

Delft University of Technology

Systemic risk and user-level performance in private P2P communities

Jia, AL; Rahman, R; Vinko, T; Pouwelse, JA; Epema, DHJ

DOI
10.1109/TPDS.2012.332
Publication date
2013
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Parallel and Distributed Systems

Citation (APA)
Jia, AL., Rahman, R., Vinko, T., Pouwelse, JA., & Epema, DHJ. (2013). Systemic risk and user-level
performance in private P2P communities. IEEE Transactions on Parallel and Distributed Systems, 24(12),
2503-2512. https://doi.org/10.1109/TPDS.2012.332

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TPDS.2012.332
https://doi.org/10.1109/TPDS.2012.332

1

Systemic risk and user-level performance in
private P2P communities

Adele L. Jia, Rameez Rahman, Tamás Vinkó, Johan A. Pouwelse, and Dick H. J. Epema.

Abstract —Many peer-to-peer communities, including private BitTorrent Communities that serve hundreds of thousands of users, utilize
credit-based or sharing ratio enforcement schemes to incentivize their members to contribute. In this paper, we analyze the performance
of such communities from both the system-level and the user-level perspectives. We show that both credit-based and sharing ratio
enforcement policies can lead to system-wide “crunches” or “crashes” where the system seizes completely due to too little or to too
much credit, respectively. We explore the conditions that lead to these system pathologies and present a theoretical model that predicts
if a community will eventually crunch or crash. We apply this analysis to design an adaptive credit system that automatically adjusts
credit policies to maintain sustainability. Given private communities that are sustainable, it has been demonstrated that they are greatly
oversupplied in terms of excessively high seeder-to-leecher ratios. We further analyze the user-level performance by studying the
effects of oversupply. We show that although achieving an increase in the average downloading speed, the phenomenon of oversupply
has three undesired effects: long seeding times, low upload capacity utilizations, and an unfair playing field for late entrants into swarms.
To alleviate these problems, we propose four different strategies, which have been inspired by ideas in social sciences and economics.
We evaluate these strategies through simulations and demonstrate their positive effects.

✦

1 INTRODUCTION

In decentralized collaborative systems, including peer-
to-peer (P2P) systems, providing incentives for user to
contribute is essential. The well-known P2P file-sharing
protocol BitTorrent owes its success to its Tit-For-Tat
(TFT) incentive policy, which works reasonably well in
fostering cooperation among downloaders (also known
as leechers). However, TFT does not provide incentives
for peers to remain in the system after their downloads
are complete in order to seed the entire file. Therefore,
peers are free to engage in “Hit and Run” behavior,
leaving immediately upon completing their downloads.

To provide an incentive for seeding, in recent years
there has been a proliferation of so-called private BitTor-
rent communities. These communities employ private
trackers that maintain centralized accounts and record the
download and upload activity of each user. They apply
policies to incentivize good overall upload / download
behavior. One such well-known policy is Sharing Ratio
Enforcement (SRE), in which each member is required
to keep its sharing ratio (the ratio between its total
amounts of upload and download) at least equal to a
threshold called the SRE threshold, which is set by the
community administrator. Community members whose
sharing ratios drop below the threshold are first warned
and then banned from downloading, or even expelled
from the community. Another such policy is the credit-
based policy, which requires each member to maintain a

• A. L. Jia, T. Vinkó, J. A. Pouwelse and D. H. J. Epema are with the
Parallel and Distributed Systems Group, Delft University of Technology,
the Netherlands.
E-mail: adele.lu.jia@gmail.com

• R. Rahman is with the Department of Computer Science, Iqra University,
Karachi, Pakistan.

positive credit (its total amount of upload minus its total
amount of download). In this paper we explore both the
system-level dynamics and the user-level performance
in communities adopting such policies.

Considering a private community as an economic sys-
tem, we analyze its system-level dynamics by studying
its potential systemic risk. In economics, systemic risk
is the risk of a collapse of an entire economic system
or market [15]. We find that in private communities, too
much credit distributed too evenly leads to a crash in
which peers hold abundant credit and are not willing to
contribute. Hence, the system seizes to zero throughput
containing only leechers. Conversely, too little credit
distributed over the peers leads to a crunch in which
peers do not have enough credit to download, leading
to a seized system containing only seeders1.

Even when crashes or crunches do nxot occur, i.e.,
when the system is sustainable, this only ensures that the
system is able to function, but not how well it functions.
Though many measurement studies [7], [17], [18], [24]
have shown that the SRE-based and credit-based policies
are very effective in boosting contribution levels in terms
of high seeder-to-leecher ratios and the corresponding
high downloading speeds, we argue that the abundant
supply of bandwidth also has several negative effects
such as excessively long seeding times that are often
unproductive. To explore this, we analyze the user-level
performance in sustainable private communities.

1. A real world example of the crash and crunch is the story of the
Capitol Hill Baby Sitting Co-op [13], which was a group of parents
who agreed to cooperate to babysit. A crunch happened when most
people wanted to save up coupons: they looked for an opportunity to
babysit but there was little demand. Later when more coupons were
issued a crash happened: most people felt they had enough coupons
so they didn’t want to babysit, leaving the system with huge demand
but no supply.

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2

The main contributions of this paper are:
1. We demonstrate using simulations that in private

communities credit crashes and crunches can occur, and
we identify the conditions that lead to these extreme
outcomes (Section 4);

2. We present a theoretical model that predicts whether
a system will crash, crunch, or be sustainable over a
defined time horizon (Section 5). Based on this model we
propose an adaptive credit policy that helps the system
to avoid crashes and crunches (Section 6);

3. We show that the users in sustainable private com-
munities, while achieving high system-wide download-
ing speeds, are forced to seed for excessively long times,
during which their upload capacity utilizations are quite
low (Section 7). Further, when the popularity of a swarm
decreases over time, peers that join the swarm not early
enough will have to seed for much longer durations
than peers who join (strategically) at the beginning of
the swarm (Section 10);

4. We propose and evaluate by means of simulations
four new strategies that alleviate these problems while
still maintaining a reasonable system-wide downloading
speed (Sections 8, 9, and 10).

We use private BitTorrent communities as an example,
but our analysis is applicable to any P2P system that
adopts contribution enforcement policies, by general-
izing the metrics for determining the credit and the
sharing ratio from the upload and download amounts
in a P2P file sharing system to any metrics representing
contribution and consumption. To the best of our knowl-
edge, this paper is the most comprehensive effort aimed
at studying the various issues with existing incentive
mechanisms employed by private P2P communities.

2 SUPPORT FROM REAL WORLD OBSERVA -
TIONS

To support our later analysis, we first present real world
observations of two private communities, CHDBits.org
[1] and Bitsoup.org [2]. CHDBits and Bitsoup both re-
quire the users to maintain sharing ratios larger than
the threshold of 0.7. The trackers of CHDBits collect in-
formation that is periodically reported by the BitTorrent
clients of its users, which is displayed in the form of
HTML pages available to only its users. We crawled
these trackers in May 2011. For each user in CHDBits,
we collected the information on its user profile page
including the upload and download amount, the seeding
time, and the sharing ratio. For each torrent, we collected
the information of its published date, and its numbers
of seeders and leechers at the time of snapshot. In total,
information on all the 31,547 registered users and 40,040
torrents was obtained. For Bitsoup, we use the traces
published in [5] that report the user activity of 84,007
users in 13,741 torrents during a period of two months.

2.1 The existence of over-seeding behavior

In previous work [10] we have shown that users who
always seed can, counter-intuitively, lead private com-

10
−1

10
0

10
1

10
20

0.2

0.4

0.6

0.8

1

Sharing ratio

C
D

F

Fig. 1. Over-seeding behavior: the CDF of the sharing
ratios of peers in CHDBits.org.

0 25 50 75 100 125 150 175 200
0

0.2

0.4

0.6

0.8

1

The number of seeders in swarms with no leechers

C
D

F

(a) The CDF of the number of
seeders in swarms with no leech-
ers

0 25 50 75 100 125 150 175 200
0

0.2

0.4

0.6

0.8

1

Seeder−to−leecher ratio

C
D

F

(b) The CDF of the seeder-to-
leecher ratio in swarms with at
least one leecher

Fig. 2. Oversupply in CHDBits swarms.

munities to poor performance due to a credit crunch, in
which a few peers accumulate much of the credit and
deprive others of the opportunity of downloading. This
implies that the user behavior can significantly influence
the system performance. Inspired by this finding, we first
demonstrate the user behavior as observed in the real
world, based on which we later analyze the system-level
and user-level performance of private communities.

