truth data numerically showed this conservation in
Figure 3.9a. Physically, linear momentum conservation is a direct result of invariance to
spatial translation [127].

The by definition spatial invariance of the node neural network, expectation and ex-
istence of linear momentum conservation in the ground truth data, and physical first
principles origin of linear momentum conservation all motivate this numerical find-
ing.

By this same logic, the lack of linear momentum conservation in Figure 3.9b is explained.
This benchmark problem is described above to include rotational motion after collision.
The rotational dependencies seen in Figure 3.11, and quantified in Appendix I, are due to
the input features chosen for the GNS model. The desire of this approximation function
is that it learns the underlying physical principles, and not just overfit the data for this
one benchmark. To facilitate this, features ought to be chosen which are independent
of the coordinate axis location, or its rotation, as physical laws are independent to this
modeling tool [109, 126].

Appendix D lists the main GNS node feature are velocity vectors. This is a feature choice
dependent on the rotation of the coordinate axis. As a result, it is asked of the GNS model
to learn that physical laws are independent of the coordinate rotation [87, 128]. In this
case, it is shown at these training steps, the GNS model does not learn this indepen-
dence.

Last, Table 3.9 shows the inference times for the GNS model in this application. The
average inference time from the 12 trajectories is 221.9 seconds. This is a 7,650% increase
over the c++ code.

This discussion section shows the graph construction process is the failure for both the
optimization problem not being consistent with the benchmark performance and the

9This is only for internal nodes, where the clipped distance to the boundary is set to 1.
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stability failure. The linear momentum conservation is a success of the GNS model to
capture expected domain invariants.
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3.2. ROLLING DISK BENCHMARK TEST
SETTING

The rolling disk benchmark test is implemented following the description of Barden-
hagen et al. [70]. The test is a disk discretized via material points, and a stick zero veloc-
ity boundary condition is set at the contact surface. The test quantifies the disk center
of mass x component with time. The key item of interest is the quadratic relationship of
position with time under a uniform gravitational field. Equation 3.2 states the disk cen-
ter of mass x as a function of its starting position x0, gravitational magnitude g , time t
and the angle of incline µ for a rigid disk assumption. The numerical methods used will
be compared with this analytical solution.

xptq “ x0 ` 1
3

g t 2 sinµ (3.2)

The benchmark authors keep the majority of the physical parameters constant. Some
parameters are varied in different test implementations (see Table 3.10).

Table 3.10: Rolling disk benchmark test parameters

Kept Constant Variables

Disk radius [cm] 50 Time [s] 0.3 - 0.4

Shear modulus [MPa] 2.5 ratio n/r [R]: 0.50R - 0.125R

Bulk modulus [MPa] 10 Incline angle µ [rad] º / 6 - º / 3

Density [kg/m3] 3,000

dt [s] 1e-6˚

Linear elastic True

Gravity [m/s2] 9.8

Material points per cell 9

MLS-MPM IMPLEMENTATION

Figure 3.5b shows the incline plane and that the plane does not intersect will all Eule-
rian nodes. Implementing the zero velocity boundary condition in this reference frame
yields a disk rolling along a step-wise roll. This is undesirable. Instead, the Cartesian co-
ordinate system is rotated such that the plane aligns with the Eulerian grid. Figure 3.13
shows the rotated reference frame, and the inclined plane parallel to the Eulerian cell
x-direction. Bardenhagen et al. [70] use this same strategy.

The zero velocity boundary condition is applied directly to nodes which align with the
plane. This is shown in Figure 3.13 via the black dots along the bottom of the Eulerian
grid.
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Affine particle in cell methods are known to have contact stick issues when objects and
boundaries interact, these issues being proportional to the width of the Eulerian cell
[129]. Here, the zero velocity implementation on the bottom nodes results in the disk
being fixed in place on the bottom surface. In other words, if the disk is directly placed
on the plane (Figure 3.5b), then the disk remains fixed in position. This issue is resolved
by augmenting the vertical distance the disk starts at, such that it rolls along the stick
boundary condition. Figure 3.13a shows this as an orange line. This value is fixed propor-
tional to the cell width for all MLS-MPM implementations at 5

4 n, in accordance with the
effects of boundary difficulties being proportional to the Eulerian cell width [129].

The benchmark authors do not specify a means to discretize the disk via material points,
in contrast to other benchmarks [13, 17]. A strategy of discretizing the disk is described
in Appendix L. The motivation for the discretization method chosen is to mimic the uni-
form mass distribution defining a disk, and its shape.

Another difference is the extrinsic dimensions used. This formulation of MLS-MPM is
written in a unity 1x1 domain. The benchmark authors propose a radius of 0.50m. In
this setup, the radius creates a disk the size of the computational domain. For simplicity,
instead of scaling all dimensions accordingly, the disk radius is halved.
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Figure 3.13: Rolling disk MLS-MPM benchmark implementation (y0 “ 5
4 n)

The core ground truth metric used to evaluate the MLS-MPM model in this implemen-
tation is the rolling disk center of mass as a function of time, Equation 3.2. Figure 3.14
shows the results of the implementation. There is a clear convergence with increasing
particle count, as documented by Bardenhagen et al. [70]. Particle count is directly var-
ied by altering the number of Eulerian cells via the ratio n{r (Table 3.10). As r is constant
at 25 cm, altering the ratio varies the total cell count. As the total material point count
per cell is constant, this also increases the total material points.
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(a) Rollout (b) Error

Figure 3.14: MLS-MPM Rolling disk benchmark results

DESIGN OF EXPERIMENTS

For this benchmark test, the stability and convergence properties are investigated. Ad-
ditionally, whether the optimization problem is consistent with the benchmark perfor-
mance is evaluated. This is done by extending the training steps from 105 to 106. The
magnitude of the total training steps are arbitrary, but only limited to computational
time. The intention of this variable is to build an understanding of the approximation
function’s consistency. This is done by observing the change in the results as the training
steps jump an order of magnitude.

Small perturbations to investigate stability are imposed by varying the seed of the GNS
model. The DoE generator of F3DASM is used to generate a uniform random sequence
of seed values. A stable method is expected to produce the same results as the seed is
varied.

Last, a convergence study is completed by reducing the time step of the underlying
dataset. As with conventional numerical methods, reducing the time step ought to yield
a convergence on the true solution. The following range of time steps in seconds are
implemented: 3e-05, 6e-05, 3e-04, 6e-04, 3e-03 and 6e-03.

GNS IMPLEMENTATION

The first step to implement the GNS model is creation of a dataset to train the model. To
promote dataset variability, two values are initialized at random from a uniform distribu-
tion. For the rolling disk setup, the initial rotation¡0 given to the disk and the horizontal
distance x0 it is placed are varied. The reason for these physical quantities being gener-
ated at random is the model ought to have no dependency on where the disk starts nor
its initial rotation. Figure 3.13a labels these two random initialized values in red. The
range of ¡0 values allows for a complete rotation. The value range of x0 are chosen such
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Table 3.11: Rolling disk GNS model implementation constants

GNS Hyperparameters Dataset Parameters

GNN Architecture Interaction Network Total time [s] 0.30

Loss function L2 Norm Acceleration µ [rad] º / 3

Learning optimizer Adam Disk radius r [cm] 25

Learning rate
exponential decay from

10´4 to 10´6 Density [kg/m3] 12,000

Training steps 5¨104, 105, 106 Mesh resolution [n/r] 0.33R

Message passing steps 10 Num. particles 252

NN Architecture
2 hidden layers

128 layer neurons
x0 [0.3, 0.45]

Noise std æ0 6.7e-4 ¡0 [0, 2º]

Input sequence length h 6 Train/test/valid sets 300/20/3

Connectivity radius [m] 0.07

Particle type None

that the disk begins and ends within the computational frame during the simulation.
The uniform distribution domain for ¡0 and x0 is given in Table 3.11.

The cell to radius ratio of 0.33 n/r is selected to be implemented. Figure 3.14a shows a
ratio of 0.25 n/r produces results nearest the analytical solution. However, the computa-
tion cost for training the GNS model at a larger particle count hinders the code develop-
ment iteration process. For this reason, 0.33 n/r is chosen.

The lower boundary is implemented directly at the offset line required for MLS-MPM.
Thus, for the GNS model, no offset is implemented between the disk and the bound-
ary.

The benchmark metric in Figure 3.14a only shows the center of mass as a function of
time. This assumes the shape of the body remains in check. Preliminary results showed
the GNS model does not always maintain the original shape. Figure 3.15 gives an exam-
ple of this distortion. This is undesirable. The geometry deformation is quantified via
its mass moment of inertia about its own center of mass. If the relative mass moment of
inertia between the MLS-MPM model I MPM

x,y ptq and the GNS model I GNS
x,y ptq exceeds a

predefined tolerance " at any time t , the benchmark fails. Equation 3.3 defines this mass
moment of inertia Ix,y in the x and y directions separately, as a function of the particle
mass m, location of a particle pi and the body center of mass mc over N particles.

|I MPM
x,y ptq´ I GNS

x,y ptq|
I MPM

x,y ptq
° " (3.3)

Ix,y ptq “
Nÿ

i

m ˚ppi ptqx,y ´ mc ptqx,y q2
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Figure 3.15: Example rolling disk distortion

Table 3.12: DoE for Set #1 - Rolling Disk

Experiment
Training

steps
Seed

Acceleration

MSE (¨10´3)

One step

Position MSE

(¨10´10)

Shape

tolerance

" = 5%

æp:xmc q
(m/s2)

MLS-MPM - - - - - 1.3839

#2.1

105

51 0.89080 1.6827 Pass 12.008

#2.2 92 1.1206 1.4856 Fail -

#2.3 14 1.1663 1.8392 Pass 3.7673

#2.4 71 0.86577 1.9601 Pass 17.517

#2.5 60 0.78931 1.1205 Fail -

#2.6

106

51 0.80020 1.3125 Fail -

#2.7 92 0.54033 0.59045 Pass 27.197

#2.8 14 0.59219 0.79645 Pass 15.748

#2.9 71 0.60952 0.60479 Pass 8.9292

#2.10 60 0.51366 0.69112 Pass 13.457

For the convergence study with time, the model is trained to the same rolling disk hy-
perparameters described in 3.11. As a reminder, this is using the standard features and
targets for the model, described in Appendix D. The open-source GNS model is written
such that the time step is not used. Instead, the given set of data is assumed to have
a uniform time step between all frames. To accommodate this constraint, 6 separate
datasets are created for the chosen time steps. All 6 datasets are derived from the same
set of simulations. From this set, position entities are exported at intervals respective to
the desired time step.

GNS RESULTS

Table 3.12 shows two total training steps to determine if the optimization problem is
consistent with the benchmark performance. Second, seed variations are to investigate
stability. Table 3.12 lists the computed loss values for the trained model to the unseen
test dataset. The minimum magnitudes in each column are highlighted in bold. A de-
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(a) Center of mass displacement (b) Center of mass acceleration (c) Center of mass acceleration

Figure 3.16: GNS model benchmark predictions at 105 training steps

scription of both the error metric formulations, and the computational complexity of the
model are shown in Appendix D.

Figure 3.16a shows the GNS model predictions at 105 training steps, the MLS-MPM method
used to generate the dataset, and the true analytical solution (Equation 3.2). At 105 train-
ing steps, the GNS model shows a wide range of predictions made as the seed is var-
ied.

Figure 3.17a shows the GNS predictions for 106 training steps. From the predictions at
105 training steps to 106 training steps, it is seen the GNS predictions go from a linear
to non-linear nature. There continues to be a distribution in the results as the seed is
varied.

The MSE is evaluated on normalized per particle acceleration. A reminder, the equa-
tion for this error metric is given in Table 3.2. To build understanding of the error met-
ric magnitudes shown in Table 3.12, the acceleration values of the respective curves are
computed for the body center of mass :xmc in the x direction using twice second order
central differences via numpy.gradient. No means to filter the noise are implemented.
This is to elucidate the noise present.

These accelerations are shown in Figure 3.16b and Figure 3.17b. Figure 3.16c and Fig-
ure 3.17c provide the same acceleration data, on a zoomed in visual. This shows the
noise in the MLS-MPM data, and the true analytical solution. There is a significant
amount of noise seen for the GNS predictions compared to the MLS-MPM ground truth
model. This is quantified with the standard deviation in the center of mass acceleration
æp:xmc q, shown in Table 3.12. Velocity plots for the center of mass are shown in Appendix
K.

