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ABSTRACT

Metamaterials are a relatively new group of materials whose behaviour strongly depends
on the design of their internal structure. They can be employed in a wide range of appli-
cations, one of which is presented in this thesis. As cardiovascular diseases account for
around 30% of deaths worldwide the research done in the field of Materials Science may
find a real life use in the form of a magnetically activated heart assisting device. Such a
structure was designed on the basis of a newly developed magnetostrictive material with
the use of finite element simulations and machine learning based analyses.

The computational approach enabled the investigation of the structure’s deformation
and determination of the influence of parameters, which define the metamaterial’s ge-
ometry, before commencing prototyping and experiments. Geometry, which resulted
from multiple iterations necessary to match the heart’s shape and deformation patterns,
was parametrized and simulated in each configuration to create a database. Regression
was performed on it with Artificial Neural Networks and Sparse Gaussian Process Re-
gression in order to predict possible bounds and importance of specific parameters. At
the subsequent stage the structure was optimized, with the aim of matching the defor-
mation of a healthy myocardium, which concluded the project.

Obtained sections of the design space allowed for qualitative as well as quantitative de-
scription of the device’s capabilities. It was established that most of the behaviour in
all directions, longitudinal, radial and rotational, is determined by position of the main
active element within the structure as well as its size and the size of vertical elements
encompassing the myocardium. Optimization process confirmed the predictions and
led to the first magnetically activated, metamaterial based design of a heart assisting de-
vice.
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1
INTRODUCTION

T HIS thesis commenced as a continuation of work on a supercompressible metama-
terial and was transformed into development of a heart assisting structure based

on its geometry. The first design of such a device is proposed on the basis of analysis
performed with finite element simulations and machine learning. The optimized geo-
metrical configuration which can be magnetically activated shows potential to be a new
remedy to myocardium sicknesses.

Cardiovascular diseases which hamper the heart’s operation are a major issue which
contributes to a significant percentage of deaths worldwide. Some of them can be treated
either temporarily or continuously with heart - assisting devices. There is a significant
number of these available on the market in the form of pulsatile and continuous flow
appliances and a few novel ideas in research. Most of them, however, pose as an in-
convenience to the patient due to the mode of activation which is transcutaneous. Ad-
ditional threats of bleeding or infection are another disadvantages of currently utilized
devices. The ones which minimize the cons are usually simple and do not offer enough
tailorability to patients’ needs. Also, few of them assist the heart in all directions of its
motion - longitudinally, radially and rotationally. This creates a scope for design of a
safe, reconfigurable structure, which closely follows the myocardial deformations and
could aid people on their way to recovery.

The relatively new type of materials which prove to be suitable for such applications are
called metamaterials. They are superior to the substances which they consist of due to
the arrangement of their internal structure. One can represent them in cellular form or
as a unit cell like the geometry described in this thesis. Manufacturing of such mate-
rials poses a challenge to typical manufacturing processes but is feasible with additive
manufacturing techniques like 3D printing.

Discovery or design of new materials depends strongly on finding trends in their prop-
erties based on varied parameters like percentage of doping agents or attributes of mi-
crostructure. A similar approach is presented in this work but on a macroscale with the

1
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use of machine learning. The novel design of the previously developed metamaterial is
adjusted to the heart’s shape, parametrized and analysed in thousands of configurations.
Outcomes are regressed in a multidimensional space in order to derive trends defining
influence of parameters on the quantities of interest. Finally, the geometry is optimized
with respect to the set parameters and within bounds investigated in the data-driven
analysis.

The thesis starts with description of available knowledge and determination of scope
for improvement in the form of literature review presented in Chapter 2. Description
of the framework used along with the results of the data-driven analysis follow right af-
ter in Chapter 3. Bayesian optimization module as well as the optimization results are
presented in Chapter 4. Conclusions regarding the outcomes and recommendations for
development of the project appear in Chapter 5.



2
LITERATURE REVIEW

T HE research conducted for this thesis required not only computational analysis but
also a relevant theoretical preparation based on previous work done in this field. The

literature review done as a part of it starts with Section 2.1 which identifies the potential
improvement in the field of heart assisting devices and lays out the motivation behind
this project. Section 2.2 is a summary of currently available metamaterials, explanation
of what they are, their classification and reasons behind choosing them for the given ap-
plication. Section 2.3 provides information about substances considered as potentially
useful in making the metamaterial active. The last Section 2.4 gives a brief overview of
the utilized computational methods from the field of machine learning.