In CHDBits, maintaining a sharing ratio slightly above
the SRE threshold is sufficient for a user to start down-
loading a new file. However, we observe that not all the
users behave like this. As shown in Fig. 1, more than 95%
of the users in CHDBits keep sharing ratios higher than
0.7 and more than 50% of the users keep them higher
than 2. This phenomenon of peers seeding more than
required and achieving sharing ratios that are (much)
higher than the SRE threshold has also been observed in
many other communities [17].

From the above observation we abstract two user
behaviors for our later analysis, lazy-seeding and over-
seeding. Lazy-seeding peers seed the minimum amount
required by the enforcement policies. They represent the
users who are download-oriented, i.e., who only seed
enough to maintain adequate sharing ratios or credit to
be able to start new downloads. On the other hand, over-
seeding peers are deposit-oriented, and always maintain
sharing ratios (much) higher than required. The behavior
of such peers may be triggered by various motivations
such as altruism, a desire to be part of the rich elite
of the community, or a habit of storing credit for the
future. In line with the terminology used in economics,
over-seeding peers can be understood as hoarders as their
behavior essentially amounts to hoarding credit.

3

0.001 0.01 0.1 1

0.2

0.4

0.6

0.8

1

Idle seeding time/total seeding time

C
D

F

Fig. 3. Unproductive seeding: The CDF of the fraction of
idle seeding time of peers with sharing ratios smaller than
1 in BitSoup.org.

2.2 The oversupply

The main motivation for implementing credit or SRE
policies is to close the gap between bandwidth demand
and supply as observed in public BitTorrent commu-
nities, where there is significantly more demand than
supply [18]. However, the presence of over-seeding peers
completely reverses the situation and in private commu-
nities, swarms tend to be extremely oversupplied.

At the time of the crawling, CHDBits had 33,041 active
swarms (with at least one leecher or one seeder), among
which 26,402 swarms (79.9%) had no leechers at all! As
shown in Fig. 2(a), 40% of the swarms with no leechers
still had at least 5 seeders, and 5% of these swarms
even had more than 20 seeders. For swarms with at
least 1 leecher, the seeder-to-leecher ratio (SLR) is quite
high: as shown in Fig. 2(b), 50% (5%) of these swarms
had an SLR of at least 6 (30). We see clearly that a
majority of the swarms are heavily oversupplied. In such
swarms, intuitively it is difficult for seeders to perform
any actual uploads due to the insufficient demand and
unsatisfied supply. We validate our speculation through
the following observation.

2.3 Unproductive seeding

It is clear that in order to achieve high sharing ratios,
peers need to spend considerable amount of seeding
time. In the case of over-seeding peers, long seeding
times are to be expected. However, we observe that
even many peers with small sharing ratios suffer from
excessively long seeding times, and a significant part of
their seeding time is spent idle without being able to
upload anything to others. As a consequence, they have
to wait for a long period until their sharing ratios are
high enough to start new downloads.

Fig. 3 shows the CDF of the fraction of idle seeding
time of peers with sharing ratios smaller than 1 in Bit-
Soup. We see that 10% of these peers spend at least half
of their seeding time idle. Note that Fig. 3 only shows the
fraction of idle seeding time. It can be conjectured that
the fraction of seeding time that is not completely idle
yet still yields very low upload speed, would be much
higher. We term this situation as unproductive seeding and
we hypothesize that it is due to the oversupply under
credit-based or SRE-based schemes.

Based on these observations, in later sections we an-
alyze the system-level credit dynamics and user-level
performance in private communities. Before that, we first
introduce the basic model in the following section.

3 MODEL DESCRIPTION

In this section we will explain the credit-based and SRE-
based incentive policies, and our model of communities
that employ one of these policies.

3.1 Credit-based versus SRE-based policies

The credit-based and SRE-based policies are essentially
very similar, in a way that they can be understood as
variations of each other. The idea behind both policies
is that every peer has to maintain at all times t a certain
relation between the total amount u(t) it has uploaded
and the total amount d(t) it has downloaded since it
entered the community until time t. The credit-based
policy requires users to keep non-negative credit, i.e.,
to ensure that u(t) − d(t) ≥ 0, while the SRE-based
policy requires users to keep a minimum sharing ratio
SR(t) = u(t)/d(t), i.e., to ensure that SR(t) ≥ α, where α
is the SRE threshold. Throughout this paper we assume
α ≤ 1, as most private communities do [2], [3]. When
α = 1 in the SRE policy, the SRE-based and credit-based
policies coincide.

By enforcing non-negative credit in the credit-based
policy, the exchanging of data by peers does not gen-
erate new credit, and the total amount of credit in the
community is always equal to zero (or to the sum of the
initial credits allocated to the peers by the community
administrator). In contrast, an SRE-based policy allows
users to have negative credit (i.e., to have u(t)−d(t) < 0,
which means that SR(t) < 1). Holding negative credit
increases the amount of credit among the peers with
positive credit in the system—in other words, by holding
negative credit a user is essentially minting credit. More
precisely, the total credit minted by a user in an SRE-
based community with SR(t) < 1 until time t is:

d(t) − u(t) = (1 − SR(t))d(t), (1)

which is bounded by (1−α)d(t). As the sharing ratios of
peers fluctuate, SRE-based communities hold a dynamic
amount of credit circulating in the system.

3.2 The basic model

We consider a community that is either credit-based
or SRE-based. The community comprises a set of s
swarms2 each associated with a file of size F (expressed
in number of pieces or units), and a set of N peers

2. We assume the number of swarms to be large enough that even
with no injection of new swarms, users still have enough swarms to
download from.

4

each with upload capacity U .3 We assume no limit on
the download capacity of peers. The download model
follows the TFT mechanism in BitTorrent, with seeders
uploading units to leechers and leechers exchanging
units with each other. In reality, a peer can participate
in multiple swarms simultaneously, with its bandwidth
shared among all the swarms. However, since the shar-
ing ratio is aggregated over all the swarms, we assume
that at any time a peer only participates in one swarm,
either as a leecher or a seeder.

The operation of the model is based on cycles rep-
resenting units of time. In every cycle, a peer either
uploads and/or downloads data or is idle, and at the
end of every cycle, it may switch swarms. Peers attempt
to download all s files in random order.

In a credit-based community, every peer p is initialized
with an amount Cp of credit, and in an SRE-based
community, every peer is initialized with a download
amount equal to F and a sharing ratio that is a uniformly
random number between 0 and 2. A peer can and will
only start leeching its next file if its credit or its sharing
ratio is at least equal to its target threshold, otherwise it
continues seeding the current file.

Based on real-world observations, we implement two
user behaviors: lazy-seeding and over-seeding (see de-
tails in Section 2.1). The target threshold of a lazy-
seeding peer is an amount F of credit in a credit-based
community (enough to start and complete leeching a
new file) and a sharing ratio equal to the SRE threshold
in an SRE-based community. The condition for a lazy-
seeding peer p at time t to stop seeding is cp(t) ≥ 0,
with:

cp(t) =

{

up(t) − dp(t) + Cp − F credit-based,
up(t) − αdp(t) SRE-based,

(2)

where up(t) and dp(t) represent the total amounts of
upload and download of peer p. Over-seeding peers
behave in a similar way, but in both credit-based and
SRE-based communities they aim at large sharing ratios.
Throughout this paper we choose a sharing ratio of 2
as the default target threshold for over-seeding peers.
We have run several tests using different values for the
threshold and the results show that the tendency of the
problem is the same.

4 SYSTEM-LEVEL PERFORMANCE : THE
CRASH AND CRUNCH

In this section, we perform a number of simulations
to explore the credit dynamics in private communities,
focusing on analyzing the conditions under which a
community will crash, crunch, or be sustainable. We
define a crash as a situation in which due to credit
abundance, peers are not incentivized to contribute and

3. Since crash and crunch are due to credit abundance and shortage,
respectively, bandwidth heterogeneity does not change whether a
system will crash or crunch. However, it does influence the user-level
performance, for which we examine both bandwidth homogeneous
and heterogeneous systems in Section 7.

TABLE 1
Sustainability of the credit-based system.

frac.of rich avg.throughput avg.frac.of final
at start (std.dev) seeders (std.dev) state

0.1 0.000 (0.000) 1.000 (0.000) crunch
0.3 0.218 (0.001) 0.953 (0.005) sustain
0.5 0.777 (0.002) 0.769 (0.018) sustain
0.7 0.968 (0.004) 0.506 (0.018) sustain
0.8 0.587 (0.478) 0.249 (0.204) sustain/crash
0.9 0.001 (0.000) 0.000 (0.000) crash

the system completely seizes up, providing no upload or
download to any peers. We define a crunch as a situation
in which due to credit shortages, peers cannot afford new
downloads and the system seizes providing no upload
or download to any peers. We define a community to be
sustainable if it does not crash or crunch.