The training and inference times are reported in Table 3.13.10 There is a distinct differ-
ence in the training time per step between the experiments at 105 training steps and 106

training steps. This is due to the time including both the training and validation calcula-
tions. All setups use a constant 1000 validation checks. The reason for using a constant

10These times are for 12 Intel Xeon CPU E5-2620 0 @ 2.00GHz.
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(a) Center of mass displacement (b) Center of mass acceleration (c) Center of mass acceleration

Figure 3.17: GNS model benchmark predictions at 106 training steps

Table 3.13: Training and inference times for the rolling disk benchmark

Experiment
Training

steps

Training time/

step (s)

Inference time/

step (s)

#2.1

105

1.004 104.5

#2.2 0.9948 104.2

#2.3 0.9962 103.7

#2.4 0.9899 104.5

#2.5 0.9893 104.6

#2.6

106

0.6185 103.7

#2.7 0.6238 105.1

#2.8 0.6213 102.7

#2.9 0.6199 104.5

#2.10 0.6243 104.7

checkpoint count are to reduce computational costs. Appendix N shows the validation
curves, and an adequate training process. If no validation is used, the average training
time per step is 0.57 s. The MLS-MPM model requires 60 s 11 to compute and store the
data of an entire trajectory. The GNS model inference has a 73% time increase over the
MLS-MPM method.

A visualization of one trajectory is shown in Figure 3.18. It shows the disk rolling along
the boundary with time. The vector field and rotational energy is given in Appendix
K.

The second numerical study performed evaluates convergence with an increase in the
time resolution. As with conventional numerical methods, there is an expectation that
the numerical method ought to converge on the true solution as the time step is reduced.
Table 3.14 shows the resultant error metric magnitudes for the test, with the minimum
of each column highlighted in bold. Table 3.14 shows the GNS model fails the shape

11This time is for 1 Intel(R) Core CPU i7-6700HQ @ 2.60Ghz.
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Figure 3.18: Visualization of experiment #2.7

Table 3.14: Rolling Disk Time Convergence DoE (seed = 33, training steps = 5¨104)

Experiment
Time

step (s)

MLS-MPM

æp:xmc q
(m/s2)

Acceleration

MSE (¨10´3)

One step

Position MSE

(¨10´10)

Shape

tolerance

" = 5%

GNS

æp:xmc q
(m/s2)

Inference

time /

trajectory (s)

#3.1 3e-05 13.160 0.31762 1.0150 Fail - 821

#3.2 6e-05 3.9157 0.74283 1.9920 Fail - 406

#3.3 3e-04 1.3468 1.1624 3.3838 Fail - 105

#3.4 6e-04 1.1469 2.0290 6.3991 Pass 2.5649 52.8

#3.5 3e-03 0.7617 5.6269 18.107 Pass 0.8440 10.2

#3.6 6e-03 0.7576 18.518 59.483 Pass 0.8541 4.86

criteria as the time step is refined, and the MSE magnitudes increase as the time step
increases. Table 3.14 quantifies an increase in the noise in the MLS-MPM acceleration
data as the time step is reduced. This is visualized in Figure K.4.

Figure 3.19a shows the center of mass displacement for the GNS predictions which pass
the shape tolerance criteria, the MLS-MPM solution trained on, and the analytical so-
lution. At the two coarsest time steps of 3e-03 and 6e-03, the GNS prediction closely
matches the ground truth model. Figure 3.19c shows that as the time step is reduced,
more noise appears in the MLS-MPM center of mass acceleration. Figure 3.19b and Fig-
ure 3.19c show a decay of the acceleration magnitudes at the first two and final two time
steps. This is caused by truncation errors at the bounds from numpy.gradient.

Last, Table 3.14 shows as the time step increases, the inference time per trajectory re-
duces. At its shortest inference time of 4.86 s, there is a 92% time decrease compared to
the time cost of the MLS-MPM method.
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(a) Center of mass displacement (b) Center of mass acceleration (c) Center of mass acceleration

Figure 3.19: Benchmark plots for a time convergence study

DISCUSSION OF RESULTS

The results of these tests are analyzed in the following paragraphs to make conclusions
on these numerical method core properties. It is shown that the optimization prob-
lem is consistent with the benchmark performance, while stability and convergence fail.
The success with training comes from the ability of the GNS model to approximate the
benchmark domain, while the stability and convergence failures are due to noise in the
feature and target domains. Last, the discrepancy between the magnitudes of the error
values in Table 3.14 and the benchmark performance is discussed.

From 105 training steps in Figure 3.16a, to 106 training steps in Figure 3.17a, there is
an improvement in the GNS model to predict the center of mass displacement. This
is indicative that the chosen optimization problem is consistent with the benchmark
performance.

The same two benchmark metrics of Figure 3.16a and Figure 3.17a show that with this
increase in training steps, comes a closer grouping of the provided benchmarks with the
varied seed. However, Figure 3.17b shows and Table 3.12 quantifies there is a signifi-
cant variance of noise in the center of mass acceleration :xmc . Noise is quantified on the
standard deviation in the center of mass acceleration :xmc . This is a failure of the model
stability in this application.

The GNS authors describe a velocity random walk noise sequence used to perturb in-
put position data [85]. The motivation for this is to force the GNS model to correct for
errors it produces. In the open source code model, the magnitude of this noise is fixed.
Algorithm D.4 shows this implemented as æ0. This æ0 is fixed at 0.00067.12

The added noise to the position value alters the definition of acceleration. The GNS
model trains on acceleration values computed from twice central differences of position
data. To compute the acceleration :xptq, the random walk noise perturbed positions of
xptq, xpt ´ 1q and xpt ` 1q are used. As noted in the paper, the noise values in xptq and
xpt ` 1q are equal, and cancel out. This yields a next time step velocity 9xpt ` 1

2 q with no

12No units were given in the publication of Sanchez-Gonzalez et al. on this quantity.
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noise. However, there is noise in xptq and xpt ´ 1q, when computing 9xpt ´ 1
2 q. This noise

persists in computing the target :xptq from the ground truth position data. This is shown
in Equation 3.4.

:̃xptq “ xpt ` 1q´ xptq´ x̃ptq` x̃pt ´ 1q
¢t 2 (3.4)

Figure 3.16b and Figure 3.17b show substantially more noise in the center of mass ac-
celeration compared to the ground truth MLS-MPM benchmark. The noise in the MLS-
MPM benchmark is highlighted in Figure 3.16c and Figure 3.17c.

Additionally, Figure 3.16b and Figure 3.17b show noise for acceleration values for the
center of mass mc in the MLS-MPM benchmark. This is noise averaged over the entire
body. It is expected there is more severe noise in each individually computed particle.
The noise in the random walk sequence, and the noise present in the position data yields
a poorly defined target for the model. The result is asking the ML model to learn through
a substantial amount of noise.

The convergence test with time shows a failure of the GNS model. Figure 3.19a shows
that a reduction in the time step yields poorer benchmark results. Table 3.14 shows the
3 experiments with the smallest time steps all fail the shape tolerance. This comes from
a limitation of the data provided to the model and the choice of noise added at the input
level.

First, the convergence study highlights the consequence of a fixed random walk noise
magnitude. As one reduces the time step, this fixed magnitude æ0 which one perturbs
the position values becomes more significant. A reminder, these perturbed positions
are then used to compute the velocities of the particles using finite differences to be
used as node feature. As the time step decreases, this fixed noise magnitude has a more
substantial effect on the perturbations applied to positional data. This quickly changes
to incomprehensible noise at the input as the time step decreases.

Next, noise in computing acceleration through finite difference of position hinders the
model. Shown in Figure 3.20a, as one reduces the time step, more noise appears in the
ground truth acceleration data. The GNS implementation section states the varying time
step datasets are derived from the same simulation data. The only difference is the time
step frequency which this data is organized. Thus, as the time step between this data
reduces, the noise in the second finite difference derivative grows.

Figure 3.20b shows that with an increase in the noise in the MLS-MPM acceleration data,
a noise increase in the prediction by the GNS model is seen. This is expected, as the MLS-
MPM acceleration is by definition set as the goal in the loss term. The acceleration loss
is evaluated for N particles, over k time steps, j dimensions, their position x, normal-
ized acceleration :̂x and GNN acceleration prediction dµpxtk

i q. This is shown in Equation
3.5.

L “ 1
K

1
N

||dµpxtk
i q´ ˆ̃:xtk

i ||2 (3.5)
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(a) Time dependencies
(b) Standard deviation dependencies. 3 data
points are shown, but two lie near the other in the
bottom left of the line.

Figure 3.20: Relations of noise with the time step. Shape tolerance pass/fail zones are
highlighted

The normalized target acceleration is computed from both the dataset statistics and the
noise magnitude æ0. Further, it is normalized in time by assuming ¢t “ 1 in Equation
3.4.

ˆ̃:xtk
i “

:̃xtk
i ´ amean

pa2
std `æ2

0q1{2
(3.6)

Figure 3.20a shows that as the noise in the MLS-MPM data increases, the prediction
fails the shape tolerance. Figure 3.19b shows that the 2 experiments (#3.5 & #3.6) with
the lowest noise in the ground truth data adequately meet the benchmark. These re-
sults show that noise at the input level significantly affects the performance of the GNS
model.

There is a clear discrepancy between the acceleration MSE and the performance of the
benchmark. Figure 3.20a shows that at the highest MSE values, largest error, the predic-
tions pass the shape tolerance. This is a result of normalizing the data. As the time step
decreases, the displacement between each each step decreases. This yields smaller val-
ues in the numerator of equation 3.4. Yet, the denominator remains fixed at¢t “ 1. This
biases the magnitude of the acceleration magnitudes based on the time step.

However, the target ˆ̃:xtk
i in the loss Equation 3.5 is normalized. Equation 3.6 shows this

normalization. The magnitude of æ0 is fixed, and as the time step decreases, æ0 has
much heavier influence on the normalized values. Figure 3.21 shows that as the time
step decreases, astd, yet æ0 remains the same.
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Figure 3.21: Normalization statistics

The result of this normalization, is that the acceleration magnitude decreases in time
due to the normalization. The MSE magnitude is dependent on the absolute value of the
quantity it evaluates. As the acceleration magnitudes decrease, due to normalization,
this is reflected in the MSE metrics dependency on the absolute value it evaluates. Sec-
tion 4.1 will show the results when normalizing to only standard deviation in the data,
and not æ0.

A closing remark in this discussion section are the computational times. The elastic bod-
ies benchmark showed a time increase of 7,650% for the GNS model compared to the
ground truth method. This rolling disk implementation reduced this to 73%. This arises
from the time step which the ground truth method must take. The elastic bodies ground
truth method uses a time step of 1e-03 s, while the rolling disk uses a time step of 1e-06
s. This is a requirement of the explicit numerical method to meet the Courant Number.
For the time being, the GNS model is able to take coarse time steps, and achieve rep-
resentative results of the benchmark. In making coarse time steps, it has the potential
to reduce the computational cost compared to the ground truth method. This is shown
with the rapid 92% reduction in computation cost for the GNS prediction compared to
the MLS-MPM method at the coarsest time step.

3.3. CONCLUSION
This thesis chapter shows reimagining the error metric allows a state of the art GNN
model to be evaluated on isolated physical laws. Each DoE is defined to evaluate the
GNN model on basic numerical method properties.

The elastic bodies benchmark showcased the influence of graph construction choice, as
it limits stability. Likewise, the rolling disk benchmark failed stability, due to the severe
noise present rooted in the random walk noise sequence. Time convergence continues
to allude the model in the rolling disk benchmark.

The metrics of consistency, stability and convergence and implementations of bench-
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marks were fundamental in developing the finite difference method as a widely used
numerical method to solve PDEs [110, 111]. The connection with this work drawn here
places the GNN model on a stage to be evaluated via first principles.



4
MODEL INVESTIGATION

The hope of this numerical method is it will capture a range of snow simulations. This re-
quires it is robust to a breadth of problems. Chapter 3 showed the method successes and
failures in two examples. This chapter identifies limiting factors of the model, motivates
remedies to these shortcomings, and analyzes results of implementing these alterations.
Key alterations to the method are made with intentions to improve its generalization
capabilities. Specifically, this investigates the choice of node features and how the pre-
diction loss is evaluated. It is found evaluating the loss term on position, instead of accel-
eration, improves performance when using unnormalized features and targets.

4.1. NORMALIZING EFFECTS
The use of normalization statistics is the first limiting factor identified.1 By normalizing
features and targets to scalar quantities descriptive of the training dataset, the model is
inherently constrained to physical setups in the training dataset. This is undesirable. Ad-

1Appendix D describes what these scalar quantities are, where they come from and how they are used.

inputs distortion function outputs
loss

Figure 4.1: A system model of inputs and outputs
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ditionally, the model is written normalizing all velocities and accelerations to a time step
¢t of 1. This is claimed in the original publication to be done for simplicity [85].