2.1. MOTIVATION

World Health Organisation classifies the cardiovascular diseases (CVD) as the main cause
of death as around 31 % of all deaths globally in 2016 were due to CVDs [159]. Roth et al.
describe CVDs as a significant obstruction to human development due to their preva-
lence and mortality [120]. Although patients’ life expectancy and quality of life can be
extended with medication [120], intervention with artificial appliances or a heart trans-
plantation are often required. For these reasons the main motivation behind this project
is the design of a novel heart assisting structure, which could reduce the issues inherent
to currently available devices.

Cardiovascular diseases are illnesses of the heart muscle (coronary heart diseases) and
blood vessels. They can be inborn (congenital diseases) or acquired [120]. Some illnesses
cause the left ventricle to deform to a lesser extent like in the case of ischemic cardiomy-
opathy, therefore reducing the blood flow [21, 135]. Ischemic heart disease was the main
CVD causing heart - related health issues globally between 1990 and 2015 [120]. Hence,
the scope for patients’ life improvement is the greatest if the right treatment technology,
capable of restoring heart’s pumping capacity, is developed.

3
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2.1.1. HEART DEFORMATION AND VENTRICULAR ASSIST DEVICES

DESCRIPTION OF HEART’S MOTION

Healthy myocardium shortens and twists in a complicated manner due to the complex
shape of the muscle tissue as described by Buckberg et al. [25] and visible in Figure 2.2.
Such a muscle shape allows simultaneous compressive and twisting motions [25]. For
the purpose of this project the motion is simplified into the global longitudinal strain
(GLS), global radial strain (GRS), global circumferential strain (GCS) and a twist between
the heart’s base and apex [135, 165, 167] as shown in Figure 2.1.

Figure 2.1: Heart’s twisting motion [167] Figure 2.2: Torrent-Guasp’s my-
ocardium model adapted from [25]

Typical values for each of the strain components can be found in Table 2.1 and are well
described in literature [106, 135, 165]. The twist is measured at the base of the heart
with mean of 5.1° and at the apex with a mean of 11° as depicted in Figure 2.1 which in
a simplified manner results in a total of 16± 3° of rotation between the base and apex
[25].

Table 2.1: Typical myocardium strain components [165]

Property Minimum Maximum
GLS [%] 15.9 22.1
GRS [%] 35.1 59.0
GCS [%] 20.9 27.8
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SUMMARY OF VENTRICULAR ASSIST DEVICES

Currently the heart assist devices assume one of the two forms - pulsatile [40] or contin-
uous flow appliances [126]. Positive displacement pumps used in the former ones cause
a pulsating action alike the one of the heart itself, while the latter devices with centrifugal
or axial flow pumps create a continuous blood flow through the heart [46, 88, 126]. The
pulsatile ventricular assist devices can be used as a temporary therapy to ease the work
of the heart and let it heal. The continuous - flow ones aimed at long - term use can be
utilized in a destination therapy where it is used for the rest of patient’s life or as a bridge
to transplantation [18, 126].

Despite the benefit of saving human lives, the use of ventricular assist devices (VAD)
always poses some risks to the patient, the most common of which are bleeding and
infections [47, 126]. Additionally, the prolonged use of continuous flow devices can result
in reduction of aortic wall thickness and appears to increase the risk of gastrointestinal
bleeding. The pulsatile devices seem to be more useful in heart recuperation periods as
their use preserves the pressure-volume curves better for the left ventricle [88]. The last
but very crucial difference is the probability of survival which decreases more over time
for the pulsatile VADs in comparison to the ones with continuous flow [88]. This shows
that there is no perfect solution to the problem of a sick myocardium yet.