4.1 Experimental setup

We consider a closed system without new peer arrivals.
Peer arrivals bring credit into the system and make
it difficult to identify whether the underlying credit
dynamics is due to the enforcement policy or to the new
credit. In fact, in reality many private communities are
(nearly) closed [1], [3]. For example, CHDBits hardly has
any open registration and new members can only be
admitted by extremely restricted invitation.

The simulation is based on the basic model introduced
in Section 3, with N = 1000, s = 100, F = 10 units,
and U = 4 units per cycle. The small file size means
the simulation runs produce results at a large scale of
granularity. We also performed runs with F = 100 and
found no significant difference in results. We choose α =
0.7 as the default value of the SRE threshold4, as this
value is used in many private communities, e.g., [2], [3].
For each experiment we perform 10 independent runs,
and each run is executed for 2000 cycles.

We consider three performance metrics, namely the
average throughput, the fraction of seeders, and the
state of the system at the end of the simulation. The
throughput is expressed as the total amounts of units of
data exchanged in the system over an entire run, normal-
ized to the highest one observed in all the experiments.
The state of the system indicates whether the system
crunches, crashes or sustains.

4.2 Credit-based: constant credit

As discussed in Section 3, the amount of credit in a
credit-based community is always equal to the initial
credit allocated by the community administrators. In
this experiment, we vary the fraction of peers who are

4. We have run several tests using different values for α. Results
show that the tendency of the problem stays the same, but with
different speeds of entering crash or crunch.

5

given an initial credit of F (and other peers are given
zero credit), which we call rich peers, thus generating
different levels of credit in the system.

4.2.1 Populations of lazy-seeding peers
We first show the results of the system containing only
lazy-seeding peers in Table 1. When the fraction of rich
peers is initialized to 0.3, 0.5, and 0.7, we see sustainable
outcomes with increasing throughput and a smaller
number of seeders. We have run extended runs up to
20,000 cycles and find that the sustainable outcomes are
maintained. This is intuitive since as the amount of credit
in the system increases, fewer peers are poor, and hence
more exchange of data can occur.

In the crunch state, where only 10% of peers are
initialized as rich, the system is composed of all seeders
by the end of the run, and hence, no exchange of data
can occur. Conversely, in the crash state, where 90% of
peers are initialized as rich, all peers are leechers by the
end of the run, which again means no exchange of data.
Inspection of individual runs shows that crunches and
crashes happen quickly—within the first ten cycles or
so. This is reflected in the low (almost zero) throughput
under crash and crunch states.

It is interesting to see that when the initial fraction of
rich peers is set to 0.8, both sustain and crash outcomes
can occur. This is reflected in the high variance of the
throughput. Here we are very close to the threshold
leading to a crash and we find path dependency based
on initial random conditions leading to either a high
sustainable throughput, or a sudden crash otherwise.

4.2.2 Populations containing over-seeding peers
We find that introducing any number of over-seeding
peers into the system eventually leads to a crunch, and
the speed of the crunch depends on the number of over-
seeding peers. This is intuitive since in our experiments,
over-seeding peers seed (to hoard credit) until they have
a sharing ratio larger than 2. This means that as the simu-
lation progresses, the over-seeding peers eventually hold
all the credit in the system and a crunch is inevitable.

4.3 SRE-based: dynamic credit

As discussed above, a credit-based community keeps a
delicate constant amount of credit which, if not properly
set, will lead the system to crunch or crash. On the other
hand, as stated in Section 3, an SRE-based system keeps
dynamic credit by allowing peers with sharing ratios less
than one to mint some credit. Hence, essentially lazy-
seeding peers in an SRE-based community inject credit
into circulation, and as in a credit-based community,
over-seeding peers absorb credit from circulation.

Intuitively, an SRE-based system cannot be sustainable
if all peers are lazy-seeding: soon they will inject too
much credit into circulation, which eventually leads the
system to a crash. However, as we have shown in Section
2.1, in private communities over-seeding peers always

TABLE 2
Sustainability of the SRE-based system.

frac.of over avg.throughput avg.frac.of final
-seeding peers (std.dev) seeders (std.dev) state

0.1 0.0093 (0.0012) 0.0000 (0.0000) crash
0.2 0.2046 (0.2103) 0.0037 (0.0082) crash/sustain
0.3 0.8910 (0.0041) 0.1487 (0.0141) sustain
0.4 0.9865 (0.0090) 0.4212 (0.0243) sustain
0.5 0.1436 (0.0083) 1.0000 (0.0000) crunch

exist and they absorb credit from circulation. Hence, in
an SRE-based system with over-seeding peers, the effect
of credit-injecting by lazy-seeding peers can be alleviated
and the system might eventually be sustainable.

We run several simulations to validate the above
hypotheses. We consider an SRE-based system in which
we vary the fraction of over-seeding peers to assess
their influence on the credit dynamics. Table 2 shows
the simulation results. Consistent with our intuition, a
certain fraction of over-seeding peers (0.3 and 0.4 in our
experimental settings) does lead the SRE-based commu-
nity to be sustainable. A too small or a too large fraction
of over-seeding peers (0.1 and 0.5 in our experimental
settings), on the other hand, eventually leads the system
to crash or crunch.

5 PREDICTING CRASHES AND CRUNCHES

In this section, we will derive (approximate) conditions
for predicting whether the system will crunch or crash.

In the model introduced in Section 3, suppose that at
time t, a swarm ` has x`(t) leechers and y`(t) seeders.
Denoting the fraction of the file that a leecher x`

i still
has to download by p`

i(t), x`
i needs to spend an amount

α(1− p`
i(t))F of credit to finish its download. We define

L`
i(t) and R`

i(t) as the sets of peers that have fewer or
more pieces of the file than peer i, respectively (for a
seeder y`(t), L`

i(t) consists of all leechers and R`
i(t) is

empty). We assume that peer i only downloads from
peers in R`

i(t), and only uploads to peers in L`
i(t) (this is

not quite true in BitTorrent, which makes the conditions
that we will derive approximations). We further assume
that the credit paid by peer i is equally shared by all
peers in R`

i(t). Hence, if the situation (in terms of Li(t)
and Ri(t)) does not change from time t onward, peer
i can earn an amount Q`

i(t) of credit from the peers in
L`

i(t), where

Q`
i(t) :=

∑

j∈L`
i
(t)

(1 − p`
j(t))F

|R`
j(t)|

. (3)

Let X`(t) and Y`(t) respectively represent the sets of
leechers and seeders that, assuming that the situation
does not change from time t, are able to achieve their
target thresholds and start new downloads. Together
with Eq. (2), we have:

X`(t) :=
{

x`
i : cx`

i
(t) + Q`

i(t) − α(1 − p`
i(t))F ≥ 0

}

,

Y`(t) :=
{

y`
j : cy`

j
(t) + Q`

j(t) ≥ 0
}

.
(4)

6

Now we estimate the remaining download time of
leechers and the remaining seeding time of seeders for
the current file. Here we assume that during the upload
process, leechers and seeders alike upload with their
full capacity U and distribute their upload capacity
equally across all the leechers they are uploading to. The
estimated remaining download time T `

i (t) of leecher x`
i

can be expressed as

Tx`
i
(t) :=

(1 − p`
i(t))F

∑

k∈R`
i
(t)

U

|L`
k
(t)|

. (5)

Similarly, the estimated remaining time for a seeder y`
j

to achieve its target threshold and stop seeding is:

Ty`
j
(t) := max{0,−cy`

j
(t)}/U, (6)

where −cy`
j
(t) (if positive) represents the credit y`

j still

needs to earn to achieve its target threshold.
We can now formulate the condition for a crunch to

happen in the system as the condition that the sets X`(t)
and Y`(t) are both empty for all swarms ` at some time
t, because that no leechers or seeders are able to earn
enough credit to leave their swarms. As a consequence,
by the time that the last leecher finishes its download,
there will be no exchange of credit in the whole system.