The second shortcoming identified is using a fixed noise magnitude for the random walk
noise sequence. Section 3.2’s discussion highlights this constricts the model when re-
ducing the time step in the dataset. Specifically, that it supplements too aggressive of
noise as the time step is reduced.

Figure 3.20a showed the MSE magnitude is not conclusive to the benchmark perfor-
mance when varying the time step. Section 3.2’s discussion identifies this comes from
normalizing the acceleration variance to both the dataset statistics and the random walk
noise magnitude æ0. Normalizing to the random walk noise biases the magnitude in the
acceleration data, causing the MSE magnitude to be misleading.

Key model alterations are made to address the issues identified in these first paragraphs.
In Figure 4.1 this is the choice of how the inputs are distorted, and how the outputs are
evaluated. The normalization statistics are removed to promote generalization capabil-
ities. These scalar values, computed in Algorithm D.5, may be nullified by setting the
standard deviation to unity, and the mean to zero. This yields the values non-effective in
the code.

The real time step is introduced as it is physically relevant. The time step is added by
careful evaluation of where time integration or differentiation takes place, and intro-
duced accordingly. For example, in Equation 3.4, ¢t becomes the real time step asso-
ciated with the dataset, instead of unity. The time differentiation and integration is as-
sured to follow a central finite difference scheme [130] and consistent units are used in
the model.

A solution to the fixed noise value æ0 is not trivial. The following decision is made. Each
training step makes use of a batch size of n graphs from n random time steps, charac-
terized by a batch of position values xtk

i . Sanchez-Gonzalez et al. [85] use a batch size

of 2 graphs. In this case the batch of position values xtk
i act as input to the random walk

noise sequence in Algorithm D.4. This batch of xtk
i is used to compute a standard de-

viation in the velocity values. The standard deviation in this batch alone is used as æ0.
This æ0 is for each batch of graphs selected. Equation 4.1 shows the calculation of æ0 via
TensorFlow’s reduce_std function.

For a batch of position values xtk
i , the velocity at these points is computed according to

the finite difference at that point.

9xtk
i “

xtk
i ´ x

tk´1
i

¢t

æ0 “Æ ¨tf.math.reduce_stdp 9xtk
i q (4.1)
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DESIGN OF EXPERIMENTS

Equation 4.1 shows a new hyperparameter Æ. This value determines the magnitude of
noise added based on the standard deviation in the batch of velocity values 9xt

i . This
requires a numerical study to understand the effects of this hyperparameter. This is done
over a logarithmic search of the value magnitude.

Second, the effects of normalizing the data are of interest. Sanchez-Gonzalez et al. [85]
motivate the use of normalizing the features and targets as it reduces the test MSE mag-
nitude. However, Chapter 2 and Chapter 3 highlight these MSE magnitudes give little
information over the underlying physics. The use of the features and targets being nor-
malized or unnormalized are thus investigated.

GNS IMPLEMENTATION

This implementation uses the same rolling disk benchmark implementation described
in Section 3.2. The hyperparameters for the GNS model are listed in Table 4.1. The GNS
model is implemented on a time step of 6e-04 seconds. The reason being, Figure 3.19
showed that this time step is the transition between acceptable and unacceptable re-
sults. To elucidate the changes made, the equations defining the features and targets
edited are included here.

The velocity features are defined according to Equation 4.2. The output acceleration :̃xptq
is defined by Equation 3.4.

9̃xtk
i “

x̃tk
i ´ x̃tk ´1

i

¢t
(4.2)

The node feature velocity ˆ̃9xtk
i and target acceleration ˆ̃:xi ptq definitions are shown in Equa-

tion 4.3 and Equation 4.4. The denominators contain only vstd and astd, and not æ0, as
used in Equation 3.6. For the unnormalized experiments, setting the amean to zero and
astd to one, renders this normalization null.

ˆ̃9xtk
i “ 9̃xi ptq´ vmean

vstd
(4.3)

ˆ̃:xi ptq “ :̃xi ptq´ amean
astd

(4.4)

In summary, this study implements a new means to define the magnitude æ0 which is
not fixed. Instead, it is defined relative to the standard deviation in the input velocity
set. Second, normalization is investigated. A normalized True study uses ¢t = 1, the
normalization statistics defined by Algorithm D.5, and their implementation in Equation
4.3 and Equation 4.4. A normalized False study uses ¢t the dataset is defined on, a
mean normalization statistic of 0 and a standard deviation normalizing statistic of 1 to
yield them ineffective. The loss continues to be that defined by Equation 3.5.
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Table 4.1: Rolling disk GNS model implementation constants

GNS Hyperparameters Dataset Parameters

GNN Architecture Interaction Network Total time [s] 0.30

Loss function L2 Norm Acceleration µ [rad] º / 3

Learning optimizer Adam Disk radius r [cm] 25

Learning rate
exponential decay from

10´4 to 10´6 Density [kg/m3] 12,000

Training steps 5¨104 Mesh resolution [n/r] 0.33R

Message passing steps 10 Num. particles 252

NN Architecture
2 hidden layers

128 layer neurons
x0 [0.3, 0.45]

Noise std Adaptive ¡0 [0, 2º]

Input sequence length h 6 Train/test sets 300/20

Connectivity radius [m] 0.07

Particle type None

Seed 33

GNS RESULTS

Table 4.2 shows the results when investigating theÆ hyperparameter for normalized and
unnormalized features and targets. The first key item seen is the shape tolerance set.
This magnitude is relaxed from 5%, to 10% as no predictions pass at 5%. Second, there
is a clear increase in the acceleration and position MSE magnitudes with an increase in
Æ. Third, even though the acceleration and position MSE values are smaller, at lower Æ
values, the shape tolerance criteria fails.

Figure 4.2 shows the results of the two benchmarks which do indeed pass the shape
tolerance criteria in Table 4.2. Figure 4.2a shows both trajectories are near the ground
truth displacement. Figure 4.2b shows there is a significant amount of noise in the ac-
celeration data for the unnormalized trajectory, Exp. #4.10. Figure 4.2b shows the single
normalized experiment which passes, Exp. #4.4. This trajectory has less noise than the
ground truth model, as quantified with the standard deviation in the center of mass ac-
celeration :xmc in Table 4.2.

DISCUSSION OF RESULTS

The motivation to investigate the normalization of features and targets stems from the
lack of physical basis known when normalization is used. This is explored together with
the introduction of a new hyperparameter to avoid a fixed noise value. This discus-
sion section highlights that normalizing these values reduces the noise in the predic-
tions.

Table 4.2 shows the introduction of this hyperparameter yields a significant degradation
of the ability for the GNS model to maintain the shape of the item it predicts. This entails
the model is sensitive to the manner which noise is added at the input level.

Figure 4.2 shows that unnormalized features and labels yields significant noise in the
predicted rollouts. It is also striking to see Exp. #4.4 in Figure 4.2b. The GNS model,
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Table 4.2: DoE for Set #4 - Rolling Disk (¢t=6e-04s)

Experiment Normalize alpha Æ [%]
Acceleration

MSE

One step

Position MSE

(¨10´12)

Shape

tolerance

" = 10%

GNS

æp:xmc q
(m/s2)

MLS-MPM - - - - - 1.1469

#4.1

True

0.0 1.4266 9.5014 Fail -

#4.2 0.1 1.4678 9.8081 Fail -

#4.3 1.0 1.7199 10.204 Fail -

#4.4 10 6.7167 27.354 Pass 1.0340

#4.5 100 54.576 163.91 Fail -

#4.6

False

0.0 75.504 19.786 Fail -

#4.7 0.1 77.493 9.9301 Fail -

#4.8 1.0 95.311 10.028 Fail -

#4.9 10 380.56 29.535 Fail -

#4.10 100 3032.6 141.74 Pass 2.9191

(a) Center of mass displacement (b) Center of mass acceleration

Figure 4.2: Results of searching for a new alpha hyperparameter
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for normalized features and prediction, produces an acceleration rollout with significant
less noise than the data it is trained on. This indicates the robustness added to the model
when normalizing input and outputs.

Table 4.2 shows that as Æ increases, there is a corresponding increase in the acceleration
MSE. This is a result of the target acceleration being partially defined from the position
sequence with a random walk noise added. Section 3.2’s discussion addresses how the
random walk noise appears in the target acceleration. As the noise magnitude increases
with Æ, there is a corollary increase in the noise in the target value. Section 3.2’s discus-
sion details how the target acceleration is dependent on the random walk noise added.
This means the GNS model is trained on noisier and noisier target acceleration values as
Æ increases.

The three main conclusions of this discussion section are: (i) The GNS model tends to
produce stabilized predictions for normalized features and targets, (ii) the GNS model
is sensitive to the means by which noise is added at the input level, (iii) there is a clear
limitation by noise for computing the targets through twice finite differences of position
with a random walk noise added. In continuing the investigation of normalizing the
inputs and outputs, the effects of a time convergence study is now completed.

DESIGN OF EXPERIMENTS

The numerical study of Æ showed that the only prediction which passes the shape tol-
erance for unnormalized values is experiment #4.10. This is at an Æ value of 100%. This
value will be further explored. The convergence study of Table 3.19 is repeated. Section
3.2 showed the limitations of a fixed noise value has at the input level. The intention is
to understand the effect of this new hyperparameter as time is varied.

The continued search of unnormalized features and targets are of interest, as they do not
require the use of scalar normalizing values defined on the training dataset.

GNS IMPLEMENTATION

The same datasets from the convergence study in Section 3.2 are used. The same GNS
hyperparameters as the Æ value study are used. These are listed in Table 4.1.

GNS RESULTS

Table 4.3 shows the results of varying the time step under a singleÆ value of 100%. As the
time step increases, there is a reduction in the acceleration MSE magnitude and an in-
crease in the one step position MSE magnitude. Experiment #5.1 is an exception to this.
The unnormalized experiments all fail the shape tolerance of 5%, accept at the small-
est time step. See Table 3.14 for the standard deviation in the MLS-MPM acceleration
data.

Figure 4.3 plots the results of these implementations. Figure 4.3a shows at a coarse time
step for normalized values, the altered GNS model comes near the ground truth model.
Figure 4.3a also shows for the single unnormalized experiment which passes the shape
tolerance, a prediction with a distinct linear trend is seen.

Figure 4.3b shows the normalized experiments at a coarser time step have similar pre-
dictions to the respective ground truth model in Figure K.4. Figure 4.3b shows significant
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Table 4.3: DoE for Set #5 - Rolling Disk (Æ = 100%)

Experiment Normalize
Time

step (s)

Acceleration

MSE

One step

Position MSE

(¨10´12)

Shape

tolerance

" = 5%

GNS

æp:xmc q
(m/s2)

#5.1

True

3e-05 35.166 0.77730 Pass 2.7880

#5.2 6e-05 94.199 3.3619 Fail -

#5.3 3e-04 84.928 91.470 Fail -

#5.4 6e-04 54.576 163.91 Fail -

#5.5 3e-03 30.802 4692.0 Pass 0.67588

#5.6 6e-03 6.0854 25175 Pass 1.1451

#5.7

False

3e-05 2832363 0.83939 Pass 10.586

#5.8 6e-05 326235 1.9817 Fail -

#5.9 3e-04 13170 47.797 Fail -

#5.10 6e-04 3032.6 141.74 Fail -

#5.11 3e-03 141.08 4590.3 Fail -

#5.12 6e-03 32.276 19360 Fail -

more noise for Experiment #5.7 (unnormalized), which uses the same time step as Ex-
periment #5.1 (normalized). Figure 3.19c shows the corresponding ground truth data
for this small time step of 3e-05 with a significant amount of noise. This noise is quan-
tified in Table 4.3. The velocity plots for these respective setups are shown in Appendix
K.

DISCUSSION OF RESULTS

Table 4.3 shows the convergence study, with the reformulation of the noise at the input
level. Without the normalization by the noise, as done in Table 3.14, there is the ex-
pected acceleration MSE values on a similar order of magnitude for the normalized ex-
periments. The reason being, although different amounts of noise appear in the ground
truth data, dependent on the time step, all models use use their respective normaliza-
tion statistics. These statistics bring the target and prediction values to a range of zero
mean and unit variance. Thus, all normalized experiment quantities are evaluated are
on a similar magnitude scale.

In contrast, the unnormalized predictions showcase the additional noise in the ground
truth data as the time step is varied. As discussed, as the time step reduces, more noise
appears in the ground truth data. This results in the target prediction magnitudes in-
crease. The dependency of the MSE value on the absolute quantity it evaluates is re-
flected here. This phenomena is further explored in the next Section 4.2, including for
the one step position MSE values.

The normalized experiments in Table 4.3 which pass the shape tolerance, have the lowest
acceleration MSE values in the normalized category. This supports that although signif-
icant noise in acceleration as a loss quantity is reflected in the GNS performance, as an
error metric quantity, it appears to be well indicative.

