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Abstract

Traffic forecasting is key to improving urban trans-
port and reducing congestion and pollution. While
advanced models like Graph Neural Networks
(GNNs), can capture complex patterns in traffic
flow, they are resource-intensive and do not scale
well. This problem can be mitigated by using sim-
pler models that are less influenced by the size
of the road network, making them more practi-
cal for real-world applications. This study investi-
gates whether simpler network-based models, par-
ticularly Long Short-Term Memory (LSTM) net-
works, can match or surpass the performance of
GNNs, such as the Diffusion Convolutional Recur-
rent neural network (DCRNN), in specific scenar-
ios. Using popular benchmark datasets, we com-
pared the performance of the LSTM and DCRNN
models under different conditions, including dif-
ferent sensor distributions and prediction horizons.
The results indicate that while DCRNN highly out-
performs LSTM with numerous sensors and longer
prediction horizons, LSTM gives promising results
with fewer sensors and shorter horizons. In this
scenario, the difference in performance is minimal
regardless of the location of sensors, also offering
significant computational efficiency. These find-
ings suggest that LSTM models may be a prac-
tical alternative for traffic forecasting in resource-
constrained scenarios, providing a path to more ef-
ficient urban traffic management.

1 Introduction
Traffic forecasting is essential for improving urban transport
systems. Accurate predictions can optimise traffic signal
timings, provide real-time route recommendations and im-
prove public transport schedules. However, traffic forecast-
ing is difficult due to the complexity of the data and unpre-
dictable events, such as accidents and weather changes, that
can drastically affect traffic flow. Historically, simpler mod-
els like Autoregressive Integrated Moving Average (ARIMA)
[15] or Recurrent Neural Networks (RNNs) [14] have been
used for traffic forecasting, but often have difficulty learn-
ing the relationships between different parts of the road net-
work. Recently, more advanced methods like Graph Neural
Networks (GNNs) have been introduced [4]. Unlike other
models, GNNs use the structure of road networks, which can
be represented as graphs. In these graphs, the sensors in-
stalled on the roads (such as loop detectors) act as nodes and
the roads themselves serve as edges. By taking these graphs
as input, GNNs learn the interactions between the different
nodes within the network [4]. This feature makes them more
efficient in capturing traffic flow patterns.

One of the first GNN models to achieve outstanding results
in predicting traffic volumes in large, complex metropolitan
areas was the Diffusion Convolutional Recurrent Neural Net-
work (DCRNN) [6]. The DCRNN model integrates a diffu-
sion convolutional layer with a recurrent neural network and

takes the mentioned graphs as input. This combination en-
ables the processing of complex relationships in data, such
as traffic flows, through the use of graph-based spatial infor-
mation and time series analysis, making it highly effective in
dynamic forecasting tasks [6].

However, GNNs are complex and costly to train. Previ-
ous researches highlight GNNs’ inefficiencies in large-scale
or densely connected graphs, posing scalability challenges for
real-time applications due to their quadratic computational
complexity [7]. This opens up the field for research into sim-
pler models that perform even better [7, 11] and raises ques-
tions about their necessity in all traffic forecasting scenarios,
especially when simpler models can be effective in less de-
manding conditions.

Models based on a simpler neural network structure have
been successfully applied to similar prediction tasks for a
long time and require much less computational training time.
There are several possibilities for such models discussed
in many publications, some of which are Long Short-Term
Memory (LSTM), Feedforward Neural Network (FNN) and
RNN [13]. Based on the analysis of traffic prediction models,
LSTM networks [3] stand out as a better choice compared
to traditional RNNs and FNNs for several reasons. While
simple RNNs are designed to handle sequential data and can
learn temporal dependencies, they suffer from problems such
as fading gradients that limit their ability to effectively cap-
ture long-term dependencies. LSTMs deal with this problem
by incorporating memory cells and gating mechanisms that
allow them to maintain and update information for longer pe-
riods, thereby better capturing both short-term and long-term
dependencies [14]. FNNs, on the other hand, do not consider
temporal sequences, treating each input independently, which
is a significant limitation in traffic forecasting where tempo-
ral dynamics are crucial. This makes LSTM the preferred
model for traffic forecasting tasks, offering significant im-
provements in prediction accuracy and robustness compared
to traditional RNNs and FNNs [13].

A very comprehensive comparison of different forecast-
ing models in various traffic scenarios has been conducted
in [8, 9, 16]. These scenarios may include differences in the
number of sensors available, the type of area in which the
sensors are placed (e.g. highways or urban areas) and the
prediction horizon (e.g. 5 or 15 minutes in the future). In
the article [8], the authors even tested the suitability of deep
learning models for traffic prediction, trying to find scenarios
where simpler models are a better choice. However, despite
including many deep learning models in the experiments, the
consideration of GNNs is lacking. Those that consider GNNs
[6, 17] tend to focus on entire datasets rather than specific
scenarios. Other studies have examined the predictive capa-
bilities of the DCRNN by testing it with varying sensor loca-
tions. These studies aimed to understand how different road
infrastructure scenarios and the availability of sensors impact
the model’s performance. Based on the received results, the
author suggested that the model is very sensitive to sensor lo-
cations. Selecting sensors from different parts of the network,
even if they are selected non-randomly and locally, can lead
to significant differences in results [10].