In order to formulate the condition for a crash to
happen, let P`(t) := {x`

i : x`
i /∈ X`(t)} be the set of

leechers in swarm ` who will need to seed after finishing
their current downloads in order to achieve their target
thresholds. Then the condition for a crash to happen is

|Y`(t)| = y`(t) and min
k∈P`(t)

Tx`
k
(t) > max

j∈Y`(t)
Ty`

j
(t), (7)

for all swarms ` at some time t. To see this, note that
the system crashes if there are no seeders. The first part
of the condition above says that all the seeders in the
system will be able to earn enough credit to leave their
swarms. If in addition none of the leechers in P`(t) can
finish its download before the last existing seeder leaves
the swarm and if this happens to all the swarms (the
second part of the condition), then the whole system will
end up with no seeders and seize completely, i.e., a credit
crash will occur.

6 ADAPTIVE CREDIT FOR SUSTAINABILITY

Based on the experimental and theoretical results of
Sections 4 and 5, we have designed a novel adaptive credit
intervention mechanism to avoid crashes and crunches.
At each cycle, we check the conditions for crunches
and crashes derived in Section 5, thus obtaining early
warnings for potential crunches or crashes. When we
find that the system is destined for a crunch, a new credit
policy called freeleech5 will be applied. As a consequence,
leechers do not pay any credit for downloading, but

5. Freeleech is sometimes also used in existing private communities
such as CHDBits, but in a more empirical manner.

TABLE 3
System sustainability with adaptive credit.

frac.of rich avg.throughput avg.frac.of final
at start (std.dev) seeders (std.dev) state

0.1 0.234 (0.026) 0.948 (0.012) sustain
0.3 0.311 (0.004) 0.941 (0.005) sustain
0.5 0.782 (0.002) 0.769 (0.009) sustain
0.7 0.968 (0.001) 0.512 (0.024) sustain
0.8 0.976 (0.001) 0.535 (0.015) sustain
0.9 0.995 (0.002) 0.575 (0.027) sustain

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

cycles

throughput (normalised)
total credit (normalised)

(a) Initially 10% Rich Peers.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

cycles

(b) Initially 90% Rich Peers.

Fig. 4. The normalized throughput and credit in the
system with the adaptive credit intervention mechanism.

seeders and other uploaders are still credited for upload-
ing. Hence, new credit is injected into the system. Credit
injection for stimulating the economy has often been
used successfully in real world situations [22]. When we
find that the system is destined for a crash, it applies
a freeseed policy in which seeding peers (and uploading
leechers) do not receive any credit for uploading, but
leechers still pay credit for downloading. Hence, credit
is removed from the system.

We use the credit-based system as an example to
evaluate our strategies, but the same analysis can be
applied to an SRE-based system. The experimental setup
is the same as in Section 4.

6.1 Populations of lazy-seeding peers

Table 3 shows the performance of our adaptive credit
intervention mechanism in a credit-based system con-
taining only lazy-seeding peers. All runs produce a
sustainable outcome, including those initialized with
fractions of 0.1 and 0.9 of rich peers, which previously
led to crunches and crashes when the mechanism is not
applied (see Section 4). This indicates that the model in
Section 5 gives early enough warning for the adaptive
credit policy to avoid crashes and crunches.

Fig. 4 shows the results of two runs initialized with
fractions of 0.1 and 0.9 of rich peers. A crunch is avoided
in Fig. 4.(a) via the activation of freeleech at several
cycles—note the increase in credit over time. A crash
is avoided in Fig. 4.(b) via the activation of freeseed in
the initial cycles—note the decreasing credit over time.

6.2 Populations containing over-seeding peers

As stated in Section 4, any number of over-seeding peers
in a credit-based community will eventually lead to a

7

400 600 800 1000 1200 1400
0

0.1

0.2

cycles

th
ro

ug
hp

ut
 (

no
rm

al
is

ed
)

with adaptive credit
without adaptive credit

Fig. 5. The normalized throughput with and without the
adaptive credit intervention mechanism (50% Rich Peers
and 1% over-seeding peers).

crunch, due to the increasing amounts of credit they
hoard. In order to test whether our adaptive credit inter-
vention mechanism can deal with this extreme condition,
we ran several simulations in which a small subset (1%)
of the population are over-seeding peers.

Fig. 5 shows the throughput in the system with and
without the adaptive credit intervention mechanism. As
can be seen, without the mechanism, the system eventu-
ally crunches, whereas with the mechanism, the system
is sustainable. However, the throughput of the system in
the latter case is still very low. Although new credit is
injected each time a crunch is predicted, this additional
credit is eventually collected by the over-seeding peers
and the process repeats. We believe that this is due to
the fact that the adaptive credit intervention mechanism
does not attempt to optimize the system, but rather
only to avoid a crunch. In later sections we provide a
more thorough analysis on optimizing the system, i.e.,
improving the user-level performance.

6.3 Discussion

The aim of adopting the freeleech and freeseed policies
is to avoid crunches and crashes, which is actually
achieved, but at the potential cost that the original
incentive for contributions is temporarily suspended.
It could be argued that this could lead to reduced
performance if users learn to game the system by only
downloading during freeleech periods and not seeding
during freeseed periods.

A refinement that will help preserve incentives even
during freeseed and freeleech periods, is to reduce the
freeseed and freeleech “tax” amount. Then, rather than
having leechers not pay anything at all for downloading
and seeders not being credited for uploading, they can
be charged or credited for a fraction, say 50%. Any value
more than 0% still provides incentives for contribution.
Furthermore, the taxation amount can also be variable,
and can be applied in a continuous fashion, rather than
getting triggered at the extreme conditions of crash and
crunch. We explore this later in Section 8.

Until now, we have analyzed the sustainability of a
P2P community that adopts a credit-based or SRE-based
policy. However, the sustainability of the system only
ensures that the system is able to function, but does
not guarantee it will function well (recall Fig. 5 for an

example of a sustainable system with low performance).
To explore this, in the following sections we analyze and
improve the user-level performance in sustainable P2P
communities. There, we take sharing ratio enforcement
as an example, but our analysis is also applicable to the
credit-based policy, since it is only a special case of SRE
with a threshold equal to one.

7 USER-LEVEL PERFORMANCE : THE POSI-
TIVE AND NEGATIVE EFFECTS OF SRE
In this section we show the user-level performance under
SRE. Based on simulations we examine the influence of
several parameters and we exhibit the main reasons for
the positive and negative effects of SRE.

7.1 Experimental setup

In Section 4 we have shown that in closed private
communities crashes or crunches easily happen. It is
not worthwhile to analyze the user-level performance
in an unsustainable system. Hence, in this section we
consider an open system with peer arrivals. As stated
in Section 3.1 and 4.3, new peers bring credit into the
system and the increase of the credit level alleviates the
potential systemic risk. In reality, there are many private
communities with open registration, e.g., BitSoup [2],
and they can be considered as open systems.

We use the same simulator and consider the same
initial settings as in Section 3, except that now we
consider 100 initial peers and 5 swarms in the system.
In each cycle, new peers arrive according to a certain
arrival rate (1 or 10 peers per cycle in our simulations)
and they join a random swarm to download. After the
first download, they maintain a sharing ratio above their
target thresholds. Each peer (with upload capacity 1 unit
per cycle) attempts to download all the 5 files (with
size of 10 units) in the system, in random order. We
consider a bandwidth-homogeneous BitTorrent system
unless otherwise indicated. We run the simulation for
2000 cycles and keep a record of peers who finish
downloading all the files by the end of the simulation.
The results represent the average of 5 runs.

7.2 The imbalance of bandwidth supply and demand

In our first experiment we vary the fraction of over-
seeding peers, thus generating different levels of over-
supply. As shown in Fig. 6(a), with the fraction of over-
seeding peers increasing from 0.1 to 0.9, the average
downloading speed is increased nearly 10 times. How-
ever, the average upload capacity utilization is signif-
icantly deteriorated and the seeding time is increased
dramatically. With 50% over-seeding peers, on average
each peer can only utilize less than 20% of its upload
capacity (Fig. 6(b)). With this low upload capacity uti-
lization, all peers have to stay for extremely long times
(compared to their downloading times) to achieve the
sharing ratio required by SRE (Figs. 6(c) and 6(d)). In our

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

Fraction of over−seeding peersA
vg

. d
ow

nl
oa

d
sp

ee
d

(u
ni

t p
er

 c
yc

le
)

Peer arrival rate = 1
Peer arrival rate = 10

(a) Downloading speed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Fraction of over−seeding peers

A
ve

ra
ge

 u
pl

oa
d

ca
pa

ci
ty

 u
til

iz
at

io
n

Peer arrival rate = 1
Peer arrival rate = 10

(b) Upload capacity utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

Fraction of over−seeding peers

A
ve

ra
ge

 s
ee

di
ng

 ti
m

e
(c

yc
le

)

LSP; peer arrival rate = 1
LSP; peer arrival rate = 10

(c) Seeding time of LSP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

Fraction of over−seeding peers

A
ve

ra
ge

 s
ee

di
ng

 ti
m

e
(c

yc
le

)

OSP; peer arrival rate = 1
OSP; peer arrival rate = 10

(d) Seeding time of OSP

Fig. 6. User-level performance under different fractions of lazy-seeding peers (LSP) and over-seeding peers (OSP),
and different peer arrival rates.

experiment with 50% over-seeding peers, the seeding
time of a lazy-seeding peer is nearly 200 times more than
its downloading time, and for over-seeding peers, it even
increases to over 400 times.