Last, it is striking to see for unnormalized experiments which pass the shape tolerance,
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(a) Center of mass displacement (b) Center of mass acceleration

Figure 4.3: Results of evaluating with acceleration

Exp. #4.10 and Exp. #5.7. These experiments are both the highest Æ value of 100% in
Table 4.2 and the smallest time step in Table 4.3. These two experiments respectively
have the largest amount of noise in their respective unnormalized sets. At the largest Æ
value, there is the most amount of noise applied. At the smallest time step, there is the
most amount of noise in the ground truth data. This is indicative that the neural network
is robust to added noise.

4.2. LOSS QUANTITY
The noise limitations identified by using acceleration to compute the target motivate
a reformulation of the target value. Current literature encourages the use of using ac-
celeration as the target quantity to leverage the symmetry geometric prior2. However,
the current noise found in using acceleration from position suggests a reformulation of
this.

Although there is a clear motivation to use acceleration as the predicted quantity [126,
128], there are prominent examples where this is not the case [109, 131]. This uncertainty
in literature, and numerical results seen here suggest further investigation is required.
This is done by continuing to predict acceleration, but now shifting the focus to evaluate
the loss on position. The motivation is to leverage: (i) the symmetry geometric prior by
predicting acceleration, (ii) compute the loss on a target quantity which has minimal
noise.

2Bronstein et al. [126] describe this Bayesian perspective in depth to motivate its ability to reduce a high
dimensional space to a lower dimension. This is to facilitate universal approximation at a reduced count of
training steps. This is explained in Appendix E



4.2. LOSS QUANTITY

4

57

DESIGN OF EXPERIMENTS

Section 3.2 highlighted that during a convergence study of the rolling disk benchmark,
the noise in the acceleration target hinders the ability of the GNS model to learn the
underlying function. This hindrance of noise makes the experimental setup ideal for
testing a resolution which intends to alleviate this noise. Thus, the convergence study of
Section 3.2 is repeated.

As current understanding in using unnormalized values is not complete, this experiment
will look at unnormalized values. As an Æ value of 100% showed promising results in
Table 4.2, it is used here.

GNS IMPLEMENTATION

The GNS model is implemented the same as shown in Table 4.1, with the single differ-
ence that the loss is now evaluated on the L2 norm of position instead of acceleration.
Further, the use of unnormalized values is identical to that used in Section 4.1.

Equation 4.6 shows this L2 norm between the batch of ground truth positions xtk pt `
1q, and the predicted position xtk 1pt ` 1q. The model continues to predict acceleration
:xtk 1ptq, shown in Equation 4.5. However, through integration a position value is now
obtained. This predicted position is then compared against the ground truth position
value with no noise added. This is shown in the following integration scheme:

:xtk 1ptq “ dµpxtk
i q (4.5)

9xtk 1pt ` 1
2

q “ 9xtk pt ´ 1
2

q`:xtk 1ptq ¨¢t

xtk 1pt ` 1q “ xtk ptq` 9xtk 1pt ` 1
2

q ¨¢t

L “ 1
K

1
N

||xtk 1pt ` 1q´ xtk pt ` 1q||2 (4.6)

GNS RESULTS

Table 4.4 shows the results of the numerical convergence study. There is a decrease in
the acceleration MSE magnitudes and increase in the position MSE magnitudes as the
time step increases.

Figure 4.4 shows the benchmark predictions for those which passed the shape tolerance.
At a coarse time step, the GNS prediction matches the ground truth model. Once again,
Figure 4.4b shows truncation errors from numpy.gradient at the first two and final two
time steps. The two smallest time steps pass the benchmark, and show stationary, noise-
less results.
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Table 4.4: DoE for Set #6 - Rolling Disk (Æ = 100%, Normalize = False)

Experiment
Time

step (s)

Acceleration

MSE (¨10`6)

One step

Position MSE

(¨10´12)

Shape

tolerance

" = 5%

GNS

æp:xmc q
(m/s2)

#6.1 3e-05 299.27 0.49654 Pass 0.0

#6.2 6e-05 74.616 0.52337 Pass 0.0

#6.3 3e-04 2.9712 3.3570 Fail -

#6.4 6e-04 0.73887 19.966 Fail -

#6.5 3e-03 0.028257 1092.8 Fail -

#6.6 6e-03 0.0067159 4433.9 Pass 0.76270

(a) Center of mass displacement (b) Center of mass acceleration

Figure 4.4: Results of evaluating on position
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(a) Center of mass standard devi-
ation values

(b) Center of mass mean values (c) MSE error metric comparison

Figure 4.5: Ground truth data magnitude and the error metric

DISCUSSION OF RESULTS

The difference between Experiments #5.7-#5.12, and #6.1-#6.6 is solely a choice of the
quantity evaluated in the loss term. The contrast between #5.12 and #6.6 shows that by
evaluating on position, the GNS model passes the shape tolerance and performs well
on the benchmark. Further, Figure 4.4b shows stable acceleration values are computed,
even when using unnormalized data. This is supportive numerical evidence that the in-
stability found when evaluating with unnormalized features and targets may be resolved
by evaluating the loss quantity on position.

Figure 4.4a shows only a single experiment accurately meets the benchmark prediction.
The intention of this numerical study is to see if evaluating the loss on position can help
break through this barrier found when reducing the time step. The results show this
barrier continues to persist.

The cause of this is an artifact of the magnitude in the unscaled data. Figure 4.5c shows
that as the time step reduces, the one step position MSE reduces. When position is used
in the L2 norm, this loss magnitude is of the order of magnitude 10´12, as conveyed by
the one step position MSE in Table 4.4. This minute magnitude hinders the training of
the neural networks’ weights and biases.

Experiments #6.1 and #6.2 show the limiting case of this, at the smallest time steps. In
this case the results show a perfectly stagnant disk with out any movement. The hin-
drance of network training from minute loss magnitudes yields an approximation func-
tion which produces static results.

Figure 4.5c shows a clear increase in the position MSE, and decrease in the acceleration
MSE as the time step is increased. This is caused by the MSE value being dependent on
the absolute magnitude of the value it evaluates.

As expected, the acceleration value remains the same regardless of the time step, as
shown in Figure 4.5b. However, as the time step decreases, there is more noise in the
acceleration data, as shown in Figure 4.5a. This translates to very high acceleration MSE
values.
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As the time step increases, the displacement between each time step increases, as shown
in Figure 4.5b. This is reflected in a greater magnitude seen in the position MSE values.
Figure 4.5a illustrates the key advantage of evaluating on position, that the standard de-
viation in displacement æp¢xq decreases with time.

In conclusion, evaluating the loss with position shows the ability for the GNS model to
produce a noiseless response when using unnormalized features and targets. However,
there continues to persist an inability for the model to make accurate predictions as the
time step reduces.

4.3. CONCLUSION
Investigation of the GNS model and motivated alterations show the information limi-
tations of the error metric magnitudes, depict the training hindrance caused by noise
and showcase that evaluating on position allows unnormalized features and targets to
be used in predicting noiseless results at a coarse time step. Sanchez-Gonzalez et al. [85]
motivate the use of normalized features and targets, which require dataset statistics to
normalize. This chapter shows the ability to do away with these scalar statistics. Instead,
an alternative to use unnormalized features and targets, continue to predict accelera-
tion, but instead compute the loss on position.
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(a) domain (b) signal (c) function (d) label, prediction
& loss

Figure 5.1: System visualization

The focus of this discussion is to wrap together Chapters 2, 3 and 4 in identifying new
knowledge for literature. This is broken into: (i) limitations of the loss term, (ii) utility
of the consistency, stability and convergence properties pioneered by the finite differ-
ences community, (iii) the numerical evidence of the loss quantity on stability when
using unnormalized features and targets. This chapter concludes with future research
suggestions.

Figure 5.1 gives a conceptual abstraction of the context explored in this thesis project1.
The identified benchmark simulations (domain) are expressed as feature inputs (signals)
to the ML model (function) which is evaluated on a set goal (loss).

Chapter 2 explored the current practice in snow simulations, and the promising capa-
bilities GNNs in the ML community offered. The key advantage of GNNs over both the
conventional DEM and MPM models is the ability to make use of both global and lo-
cal information in making local updates. However, there is a clear lack of physical basis

1This figure is derived from the GDL framework [126].
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(a) Curve fitting
(b) Exceeding boundary

Figure 5.2: Contrasting the intentions of minimizing error and assuring basic physics

Table 5.1: Current models in literature and their loss quantity.

Model Loss quantity

GNS [85] Acceleration

C-GNS [90] Velocity

MeshGraphNets [103] Position or momentum

EGNNs [109] Position

DPI-Nets [82] Position or Velocity

MultiScale MeshGraphNets [106] Position or momentum

Hamiltonian GNNs [132] Position & momenta

Lagrangian Neural Networks [133] Acceleration

knowledge covered up when quantifying these GNN models on single scalar error met-
rics. Figure 5.2 highlights this difference between fitting data and meeting basic physics,
such as boundary conditions. By definition, the MSE value quantifies how well an ap-
proximation function fits the test data. It does not inform of the underlying physics. This
conclusion yielded the thesis research questions.

The true power of Chapter 3 is that reimagining this error metric by inspiration of the
patch test allows one to evaluate a state of the art GNN model on core properties any nu-
merical method ought to meet. In Chapter 3, the GNS model is simply used as a means
to demonstrate this research idea. The importance of this for literature is it sheds light on
the fact that GNNs to learn complex system apparently skipped the basics. To the knowl-
edge of the author, the first application of GNNs to learn physical simulations jumped
straight to learning an n-body dynamic system [81]. From here, GNNs were applied to
continually complex systems [82, 83, 85, 103].

Chapter 3 showed that a reduction in the MSE magnitude does not affirm the underlying
physics are improved, or if the underlying physics are even met for a small MSE mag-
nitude. To improve on this limitation, first principles of consistency, stability and con-
vergence form the bedrock to evaluate a GNN model in learning physics simulations.
Further, through benchmark tests, they allow research to evaluate these GNN models on
the physical laws of interest. Nevertheless, it answers the 1st research question. By eval-
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Figure 5.3: Vector differences and its compression to the loss term

uating the GNN model with curated benchmarks, it can be shown if the model is, or is
not, learning the underlying physics. Whether the physical laws of interest are learned is
dependent on the problem formulation.

Chapter 4 narrows the focus to looking at the performance of the GNS model alone. Cur-
rently in literature there exists a spread of physical quantities which are used in the error
metric, as shown in Table 5.1. There is also an apparent use of normalizing feature and
targets sometimes, and other times not [85, 109]. Figure 5.3 visualizes the fact that this
scalar loss value is in reality the expression of a vector difference.

The first numerical finding of Chapter 4 is that normalizing the features and targets re-
sults in a noise reduction for the predictions made by the GNS model. However, it also
found this noise can be stabilized by choosing to evaluate the loss on position, instead
of acceleration. These finding are made possible by implementation of the benchmark
tests, and can not be seen in the single scalar loss metrics alone. They also answer the
2nd research question set at the end of Chapter 2. This GNN model is sensitive to its
inputs.

5.1. FUTURE RESEARCH
The popularity of the GNS model has inspired many papers, and this MSc thesis. Through
work like this, this field can continue to grow. To nurture additional research, the follow-
ing directions are proposed.

• In drawing another parallel with the finite difference method is the Equivalence
Theorem [110]:

For a finite approximation function F px,dq which meets the consis-
tency condition, stability is a necessary and sufficient condition for F px,dq
to be a convergent approximation.

This entails a relationship between consistency, stability and convergence exists.
The work of Chapter 3 showed that for the rolling disk benchmark, where consis-
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tency and stability are both met. In contrast, for the elastic bodies setup, neither
consistency nor stability are met. The relationship for GNNs, if it exists, appears
an open research direction.

• There is a clear inability to impose boundary conditions on this GNN model, and
others in literature. For example, all models listed in Table 5.1. However, there
is a known ability to connect spatial graphs with temporal graphs thorough the
Kronecker graph product [134, 135]. This same connection can potentially be
made, except with a graph representing boundary conditions, and the conven-
tional graph representing the problem domain.

• The use of absolute error metrics appears to be misleading, especially when nor-
malizing to different values. The use of relative error metrics, such as the r 2 value
or mean absolute percentage error (MAPE) may give better insight when quantify-
ing model performance on these single scalar error metrics.

• A clear barrier faced by the GNS model in all time convergence studies is a min-
imum time step which the model is able to approximate the rolling disk bench-
mark. The noise attributed to quantities derived though finite difference with re-
ducing the time is believed to be the cause of this. Evaluating on position, a quan-
tity not derived through finite differences, appears to aid this. However, the minute
magnitude when using unnormalized values is believed to hinder network train-
ing.