Extensive studies comparing GNNs to simpler network
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models in specific traffic scenarios are lacking. This gap
highlights the need to investigate whether simpler models
can provide comparable performance to GNNs in certain traf-
fic scenarios. Therefore, the main contribution of this paper
is to explore scenarios where simpler models, in particular
LSTM networks, could replace more complex GNNs such as
DCRNN in the context of traffic forecasting.

Consequently, the research question of this paper is: Are
there possible scenarios in which models based on sim-
pler network structures are more effective than GNNs in
traffic forecasting? To address this question, the follow-
ing hypothesis was formulated: LSTM models should achieve
comparable performance to GNN models in traffic scenar-
ios where spatial interconnections are minimal, such as high-
ways with few intersections, and the number of available sen-
sors is limited.

The paper is structured as follows: Section 2 describes the
models used in the experiments and the datasets, formally in-
troduces the problem and presents the traffic scenarios used
in the evaluation. Section 3 describes the experiments per-
formed in detail and provides an overview of the results ob-
tained. In Section 4, the discussion focuses on the practices
of Responsible Research. The final conclusions are presented
in Section 5. The paper ends with Section 6, which suggests
potential future research directions.

2 Methodology
This section focuses on the description of the LSTM and
DCRNN models and the research methodology. A deeper
look at the architecture of these models is presented, as well
as a description of the problem, data sets and evaluation met-
rics.

2.1 Models Description
Long Short-Term Memory
LSTM networks are a type of RNN but have been designed
to overcome the limitations of traditional RNNs. In particu-
lar, they address the problem of vanishing gradient [2], which
hinders the learning of long-term dependencies. LSTMs use
a gating mechanism to regulate information flow, maintain-
ing and updating the memory cell state over long sequences,
making them effective for time series forecasting [14].

LSTM architecture contains three primary gates: the input
gate, the forget gate, and the output gate. These gates control
the information added to or removed from the cell state, re-
taining important data over extended periods while discarding
irrelevant information. This mechanism enables LSTMs to
capture both short-term and long-term dependencies in long
sequential data.

To obtain multi-step predictions we applied a special mech-
anism to LSTM forward pass. Firstly, the LSTM processes
the input sequence and updates the hidden and cell states.
The output is then processed through a fully connected layer
to generate the next time step prediction. This prediction is
appended to the output sequence and replaces the oldest value
in the input sequence, effectively shifting the input sequence
window forward. This process is repeated for a specified
number of steps (horizons), allowing the model to make se-
quential forecasts by iteratively using its previous predictions

as part of the new input. An example of this forecasting pro-
cedure can be seen in Figure 1, where Xt and X̂t represent
the actual and predicted values at time step t, respectively.

An in-depth understanding of the architecture of the LSTM
has been presented in previous studies [14] [3], providing a
solid foundation for the present research.

[
Xt−2, Xt−1, Xt

]
→

[
X̂t+1

][
Xt−1, Xt, X̂t+1

]
→

[
X̂t+2

][
Xt, X̂t+1, X̂t+2

]
→

[
X̂t+3

]
Figure 1: An example of the forecasting procedure. At each step, we
update the input sequence by removing the oldest value and adding
the latest prediction as the most recent value. In this example, both
the input sequence length and the prediction horizon are set to 3.

Diffusion Convolutional Recurrent Neural Network
DCRNN is an advanced GNN model designed to address
the challenges of spatio-temporal traffic forecasting by com-
bining the strengths of convolutional neural networks and
RNNs. DCRNN leverages diffusion convolution to capture
spatial dependencies and RNNs to model temporal dependen-
cies. The key difference between DCRNN and LSTM is that
DCRNN takes graphs as input and explicitly models traffic
as a diffusion process over a road graph, reflecting the actual
structure and dynamics of the road network [6].

DCRNN’s architecture consists of two main components:
the diffusion convolution layer and the recurrent layer. The
diffusion convolution operation captures the spatial relation-
ships between traffic sensors, modelling traffic flow as a dif-
fusion process on a directed graph. This diffusion process
is characterised by random walk on the graph and state tran-
sition matrix [6]. To model temporal dependencies, the au-
thors proposed a Diffusion Convolutional Gated Recurrent
Unit (DCGRU), a version of the standard Gated Recurrent
Unit (GRU) [1], which is another variant of RNNs. The main
difference between DCGRU and GRU is the replacement of
matrix multiplications in the GRU with diffusion convolution
operations [6]. This combination enables DCRNN to provide
highly accurate traffic forecasts.

Similarly to the LSTM model, a detailed explanation of
the architecture of the DCRNN components is not included
in this study, as they are described in depth in the original
paper [6].

2.2 Datasets
This research uses the METR-LA and PeMS-BAY datasets,
which are widely used benchmarks in traffic forecasting stud-
ies. The METR-LA dataset (Figure 2) contains traffic speed
data collected from 207 loop detectors on freeways in Los
Angeles County, with data from 1 March 2012 to 30 June
2012. The PeMS-BAY dataset (Figure 3), on the other hand,
consists of traffic information from the San Francisco Bay
Area collected with 325 sensors from 1 January 2017 to 31
May 2017. Both datasets aggregate traffic speeds in miles per
hour in 5-minute windows. These datasets are appropriate for
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this study as they were originally used to demonstrate the su-
perior performance of DCRNN compared to simpler models.
Thus similarly to those experiments performed in [6] we split
the data so that 70% of the data is used for training, 20% is
used for testing and the remaining 10% is used for validation.
Additionally, the data was Z-score normalized.