Figure 2.3: Pneumatic artificial muscle based VAD, designed by Roche et al. [118], with
circular elements that induce circumferential and radial strain and diagonal ones which
cause longitudinal contraction and rotation

Previous work done in this field in order to develop a superior technology without some
of the described flaws includes the use of pneumatic artificial muscles (PAM) to cre-
ate an active scaffolding for a device encapsulating the myocardium in a flexible sleeve
(Figure 2.3) [118, 119]. Such a pneumatic material consists of an internal pliable bag
which extends when pressurized and an external non-extensible mesh which shortens
the structure when it expands sideways upon pressurization [29]. A significant benefit of
the pneumatic actuation is the twofold behaviour of the artificial muscle - contraction
at pressurization and expansion at the application of vacuum. This results in a more
responsive activation mechanism of the VAD [118].

The device presented by Roche et al. [118] is capable of supporting longitudinal, twisting
and circumferential motions of the myocardium simultaneously. The extent to which it
reinforces heart’s work can be adjusted with the pressure inside the PAMs. The soft sleeve
used in the design allows for an adaptation of the device to the shape and mechanics of
myocardial tissue and for a twist of up to around 11°. While it is hard to extract the exact
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longitudinal strain from the latest work, the previous design [119] proved to be capable
of around 16% strain in that direction.

Figure 2.4: Visualisation of an
apical torsional ventricular as-
sist device whose operation is
based solely on torsion of the
myocardium [150]

Some of the other proposed solutions include pas-
sive [130] or active [149] Nitinol based devices
which assist the heart by squeezing it in all direc-
tions. There are also designs which are focused
on only one type of strain like the rotation induc-
ing appliance developed by Trumble et al. [150]
(Figure 2.4). Such a device was proven to leave
no damage to the heart tissue as well as cause no
arrhythmias even at rotations reaching 120° [150].
All of such external devices have a primary ad-
vantage of less interference with internal myocar-
dial tissue, which in the case of standard VADs can
cause clogging [130]. Shahinpoor [130] underlines
the potential and need for general compression
devices in heart disease treatment.

Most of currently used and the recently proposed
active solutions have a common disadvantage of
requiring an electrical pump which needs to be
powered either externally or has a limited opera-
tion time on battery. Some of the Nitinol based de-
vices also require transcutaneous wires [149]. Removal of such from the potential design
could increase the quality of treated patients’ lives and reduce the risk of infection as
suggested by Trumble et al. [150]. Additionally, many of the VADs need to be redesigned
or adjusted to fit the specific sizes of patients’ hearts [150]. Alternatively, in the case
of pump based devices the blood flow needs to be carefully controlled [40]. This indi-
cates the demand for a novel, highly reconfigurable device which does not require tran-
scutaneous elements for operation and which could be activated by an external energy
source. An additional benefit would be development of software and manufacturing
process which allows for tailoring the device to personal needs of the patient in a short
time.

The above review of ventricular assist devices and description of the complex heart mo-
tion determine the scope for improvement and requirements set for a new VAD. No de-
vice currently available incorporates all of the desired traits simultaneously:

• Motion range close to that of a healthy heart

• Operation without a need for transcutaneous elements or piercing the heart

• Adjustability of motion range

• Tailorability to the size of patient’s heart

• Suitability for both destination and bridge therapies
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2.1.2. ARTIFICIAL MUSCLES

The idea of a ventricular assist device which would encapsulate and activate the my-
ocardium resembles the concept of introducing an additional muscle into a human body.
There is a class of devices and materials, which are used for such applications and bear
the name of artificial muscles. They possess the capability of reversible contraction, ex-
pansion and rotation within one component under application of a stimulus [93]. The
idea behind their creation was their use in life-saving technologies or in adverse envi-
ronments [71].

The primary requirement for such applications is the ability to actuate the material on
demand which is why various materials with such properties are considered, includ-
ing polymers, ceramics, alloys and composites. Among the possible actuation mecha-
nisms (thermal, magnetic, photo, capillary, chemical [162] or electroactuation [57]) the
electroactive and magnetoactive materials are examined, including the ones with shape
memory effects, due to their versatility and ease of stimulus application.

Biological muscles are only able to contract, which is why humans have antagonist mus-
cles and stretchable tendons to allow for reversibility of motion. Human muscles also
require energy to stay in the contracted state in opposite to those of mollusks which can
reach a catch state [93]. Additionally, the operating temperature can affect the actuation
times of muscles as well as their strength [105]. The range of possible temperatures is rel-
atively narrow for natural muscles: 9°C [105] - around 42°C [51]. Because the designed
device would be implanted into the human body it also needs to be capable of opera-
tion in this temperature range. It should also resemble or even have superior physical
properties in comparison to natural muscles (see Table 2.2).