• Section 3.1 highlights the inability of the GNS model to capture the rotational do-
main symmetry. This continues to hinder the model to this day [128]. Reducing
the dimension of the dataset to a size for the neural network to learn in a tangi-
ble amount of training steps is vital to the efficacy of this method. Ongoing work
shows this importance of including all domain symmetries [136].



6
CONCLUSION

The last decade introduced MPM to the snow science community to reduce computa-
tional costs. Simultaneously, the ML field progressed into learning complex physical
simulations. GNN’s efficacy to leverage physical domain symmetries makes it the cur-
rent optimal ML model in this application.

The GNN model allows two key advantages to MPM: (i) Use of both local and global
information in making local updates, (ii) directly implementing data to bias structure in
the learned function. However, there are shortcomings in the GNN field which need to
be addressed.

This thesis focuses on extending beyond fitting data, instead evaluating if boundary con-
ditions, initial conditions and conservation laws are met. The main contributions of
this work are: (i) through curated benchmark tests, may physical phenomena be iso-
lated to determine if the GNN model is truly learning the underlying physics (ii) these
benchmark tests allow a GNN model to be investigated on core properties any numerical
method should meet, (iii) training the GNS model on unnormalized data can maintain
noiseless predictions when evaluating the loss on position, (iv) a small loss value does
not affirm physical quantities of interest are met. Future research directions are pro-
posed to continue developing this numerical method such that it can truly be applied in
the snow science community.
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A
NEURAL NETWORK

FUNDAMENTALS

A brief detail is given here on the basics of Nerual Networks. The reader is referenced
to Murphy [72] for additional reading. The most basic form of Neural Networks is linear
regression. Linear regression is a type of curve fitting used when the outputs are consid-
ered a linear combination of inputs. Thus, the expected value is represented according
to Equation A.1 ([72]pg.365)

Ery |xs “ wTx (A.1)

Where x are inputs (features), w represent weights and y is the output.

The weights w are trained values which as the model is trained, allowed to see data, these
values are systematically adjusted such that the error between the trained model and
observed data points is minimized. This difference is a type of loss function. A model
representing linear regression is taken as Equation A.2 ([72]pg.365):

ppy |x,µq “ N py |w0 ` wTx,æ2q (A.2)

Where µ“ pw0,w,æ2q are all model parameters.

Now in connecting this linear regression model to the broader neural networks realm is
the notion of flexibility. As mentioned above, this model relies on the assumption that
the output(s) are linear combinations of the inputs. As this is not true for all systems,
three edits are made to allow for flexibility. First, a feature transformation replacing x
with the basis function ¡pxq, resulting in Equation A.3 ([72]pg.419):

f px;µq “ W¡pxq` b (A.3)
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The second step, an intuitive addition to amplify flexibility is bestowing the feature ex-
tractor ¡ with its own parameters µ2:

f px;µq “ W¡px;µ2q` b (A.4)

Where µ = pµ1,µ2q and µ1 = pW,bq.

The third step is repeating this process such that the surrogate model builds in complex-
ity. Doing this L times yields Equation A.5 ([72]pg.419):

f px;µq “ fLp fL´1p...p f1pxqq...qq (A.5)

With the network defined, an optimization problem is formed to tune its parameters µ
P£ such that they reach a local minimum µ˚. This is done on a bounded scalar output
loss function L :

µ˚ P argmin
µP£

L pµq (A.6)

In this work, the Adam optimizer [137] is then used in solving this optimization prob-
lem.



B
DAMAGE BASED CONSTIUTIVE

MODEL FOR SNOW

Snow constitutive modeling is known as an open research question in literature [7]. The
intuitive approach to model snow dynamics is discretizing the material domain into a
Lagrangian frame, such as in DEM. In this frame the points represent individual snow
grains, and the constitutive model depicts the interaction of said grains [6]. With the
prominent paper of Stomakhin et al. [7], this fully Lagrangian perspective changed to the
hybrid Eulerian-Lagrangian frame in MPM. Here, the constitutive model uses particle
deformations to update the grid nodal velocities [138].

Lee’s [139] multiplicative decomposition of a continuum’s deformation gradient into elas-
tic and plastic components is abundantly used in snow constitutive modeling to model
finite strains [7, 8, 140]. The deformation gradient F is a mapping¡ from the undeformed
X to deformed x configuration via Equation B.1, and is split into elastic and plastic com-
ponents according to Equation B.2. The method by how FE and FP are defined varies per
model [7, 8, 140].

F “ B¡
BX

(B.1)

F “ FE FP (B.2)

The stored deformation energy density√ is defined by a variant of the St. Venant-Kirchhoff,
including the Hencky strain lnß from the singular value decomposition of F “ UßVT .
The gradient of this deformation energy density √ (Equation B.3) defines the force fi on
a node (Equation B.4).
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√pFq “µ trpplnßq2q` 1
2
∏ptrplnßqq2 (B.3)

µ“ E
2p1 `∫q , ∏“ E

p1 `∫qp1 ´ 2∫q

fi “ ´ B√
Bxi

(B.4)

The method by which F is decomposed in literature varies based on the type of yield
surface used. A comparison of prominent MPM implementations is shown in Table B.1.
The work of Stomakhin et al. [7] resembles the MPM sample code produced by Hu et al.
[66], the current ground truth model.

Table B.1: Comparison of constitutive snow models in literature

Stomakhin et al. [7] Gaume et al. [8] Blatny et al. [140]

Yield surface Threshold Cohesive Cam Clay Drucker-Prager

Harden/ soften Harden Soften Soften

Return mapping No Yes Yes

Associative - Associative Non-associative

Strain tensor Hencky Hencky Hencky

Elastic Energy St. Venant-Kirchhoff St. Venant-Kirchhoff St. Venant-Kirchhoff

The MPM key component of Stomakhin et al. [7], implemented in the sample MPM code
of Hu et al. [66], is the definition of a threshold of acceptable values for the elastic com-
ponent of the deformation gradient FE . Specifically, the values of ß in F “ UßVT , must
be within the critical stretch threshold (Figure B.1), and are kept inside via a clamping
operation, Equation B.5. This constitutive model is not fully physically representative,
as it lacks return mapping and an acceptable yield surface, but does yield physically re-
alistic results, which is the intention of the authors [7].

1 ´µc § ßi i § 1 `µs (B.5)

Additionally, this model utilizes the affine transfers between nodes and particles pio-
neered by Jiang et al. [122] to mitigate momentum dissipation effects normally affiliated
with the hybrid Eulerian-Lagrangian Particle in Cell (PIC) method. The affine matrix is
defined on the Eulerian grid via Equation B.6. This affine momentum is combined with
the particle force contribution, Equation B.7, to act as the dynamic quantity used to up-
date the nodal momentum.

Cn`1
p “ Bv̂n`1

Bx
(B.6)
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Σ11

Σ22

1-θc

1-θc

1+θs

1+θs

Figure B.1: Threshold mapping diagram

Qp “¢tV 0
p M´1

p
B√
BF

pFn
p qFn

p
T ` mp Cp (B.7)

Mp “ 1
4
¢x2

Hardening of the Lamé parameters is implemented using the magnitude of the plastic
deformation gradient, Equation B.8. The definition of FP in Hu et al. [66] is taken as the
ratio of the determinants for F and FE , where FE is defined as the clamped version of
F1.

µ“µ0eªp1´JP q , ∏“∏0eªp1´JP q (B.8)

ª - hardening coefficient

J t`1
P “ J t

P
detF

detFE

The updated hardened Lamé parameters are implemented in computing the energy
density √, and further there after its gradient in determining the particle force (Equa-
tion B.4) in updating a particle to its next time step. See Algorithm B.1 for a sequential
description of the MPM implementation.

1There is a clamping operation applied to J t`1
P , such that the quantities value must lie between 0.60 and 20.0
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Algorithm B.1 MPM88 Algorithm

Require: mp , Vp , xp , vp , Cp , Fp
for t in time do

for p in Particles do ô Particle-to-Grid
µ–µ0 eªp1´Jp q
∏–∏0 eªp1´Jp q
Polar decomposition: R, S – Fp
Dinv – 4d x2

inv
Particle Force: PF – 2µpFp ´ RqFT `∏pJ ´ 1qJ
æ– ´d t V Di nv PF
affine = æ` mp Cp

end for
Gather vp & vp ¨ mp on nodes via a quadratic B-spline kernel.
Apply velocity boundary conditions
for p in Particles do ô Grid-to-Particle

Use kernel to map vp & Cp from nodes to particle p.
xp – d t vp

Funcl
p – pI ` d t Cp qFp

J uncl
p – detpFuncl

p q
Singular Value Decomposition: UßV – F
Clamp: ßcl mp – 1 ´µc §ß§ 1 `µs

Fclmp
p “ Ußclmp V

Jp – Jp
J uncl

p

detpFclmp
p q

Clamp: Jp – 0.6 § Jp § 20.0
end for

end for



C
CONSISTENCY, STABILITY AND

CONVERGENCE DEFINITIONS

This appendix section gives formal definitions of consistency, stability and convergence
properties used in this work. These arise from the existing literature: Numerical Math-
ematics text of Quarteroni et al. [141], Nonlinear finite elements for continua and struc-
tures text of Belytschko et al. [130], a course lecture of R. Fedkiw [142] and the work
of Chartres & Stepleman [143]. A range of works are used, as universally standard def-
initions for these terms are not apparent in literature [143]. For the problem, find the
solution x such that

F px,dq “ 0 (C.1)

for the set of solution dependent data d , and the function relation F between d and x.
The numerical solution to this problem is given by:

Fnpxn ,dnq “ 0 for n • 1 (C.2)

Here, n is a parameter dependent on the case, and it is expected that the numerical so-
lution converges to the exact solution xn Ñ x as n Ñ 8. This requires that as n Ñ 8,
dn Ñ d and Fn approximates F . This leads to the definition of consistency:

Fnpx,dq “ Fnpx,dq´ F px,dq Ñ 0 for n Ñ 8 (C.3)

This evaluates that the chosen numerical approximate function Fn is able to more closely
capture the underlying true solution x at d , as n Ñ 8. Next, the numerical solution is
stable if for small perturbations at the input level yield small perturbations in the output.
The numerical method is said to be stable if it yields stable numerical solutions.
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||x A
n ´ xB

n || § C" @n ° 0 for all x A
0 such that ||x A

0 ´ xB
0 || § " (C.4)

Where C is a positive constant. Last, convergence is defined. For an admissible datum d
in Equation C.1, the corresponding true solution xpdq and the numerical solution xnpd`
±dnq for the datum d `±dn :

@"° 0 Dn0p"q, D±pn0,"q ° 0 : (C.5)

@n ° n0p"q, @|||±dn || † ±pn0,"q ñ ||xpdq´ xnpd `±dq|| § "

Convergence is distinctly different from consistency in that consistency only entails the
chosen numerical method shows the ability to approximate the underlying function,
while convergence demands the underlying function is approximated across an entire
input domain. An example of this distinction is highlighted by the Courant Number, in
that a particular finite difference solution can be consistent with the true function, how-
ever it will not converge if the Courant Number is not met [111].
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GRAPH NETWORK-BASED

SIMULATORS

Throw the lens of inductive bias presented by Battaglia et al. [84] is the GNS model framed
[85] to motivate its aptitude in capturing the problem domain of particle point mass sim-
ulations. This section does not cover basics of GNN’s as ample literature exists on the sub-
ject (See [84, 96]), nor does it cover the detailed implementation of the GNS model (see
Sanchez-Gonzalez et al. [85]). Instead, a conceptual understanding of the model pipeline
is given with motivation of architecture choices based on existing literature.

RELATIONAL REASONING AND INDUCTIVE BIAS
A driving principle in the Battaglia et al. [84] work is making infinite use of finite means.
This is motivated via combinatorial generalization, generalizing to unseen realms using
fixed known building blocks. Relational reasoning is proposed as the range of avenues
in which the following curated building blocks may be composed:

• entity - a select element with attributed quantities.

• relation - the means by which different entities interact,

• rule - a function which maps known entities and relations to other relations and
entities.

The arrangement of the 3 building blocks stated yields a structured representation, and
the manipulation of entities and relations via rules to other entities and relations is struc-
tured computation.