Figure 2: Map showing all sensors from METR-LA dataset with two
different study areas selected. Sensors located along the same road
are represented by red dots. The area represented by blue dots repre-
sents sensors placed on different roads with common intersections.

2.3 Problem Description
The objective of this study is to compare DCRNN and
LSTM in different scenarios by predicting future traffic
speeds over different periods using historical traffic data.
Formally, given a sequence of historical traffic observations
{Xt−n+1, . . . , Xt−1, Xt}, the goal is to predict the future
traffic speeds {Xt+1, Xt+2, . . . , Xt+h}, where n is the in-
put sequence length, h is the prediction horizon and t is a
time step. This study will explore the differences in perfor-
mance of LSTM and DCRNN models under different condi-
tions, such as varying the number and locations of sensors as
well as different numbers of horizons to be predicted.

Experiment Scenarios
Experiments were conducted to assess how well the models
predict traffic speeds in the following scenarios:

• Different prediction horizons: 5, 10, and 15 minutes
ahead

• Different numbers of sensors: 35, 20, 10, 5, and 1 sensor.

• Different road configurations:

– Sensors from the same road
– Sensors placed on different roads with shared

crossroads

All of the above scenarios were tested in both datasets to
obtain more reliable results. Figure 2 shows all sensors from
the METR LA data set with two distinguished areas of roads.
The red area represents a subset of sensors from the same
highway, while sensors from 3 different roads are blue. For
each of these areas, 5 different subsets of sensors were se-
lected as described above, and then both DCRNN and LSTM
were trained to predict the 3 horizon steps. The same ap-
proach was applied to the PeMS-BAY dataset (Figure 3).

Figure 3: Map showing all sensors from the PeMS-BAY dataset with
two different study areas selected. Sensors located along the same
road are represented by red dots. The area represented by blue dots
represents sensors placed on different roads with common intersec-
tions.

2.4 Performance Metrics
The performance of the LSTM and DCRNN models will be
evaluated using Root Mean Square Error (RMSE), Mean Ab-
solute Error (MAE), and Mean Absolute Percentage Error
(MAPE). These metrics are defined as follows:

RMSE =

√√√√ 1

N

N∑
t=1

(X̂t −Xt)2 (1)

MAE =
1

N

N∑
t=1

|X̂t −Xt| (2)

MAPE =
1

N

N∑
t=1

∣∣∣∣∣X̂t −Xt

Xt

∣∣∣∣∣ (3)

where:
- N : The total number of observations.
- X̂t: The predicted value of the observation at time step t.
- Xt: The actual value of the observation at time step t.

These metrics are useful for assessing the accuracy of
traffic forecasting models, as they provide insight into the
model’s prediction errors. RMSE highlights larger values and
errors, making it more sensitive to outliers. Formula 2 shows
the MAE metric which provides a simple average error figure
in the same unit as the data. MAPE (Formula 3) is useful for
understanding the relative error in percentage terms, which is
particularly important for traffic data where the speed scale
can vary widely. However, it has some limitations. One is the
vulnerability to values close to zero of the actual data becom-
ing very large or even undefined. To avoid this, zero values
and nulls were left off during the calculation of these metrics
for both models to retain only the most valuable information.
While all the above metrics were used to assess the models,
MAE was used additionally for the training as a loss function.

3



In addition to these metrics, the study will analyze the per-
formance improvement over multiple training epochs and av-
erage epoch training times.

3 Experimental Setup and Results
This part of the paper explains the details of the experimental
setup made for the experiments, how the models were tested,
and the results obtained from the experiments.

3.1 Experimental Setup
The experiments were done on a MacBook Pro 2017 with
16GB of RAM, a 2.6 GHz 6-Core Intel Core i7 processor,
and macOS 13.6.3. For the development and execution
of the models, Python 3.9 was used, and the models were
implemented using the PyTorch1 library.

Model Configurations
DCRNN: The model is a Pytorch reproduction of the origi-
nal DCRNN described in the paper “Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting“
[6]. The code of the proposed implementation can be found
in the public GitHub repository2. For the experiments, the se-
quence length and horizon were set to 3, with patience of 20
epochs for early stopping. Patience for early stopping refers
to the number of epochs with no improvement in validation
loss before training is halted to prevent overfitting.
The LSTM was constructed using 256 LSTM units, 2 recur-
rent layers, and a dropout rate of 0.5 during training. This
model was trained for 500 epochs with a patience of 10
epochs using the Adam optimizer, with the learning rate set at
0.001. Furthermore, after initial experiments, the number of
LSTM units in the model was reduced to 50 for subsets with 5
and 1 sensors. This adjustment led to better results for smaller
subsets and accelerated the learning process. The implemen-
tation of the LSTM is also publicly available on GitHub3.

It should be noted, that the main purpose of this experiment
is to compare the capabilities of GNNs and simpler neural
network model in traffic forecasting, not to optimise their im-
plementation. We chose the DCRNN and LSTM models be-
cause of their popularity in this research area and as reliable
representations of the architectures of these models.