Table 2.2: Properties of natural muscles. Adapted from [93] with additional information
on temperatures from [105] and [51]

Property Typical Maximum
Strain [%] 0.1 (sustainable) 0.35

Stress [MPa] 0.1 0.35
Density [kg/m3 1037 -
Strain rate [%/s] - >50
Bandwidth [Hz] - 20 (humans) 1000 (midges)

Efficiency [%] - 40
Cycle life - >109

Modulus [MPa] 10-60 -
Operation temperatures around 36 °C 42 °C
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The desired properties of active materials used in actuators were established by previous
researchers’ work and additionally suggested in literature [71, 93, 109]. The ones relevant
to the device designed in this project are:

• Applicability in the system
• Flexibility and strain capability that match the application
• High strength and actuation pressure
• Short reaction times
• Ability to operate in the given temperature range
• High energy density and efficiency
• Ease of manufacturing
• Low environmental impact and biocompatibility
• Long medical device lifetime
• Actuation directionality

Most of the physical requirements must be matched by the substance chosen for the ap-
plication, so that it can perform well in the given environment. However, some of them
like strain capabilities or actuation directionality can be fulfilled by careful design of the
device’s structure. This brings up the idea of using a relatively new group of materials -
metamaterials.

2.2. METAMATERIALS

Materials are usually assigned to one of the main classes of metals, polymers, glasses,
elastomers ceramics or hybrids (composites) based on similarities in physical proper-
ties, manufacturing processes and often applications [3]. Currently, as a result of re-
search related to tuning the internal structure of the materials we can name an emerg-
ing group of metamaterials. "Metamaterials are carefully structured materials — often
consisting of periodically arranged building blocks — that exhibit properties and func-
tionalities that differ from and surpass those of their constituent materials rather than
simply combining them" [12].

This type of materials was firstly developed for thermal, optical and acoustic applica-
tions [168] and later found application in low density [92, 125], ultra strong structures, as
aforementioned materials for space missions or as reusable shock - absorbing materials
[42]. One of the benefits given by metamaterials is their capability of going beyond the
classical Cauchy elasticity by for instance twisting under axial load [42].

This thesis further develops the idea of designing an extremely reconfigurable metama-
terial as in [14] but adapting the design to heart’s shape in order to create a myocardium
assisting device.

The above - mentioned supercompressible metamaterial developed by Bessa et al. [14]
was inspired by the deployable masts [112], which serve as a solution to the limited cargo
space in space missions and can be especially useful in telescope systems with large
apertures and medium baselines. Other authors suggest more utilizations for this type
of structure like spectrometer booms [141], solar sails [99] or radar masts [161].
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The metamaterial (shown in Figure 2.5) consists of two rigid rings connected with slen-
der elements called longerons. Under the influence of an external vertical force applied
to the top ring, the longerons buckle, leading to significant volumetric strains even be-
yond 94%, depending on the configuration [14]. Such a mechanism is passive and re-
quires the external force for the deformation to occur while an activation due to other
stimulus with an altered geometry could lead to broadening the range of motion and
applications.

Figure 2.5: Initial metamaterial geometry (Bessa et al. [14])

2.2.1. METAMATERIAL CLASSIFICATION

Metamaterials may have various structures, which dictate numerous possibilities in terms
of their properties; however their classification differs across sources. The first catego-
rization is the one presented by Bertoldi et al. [12]:

• Linear mechanical
• Mechanism based
• Instability based
• Topological metamaterials

Linear mechanical metamaterials are described by Young’s modulus in case of the isotropic
ones and the elasticity tensor in the case of anisotropic ones which can assume any form
which satisfies the laws of thermodynamics. Examples include auxetic [6, 50, 102], ex-
treme and pentamode materials [12, 66].

Mechanism based metamaterials are a collection of rigid elements connected together
by flexible hinges. They are useful for deployable and energy absorbing structures. Com-
mon examples include: origami/kirigami based [41], topological and soft - mechanism
based metamaterials [12, 117].
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Instability based metamaterials show elastic instabilities and are capable of large defor-
mations. They usually contain slender elements able to snap between multiple stable
states. Various instability mechanisms are possible [12] but the main one - buckling is
the one utilized by the metamaterial designed by Bessa, Glowacki and Houlder [14]. De-
pending on design, the buckling based materials can have a reversible behaviour. Snap-
ping metamaterials usually retain the deformed shape after unloading [57, 59]. Common
examples include: frustrated and programmable metamaterials [12].