On the other hand, with a smaller peer arrival rate
(which means a smaller demand) the imbalance and
hence the performance, are even worse. As shown in
Fig. 6, when the peer arrival rate decreases from 10
to 1 peer per cycle, with the same fraction of over-
seeding peers, the average upload capacity utilization
is decreased 2-3 times and the average seeding time is
increased 2-5 times.

Our simulation results show that, under SRE, the exis-
tence of over-seeding peers makes the swarms oversup-
plied. As a consequence, with a relatively large fraction
of over-seeding peers and a small peer arrival rate, peers
have to seed for extremely long times, though their
seedings are not very productive. This is consistent with
the theoretical results in our previous work [12].

7.3 The influence of the SRE threshold

Many communities [2], [3] use 0.7 as the default value of
the SRE threshold, empirically or intuitively. This section
complements the necessary analysis behind the choice.

Fig. 7 shows that, which is consistent with our in-
tuition, when the SRE threshold is increased from 0.2
to 0.9, the upload capacity utilization decreases while
the average seeding time is increases. Further, the effect
SRE is limited when the fraction of over-seeding peers
is small. Surprisingly, in Fig. 7(a) we see that when
there are 10% over-seeding peers, the upload capacity
utilization is increased when the SRE threshold increases
from 0.2 to 0.8, and then drops when it further increases
to 0.9. We believe this is due to, what we term as, the
seeder’s dilemma: with either a very small or a very large
number of seeders, peers cannot well-utilize their upload
capacities. The former case is due to the piece availability
problem: When there are not enough seeders, leechers
have to exchange data with each other, which is not
always possible since they only hold a part of the entire
file. The latter case is due to the insufficient download
demand. Without enough demand, though seeders have
the will, they cannot find enough leechers to upload to.

7.4 The discrimination against peers with limited
capacities

In this subsection, we analyze SRE’s effects in
bandwidth-heterogeneous systems. More specifically, we
simulate a system with two classes of peers, namely slow
and fast peers. All the other settings are the same as in
previous experiments, except that the upload capacity
of slow peers is 1 unit per cycle and for fast peers
it is 4 units per cycle. We consider two scenarios in
our simulation, i.e., without and with 30% over-seeding
peers. As we show previously, 30% over-seeding peers
is typical to demonstrate the effects of SRE. We change
the fraction of fast peers from 0.1 to 0.9 and the results
are shown in Fig. 8.

We see that when there is no over-seeding peers fast
peers barely need to do any seeding work, but their exis-
tence increases the seeding times of slow peers (Fig. 8(a)).
This result is consistent with our previous work [11]
where we show that high-capacity peers manage to
upload considerably more during the leeching process,
and thus need to seed for shorter times. When the
fraction of over-seeding peers is increased from 0 to 30%,
slow peers need to seed 200 to 500 cycles more than fast
peers, while originally they only needed to seed 20 cycles
more. In general, slow peers need to seed 4 times as long
as fast peers, which is the same as the ratio between the
upload capacity of a fast and a slow peer. This result is
also consistent with our previous theoretical results [12].

Meanwhile, Fig. 8(b) shows that the upload capacity
utilizations of both fast and slow peers do not change
much with the fraction of fast peers. However, when
there is no over-seeding peer, slow peers have better
upload capacity utilizations. We believe this is due to the
fact that slow peers stay as seeders longer than fast peers.
Normally seeders can achieve better upload capacity
utilizations, since they are not influenced by the piece
availability problem.

While fast and slow peers both put all their effort
in participating in the community, slow peers need to
seed longer. We term this as SRE’s discrimination against
low-capacity peers. Clearly, the long seeding time, the
low upload capacity utilization, and the discrimination
against low-capacity peers severely deteriorate the user-
level performance in private communities. In the follow-
ing sections, we propose several strategies to alleviate

9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

SRE threshold

A
ve

ra
ge

 u
pl

oa
d

ca
pa

ci
ty

 u
til

iz
at

io
n

10% OSP
50% OSP

(a) Upload capacity utilization

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

SRE threshold

A
ve

ra
ge

 s
ee

di
ng

 ti
m

e
(c

yc
le

)

LSP; 10% OSP
LSP; 50% OSP

(b) Seeding time of LSP

Fig. 7. Influence of the SRE threshold under different
fractions of lazy-seeding peers (LSP) and over-seeding
peers (OSP).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

Fraction of fast peers

A
ve

ra
ge

 s
ee

di
ng

 ti
m

e
(c

yc
le

)

fast peers, w/o OSP
fast peers, 30% OSP
slow peers, w/o OSP
slow peers, 30% OSP

(a) Seeding time

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Fraction of fast peersA
ve

ra
ge

 u
pl

oa
d

ca
pa

ci
ty

 u
til

iz
at

io
n

fast peers, w/o OSP
fast peers, 30% OSP
slow peers, w/o OSP
slow peers, 30% OSP

(b) Upload capacity utilization

Fig. 8. SRE’s discrimination under different fractions of
over-seeding peers (OSP).

these problems.

8 DESCRIPTION OF PROPOSED STRATEGIES

Inspired by ideas in social sciences and economics, in this
section we propose four strategies aimed at alleviating
the negative effects of incentive policies used in private
BitTorrent communities, which require only a minor
revision of those policies.

8.1 Negative taxation

The idea of negative taxation is that people earning below
a certain amount receive supplemental pay from the
government [9]. We take inspiration from the concept
of negative taxation and devise a new strategy in which
the upload amount of a peer is calculated as its actual
upload amount multiplied by coefficient T defined as:

T = max{min{1/SR, θ}, 1}, (8)

where SR represents the sharing ratio of a peer and θ > 1
represents the maximum negative taxation degree.

It is easy to see that a) when SR ≥ 1, T = 1, b) when
1/θ ≤ SR < 1, T = 1/SR > 1, and c) when SR ≤ 1/θ,
T = θ > 1. By using this new strategy, to gain the same
sharing ratio, poor peers (SR < 1) seed less and rich
peers (SR ≥ 1) seed the same amount as when using
the original SRE. The maximum negative taxation degree
controls the maximum negative taxation a peer can get,
which alleviates the threat of free-riding.

8.2 Welfare for the rich

The term welfare for the rich is used to describe the
bestowal of grants and tax-breaks to the wealthy [16].
Taking inspiration from this concept, we devise another
strategy to alleviate the long seeding time, i.e., accelerat-
ing the seeding process of an over-seeding peer by giving
welfare to it. The upload amount of a peer is calculated
as its actual upload amount multiplied by coefficient W
defined as:

W = max{min{SR, ϕ}, 1}, (9)

where ϕ > 1 represents the maximum welfare degree.
By using this strategy, to gain the same sharing ratio,

poor peers (SR < 1) seed the same amount and rich
peers (SR ≥ 1) seed less than when using the original
SRE. The maximum welfare degree controls the maxi-
mum welfare a peer can get, to prevent the over-seeding
seeders from achieving their desired sharing ratios too
quickly.

Community administrators can choose different val-
ues for θ and ϕ.In our simulation we choose θ = ϕ = 2.

8.3 Remuneration according to effort

In participatory economics, the maxim of remuneration
according to effort has been introduced [4]. Under this
scheme, people are paid according to the effort they put
in rather than the amount of contribution. Taking inspi-
ration from this concept, we propose the third strategy
which takes into account the effort of users in terms of
their seeding times. Previous studies have shown that
the effort-based incentive policy applied in the leeching
process improves the system-wide performance [21]. We
expect the same improvement when this effort-based
methodology is applied in a private community.

More specifically, by applying SRE with counting seed-
ing time, a peer can start a new download when either
it has achieved the SRE threshold or it has seeded for a
sufficiently long time. In this way, peers that are stuck
in long seeding process in oversupplied swarms can
leave and perform further downloads. The new demand
generated by these peers helps to balance the bandwidth
demand and supply in the system.