The subsets of sensors used in the experiments can be
found in the Google Drive4.

3.2 Methods of performance evaluation
As mentioned before, the goal of the experiments was to com-
pare the results of DCRNN and LSTM in different scenarios
and find the ones when the LSTM performed the best relative
to DCRNN. Therefore, the objective is not to find scenarios
in which the LSTM performs best but to find situations in
which the difference (see Formula 4) between the results of
DCRNN and LSTM is minimal or even when the LSTM’s
performance is better than that of the DCRNN. The starting

1https://pytorch.org
2https://github.com/chnsh/DCRNN PyTorch.git
3https://github.com/wiktorr22/research project LSTM.git
4sensor subsets

MAE
Scenario DCRNN LSTM Difference
METR-LA 2.77 4.8918 2.1218
PEMS-BAY 1.38 2.2716 0.8916

RMSE
Scenario DCRNN LSTM Difference
METR-LA 5.38 12.25 6.87
PEMS-BAY 2.95 4.76 1.81

MAPE
Scenario DCRNN LSTM Difference
METR-LA 7.30% 9.81% 2.51%
PEMS-BAY 2.90% 5.16% 2.26%

Table 1: All sensors comparison of DCRNN and LSTM for 15 min-
utes prediction. The results for DCRNN were reported in [6]. The
results for LSTM come from performed experiments.

point for the experiment was the hypothesis which states that
LSTM should achieve the closest results to the DCRNN in
a situation where the number of sensors on the road is lim-
ited and their distribution alone is restricted to a single road.
In total, both models were trained for 20 different subsets of
sensors (for each of the 2 datasets, we selected 2 separate ar-
eas for which we chose 5 subsets of sensors).

ErrorDifference = ErrorLSTM − ErrorDCRNN (4)

3.3 Results
We divide our observations into 3 parts based on the particu-
lar scenario and training time analysis. As a good reference
point to our results, in Table 1 we provide the performance of
both models for the full datasets. The performance results for
DCRNN visible in the table were taken from its original pa-
per [6] and results of LSTM come from our experiments. In
the table, we can see the superiority of DCRNN over LSTM
in each metric. Particularly important is the “Difference“ col-
umn showing the differences between the results of the two
models computed according to Formula 4 and it will be the
main point of focus in further research. This difference is
particularly noticeable for the METR-LA dataset, which is
generally considered to be more complicated in the context
of traffic forecasting [6].

Multi-Step Prediction Performance
The first scenario discussed in this section is the different
forecast horizons. To obtain the graphs, the average perfor-
mance differences over 5 subsets of sensors for each road sce-
nario and metric were calculated as follows: for a specific
horizon, the difference error from each subset was summed
and then divided by the number of subsets. An example for
Horizon 1 can be found in Formula 5, where AvgH1 is an
average difference error for Horizon 1 and DSi,H1 is a differ-
ence error for a subset i and horizon 1.

Figures 4 and 5 show the differences in LSTM and
DCRNN results for 3 different prediction horizons (5, 10 and
15 minutes) for sensors deployed on the same and different
roads (red and blue areas in Figures 2 and 3), respectively.
In both figures, we see that the DCRNN systematically in-
creases its lead in each metric over the LSTM model with an
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increasing horizon independent of the dataset or area type.
However, this increase is barely visible for MAE and RMSE
metrics for METR-LA dataset in Figure 5. Moreover, in this
part of the experiment, both models performed the worst on
average (see Table 2). This observation may indicate that the
GNN model does not make effective use of its ability to learn
spatial dependencies and perform similarly to the LSTM un-
der challenging road conditions. This will be tested in more
detail in the next section.

The results show that the performance gap increases as the
forecast horizon increases. This indicates the need to examine
other scenarios based on the shortest 5-minute forecast, as the
difference between the two models is minimal.

AvgH1 =
DS1,H1 +DS2,H1 +DS3,H1 +DS4,H1 +DS5,H1

5
(5)

Figure 4: Difference in models’ performance in different prediction
horizons on the same roads (red areas in Figures 2 and 3).

Figure 5: Difference in models’ performance in different prediction
horizons on different roads (blue areas in Figures 2 and 3).

Analysis by Number of Sensors
In this scenario, we investigate the impact of sensor availabil-
ity in different network areas (Figures 2 and 3). Furthermore,
as the differences in the results for horizon 1 are minimal, this
analysis will focus only on the results obtained for this spe-
cific horizon.