Topological metamaterials are insensitive to presence of disorder in their microstructure
as well as smooth deformations [12, 32]. The most common applications can be found
in the field of condensed matter physics research [12].

An alternative classification is presented by Yu et al. [168]

Figure 2.6: Metamaterial classification by Yu et al. [168]

Yu et al. categorize mechanical metamaterials with regards to their elastic constants -
Young’s modulus, shear modulus and bulk modulus as well as Poisson’s ratio (see Figure
2.6).
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Last classification by Hu et al. [57] differentiates metamaterials on the basis of their
application - motion or energy related. The former group can be used for absorbers
[26, 146], dampers, stabilizers or isolators [57]. Motion related metamaterials could find
application in high motion rate applications as small perturbation can result in sudden
snapping and reconfiguration of the material [57].

The metamaterial required for the ventricular assist device needs to undergo controlled
squeezing and rotating motions. For this reason it is likely that the best type would be
a motion related, mechanism based metamaterial with elements of limited flexibility.
This may, however, not point towards the instability based metamaterial designed by
Bessa et al. [14] at first. The reason for choosing to develop this particular structure
into a VAD was its geometry which can be altered to fit the heart’s shape. Additionally, it
already had some traits of a mechanism based metamaterial like inclusion of rigid rings
and their flexible joints with the longerons. The ring was seen as a potentially active
element which could promote the squeezing motion, while longerons would encompass
the myocardium and apply the strain to its surface.

2.3. ACTIVE MATERIALS

The purpose of this part of the literature review is to investigate materials suitable for ac-
tivation of the heart assisting structure and establishing basic constitutive laws for anal-
ysis of their performance in FEM simulations.

The subsections below describe groups of materials considered for the application, specif-
ically:

• Thermally activated materials 2.3.1

• Hygroscopic polymers and composites 2.3.2

• Electroactive polymers and alloys 2.3.3

• Shape memory materials 2.3.4

• Electroactive ceramics 2.3.5

• Electroactive composites 2.3.6

• Magnetoactive polymers 2.3.7
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2.3.1. THERMALLY ACTIVATED MATERIALS

Increase in temperature causes expansion in most materials [147], although substances
with negative thermal expansion coefficients also exist [81, 101].

Thermal expansion coefficient is defined as the ratio of the caused strain and tempera-
ture change that caused it [147]:

α= ∆L/L

∆T
(2.1)

Thermal expansion generates strain and, if constrained, stress [22]:

σi j =Ci j kl (εkl −αkl∆T ) (2.2)

Where Ci j kl is the elastic stiffness tensor and αkl is a thermal expansion coefficient ten-
sor.

Equivalently:
εi j = Si j kl (σkl +αi j∆T ) (2.3)

with Si j kl being the elastic compliance tensor



ε1

ε2

ε3

γ23

γ31

γ12

=



S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66





σ1

σ2

σ3

τ23

τ31

τ12

+



α11

α22

α33

2α23

2α13

2α12

∆T (2.4)

Where:

τ23 = 2σ23,τ13 = 2σ13,τ12 = 2σ12

Direction of strain depends on the properties of the material contained in the thermal
expansion coefficient. First three components of the vector ε11, ε22 and ε33 correspond
to strains in all three principal directions and the other three correspond to shear strains
[81]. It is also possible to consider the thermal expansion in 2D and 3D in the form
of area and volume strains respectively [147]. Typical values of the thermal expansion
coefficient vary from 0.5µstr ai nK −1 for silica glass up to (450µstr ai nK −1) for Ethylene
Ethyl Acrylate Polymer (EEA) [1].

The thermal expansion simulation approach is a simple one available in most FEA soft-
ware including ABAQUS, however it is not considered as a realistic activation mode due
to the human body temperature limitations. In order to achieve significant local strains
(5−9%) one would need to change the temperature of the structure by tens or hundreds
of Kelvins [1] which is not feasible inside a human chest. The thermal model may serve
another purpose - if the required material specific models are unavailable or for the sake
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of simplicity it is possible to use the analogy between other deformation modes (for in-
stance piezoelectric) and the thermal expansion [34, 38].