Clearly, the definition of “a sufficiently long period”
is quite vague. Community administrators may choose
various values, like 4 hours, 10 hours, or one day. In
our simulations, we simply assume that it equals the
size of the shared file divided by the upload capacity of
a peer. Note that since over-seeding peers are deposit-
oriented, they still start new downloads only when they
have achieved their desired sharing ratios.

8.4 Supply-based price

According to the law of supply and demand, if the
demand remains constant and the supply increases,
the price of an item decreases and vice versa. For an
insightful discussion of the relationship between supply,

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Fraction of over−seeding peersA
ve

ra
ge

 u
pl

oa
d

ca
pa

ci
ty

 u
til

iz
at

oi
n

SRE
SRE w/ Welfare for the rich
SRE w/ Negative taxation
SRE w/ Counting ST
SRE w/ Supply−based Price

(a) Upload capacity utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

Fraction of over−seeding peers

A
ve

ra
ge

 S
ee

di
ng

 T
im

e
(c

yc
le

)

LSP, SRE
LSP, SRE w/ Welfare for the rich
LSP, SRE w/ Negative taxation
LSP, SRE w/ Counting ST
LSP, SRE w/ Supply−based Price

(b) Seeding time of LSP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2000

4000

6000

8000

Fraction of over−seeding peers

A
ve

ra
ge

 S
ee

di
ng

 T
im

e
(c

yc
le

)

OSP, SRE
OSP, SRE w/ Welfare for the rich
OSP, SRE w/ Negative taxation
OSP, SRE w/ Counting ST
OSP, SRE w/ Supply−based Price

(c) Seeding time of OSP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

Fraction of over−seeding peersA
vg

. d
ow

nl
oa

d
sp

ee
d

(u
ni

t p
er

 c
yc

le
)

SRE
SRE w/ Welfare for the rich
SRE w/ Negative taxation
SRE w/ Counting ST
SRE w/ Supply−based Price

(d) Downloading speed

Fig. 9. Strategy performance in alleviating the eternal seeding problem under different fractions of lazy-seeding peers
(LSP) and over-seeding peers (OSP).

demand and price, we refer the reader to [6]. We take in-
spiration from this insight to devise our fourth strategy,
i.e., SRE with supply-based price. The basic idea is that
the price a downloader needs to pay for downloading
one unit of data should be inversely correlated with the
supply in the swarm, i.e., the higher the seeder-to-leecher
ratio, the less a downloader should pay and vice versa.
In this way, in an oversupplied swarm, a leecher pays
less and potentially achieves a higher sharing ratio by
the end of its leeching process. Hence it is less likely for
it to have an insufficient sharing ratio and thus stay as a
seeder, which indirectly solves the oversupply problem
in this swarm. On the other hand, in an undersupplied
swarm, a leecher pays more and potentially achieves a
smaller sharing ratio, which makes it stay as a seeder
with a higher possibility than using the original SRE.
In this way, the undersupply problem is also alleviated
indirectly.

Here, we use the seeder-to-leecher ratio (SLR) as a met-
ric to decide whether a swarm is oversupplied or under-
supplied. Community administrators can set different
SLR values as the threshold, but we simply assume that
when SLR ≥ 1 the swarm is oversupplied and when
SLR < 1 the swarm is undersupplied. The download
amount of a peer is calculated as its actual download
amount multiplied by coefficient P defined as:

P = max{1/SLR, φ}, (10)

where φ represents the lowest price for downloading one
unit of data, which is used to alleviate the threat of free-
riders. Community administrators can choose different
values for the lowest prices. In our simulation we choose
φ = 0.1.

Note that the free-leech strategy we proposed in Sec-
tion 6 to solve credit crunch is an extreme case of SRE
with supply-based price, with price equal to 0.

9 STRATEGY EVALUATION

In this section we evaluate the performance of the new
strategies proposed in Section 8. The experimental setup
is the same as in Section 7 and results are shown in
Figs. 9 and 10.

9.1 Higher upload capacity utilization and shorter
seeding time

From Fig. 9 we see that by using any of the new strate-
gies, peers achieve higher upload capacity utilizations,
as well as smaller seeding times. As shown in Fig. 9(a),
when there are 40% over-seeding peers the upload ca-
pacity utilization is increased 2-3 times compared to
using the original SRE. While all other strategies have
decreasing upload capacity utilizations with an increas-
ing fraction of over-seeding peers, SRE with supply-
based price performs stably. Given any fraction of over-
seeding peers, on average peers can utilize at least 40%
of their total upload capacities while for the original SRE
it drops to less than 1% when there are 90% over-seeding
peers.

With the improved upload capacity utilization, the
average seeding time is reduced significantly. As shown
in Figs. 9(b) and 9(c), when there are 60% over-seeding
peers, SRE with welfare for the rich reduces at least 10%
of the original seeding time for both lazy-seeding and
over-seeding peers. SRE with negative taxation deals
with lazy-seeding peers directly, hence it achieves an
even better performance in reducing the seeding time
of lazy-seeding peers, which is a 50% improvement
compared to that achieved by SRE with welfare for the
rich.

SRE with counting seeding time further relieves lazy-
seeding peers from the long seeding process in a more
effective manner. As shown in Fig. 9(b), they only need
to seed for a negligible time compared to when using the
original SRE, or either of the above two new strategies.
Interestingly, by applying SRE with counting seeding
time, the seeding time of over-seeding peers is also
decreased (Fig. 9(c)), even though they still desire the
high sharing ratios as when using the original SRE. We
believe this is due to the fact that with lazy-seeding peers
finishing their seedings sooner, the upload competition
is reduced and over-seeding peers can achieve their
desired threshold more quickly. Meanwhile, when the
lazy-seeding peers are released from the seeding process,
they join other swarms as new leechers, which indirectly
alleviates the oversupply in those swarms.

Finally, the best performance in reducing the seeding
time for all peers is achieved by SRE with supply-based
price. The seeding time of both lazy-seeding and over-

11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

Fraction of fast peers

A
ve

ra
ge

 s
ee

di
ng

 ti
m

e
(c

yc
le

)

FP, SRE
FP, SRE w/ Negative taxation
FP, SRE w/ Welfare for the rich
FP, SRE w/ Counting ST
FP, SRE w/ Supply−based Price

(a) Seeding time of fast peers (FP)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

Fraction of fast peers

A
ve

ra
ge

 s
ee

di
ng

 ti
m

e
(c

yc
le

)

SP, SRE
SP, SRE w/ Negative taxation
SP, SRE w/ Welfare for the rich
SP, SRE w/ Counting ST
SP, SRE w/ Supply−based Price

(b) Seeding time of slow peers
(SP)

Fig. 10. Strategy performance in alleviating discrimination
with 30% over-seeding peers (OSP).

seeding peers is reduced by three orders of magnitude.
In our view the main reason for the success of SRE
with supply-based price is that it adaptively adjusts the
supply and demand in a swarm. When the swarm is
oversupplied, the price for downloading one unit of data
is lower and peers can finish downloads at less expense,
which directly reduces their consequent seeding amount
and hence avoids adding more seeders in this oversup-
plied swarm. In this way, the imbalance of bandwidth
supply and demand is mitigated, and the strategy gives
a way to escape out of the seeder’s dilemma as described
in Section 7.3. A similar argument can also be applied
to an undersupplied swarm.

9.2 Tradeoff: slightly decreased downloading speed

By adopting any of the new strategies, while the seeding
time is dramatically reduced, as a trade-off, the average
downloading speed is decreased (Fig. 9(d)), hence the
downloading time is increased. However, given that in
our simulations we consider files with size equal to 10
units, the increase of the downloading time (tens of
cycles) is negligible compared to the decrease of the
seeding time (hundreds or even thousands of cycles).

9.3 Reduced discrimination

To examine the effectiveness of the proposed strate-
gies in alleviating SRE’s discrimination against peers
with limited capacities, we repeat our experiments by
further considering a bandwidth-heterogeneous system
with two classes of peers, fast and slow. From Fig. 10 we
see that all the proposed strategies effectively alleviate
SRE’s discrimination against low-capacity peers. With
30% over-seeding peers, originally slow peers need to
seed 200-500 cycles more than fast peers do. By applying
any of the new strategies, this difference is reduced to
within tens of cycles.