MAE RMSE

DCRNN LSTM DCRNN LSTM

METR-LA
Same Road 2.3487 2.7538 0.0551 0.0659
Diff Roads 3.0300 3.2760 0.0739 0.0810
PeMS-BAY
Same Road 1.1367 1.4807 0.0222 0.0298
Diff Roads 1.2082 1.5814 0.0165 0.0222

Table 2: Average performance results of DCRNN and LSTM models
for different road scenarios. (The entire table can be found in the
appendix A as Table 4)

Figure 6 displays the performance metric differences between
LSTM and DCRNN for varying number of sensors (red areas
in Figures 2 and 3). We can immediately see the relation-
ship of these differences with the number of sensors used.
A subset of just 35 sensors significantly offsets the differ-
ences observed for entire datasets (see Table 1). A notice-
able, constant decrease in the difference occurs up to 10 sen-
sors for both datasets, where the difference between the two
models is already very small compared to the differences for
the whole datasets and equals 0.234 MAE, 0.23 RMSE and
0.74% MAPE for METR-LA and 0.1868 MAE, 0.26 RMSE
and 0.42% MAPE for PeMS-BAY. For subsets of 5 and just
1 sensor, some interdependence is still observed, but it is not
as consistent. This might be because the sensors do not influ-
ence each other as significantly in the DCRNN model when
only 5 sensors are available. These sensors may be from the
same road but located in different directions, resulting in a
larger road distance (the distance along existing roads rather
than simple Euclidean distance). Consequently, the predic-
tion is mainly made by the recurrent component of the model,
which is very similar to LSTM implementation. It should
also be noted that the inconsistency of results for a subset of
1 sensor may be largely due to specific road conditions (e.g.
possible emergency), making it difficult to generalise results
for the rest of the sensors.

Figure 6: Difference in models’ performance from sensors on the
same road (red areas in Figures 2 and 3) for horizon 1.

A similar trend can be observed in Figure 7. Again, we can
see a consistent decrease in the difference between LSTM and
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DCRNN up to the amount of 10 sensors for both datasets.
There is a slight decrease in the results for the METR-LA
dataset with a subset of 5 sensors, where the difference in the
RMSE metric was the lowest at 0.07. However, no decrease
was observed for the same amount of sensors in the PEMS-
BAY area, so the result may depend on the sensors selected
and be rather site-specific. When only one sensor is consid-
ered, the differences are minimal for both road conditions,
with one exception in Figure 7 for the METR-LA dataset,
where only the difference in MAE metric decreased while the
other two metrics surprisingly increased. However, again, for
the reasons mentioned earlier, we should not generalise the
result of this particular sensor to the rest of the sensors.

Contrary to initial expectations, the LSTM model performs
more closely to the DCRNN model when the sensors are dis-
tributed on different roads, rather than on the same road. This
might be because the DCRNN does not have enough sensor
data to learn to build complex dependencies between sensors,
especially given that sensors from the same road may be far
apart in terms of road distance. This may limit its advantage
over the LSTM. However, the DCRNN can still effectively
use the same number of sensors placed on the same road.

Figure 7: Difference in models’ performance from sensors on dif-
ferent roads (blue areas in Figures 2 and 3) for horizon 1.

Experiments proved that with more sensors, the perfor-
mance differences between DCRNN and LSTM increase.
Nevertheless, when there are fewer sensors (10,5,1), the per-
formance of LSTM was close to that of DCRNN. Further-
more, as mentioned earlier, the hyperparameters of the LSTM
model were not tuned to be the most optimal, giving us
room for improvement and perhaps outperforming DCRNN
in these scenarios.

Analysis by road configuration
The scenario of different sensor deployment along roads has
already been indirectly discussed in the two previous anal-
yses. Interestingly, both indicate that the LSTM performs
closer to the DCRNN in scenarios where sensors are dis-
tributed along different intersecting roads. This phenomenon
is even more pronounced under the difficult Los Angeles road
conditions. Here, the difference in metrics between the mod-
els increases only slightly as the forecast horizon extends
(Figure 5), which is an exception compared to the other sce-
narios.

AVERAGE MAE DIFFERENCE
Scenario Same Road Diff. Roads
METR-LA 0.3936 0.2506
PEMS-BAY 0.34481541 0.35537417

Table 3: MAE Average Difference for Same and Different Roads

Table 3 shows the average MAE error difference gathered
across all 3 horizons and for 5 subsets of sensors on each road
configuration. This data also reveals that the performance dif-
ference between the two models is the smallest for subsets of
sensors from different roads in METR-LA. Interestingly, this
is also where the models, on average, performed the worst.
On the other hand, for the PEMS-BAY dataset, the place-
ment of the sensors on the roads does not significantly impact
the performance difference between the models. This finding
partly contradicts the initial hypothesis that the difference in
performance between LSTM and GNN should be smaller in
situations where the sensors are positioned on the same road
without many intersections. Furthermore, the LSTM even
slightly outperformed the GNN model in the RSME metric in
a subset of 10 sensors from the METR-LA dataset distributed
over 3 different highways and a forecast horizon of 3 (Table 5
in the appendix A). The models scored 6.04 for DCRNN and
5.99 for LSTM in the aforementioned metric.

Analysis of the Training Time
To compare the time performance of both models, we anal-
ysed the average epoch learning times for the DCRNN and
LSTM models (with 256 and 50 LSTM units) in 3 subsets
of sensors coming from the different roads (blue area in Fig-
ure 2). We decided to include the performance of the LSTM
model with only 50 units to better understand what affects the
time performance of LSTM. The results are summarised in
Figure 8. As expected, the LSTM models showed the short-
est epoch learning times in all subsets. It is worth noting that
the training time of the LSTM models is more influenced by
the number of units in the model rather than the number of
sensors used in training. This represents a significant advan-
tage over DCRNN, where the average training time increases
considerably with the number of sensors in the subset.