2.3.2. HYGROSCOPIC POLYMERS AND COMPOSITES

An alternative option to thermal loading of a material is putting the part in an environ-
ment with high moisture for expansion or low for contraction. Some materials, like poly-
mers, exhibit the ability to absorb and desorb significant amounts of moisture, which
results in an increase or decrease in their mass and volume. Such an effect is called hy-
groscopic swelling [104]. Some researchers have already successfully utilized this effect
in smart materials [82, 83].

Figure 2.7: Exemplary one-
dimensional weight gain based
on Fickean kinetics (dashed curves
represent situations at different
normalized times) [158]

Absorption of moisture is a relatively slow pro-
cess, in comparison to other forms of smart struc-
ture activation, due to the need for penetration
of the material by diffusion [104]. Unbound wa-
ter molecules penetrate the material and occupy
the free volume. The swelling and plasticiza-
tion effects may therefore be slower in the begin-
ning in comparison to a later stage when most
of the free volume is already occupied and addi-
tion of water content starts to cause stretching of
the material [157]. For this reason it is possible
that the hygroscopic swelling effect is mostly ob-
served after a specific threshold of moisture con-
tent [158].

The expansion can be quantified with the diffu-
sion coefficient D , which defines the rate at which
moisture spreads in the material. This coefficient
is not only affected by the amount of free space in
the material which can be occupied by moisture

but also by the affinity between the material and water molecules [157] or temperature
[158]. Another crucial parameter is the moisture absorption capacity C∞ which quan-
tifies the water amount that the material is capable of absorbing if given infinite time
in a moist environment [104]. Current material water content C is defined as follows
[28]:

C = Wet weight - dry weight
Dry weight/density (2.5)

The sorption - time characteristic may assume various shapes (example in Figure 2.7),
depending on the properties of the material, possible damage and physical or chemical
break-downs of the material [158].
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The aforementioned moisture sorption results in strain of the material and possibly stress,
depending on the constraints. A constitutive law for this process is similar to the one
which describes the thermal expansion [60, 104]:

σ=C (ε−β∆M) (2.6)

Where: σ - stress vector
εi j - strain vector
βi - hygroscopic expansion coefficient
∆M - moisture content change (%)
C - stiffness matrix

Coefficient of moisture expansion ranges between 2 · 10−3 and 5 · 10−3 per 1% weight
gain which is roughly 100 times the typical thermal expansion coefficient α - 2 ·10−5 1

K
[158].

Despite the benefit of simplicity and presence of moisture within the human body, the
hygroscopic swelling activation is perceived as one of the least favourable possibilities
due to long activation times and highly hysteretic behaviour [158].

2.3.3. ELECTROACTIVE POLYMERS AND ALLOYS

Wan et al. [155] define the electroactive materials as the ones that undergo shape or
dimensional change in response to application of an electric field.

Multiple authors compare electroactive polymers of various types, described in this sec-
tion, to human muscles [8, 109]. Within the electroactive polymers (EAP) two main
groups can be defined - ionic and electronic [8, 155].

There are traits that make polymers appealing potential material candidates as they are
generally lightweight, flexible, come in many forms and are easy to process and mass
produce (see Figure 2.8) [8, 155].

Ionic EAP bending actuation is based on transport or diffusion of ions or molecules
[16, 155]. They usually consist of two electrodes and electrolytic medium [8]. Ionic
EAPs are characterised by low activation voltages below 5V and often biocompatibility
[155]. Most of the ionic polymers can be used both as actuators and sensors [16]. Despite
the benefits, this group of materials is not suitable due to the ion reservoir requirement
(electrolyte presence) and need for encapsulation [16, 155]. It is also hard to maintain
constant displacement under DC voltage activation (except for conducting polymers)
[8, 16], which is not a requirement but just an inconvenience at a potential testing stage.
The last aspect that prevents one from using the ionic EAPs is the activation speed which
due to ion migration is measured in tens of a second [8].
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Deformable Polymers

Chemically Activated Light Activated Electrically Activated (EAPs) Thermally Activated Magnetically Activated