10 DYNAMIC FILE POPULARITY

So far, we have only considered scenarios in which all
files have the same constant popularity. However, many
measurement studies [14], [5] show that the popularity
of a file decreases quickly after it is first published. In
this section, we analyze the effects of SRE and evaluate
our proposed strategies under dynamic file popularity.

10.1 Experimental setup

We use the same simulator and consider the same initial
settings as in Section 3, except that to better abstract
the effects of dynamic file popularity, we only consider
one swarm with decreasing popularity. The simulation
starts with one injector, who stays in the swarm as
a permanent seeder. In successive cycles, new peers
arrive according to an exponentially decreasing arrival
rate (λ(t) = λ0e

− t
τ), a peer arrival pattern that has

been observed in many BitTorrent swarms [19]. Each
peer joins the swarm with zero upload and download
amounts. After a peer finishes its download, it seeds, if
necessary, until it achieves its target threshold.

By default, we set 30% peers to be over-seeding. As
shown in Section 7, this percentage is typical for showing
the effects of SRE. We choose λ0 = 10 and τ = 300 and
we run the simulation for 2000 cycles. All together 3000
peers are included. We have also tested different values
for λ0 and τ , which give very similar results.

10.2 The effects of SRE under dynamic file popular-
ity: arrive sooner to avoid long seeding time

We first demonstrate the effects of SRE under dynamic
file popularity. Fig. 11 shows each peer’s average down-
load speed, where a smaller peer ID means an earlier
arrival time. We see that the first 200 peers experience
download speeds similar to their upload capacities (1
unit per cycle). From peer 200, the download speed
increases quickly: with file size equal to 10 units, it soon
reaches the maximum, i.e., 10 units per cycle. This means
that new peers can finish their downloads within the
same cycle that they join the swarm.

The high downloading speed is due to the oversupply.
As shown in Fig. 12, the number of seeders increases
quickly and after the first 30 cycles, the swarm is occu-
pied with hundreds of seeders but only with very few
leechers. The presence of existing seeders increases the
difficulty for a new seeder to achieve its target threshold
and leave the swarm, and vice versa. We term this as
cumulative seeder effect. As a consequence, the upload ca-
pacity utilization decreases severely. As shown in Fig. 13,
within the first 500 cycles, both seeder’s and leecher’s
upload capacity utilization decrease to less than 5%, with
seeders performing a little bit better than leechers as they
do not face the piece availability problem.

With the above differences in instantaneous system
performance, peers arriving at different times achieve
markedly different performance. As shown in Fig.14,
arriving earlier means higher upload speeds and hence
larger upload amount during the leeching process
(Figs. 14(a) and 14(b)), as well as better upload capac-
ity utilization during the seeding process (Fig. 14(c)).
Thus, peers that arrive earlier experience much smaller
seeding times. As shown in Fig. 15, to achieve the target
thresholds, the first 500 peers only need to seed tens of
cycles. After this, the seeding time increases quickly to
hundreds or even thousands of cycles.

12

10
0

10
1

10
2

10
30

2

4

6

8

10

Peer ID

A
ve

ra
ge

 D
L

S
pe

ed
 (

un
it

pe
r

cy
cl

e)

Fig. 11. Individual average download-
ing speed.

10
0

10
1

10
2

10
30

100

200

300

400

500

Cycle

N
um

be
r

of
 p

ee
r

Leecher
Seeder

Fig. 12. The number of peers in the
system.

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Cycle

In
st

. u
pl

oa
d

ca
pa

ci
ty

 u
til

iz
at

io
n

Leecher
Seeder

Fig. 13. The average upload capacity
utilization.

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Peer ID

U
pl

oa
d

ca
pa

ci
ty

 u
til

iz
at

io
n

du
rin

g
le

ec
hi

ng

(a) Individual upload capacity utiliza-
tion during leeching.

10
0

10
1

10
2

10
30

5

10

15

20

25

Peer ID

U
pl

oa
d

am
ou

nt
 d

ur
in

g
le

ec
hi

ng
 (

un
it)

(b) Individual upload amount during
leeching.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Peer ID

U
pl

oa
d

ca
pa

ci
ty

 u
til

iz
at

io
n

du
rin

g
se

ed
in

g

(c) Individual upload capacity utiliza-
tion during seeding.

Fig. 14. Individual upload activity.

500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

Peer ID

S
ee

di
ng

 ti
m

e
(u

ni
t)

lazy−seeding peer
over−seeding peer

Fig. 15. Individual seeding time.

10.3 Proposed strategies under dynamic file popu-
larity

We evaluate the performance of our proposed strategies
under dynamic file popularity. The results are shown in
Figs. 16, 17, 18, and 19.

1) SRE with negative taxation and 2) SRE with welfare
for the rich: limited effect for very low file popularity: As
in swarms with constant file popularity, applying SRE
with negative taxation or SRE with welfare for the rich
alleviates the oversupply. Comparing Figs. 12, 16(a),
and 17(a), we see that these two new strategies reduce
the instantaneous number of seeders to around 80% of
the case when the original SRE is adopted. But their
effects are limited with very low file popularity. As
shown in Figs. 16(b) and 17(b), peers that arrive late still
experience relatively long seeding times.

3) SRE with counting seeding time: strong effect in re-
ducing the seeding time: With the hard SRE requirement
replaced by seeding for a particular period, SRE with
counting seeding time dramatically alleviates the over-
supply in the swarm. As shown in Fig. 18(a), except
for the large number of seeders during the first 200

cycles, the instantaneous number of seeders is almost
always under 100. Among these, we conjecture that
most are over-seeding peers, since lazy-seeding peers
can leave the swarm once they’ve seeded for a relatively
short time, i.e., 10 cycles in our experiment. While these
peers are released from the endless seeding process, the
seeding time of over-seeding peers is also dramatically
decreased to less than 100 cycles.

4) SRE with supply-based price: effectively stabilize the sup-
ply: Among all the four new strategies, SRE with supply-
based price stabilizes the supply most effectively. As
shown in Fig. 19(a), the instantaneous number of seeders
stays stable after 200 cycles. With this constant supply
(and not oversupply), peers experience relatively small
seeding times (Fig. 19(b)). When the number of new
peers decreases, as a matter of course, peers experience
longer seeding times, but still much smaller compared
to adopting the original SRE. We believe this constant
supply and small seeding time are due to the fact that
SRE with supply-based price is self-organized, and will
adjust the demand and supply automatically.

It should also be noted that when adopting SRE with
supply-based price, the first 200 peers have relatively
longer seeding times than peers arriving later. We believe
this is due to the fact that those peers arrive during the
phase that the swarm is occupied with a large number
of leechers and a small number of seeders. Hence, the
price for downloading is higher and peers need to pay
more to achieve their target thresholds.

11 RELATED WORK

This paper is based on two previous papers [20], [12]
with extensions including demonstrating detailed mea-
surement results, unifying the analysis of SRE-based
and credit-based private communities, analyzing the

13

10
0

10
1

10
2

10
30

100

200

300

400

500

Cycle

N
um

be
r

of
 p

ee
r

leecher
seeder

(a) Instantaneous number of peers

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

Peer ID

S
ee

di
ng

 ti
m

e
(u

ni
t)

lazy−seeding peer
over−seeding peer

(b) Individual seeding time

Fig. 16. SRE with negative taxation under dynamic file
popularity.

10
0

10
1

10
2

10
30

100

200

300

400

500

Cycle

N
um

be
r

of
 p

ee
r

leecher
seeder

(a) Instantaneous number of peers

500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

Peer ID

S
ee

di
ng

 ti
m

e
(u

ni
t)

lazy−seeding peer
over−seeding peer

(b) Individual seeding time

Fig. 17. SRE with welfare for the rich under dynamic file
popularity.

systemic risk of SRE-based private communities, as well
as the influence of swarm popularity.

Many P2P incentive schemes based on credits have
been proposed in the literature. Vishnumurthy et al. [23]
present a system involving a virtual currency called
Karma, which is defined as the value capturing the
amount of resources a peer has contributed and con-
sumed. The level of Karma (or credit) in the system
is maintained and measures are taken to avoid infla-
tion and deflation that can occur when peers leave the
system. However, in avoiding inflation and deflation,
the only aim of the paper is to maintain the per-capita
Karma, i.e., the total Karma divided by the number of
active users.