Another key factor to consider when discussing learning
times is the number of epochs required for the models to con-
verge. Figure 9 illustrates the training curves for these models
on a subset of 35 sensors. Although DCRNN requires signif-
icantly more time (155.5 seconds) to train a single epoch, it
converges faster in terms of the number of epochs than the
other models. This is particularly evident when we compare
this with the number of epochs that the model with 50 LAST
units needed to converge.

Consequently, the actual training times of these models up
to the early stopping point were as follows:

• DCRNN: 22 minutes and 48 seconds
• LSTM with 256 units: 8 minutes and 46 seconds
• LSTM with 50 units: 7 minutes and 9 seconds
These findings show that, while LSTM models offer

shorter epoch training times, the faster epoch convergence
rate of DCRNN can sometimes offset the longer training time
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per epoch, reducing the difference in overall training time
for smaller subsets between DCRNN and LSTM. It should
be noted, however, that the learning behaviour of the models
may vary across different subsets of sensors, making it diffi-
cult to generalise the training curve to different scenarios.

Figure 8: Average epoch training times (in seconds) for DCRNN
and LSTM models (with 256 and 50 units) across three subsets of
sensors.

Figure 9: Training Curve of 3 models on the subset of 35 METR-
LA sensors taken from different roads (blue area in Figure 2). The
vertical lines indicate early stopping epochs.

Summary of Findings
DCRNN: Consistently outperformed LSTM under scenarios
with a higher number of sensors and longer prediction hori-
zons.
LSTM: Performed comparably with DCRNN in a scenario
where the number of sensors was reduced and for the closest
prediction horizon. More precisely, for the scenarios with 10,
5 and 1 sensors, the performance difference between DCRNN
and LSTM was very small. This can be considered as promis-
ing results as there is a big room for improvement for LSTM
which can even increase its performance.
Impact of Sensor Distribution: Interestingly, the LSTM
performed closer to the DCRNN when the sensors were
placed along different intersecting roads rather than on the
same road. This was contrary to the initial hypothesis and

suggests that GNN models have difficulty handling complex
road configurations with limited sensor availability.
Training times: The analysis showed that DCRNN train-
ing time is very sensitive to the number of sensors, increas-
ing rapidly as their number increases. Despite longer times
per epoch, faster DCRNN epoch convergence can reduce the
overall learning time difference. On the other hand, the train-
ing time of the LSTM depends strongly on the number of
LSTM units used in a model. However, once the optimal
configuration of hyperparameters is found, LSTM has a sig-
nificant advantage over DCRNN in terms of training time.

4 Responsible Research
Ethical issues should be kept in mind when doing research
using data. In this study, one potential ethical issue was the
risk of identifying specific individuals using the data, as traf-
fic data can sometimes reveal patterns that can be traced back
to individual behaviour. Since the data was aggregated at 5-
minute intervals, they were anonymised.

To ensure the reproducibility of the results, the models
with their hyperparameters and the experimental procedure
are clearly described in the paper. All datasets are publicly
available, as are the subsets of sensors used in the experi-
ments. In addition, all experimental results are available in
the Tables 6 and 5 in the appendix A. Given that these were
the only potential ethical concerns identified, there is no need
to address further ethical issues in this study.

5 Conclusion
This study aimed to investigate scenarios in which simpler
neural network models, in particular LSTMs, can perform
comparably to complex GNNs, such as DCRNN, in traffic
forecasting tasks. We have shown that while DCRNN pro-
vides higher accuracy in most traffic scenarios, LSTM can be
an effective alternative under certain conditions. In partic-
ular, LSTM performed comparably to DCRNN in scenarios
with 10, 5 and 1 sensors and the shortest prediction horizon.
Interestingly, the results obtained only partially confirm the
initial hypothesis. They indicate that with a limited number
of sensors, the difference in performance was smaller. How-
ever, this was not necessarily the case in scenarios where they
were distributed along a single road, as initially assumed.

6 Future Work
• Hyperparameter Optimization: The paper explores

the capabilities of GNN and a simpler model in traf-
fic forecasting. As noted, we did not use the most op-
timal version of the LSTM model. Consequently, one
important improvement would be to optimise the hyper-
parameters of the LSTM models to improve their perfor-
mance. Tuning parameters such as the number of layers,
LSTM units and dropout rates could potentially close the
DCRNN performance gap.

• Extended Traffic Scenarios: Expanding the range of
traffic scenarios, including different types of road net-
works (e.g. urban areas) or other types of input data (e.g.

7



traffic volumes) [4]. This can provide a better under-
standing of the conditions under which simpler models
may be most effective.

• Comparative Studies with Other Models: Due to time
and resource constraints, only two models were tested in
the experiments. Therefore, future research should also
consider comparing other models emerging in the field
of traffic forecasting, such as current and previous state-
of-the-art models: Spatio-Temporal Graph Mixformer
[5] or Fully Connected Long-Short Term Memory net-
works [12].
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Appendix

A Experiment Result Tables

MAE RMSE MAPE

DCRNN LSTM DCRNN LSTM DCRNN LSTM

METR-LA
Same Road 2.3487 2.7538 0.0551 0.0659 6.2820 6.8640
Diff Roads 3.0300 3.2760 0.0739 0.0810 6.8920 7.1247
PeMS-BAY
Same Road 1.1367 1.4807 0.0222 0.0298 2.3113 2.9240
Diff Roads 1.2082 1.5814 0.0165 0.0222 1.7460 2.2240

Table 4: Average performance results of DCRNN and LSTM models for different road scenarios.