Ionic EAPs Electronic EAPs

Ionic Polymer Gels (IPG)

Ionomeric Polymer-Metal Composites (IPMC)

Conducting Polymers (CP)

Electrorheological Fluids (ERF)

Ferroelectric Polymers

Dielectric Elastomers

Electrostrictive Elastomers

Electro – Viscoelastic Elastomers

Liquid Crystal Elastomers (LCE)

Figure 2.8: Summary of deformable polymer types adapted from article by Zhang et al.
[91]

Electronic EAPs are activated by Coulomb forces originating from an electric field be-
tween electrodes on a film shaped polymer material [8]. The main examples include
piezoelectric polymers, dielectric elastomer EAPs, electrostrictive polymers and liquid
crystal elastomers. As a group they present a wide range of possible strains (from 0.1%
to 380%) [87], they are free of electrolyte and provide short response times (mostly mea-
sured in milliseconds) [155]. The main disadvantage of the electronic EAPs is the close-
ness of the required high electric fields to the polymer breakdown level [7]. This can,
however be alleviated by creation of multilayered structures with thin films or increasing
the dielectric constant of the material by inclusion of particulates [8]. High electric fields
also have a benefit in the form of low currents leading to low energy losses [71].

Table 2.3: Comparison of ionic and electronic EAPs. Adapted from [16]

Property Electronic Ionic
Activation voltage Large Small
Controllability Easy Difficult
Energy density Good Poor
Mechanism Coulomb forces Mobility or diffusion of ions
Electrolyte Absent (dry) Present (wet)
Displacement Change of shape or dimen-

sions
Bending

Ability to retain displace-
ment

Yes Only conductive polymers
(CP)
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Out of the group of electronic polymers the three types considered are:

• Ferroelectric polymers 2.3.3

• Dielectric elastomers 2.3.3

• Electrostrictive polymers 2.3.3

The liquid crystal elastomers are mainly rejected because of long actuation cycles. Their
electroactive properties are based on Joule heating. Current passage results in tempera-
ture increase and phase change between nematic and isotropic phases usually within 1
second, however the cooling takes as long as 10 seconds [8].

FERROELECTRIC POLYMERS

Ferroelectric polymers are polar, crystalline materials characterised by a spontaneous
electric polarization, which is reversible under an influence of an external electric field
[89]. Within the group we can define typical ferroelectrics with a broad hysteresis loop
and sudden dielectricity constant increase close to Curie temperature and relaxor ferro-
electrics with a narrower hysteresis loop and a rounded peak of dielectric constant close
to Curie temperature [80]. The most well-known ferroelectric polymer is polyvinylidene
fluoride (PVDF) developed in the early 1970s.

All ferroelectric materials are also piezoelectric which is the crucial material property
[80]. Piezoelectricity is defined as the ability of the material to produce electrical charges
across its boundaries as a result of applied mechanical stress. The indirect piezoelectric
effect is the exact opposite - strain is caused in the material due to application of an
electric field to it [114]. A complex review of piezoelectric materials and their history was
created by Uchino [153].

z,3

y,2

x,1

Dipole Alignment

Piezoelectric Material

Surface Electrodes

t
+

v
−

Figure 2.9: Piezoelectric material schematic [96]

Piezoelectric materials can be
classified as bulk polymers, com-
posites or voided charged poly-
mers. These materials, be-
ing non - centrosymmetric [89],
make use of the internal dipoles,
which are oriented in the pre-
ferred direction by a process
called poling [64]. It strength-
ens the piezoelectric properties
of the material, which in the case
of ferroelectric materials can ini-
tially be minimal due to random
orientation of dipoles [80]. After-

wards, application of electric field in the direction of polarization results in material de-
formation [64]. In piezoelectric activation the strain is proportional to the strength of
applied electric field and usually is below 1% [80] which is why they are usually used for
sensors [8].
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The coupled electromechanical constitutive law for piezoelectric materials is based on
an assumption that the total strain consists of two components - one caused by the me-
chanical stress and the other one by the applied voltage [96].

The equation representing the converse piezoelectric effect at constant electric field (2.7)
contains subscripts as shown in Figure 2.9. Axis 3 corresponds to the direction of initial
polarization/poling, while the other two axes are perpendicular [96]. Ideal piezoelectric
materials have a linear strain response to electric field, however ferroelectric materials
like PVDF show a butterfly shaped hysteresis curve [80].