Inductive bias is the second key item in this lens, that a particular solution may be bi-
ased in a certain direction regardless of the underlying data. Bayesian models complete
this via choice of a prior, and ML models do this via architecture choices. The reader is
refereed to the text of Battaglia et al. [84] for an in-depth description.
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GNN’S APTITUDE
Section 2.2 alludes to GNNs and their aptitude to capture physical domains. This is now
done in a substantiated manner through relational reasoning and inductive bias. Figure
D.1 shows elastic balls moving in a 2D frame, with interactions captured via a contact
model, as expected with a conventional DEM perspective. This example showcases both
the relational reasoning and inductive bias which graphs leverage.

1

2
3

4

5

(a) Physical domain of interest

v5v5

v1

v2

v3

v4ek

u

(b) Graph representation

Figure D.1: Simplified elastic balls example

The transition from Figure D.1a to Figure D.1b is the expression of the problem domain
via a graph, made of nodes vi , edges ek and a global u. This graph representation exem-
plifies the relational reasoning that each of the graph feature capture; entities, relations
and rules. Conveniently, each node (entity) contains features of the ball (mass, radius,
color, etc.). The edges (relations) in Figure D.1b are drawn between balls which are as-
sumed to interact. It is emphasized the nodes which are not connected, ie node 5 is
isolated. In a contact model the nodes in touch alone will have influence on each other.
The balance between nodes which are and are not connected induces a bias over the
domain, in contrast to assuming all nodes have equal influence on the other, as a naive
neural fully connected implementation would. Lastly, a global u is given to capture in-
variant domain properties (gravity, system energy, center of mass, etc.).

Inductive bias utilizes a priori information to prioritize one solution over another. The
center of mass of the system is computed from the summation of mass and position
values for each of n balls, however the order in which this is done has no influence
on the outcome. If a conventional neural network is used to make this computation,
where each input neuron is a node’s mass and location, and each ordering of the nodes
is unique, then there are n! permutations. Each permutation is an ordering of the nodes
in the input layer. GNN’s architecture induces permutation invariance [96], reducing
this n! permutation dependency to 1 by using the a priori information that the center of
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start _read_metadata()
_read_hyperparameters()

model_kwargs
Create a dictionary of GraphNet keyword arguments

simulator
Initiate the GraphNet simulator _get_simulator()

sampled_noise
Draw the random walk noise get_random_walk_noise()

prediction, target
Compute the predictions and targets

simulator.
get_predictions_and_targets()

loss
tf.reduce_sum (prediction - target)2

predicted_next_position
Compute the position at the next time step simulator._build()

train_op(loss, optimizer)
Define the training optimizer (Adam)

tf_estimator.EstimatorSpec
Return the ML model to the main script

Define the ML model

Figure D.2: GNS Flowchart

mass is invariant to summation permutation.

GNS MODEL ALGORITHM OVERVIEW
Figure D.2 gives a gentle introduction to the GNS algorithm. The model architecture
is built on the tf_estimator.Estimator class of TensorFlow 1. A simulation initiates
with the metadata dataset normalization statistics, and the hyperparameters for the GNS
model definition. A simulator is defined via Algorithm D.2 and Algorithm D.1. Noise is
generated according to Algorithm D.4. This noisy sequence is used to construct a graph
in Algorithm D.3. The simulator module wraps these together to compute predictions
according to these definitions. The loss is computed according to the acceleration loss
in Table 3.2 and the network is tuned using an Adam optimizer. Last, this is returned to
an EstimatorSpec for TensorFlow.



D

90 D. GRAPH NETWORK-BASED SIMULATORS

InteractionNetwork MESSAGE PASSING BLOCK

The GNS model utilizes the InteractionNetwork1 message passing architecture, orig-
inally proposed by Battaglia et al. [81]. Figure D.3 gives a conceptual visual for the ar-
chitecture, while Algorithm D.1 details the updates made by the model. This specific
model solely uses local information to make local updates, utilizing information of both
the local nodes and local edges.

ut ut+1

vi,t vi,t+1

ek,t ek,t+1ƒe

ƒv

ρe→v

ƒ update function

Figure D.3: InteractionNetwork Block

Algorithm D.1 InteractionNetwork message passing breakdown

Require: E , V , u
for k P t1...N eu do

ek,t`1 – fepek,t ,vrk,t ,vsk,t ,uq ô Compute updated edge attributes
end for
for i P t1...N nu do

let E 1
i “ tpe1

k ,rk , sk qurk “i ,k“1:N e

e1
i – ΩeÑv pE 1

i q ô Aggregate edge attributes per node
vi ,t`1 – fv pe1

i ,vi ,uq ô Compute updated node attributes
end for

ENCODER, PROCESSOR DECODER STRUCTURE
Section 2.2 introduces the Encoder, Processor, Decoder strategy utilized in literature.
The specific GNS construction is detailed here to highlight model specifics. Importantly,
recent work of Alon & Yahav [98] uncovered the over-squashing phenomena present
when pooling too much information onto a node prior to it’s update. Figure D.4 exempli-
fies this when summing neighboring nodal information (colors) onto a single node to be
updated, all the information may be squashed into a single teal color. However, it is de-
sired that the presence of all 4 colors is positioned on the node, not their mixture.

To alleviate this undesired effect, the space which the graph is constructed in is projected

1The InteractionNetwork architecture does not make use of globals, and thus no global updates are shown
in Figure D.3.



D

91

+ +

++
+ + + =

+ + + =

Figure D.4: Example of over-squashing

from 2D to a higher dimension space. This intends to let node and edge embeddings
express more information in the latent space. Figure D.5 showcases the Encoder projec-
tion phase, which uses a trained neural network to project the low dimension vector to a
high dimensional one, where more colors are seen, representing the latent space’s ability
to express more information. The processor stage completes m message passing steps
according to the InteractionNetwork architecture, leading to the final output stage
which is projected back to the regular 2D space. A step-by-step description is given by
Algorithm D.2.

vi

ek

Encoder

ut ut+1

vi,t vi,t+1

ek,t ek,t+1ƒe

ƒv

ρe→v

ƒ update function

Processor
m message passing steps Decoder

Figure D.5: Encoder-Processor-Decoder Architecture. Adapted from [144]

GRAPH CONSTRUCTION
In the same fashion as meshfree methods, the GNS model computes the graph connec-
tivity prior to each encoding phase. That is, the model assumes no fixed connectivity
a priori to the simulation, as mesh based methods conventionally do. The GNS setup
builds the graph by iterating through every particle, and connecting all surrounding par-
ticle within a connectivity radius r to the central node, as seen for 3 example nodes in
Figure D.6. A connectivity circle is drawn for three particles, edges are created, and the
repetition of this for every particle yields a single graph G for input.
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Algorithm D.2 Encoder Processor Decoder
Require: Graph G ô Encoder

for i P t1...N v u do ô Project the nodes to the latent space
Vi –¡enc

v pvi q
end for
for k P t1...N eu do ô Project the edges to the latent space

Ek –¡enc
e pek q

end for
for m message passing steps do ô Processor

E m`1, V m`1 – InteractionNetworkpE m , V mq
E m`1 “ E m ` E m`1 ô Append edge residuals
V m`1 “ V m `V m`1 ô Append node residuals

end for
for i P t1...N v u do ô Decoder

vi –¡dec
v pV mq

end for
:̃xi – vi ô Extract normalized acceleration
:xi “ p:̃xi ¨ astdq` amean ô Unnormalize acceleration

Algorithm D.3 learned_simulator._encoder_preprocessor

Require: xpt´hqÑt
i for all particles

ô Define node features
xt – xpt´hqÑt

i ô Define current position

9xpt´h`1qÑt – xpt´hqÑt
i ô Velocity via finite differences

vsk , vrk , k – xt ô Define sender nodes, receiver nodes and total edge count k via r

9̃xpt´h`1qÑt
i “ p 9xpt´h`1qÑt ´ vmeanq{vstdq ô Normalize velocity via scalar statistics

9̃xpt´h`1qÑt
i – 9̃xpt´h`1qÑt

i ô Merge 1st and 2nd velocity dimensions

vi – 9̃xpt´h`1qÑt
i ô Append flattened velocity sequence as a node feature

li – xt , boundary ô Compute the distance a node is from all 4 boundaries
d̃i – di , r ô Normalize to r and clamp at ˘1
vi – d̃i ô Append clipped distance to boundary to the node
vi – ni ô Append particle type embedding to the node

ô Define edge features
rk “ pvsk ´ vrk q{r ô Define edge length and orientation normalized to r
ek – dk , |dk | ô Append edge orientation and its magnitude as an edge feature

ô Define graph
G – vi , ek ô Assign node and edge feature as a GraphTuple object.
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Figure D.6: Visualization of the GNS graph construction via a connectivity radius r

ERROR METRICS
See Table 3.2 in the main text for a description of the error metrics and loss.

FEATURES AND LABELS
Table D.1 details the features and labels the GNS model uses to predict the single output,
nodal acceleration :xi . These values are normalized to either normalization statistics of
the training data, or to the connectivity radius r hyperparameter. Algorithm D.3 details
the means by which these input features are defined from a sequence of position val-
ues.

Table D.1: GNS model graph input features

Feature/ Label Description Location Description Normalized to

Feature Velocity 9xi Node
Computed from position
value finite differences
going back h steps

Normalization
statistics

Feature Particle type ni Node Classifying label None

Feature
Clipped
distance to
boundary

Node
The distance to the outer
box boundary, clipped to
1 if greater than r

r

Feature
x and y edge
length

Edge
The x and y edge length
decomposition

r

Feature
Edge length
euclidean
norm

Edge Edge length magnitude r

Label Acceleration :xi Node
Directly predicted by the
GNS model as the de-
coder stage output

Normalization
statistics

Of particular interest are the normalization statistics used. As explained in the GNS pub-
lication [85], these are used to normalize velocity and acceleration values to zero mean
and unit variance. To elaborate on this here, is how this normalization is done. These
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training statistics are computed from finite difference of the position data to yield veloc-
ity and acceleration of every particle at every time step. This is reduced to 8 single scalar
values, x and y direction velocity mean, velocity standard deviation, acceleration mean
and acceleration standard deviation2. Prior to the Encoder phase, the velocity statistics
are used to normalize the nodal velocity, and post the Decoder phase are these statistics
used to invert the normalized predicted value.

RANDOM WALK NOISE
A random walk noise sequence is defined for the velocity values. Algorithm D.4 shows
the used Gaussian random walk sequence provide a batch of position values xt

i over an
input sequence length h. The random walk is summed twice. This allows the random
walk to be applied as a velocity random walk, instead of a positional random walk. A key
component is the definition of æ0. In the open sourced code, this is done setting æ0 =
0.00067 /

?
h ´ 1. The division by h is to yield the same noise at the end of the sequence.

This normalization is an application of Bienaymé’s identity.

Algorithm D.4 Random walk velocity noise
Require: xt

i , dt ô Batch of node positions
for i P t1...Nu do ô Compute velocity

9xt
i – pxt`1

i ´ xt
i q{dt

end for
for i P t1...Nu do ô Compute noise

9̃xt
i – N p0,æ“æ0{

?
h ´ 1q

end for
for t in h do ô Apply a velocity random walk

9̃xt
i – 9̃xt

i ` 9̃xt´1
i

end for
for t in h do ô Integrate the random walk

x̃t
i – 9̃xt

i ¨ dt
end for
for t in h do ô Apply a displacement random walk

x̃t
i – x̃t

i ` x̃t´1
i

end for
Return x̃t

i

NORMALIZATION STATISTICS
The open-source code of Sanchez-Gonzalez et al [85] implements a model without im-
plementing the time step. The model assumes a uniform time step exists in the entire
dataset. Based on this assumption, the code is written assuming a normalized time step
dt of 1. The corresponding paper motivates this decision with, "omitting constant¢t for
simplicity".

2This raises the unsolved question as to what degree using these normalization statistics directly from the
training dataset hinders generalization of the GNS model beyond training trajectories.
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Sanchez-Gonzalez et al [85] additionally released datasets to train the proposed GNS
model. Within these datasets are scalar normalization statistics for the mean and stan-
dard deviation of velocity and acceleration. The publication does not state how they
are computed, which means an approximate must be determined. Via trial and error,
Algorithm D.5 is determined which yields the normalization statistics in the published
datasets via the position data. This algorithm computes mean and standard deviation for
velocity and acceleration through finite differences assuming the time step is 1.