MAE MAPE RMSE Difference

DCRNN LSTM DCRNN LSTM DCRNN LSTM MAE MAPE RMSE

SAME ROAD 35
Horizon 1 2.0500 2.6500 0.0549 0.0719 3.7400 4.7400 0.6000 0.0170 1.0000
Horizon 2 2.4700 3.2070 0.0693 0.0897 4.9100 6.2400 0.7370 0.0204 1.3300
Horizon 3 2.7900 3.6790 0.0821 0.1046 5.8000 7.4500 0.8890 0.0225 1.6500
SAME ROAD 20
Horizon 1 1.9300 2.2780 0.0512 0.0623 3.6400 4.2600 0.3480 0.0111 0.6200
Horizon 2 2.2800 2.7364 0.0641 0.0790 4.8500 5.6000 0.4560 0.0149 0.7500
Horizon 3 2.5500 3.0728 0.0743 0.0923 5.7200 6.5500 0.5230 0.0180 0.8300
SAME ROAD 10
Horizon 1 2.0400 2.2742 0.0432 0.0506 5.6400 5.8700 0.2340 0.0074 0.2300
Horizon 2 2.5300 2.8653 0.0532 0.0639 7.2500 7.5800 0.3350 0.0107 0.3300
Horizon 3 2.9100 3.3126 0.0608 0.0735 8.3600 8.7500 0.4030 0.0127 0.3900
SAME ROAD 5
Horizon 1 1.9200 2.1050 0.0417 0.0451 5.7800 5.9000 0.1850 0.0034 0.1200
Horizon 2 2.4100 2.6883 0.0512 0.0568 7.4900 7.7200 0.2780 0.0056 0.2300
Horizon 3 2.8200 3.1784 0.0586 0.0661 8.7000 9.0300 0.3580 0.0075 0.3300
SAME ROAD 1
Horizon 1 1.7000 1.8800 0.0333 0.0353 5.7900 6.0200 0.1800 0.0020 0.2300
Horizon 2 2.1900 2.4462 0.0405 0.0448 7.6000 7.9300 0.2560 0.0043 0.3300
Horizon 3 2.6400 2.9342 0.0476 0.0529 8.9600 9.3200 0.2940 0.0053 0.3600
DIFFERENT ROADS 35
Horizon 1 1.9700 2.1490 0.0402 0.0460 3.4500 3.8400 0.2450 0.0058 0.3900
Horizon 2 2.1900 2.4660 0.0474 0.0545 4.2100 4.6300 0.2760 0.0071 0.4200
Horizon 3 2.3300 2.6379 0.0525 0.0600 4.7000 5.2000 0.3080 0.0075 0.5000
DIFFERENT ROADS 20
Horizon 1 2.1500 2.3949 0.0407 0.0465 6.1400 6.3900 0.2450 0.0058 0.2500
Horizon 2 2.6100 2.9179 0.0486 0.0560 7.9100 8.1400 0.3080 0.0074 0.2300
Horizon 3 2.9800 3.3205 0.0544 0.0629 9.0700 9.3300 0.3410 0.0085 0.2600
DIFFERENT ROADS 10
Horizon 1 2.4800 2.6869 0.0556 0.0607 4.3000 4.4000 0.2070 0.0051 0.1000
Horizon 2 2.8600 3.0810 0.0672 0.0729 5.3600 5.3600 0.2210 0.0057 0.0000
Horizon 3 3.0900 3.3132 0.0749 0.0801 6.0400 5.9900 0.2230 0.0052 -0.0500
DIFFERENT ROADS 5
Horizon 1 2.6700 2.8788 0.0648 0.0671 6.8600 6.9300 0.2090 0.0023 0.0700
Horizon 2 3.3600 3.6951 0.0811 0.0889 8.6800 9.0600 0.3350 0.0078 0.2000
Horizon 3 3.8500 4.2814 0.0909 0.1035 10.2000 10.5300 0.4310 0.01260 0.3300
DIFFERENT ROADS 1
Horizon 1 3.4600 3.5765 0.1071 0.1110 6.8700 7.1700 0.1170 0.0039 0.3000
Horizon 2 4.3800 4.4770 0.1318 0.1415 8.9500 9.1800 0.0970 0.0097 0.2300
Horizon 3 5.0700 5.1973 0.1507 0.1640 10.4600 10.7200 0.1270 0.0133 0.2600

Table 5: All performance results of DCRNN and LSTM models for different road scenarios on METR-LA dataset
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MAE MAPE RMSE Difference