Kash et al. [13] show that in a scrip system, where
agents can consume and produce services, both an over-
abundance of money supply and its shortage lead to
inefficiency. They also consider hoarders and how to
optimize the credit supply. Our work is different in that
we focus not on a generic service exchange scenario but
on a file sharing scenario inspired by BitTorrent private
communities. Also we apply multiple user behaviors

10
0

10
1

10
2

10
30

100

200

300

400

500

Cycle

N
um

be
r

of
 p

ee
r

leecher
seeder

(a) Instantaneous number of peers

500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

Peer ID

S
ee

di
ng

 ti
m

e
(u

ni
t)

lazy−seeding peer
over−seeding peer

(b) Individual seeding time

Fig. 18. SRE with counting seeding time under dynamic
file popularity.

10
0

10
1

10
2

10
30

100

200

300

400

500

Cycle

N
um

be
r

of
 p

ee
r

leecher
seeder

(a) Instantaneous number of peers

500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

Peer ID

S
ee

di
ng

 ti
m

e
(u

ni
t)

lazy−seeding peer
over−seeding peer

(b) Individual seeding time

Fig. 19. SRE with supply-based price under dynamic file
popularity.

rather than focusing only on one that optimizes the
utility. In addition we focus on detecting and avoiding
extreme crashes and crunches, where the entire system
seizes. Last but not the least, we also study the effects of
such credit-based schemes from the perspective of user
level performance.

As stated, for grounding our work we chose the realm
of private P2P file sharing communities. To date, only
few works have analyzed private communities. Zhang
et al. [24] investigate hundreds of private trackers and
depict a broad and clear picture of the private commu-
nity landscape. Chen et al. [7] compare system behaviors
among 13 private trackers and 2 public trackers, and
they show their differences regarding user viscosity,
single torrent evolution, user behaviors, and content
distribution. Liu et al. [17] also perform measurement
studies and further develop a model to show that SRE
indeed provides effective incentives, but is vulnerable to
collusion.

While these studies all focus on demonstrating the
high seeding level achieved by private communities,
there have been a few preliminary works that show
the adverse effects. Andrade et al. [5] focus on the
dynamics of resource demand and supply, and they
show that users typically try to increase their contribu-
tion levels by seeding for longer and not by providing
more bandwidth to the system. However, our paper
shows that providing limited bandwidth is not the will
of users, but it is a consequence of the oversupply
in private communities. Chen et al. [8] also notice the
oversupply problem and provide a model to identify the
optimal stable SLR range. However, they didn’t propose
strategies to solve the problem of oversupply. Kash et
al. [14] demonstrate that there are significant disparities
in the cost of new and old files in a private community
named DIME, and users compensate for the high cost
of older files by downloading more copies of newer
files or by preferentially consuming older files during
freeleech periods. Particularly, they have shown that
after a period of freeleech, there are more download
activities in the community. This is consistent with our
theoretical result that during a pre-crunch state, injecting
credit will increase the system throughput. While these
papers mainly perform measurement-based studies to
analyze the positive and adverse effects of SRE-like
schemes on user-level performance, our paper is based

14

on measurement, theoretical model, as well as extensive
simulations. Further we propose new strategies to alle-
viate SRE’s punishment, which are evaluated to be very
effective through simulations.

12 CONCLUSION

In this paper we have studied the effects of credit-based
and SRE-based incentive policies employed in private
P2P communities, from both the system-level and the
user-level performance perspective.

Based on two user behaviors abstracted from real
world observations, i.e., lazy-seeding and over-seeding,
we examine the system-level credit dynamics and show
that crunches and crashes can easily happen in private
communities. Crunches and crashes are due to credit
shortage and credit abundance, respectively, and we
apply a theoretical analysis to characterize the condi-
tions that lead to these extreme outcomes. We apply
the derived conditions to implement a novel adaptive
credit intervention mechanism that proactively stops the
system from seizing by temporarily changing the credit
policies. A system that is predicted to crunch allows
freeleech, and conversely, a system that is predicted to
crash imposes freeseed. Simulation results show that our
mechanism is very effective in avoiding crunches and
crashes.

Given a private community that is sustainable, we
further analyze its user-level performance by analyzing
the positive and negative effects of SRE. Our simulation
results show that with the existence of over-seeding
peers, by adopting SRE, swarms tend to be extremely
oversupplied. Although achieving an increase in the av-
erage downloading speed, the oversupply induces unde-
sired effects, including low upload capacity utilizations,
extremely long seeding times, and an unfair playing
field for late entrants into swarms. To alleviate these
problems, we propose four strategies and the simulation
results show that they are all very effective. Particularly,
SRE with supply-based price, while maintaining a system-
wide high downloading speed, achieves very stable
high upload capacity utilization and reduces seeding
durations by three orders of magnitude as compared to
the original SRE. When then the adaptive intervention
mechanism is run in the background to check the ex-
treme conditions for crunches and crashed, the system
is ensured to have a high and sustainable performance.

REFERENCES

[1] http://chdbits.org/.
[2] http://www.bitsoup.org/.
[3] http://hdchina.org/.
[4] M. Albert. Parecon: Life after capitalism. London, 2003.
[5] N. Andrade, E. Santos-Neto, F. Brasileiro, and M. Ripeanu. Re-

source demand and supply in bittorrent content-sharing commu-
nities. Computer Networks, 53, 2008.

[6] D. Besanko, R. Braeutigam, R.R. Braeutigam, and J. Michael.
Microeconomics. Wiley, 2010.

[7] X. Chen and X. Chu. Measurements, analysis and modeling of
private trackers. In Proceeding of IEEE P2P, 2010.

[8] X. Chen, X.W. Chu, and Z. Li. Improving sustainability of private
p2p communities. In Proceeding of IEEE ICCCN 2011, 2011.

[9] M. Friedman. Capitalism and freedom: Fortieth anniversary
edition. University of Chicago Press, 2002.

[10] D. Hales, R. Rahman, B. Zhang, M. Meulpolder, and J.A.
Pouwelse. BitTorrent or BitCrunch: Evidence of a credit squeeze
in BitTorrent? In Proceeding of Wetice, 2009.

[11] A.L. Jia, L. D’Acunto, M. Meulpolder, and J.A. Pouwelse. Model-
ing and analysis of sharing ratio enforcement in private bittorrent
networks. In Proceeding of IEEE ICC, 2011.

[12] A.L. Jia, R. Rahman, T. Vinko, J.A. Pouwelse, and D.H.J. Epema.
Fast download but eternal seeding: the reward and punishment
of sharing ratio enforcement. In Proceeding of IEEE International
Conference on Peer-to-Peer Computing (P2P’11), 2011.

[13] I.A. Kash, E.J. Friedman, and J.Y. Halpern. Optimizing scrip
systems: Efficiency, crashes, hoarders, and altruists. In Proceeding
of ACM Conference on Electronic Commerce, 2007.

[14] I.A. Kash, J.K. Lai, H. Zhang, and A. Zohar. Economics of
bittorrent communities. In Proceeding of NetEcon 2011, 2011.

[15] G. Kaufman. Banking and currency crises and systemic risk: A
taxonomy and review. Financial Markets, Institutions and Instru-
ments, 9, 2000.

[16] D. Lewis. Louder voices: The corporate welfare bums. 1972.
[17] Z. Liu, P. Dhungel, D. Wu, C. Zhang, and K.W. Ross. Under-

standing and improving incentives in private p2p communities.
In Proceeding of ICDCS, 2010.

[18] M. Meulpolder, L. D’Acunto, M. Capota, M. Wojciechowski, J.A.
Pouwelse, D.H.J. Epema, and H.J. Sips. Public and private
bittorrent communities: A measurement study. In Proceeding of
IPTPS, 2010.

[19] D. Qiu and R. Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. In Proceeding of SIGCOMM,
2004.

[20] R. Rahman, D. Hales, T. Vinko, J.A. Pouwelse, and H.J. Sips.
No more crash or crunch: Sustainable credit dynamics in a P2P
community. In Proceeding of International Conference on High
Performance Computing and Simulation (HPCS’10), 2010.

[21] R. Rahman, M. Meulpolder, D. Hales, J.A. Pouwelse, D.H.J.
Epema, and H.J. Sips. Improving efficiency and fairness in p2p
systems with effort-based incentives. In Proceeding of IEEE ICC,
2010.

[22] G. Soros. The worst market crisis in 60 years. Financial Times,
January 2008.

[23] V. Vishnumurthy, S. Chandrakumar, and E.G. Sirer. Karma: A
secure economic framework for peer-to-peer resource sharing. In
Workshop on Economics of Peer-to-Peer Systems, 2003.

[24] C. Zhang, P. Dhungel, Z. Liu Di Wu, and K.W. Ross. Bittorrent
darknets. In Proceeding of IEEE INFOCOM, 2010.