Algorithm D.5 Normalization Statistics

Require: xd t j
i for i in N particles in d dimensions of t time steps and j training trajec-

tories.
for j in training trajectory do

Trajectory = Trajectories[j] ô Trajectory shape [t , N , d ]
for d in dimensions do

v = numpy.gradient(Trajectory[:, :, d], axis = 0) ô Use numpy gradient to compute
the pseudo-velocity, with the time step = 1

vmean[j, d] = numpy.mean(v) ô Compute the mean velocity
vstd[j, d] = numpy.std(v) ô Compute the velocity standard deviation
a = numpy.gradient(velocity, axis = 0) ô Use numpy gradient to compute the

pseudo-acceleration, with the time step = 1
amean[j, d] = numpy.mean(a) ô Compute the mean acceleration
astd[j, d] = numpy.std(a) ô Compute the acceleration standard deviation

end for
end for

ô Compress the mean and standard deviation values.
vmean = numpy.mean(vmean, axis=0)
vstd = numpy.std(vstd, axis=0)
amean = numpy.mean(amean, axis=0)
astd = numpy.std(astd, axis=0)

COMPUTATIONAL COMPLEXITY
Chami et al. [78] reports the training complexity of this GNN formulation, and is given
in Equation D.1. Keeping the count of node features, edge features and labels constant,
the model is linear in complexity with both node count and edge count.

Op|E |D `|V |M q (D.1)

E- number of node neighbors

D “
ÿ

l

dl - total dimension of all layers

V - number of nodes
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M “
ÿ

l

dl dl`1 - accounting for matrix multiplication



E
GEOMETRIC DEEP LEARNING LENS

The lens of Geometric Deep Learning (GDL) unifies existing prominent ML models through
invariants identified in all models. The recent work of Bronstein et al. [126] lays out a for-
mal analysis of this program, which key elements are summarized here. This framing is
vital to understand the GNS discussion provided in Chapter 5.

GDL FUNDAMENTALS
A multitude of machine learning (ML) architectures (CNN, GNN, RNN, etc.) are imple-
mented and reported on without a complete understanding for why they perform well.
This text identifies core attributes which all these architectures share, and unifies them
under a single Blueprint.

The essence of deep learning is: (i) Representation of the interested domain with fea-
tures (ii) learning via local gradient descent (implemented via backpropagation). Con-
vention is used that the ML system operates on signals (functions) which exist in a do-
main ≠. With large amounts of data in the ML field comes with it the curse of dimen-
sionality. From a Bayesian perspective, geometric priors may be leveraged to reduce
this high dimensional space by exploiting geometric regularity of the underlying domain
(Figure E.1 & Figure E.2). This is motivated via the Erlangen Program, the study of ge-
ometry through invariants. That is, focusing on the quantities of interest which remain
unchanged via a group of transformations. For example, Euclidean transformations pre-
serve lengths and angles, while affine transformations preserve parallelism.

Symmetry and scale separation are the 2 geometric priors exploited for defining a blueprint
to unify modern ML architectures. Symmetry is defined as a transformation which leaves
a property unchanged, invariant (Figure E.2). Examples are molecule classification, which
is invariant of the molecule’s rotational orientation, or in summing forces in particle sys-
tems, which is invariant to permutation. A set of symmetries is referred as a group G,
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(a) Visual representation of the inter-
ested domain

(b) Geometric prior of scale separation

Figure E.1: Visualization of scale separation

(a) Visual of a single domain scale (b) Implementation of symmetry geometric prior

Figure E.2: Visualization of symmetry

which obeys the properties of composition, associativity, identity, inverse and closure
(but not commutativity) see [126](pg. 13). Group action is G acting on a point u in ≠,
rendering it to another location in≠.

Noether’s Theorem connects symmetry principles and conservation laws. A
prominent example is invariance to time yields the conservation of energy,
and invariance to spatial translation yields the conservation of linear mo-
mentum [145].

Of significant interest is linking the underlying domain, to the functions defined on the
signals (ie learned interpolations). The symmetry of≠, which the signals X p≠q are de-
fined on, induces structure to the function f defined on these signals. The goal is thus
to reduce the space of potential interpolates F pX p≠qq to those which satisfy one of the
following symmetry priors: (i) invariant if the output Y is unaffected by the group ac-
tion on the input. (ii) equivariant if the output is affected in the same manner which the
group action acts on the inputs. An example of G-invariance is system kinetic energy, as
the quantity is unaffected by the orientation or location of motion, only on the magni-
tude. An example of G-equivariance is the input direction of applied forces on a particle,
as the resultant force is dependent on the input’s orientation.

Scale separation is a geometric prior which leverages our domain being divided into lev-
els of structure (Figure E.1b). Each level has its own respective structure and symmetry
which it obeys. The choice of levels is dependent on the problem. An example of global
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Table E.1: Implementation of the GDL Blueprint for the GNS model.

Blueprint Element Description GNS Implementation

Linear G-equivariant layer Equivariant feature xi Ñ 9xi

Nonlinearity æ Activation function ReLU

Local pooling (coarsening)
Localized information shar-
ing

Learned message passing

G-invariant layer (global
pooling)

A global readout state
None

level structure for the particle domain is G-invariant for the system energy, while local
summation of forces is a G-equivariant structure. An equivariant map is considered lo-
calized if the mapping depends solely on values about a small radius r , known as the
receptive field. This is analogous to the support domain in conventional meshfree meth-
ods [12].

Figure E.3 shows the blueprint presented by Bronstein et al. The formal definition is
given in the text (pg. 29), however for conceptual purposes, Figure E.3 exemplifies the
localized equivariance and global invariance used in graphs, facilitated via coarsening
pooling operations.

Figure E.3: Blueprint of geometric deep learning for an example graph. Typical imple-
mentation is a permutation equivariant layer for computing nodal features, followed
by local pooling for graph coarsening and lastly a permutation-invariant global read-
out layer [126].
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Table E.2: Benchmark function equivalents for the GDL structure

GDL item Benchmark component

Domain≠ MPM material points

Signals X p≠q ML input features

Function f Learned GNS model

GNS MODEL

Table E.1 defines how the GNS model fits the GDL Blueprint1. The input nodal val-
ues of absolute position are transformed to a pseudo-velocity2, which via aggregation
are equivariant under Euclidean transformations [126](pg. 84). Localized information
coarsening, and simultaneously propagation of information locally, is done through a
learned pooling function. In the published GNS model no global readout is used3. Ta-
ble E.2 shows how the key computational components of this project fits the GDL do-
main.

1See Bronstein et al. [126](pg. 29) for a formal definition of the Blueprint elements.
2’pseudo’ is used here as velocity is computed as finite differences of position, divided by 1, ie assuming ¢t is

unity.
3The InteractionNetwork architecture is used, which has no global readout. The GNS paper does comment in

the appendix that using a global readout does not have significant improvement on performance.
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SNOW BLOCKS IMPLEMENTATION

The snow blocks dataset is created using the demo code of Hu et al [66]. This is a direct
implementation of the default code setup, with minimal changes1. Figure F.1 gives a
visual of the setup, Table F.2 details the GNS implementation and Table F.3 details the
additional MLS-MPM parameters used by Hu et al. The reader is referred to Appendix B
for a description of the constitutive model and the MLS-MPM algorithm.

A key choice made is the block positioning. All 3 have their respective starting points
in the y location fixed at y10, y20 and y30 (see Table F.3). However, the x coordinates
are sampled at random using a uniform random distribution between and including the
bounds2 [0.2, 0.6]. The purpose of this is that every trajectory is a unique implementa-
tion to create dataset variability. Additionally, Hu et al uses TaiChi’s3 random number
generator to randomly position the 200 material points making up each square.

To uniquely identify each block separately in the GNS model, particles belonging to each
respective block are given different particle type labels. See Appendix D for a description
of this node feature. Two formulations of the dataset are given, each using the same
original position data, with only different particle labels assigned (see Table F.1).

1Changes made are the starting location of each block, the total particles each block contains and a termina-
tion final time added.

2Figure F.1 shows these x coordinate bounds in red.
3
TaiChi is the base program which the MLS-MPM code is written on by Hu et al [66].

Table F.1: Snow blocks dataset particle labels (see Figure F.1)

Dataset
Particle type label
order (top, middle,
bottom)

snow blocks v1 7, 0, 5

snow blocks v2 5, 0, 7
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g
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(x10, y10)
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h
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Figure F.1: Snow blocks visual setup

Table F.2: Snow blocks setup

GNS Hyperparameters Dataset Parameters

GNN Architecture Interaction Network Total time 0.30

Loss function L2 norm acceleration gravity g 200

Learning optimizer Adam time step 1e-4

Learning rate
exponential decay from
10´4 to 10´6 Square side length a 0.16

Training steps 105 and 106 Mesh size h 0.0125

Message passing steps 10 Num. particles 600

NN Architecture 2 hidden layers

128 layer neurons
Train/test/valid sets 300/20/15

Noise std 6.7e-4 Trajectory length 1000

Input sequence length h 5 Dataset time step 1e-3

Connectivity radius r 0.023

Seed 33
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Table F.3: Additional snow blocks MLS-MPM parameters

Parameter Value

Particle mass 1.0

Young’s modulus 1000

Poisson’s ratio ∫ 0.20

Hardening 10.0

Critical compression µc 0.025

Critical stretch µc 0.0075

x10 = x20 = x30: [0.20, 0.60]

y10, y20, y30: 0.45, 0.65, 0.85





G
LAGRANGIAN DISCRETIZATION

LIMITATIONS

Figure G.1: MPM discretization diagram [13]. Con-
tinuum material points overlaying an Eulerian grid.

Attention has been raised that
the assumptions made in MPM’s
discretization of the material
into Lagrangian points needs to
be addressed to understand the
limitations it imposes on the
computational model. This is
done in two parts: (i) The dis-
cretization assumptions made in
literature (ii) The implications of
this assumption.

Figure G.1 depicts the localized
continuum that each material
point represents in the MPM
configuration. The original publication of MPM contrasts the method with FEM, im-
plying that it is an alternative option for the method. Table G.1 details key paper imple-
mentations of MPM, showing that with a single exception [70], MPM uses a continuum
domain assumption.
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Table G.1: Summary of particle physical representations from key papers.

Implementation
Particle physical
representation

Keywords Material point attributes

MPM [13] Continuum Original publication of MPM
mass, position, velocity, strain
& stress

MPM [70] Granular grain
Implementation for granular
material

mass, position, velocity, strain
& stress

MPM [7] Continuum Implementation for snow
mass, position, velocity & de-
formation gradient

MLS-MPM [66] Continuum
Ground truth model in this
project

volume, mass, position, veloc-
ity & deformation gradient

The snow science community takes two main categories for classifying mechanical con-
stitutive models [146]:

• (i) phenomenological - mechanical features are described using global variables
which assume a homogenized continuum.

• (ii) micromechanical - mechanical features are described from microscopic gran-
ular interactions.

The acceptance of a phenomenological or a micromechanical based approach to the
constitutive model is a long-standing open research question in the community, dat-
ing back to the ’60s [4, 5]. There are both prominent phenomenological continuum ap-
proaches [5, 147–149], and micro-level granular approaches [6, 150, 151] existing in lit-
erature. A guiding principle identified is: the continuum approach is taken when larger
scale simulations are made, which can not computationally afford modeling grain-to-
grain interactions. Importantly, the implications of taking a continuum approach over a
granular approach appears to be an open-research question itself.

CONCLUSION
The ground truth model in this project (MLS-MPM) uses a continuum approximation
of snow, which the implications of this assumption is an open-research question. It is
concluded that the approach is not directly physically representative of the granular ma-
terial.
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ELASTIC BODIES ADDITIONAL

RESULTS

Included here are the kinetic energy plots corresponding to the benchmark setup de-
scribed in Section 3.1. The legend in these figures corresponds to Table 3.7 and Table
3.8.

(a) 105 training steps (b) 106 training steps

Figure H.1: GNS model kinetic energy predictions for dataset v1
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(a) 105 training steps (b) 106 training steps

Figure H.2: GNS model kinetic energy predictions for dataset v2

Figure H.3 shows the x-component of momentum for the top left body during respec-
tive labeled numerical experiments. Figure H.3a shows that although collision dynamics
completely fail, there is an apparent linear momentum conservation. This is covered in
the discussion of Section 3.1. Figure H.3b shows the instabilities in different GNS pre-
dictions. These arise from the rotational dependencies of the model to its chosen ML
features. This is covered in Section 3.1.

(a) Dataset v1 (b) Dataset v2

Figure H.3: Momentum of the top left body during simulations
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ELASTIC BODIES ROTATIONAL

ENERGY
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(a) Elastic bodies benchmark test initial
conditions.

(b) Benchmark test energy evaluation

Figure I.1: Elastic bodies benchmark setup.