DCRNN LSTM DCRNN LSTM DCRNN LSTM MAE MAPE RMSE

SAME ROAD 35
Horizon 1 0.9700 1.4702 0.0187 0.0293 1.7600 2.5200 0.5002 0.0106 0.7600
Horizon 2 1.2300 1.8129 0.0244 0.0368 2.3300 3.3500 0.5829 0.0124 1.0200
Horizon 3 1.4300 2.0568 0.0290 0.0424 2.8600 4.0000 0.6268 0.0134 1.1400
SAME ROAD 20
Horizon 1 1.0800 1.4142 0.0207 0.0279 1.9900 2.4000 0.3342 0.0072 0.4100
Horizon 2 1.3500 1.8103 0.0267 0.0363 2.5600 3.2200 0.4603 0.0096 0.6600
Horizon 3 1.5500 2.0814 0.0313 0.0423 3.0200 3.8600 0.5314 0.0110 0.8400
SAME ROAD 10
Horizon 1 0.8800 1.0688 0.0162 0.0203 1.5700 1.8300 0.1868 0.0041 0.2600
Horizon 2 1.1000 1.3956 0.0207 0.0276 2.1200 2.6500 0.2956 0.0069 0.5300
Horizon 3 1.2500 1.6436 0.0241 0.0336 2.6200 3.3600 0.3936 0.0095 0.7000
SAME ROAD 5
Horizon 1 0.7700 0.9323 0.0136 0.0178 1.4200 1.7900 0.1623 0.0042 0.3700
Horizon 2 0.9700 1.2136 0.0179 0.0241 2.0100 2.6300 0.2436 0.0062 0.6200
Horizon 3 1.1400 1.4358 0.0220 0.0295 2.6000 3.3400 0.2958 0.0075 0.7400
SAME ROAD 1
Horizon 1 0.8400 0.9357 0.0163 0.0181 1.7400 1.9600 0.0957 0.0018 0.2200
Horizon 2 1.1200 1.3180 0.0224 0.0269 2.6900 3.0300 0.1980 0.0045 0.4300
Horizon 3 1.3700 1.6238 0.0283 0.0342 3.4700 3.9600 0.2538 0.0059 0.4900
DIFFERENT ROADS 35
Horizon 1 0.8600 1.4024 0.0164 0.0279 1.5400 2.5400 0.5424 0.0115 1.0000
Horizon 2 1.1700 1.7354 0.0230 0.0353 2.3500 3.4000 0.5654 0.0123 1.0500
Horizon 3 1.3900 1.9786 0.0284 0.0409 3.0400 4.0800 0.5886 0.0125 1.0400
DIFFERENT ROADS 20
Horizon 1 0.9200 1.2562 0.0175 0.0251 1.6500 2.3500 0.3362 0.0076 0.7000
Horizon 2 1.2100 1.6240 0.0241 0.0329 2.4500 3.2800 0.4140 0.0088 0.8300
Horizon 3 1.4300 1.8843 0.0292 0.0386 3.1000 4.0100 0.4543 0.0094 0.9100
DIFFERENT ROADS 10
Horizon 1 1.0200 1.2074 0.0197 0.0243 1.8100 2.1700 0.1874 0.0046 0.3600
Horizon 2 1.3400 1.6312 0.0268 0.0332 2.6000 3.1400 0.2912 0.0064 0.5400
Horizon 3 1.5900 1.9357 0.0327 0.0398 3.3100 3.9200 0.3457 0.0071 0.6100
DIFFERENT ROADS 5
Horizon 1 1.2600 1.4900 0.0231 0.0280 2.1700 2.4800 0.2271 0.0049 0.3100
Horizon 2 1.6600 2.0300 0.0318 0.0390 2.9700 3.5200 0.3739 0.0072 0.5500
Horizon 3 1.9400 2.4156 0.0385 0.0471 3.6500 4.3300 0.4756 0.0086 0.6800
DIFFERENT ROADS 1
Horizon 1 1.4300 1.5491 0.0233 0.0249 2.3400 2.4900 0.1191 0.0016 0.1500
Horizon 2 1.7400 1.9333 0.0284 0.0312 2.8000 3.0800 0.1933 0.0028 0.2800
Horizon 3 1.9300 2.1512 0.0316 0.0349 3.1000 3.4400 0.2212 0.0033 0.3400

Table 6: All performance results of DCRNN and LSTM models for different road scenarios in PeMS-BAY dataset.

B ChatGPT Usage
ChatGPT was mainly used for LaTeX formatting, fixing bugs in the code and helping to understand topics.

• Prompt: Given the H5 file, I am trying to use this (H5) file but got this error: raise ValueError( ValueError: Dataset(s)
incompatible with Pandas data types, not table, or no datasets found in HDF5 file. could you redefined it to fix it?

• Promt: https://medium.com/@saeedrmd/revisiting-dcrnn-diffusion-convolutional-recurrent-neural-network-data-driven-
traffic-forecasting-caeecbe3281b Could you Cite it using BibTeX format

• Prompt: adj mx = np.exp(-np.square(dist mx / std)) what to do if std is 0
• Prompt: what is diffusion process and diffusion convolution technique
• Prompt: Given this table (a screenshot of the table from my Excel spreadsheet), could you convert it into a LaTeX format
• Prompt: how to add a page counter in LaTex
• Promt: Should I use acronyms or full names of the models in the conclusion
• Promt: how to refer to appendix in LaTeX
• Prompt: logger.info(”val: ” + val loss + ”, epoch: ” + epoch + ”, ” + (end time - start time)) could you fix the format
• Promt: how to refer to appendix in LaTeX
• Promt: in which publication ARIMA was introduced first time
• Promt: can you keep all brackets the same size in the equation in LaTeX
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