The elastic bodies benchmark test (Figure I.1a) proposed by Sulsky et al. [13] is used in
this thesis to determine if the GNS model [85] can capture underlying domain physics of
interest. Section 3.1 highlighted the rotational motion in the MLS-MPM and GNS pre-
dictions. Here, these will be quantified in a spatial-temporal reference frame to illustrate
their presence. This is done by computing the residual velocity, the difference in the
body’s mean velocity, and that of each particle.
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Figure I.2: Experiment #1.1 lower left body residual kinetic energy

The body velocity V of a single body of N particles, each of velocity vi is taken as:

V “ 1
N

Nÿ

i“1

vi

The residual velocities ¿i of each particle is thus defined as:

¿i “ vi ´V

The kinetic energy K of the residual velocity for k dimensions and N object particles
each of equal mass m is assumed as:

K “ 1
2

m
2ÿ

k“1

Nÿ

i“1

¿2
i k (I.1)

Figure I.2 and Figure I.3 show the residual velocities ¿i plotted as a vector field. Vector
magnitudes are defined relatively for visualization only. The title of each graph includes
the magnitude of the residual kinetic energy with unit energy, computed according to
Equation I.1.

Figure I.2 illustrates that the elastic bodies dataset v1 MLS-MPM simulation and GNS
prediction contain no rotational or vibration residual energies. There is a clear residual
kinetic energy magnitude in the GNS prediction at 0.67 unit time. This is the collision
deformation.
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Figure I.3: Experiment #1.8 lower left body residual kinetic energy

Figure I.3 shows a clear rotational energies in the dataset v2 formulation. The MLS-MPM
ground truth simulation contains this rotational only after impact. Contrarily, the GNS
prediction shown clear rotational motion prior to the impact at 0.33 unit time.
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ELASTIC BODIES BENCHMARK

VARIATIONS

Variations between the MLS-MPM implementation of the elastic bodies benchmark, and
that of MPM reported by Sulsky et al [13] are identified in this work. An analytical solu-
tion to a simplified point mass representation is done, and a discussion is drawn around
the results.

x1 x2

m1 m2

v0 v0

k

Figure J.1: Elastic bodies simplified diagram

DERIVING THE EQUATION OF MOTION VIA THE LAGRANGE EQUATION

Lagrange equation states the dynamic equilibrium of a system via its generalized coor-
dinates qs as the following:

d
d t

BT

B 9qs
´ BT

Bqs
` BV

Bqs
´Qncons

s “ 0

Which is a function of the system’s kinetic energy T , its potential energy V and non-
conservative forces Qncons

s

The following assumptions are taken:
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• let m1 = m2 = m

• x1 = x2 = x

As the system contains conservative forces only (an elastic impact), Qncons
s is elimi-

nated.

The kinetic and potential energy definitions follow:

T “ 1
2

m1 9x2
1 ` 1

2
m2 9x2

2 “ m 9x2

V “ 1
2

kx2
1 ` 1

2
kx2

2 “ kx2

And the Lagrange equation terms follow as:

d
d t

BT

B 9qs
“ 2m :x

BT

Bqs
“ 0

BV

Bqs
“ 2kx

Arranging the resultant terms into the Lagrange equations yields for the system equation
of motion:

m :x ` kx “ 0

SOLVING THE EQUATION OF MOTION ORDINARY DIFFERENTIAL EQUATION VIA THE LAPLA-
CIAN METHOD

0 “ L rm :x ` kxs

“ mL r:xs` kL rxs

“ mrsL r 9xs´ 9xp0qs` k X psq

“ mrspsX psq´ xp0qq´ 9xp0qs` k X psq

“ ms2X psq´ msxp0q´ m 9xp0q` k X psq

“ X psqpms2 ` kq´ msxp0q´ m 9xp0q
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X psq “ msxp0q` m 9xp0q
ms2 ` k

“ sxp0q` 9xp0q
s2 ` k{m

“ sxp0q
s2 ` k{m

` 9xp0q
s2 ` k{m

let
b

k{m “!

“ xp0q s
s2 `!2 ` 9xp0q

!

!

s2 `!2

Apply the inverse Laplace transform L ´1. Helpful to lookup a Laplace transform table
here.

xptq “ xp0qcosp!tq` 9xp0q
!

sinp!tq

And for investigating the system kinetic energy, here is the term’s first derivative with
respect to time.

9xptq “ ´xp0q!sinp!tq` 9xp0qcosp!tq

KINETIC ENERGY

With the solved system velocity with time, comes the kinetic energy with time. This will
be done via a piecewise arrangment of: (i) prior to collision, (ii) during collision, and (iii)
post collision.

The kinetic energy prior to collision is taken as.

T “ 1
2

m1 9x1p0q2 ` 1
2

m2 9x2p0q2 “ m 9xp0q2

The kinetic energy during the collision is taken as.

T ptq “ m 9xptq2

The kinetic energy after the collision is taken as.

T ptq “ m 9xp0q2
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Figure J.2: Analytical solution to the mass-spring system: k = 1000, m = 128, v0 “
?

2 ¨0.1

COMPARING RESULTS

The use of the elastic bodies benchmark test is motivated for the main purpose of evalu-
ating energy conservation in the system, as discussed in Chapter 3. After implementing
this benchmark in MLS-MPM compared to MPM, a key difference is seen between Fig-
ure J.3a and Figure J.4a, the total time of the collision. The simplified point mass model
shows a total time of collision around 1 second (Figure J.2), and this is also seen in Fig-
ure J.3a, but is not found in Figure J.4a. Thus, a key difference seen in the MLS-MPM
implementation is the total collision time.

Next, qualitative measures of the degree which the bodies are deformed and the space
between contact is seen between Figure J.3b and Figure J.4b. The distance between the
two bodies is believed to be due to the basis function used on the nodes. MPM uses a
linear interpolation function with a width of one node, while MLS-MPM uses B-splines
with a width of one and a half nodes. Thus the larger support domain of this kernel
causes a greater separation at the collision.

This distance is graphically shown in Figure J.5 where the center of mass for each circle is
shown as a function of time. The minimum gap between the two bodies is computed at
a distance of 0.483, and this distance is seen in Figure J.5. Assuming a rigid body contact,
where each body has a radius of 0.19, the gap between the two bodies at collision does
not drop below a distance of 0.107.

In conclusion, the key parameter of the energy conservation is largely captured by both
the MPM and MLS-MPM models. The key difference between the two is the total time of
the collision, which the MLS-MPM model is different from that found in MPM and the
analytical solution to the simplified problem.
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(a) Energy diagram (b) Circle deformation

Figure J.3: Results of Sulsky et al [13]

(a) Energy diagram (b) Circle deformation

Figure J.4: MLS-MPM Results
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Figure J.5: Center of mass distance from origin for the left and right bodies.
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ROLLING DISK ADDITIONAL

RESULTS

Chapter 3 and Chapter 4 showed the implementation of the rolling disk benchmark test,
and the utility of its results in analyzing a GNN mode. For completeness, velocity plots
corresponding to these sections are included here. Unlike the acceleration plots shown
in these chapters, the velocity plots here do not visibly have noise.

Chapter 3 and Chapter 4 also highlighted the noise which exists in the derived acceler-
ation data. A reminder, the standard GNS model uses twice central finite differences of
position to arrive at the target acceleration. Figure K.4 shows the noise in this target data,
and is quantified via the variance in computed acceleration value.

Figure K.5 views the vector field for Experiment #2.7 shown in Figure 3.18. At each time
step given, the residual kinetic energy is calculated according to Equation I.1. This quan-
tity shows there is a difference in rotational energy between the MlS-MPM method and
the GNS prediction.
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(a) 105 training steps (b) 106 training steps

Figure K.1: Rolling Disk Velocity Plots for Set #2

(a) Set #3 Velocity (b) Set #4 Velocity

Figure K.2: Rolling Disk Velocity Plots
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(a) Set #5 Velocity (b) Set #6 Velocity

Figure K.3: Rolling Disk Velocity Plots

Time step (s)
Acceleration

Standard

Deviation (m/s2)

3e-05 13.160

6e-05 3.9157

3e-04 1.3468

6e-04 1.1469

3e-03 0.7617

6e-03 0.7576

Figure K.4: MLS-MPM acceleration noise as a function of the time step
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Figure K.5: Experiment #2.7 velocity vector field and residual kinetic energy
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ROLLING DISK DISCRETIZATION

Algorithm L.1 is used to discretize the circle domain for the rolling disk benchmark test.
This is necessary as no exact discretization method is specified by Bardenhagen et al for
the benchmark test [70]. One may infer that a uniform grid is used, as in other promi-
nent papers (see [13, 17]). In this uncertainty, an algorithm which uniformly distributes
particles within a circle is chosen. The purpose is to meet the uniform mass distribution
expected over a disk area and a smooth radial surface on the outside.

Section 3.2 introduced the limitations encountered with the MLS-MPM method when
applying boundary conditions. Specifically, the offset which the rolling disk moves along
the lower boundary. The interaction of this disk with the boundary is found to be very
sensitive to the initial vertical placement of the disk. For the value of Æ=3 chosen in Al-
gorithm L.1, a value of b0=5¨10´3 m is required such that the particles do not interact
with the boundary condition applied at the bottom row. The connection between Æ and
b0 results from Æ determining how many particles lie on the boundary of the surface de-
scribing the disk surface. Thus, directly how many particles interact with the boundary
condition. This interaction is an open research direction. It is not pursued here as the
focus of this work is on GNN models.
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Algorithm L.1 Uniform particle discretization

Require: center x0 + [0, b0], radius R, ratio edge particles Æ=3, total particle count n
¡“ p1 `

?
5q{2 ô Golden ratio

µstep “ 2º¡ ô Step angle
r “ r0,1s ô Random float value from a uniform distribution
µoffset “ 2ºr ô Generate a random offset angle
b “roundpÆ?

nq
for i in n do

if i ° n ´ b then
r – R ô Assign radius at the surface

else
r – R

?
i ´ 0.5{

a
n ´pb ` 1q{2 ô Define a uniform radius

end if
µ– iµstep `µoffset ô Append random offset to the angle

x – x0 ` r

«
cosµ

sinµ

�

ô Compute Cartesian coordinates

end for
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GNS FIXED MODEL

HYPERPARAMETERS

The GNS publication came with it extensive empirical investigation of varying the model
hyperparameters and the resulting MSE value [85]. The focus of this thesis is not to re-
peat this hyperparameter investigation, but to leverage the formulated benchmark tests
to understand to what degree the GNS model can meet the benchmark tests. Table M.1
lists model parameters kept constant in Chapter 3.

Table M.1: Motivation for GNS fixed model hyperparameters

Hyperparameter Reason

message passing

architecture

The model uses Interaction Network. The choice of message passing architec-
ture is a research question alone [87, 96, 109].

message passing

steps

As this is inherently linked to the connectivity radius, it is worth investigating.
However, only if needed due to computational expense and already being investi-
gated by the GNS paper.

history size

Conflicting reasoning here. There are conflicting results between the GNS paper
and MeshGraphNets [103], which makes investigating it of interest. On the other
hand the GNS paper already investigates it and has conclusions.

sampling

strategy

This is a research question itself, with options presented by Rozemberczki et al.
[101].

neural network

architecture

Investigated in GNS paper and shows to have little effect on results beyond 128
neurons per layer @ 2 layers.

Adam optimizer Assumed an adequate optimizer for the problem.

learning rate

Exponential learning rate decay from 10´4 to 10´6 is assumed sufficient for the
problem.

loss function

The L2 norm is used commonly for learning complex physics [90, 103, 152]. No-
table variants do exist [86, 89].
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EXAMPLE TRAINING AND

VALIDATION CURVES

For completeness, example training and validation curves are computed for the GNS
model. These show that the training and validation lines reduce in unison over the
course of training. No evidence of over- or under- fitting is seen. This is expected, as
the training and validation sets are pulled from the same underlying distribution (ie the
same benchmark setup).

Figure N.1: Rolling disk experiment # 2.1
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Figure N.2: Rolling disk experiment # 2.7


	Summary
	Acknowledgements
	Notation
	Introduction
	Literature review
	State-of-the art Snow Modeling 
	Method Comparison and Physical Model Selection

	State-of-the-art Relevant Machine Learning 
	Recent Graph Neural Network Developments

	Conclusion

	Consistency, Stability and Convergence
	Elastic Bodies Benchmark Test
	Rolling Disk Benchmark Test
	Conclusion

	Model Investigation
	Normalizing Effects
	Loss Quantity
	Conclusion

	Discussion
	Future Research

	Conclusion
	titleReferences
	Neural Network Fundamentals
	Damage Based Constiutive Model for Snow
	Consistency, Stability and Convergence Definitions
	Graph Network-based Simulators
	Geometric Deep Learning Lens
	Snow Blocks Implementation
	Lagrangian Discretization Limitations
	Elastic Bodies Additional Results
	Elastic Bodies Rotational Energy
	Elastic Bodies Benchmark Variations
	Rolling Disk Additional Results
	Rolling Disk Discretization
	GNS Fixed Model Hyperparameters
	Example Training and Validation Curves