εi = SE
i jσ j +dmi Em (2.7)

Dm = dmiσi +ξσi k Ek (2.8)

Where:
σ - stress vector [N /m2]
ε - strain vector [m/m]
E - vector of applied electric field [V /m]
D - vector of electric displacement [C /m2]
ξk - permittivity [F /m]
d - matrix of piezoelectric strain constants [V /m]
S - matrix of compliance coefficients [m2/N ]

Indices i, j = 1,2,3,4,5 or 6 and indices m, k=1,2 or 3

Electroactive actuation can assume different shape change modes described by the piezo-
electric strain constant. It is represented as a 3 x 6 tensor containing ratios of strain to
applied electric field [96]. For di j the subscript means that the field is applied in the i
direction while displacement is expected in j direction. The most important elements
are d31 and d33 corresponding to transverse and longitudinal coefficients respectively
[114]. As the names state, they measure the amplitude of strain induced by unit volt-
age in the respective directions [80] (see Figure 2.10). The values of the piezoelectric
strain coefficients can assume positive as well as negative values [61] resulting in either
stretching or compression of the material under application of electric field in the given
direction.

Figure 2.10: Piezoelectric transduction modes (adapted from [114])
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The elastic compliance matrix contains coefficients being the ratio of the strain in di-
rection i to the stress applied in direction j given no stress change in other directions.
Subscripts 1-3 denote direct stresses and strains while subscripts 4-6 denote the shear
strains and stresses [96].

For the most common piezoelectric polymer - PVDF, Moheimani and Fleming [96] sug-
gest using the piezoelectric strain coefficient matrix below due to nonisotropic stresses
on the surfaces of films.

d =



0 0 d31

0 0 d32

0 0 d33

0 d15 0
d15 0 0

0 0 0

 (2.9)

With a matrix like the one given in eq. (2.36) application of electric field in the direction
of polarization results in different strains in directions of axes 1 and 2 [96].

Within the group of electroactive materials their performance is usually quantified with
a coupling factor k2 or efficiency, which can be as high as 90% [71].

k2 = Stored mechanical energy

electrical energy input
(2.10)

η= Output mechanical energy

Consumed electrical energy
(2.11)

Figure 2.11: Bending beam actuation [96]

Moheimani and Fleming [96] show a potentially useful way of bending actuation for
beams (see Figure 2.11). Two piezoelectric transducers can be used under opposite elec-
tric fields in order to induce bending.

The piezoelectric polymers like PVDF are seemingly suitable for the metamaterial due
to possibility of application by cooling from melt or drying from solutions [80]. Printing
in the case of some piezoelectric polymers is also possible [10]. The activation times
below 1 ms are more than suitable for the potential application along with acceptable
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activation stresses of more than 100 MPa in the case of ceramics and up to 4.8 MPa in
the case of polymers. However, the maximum strains being below 0.1% for polymers
and 0.2% for ceramics rule out all possible modes of activation of the metamaterial [96,
116].

ELECTROSTRICTIVE POLYMERS

Dielectric elastomers and electrostrictive polymers both belong to a group of dielec-
tric electroactive polymers [169]. All dielectric materials exhibit displacement of atoms
within the crystal lattice if an external electric field is applied to them. This effect is called
electrostriction [93]. The effect is mostly detectable in softer and compressible materials
[68].

The unit cell of an electrostrictive material is centro - symmetric because of which the
strain does not come from change in structure but rather is inherent to it [64]. The mech-
anism behind actuation is based on separation of charged ions within the unit cell of the
material [64]. Similar explanation is given by Kao [68] - internal polarization of the ma-
terial involves displacement of electric charges, which causes them to be arranged non -
symetrically. The polarization of ions in the material structure is more likely to happen
in the form of extension of the lattice instead of compression, which is why for most of
the electrostrictive materials the longitudinal coupling coefficient is positive [79]. The
mechanism is presented in Figure 2.12. If the energy required to compress the pair
of ions UC is larger than the one required to stretch the pair UE the longitudinal elec-
trostrictive coefficient Q33 is positive or vice versa [79]. The effect of electrostriction is
mostly visible in ceramics, polymers and some liquids which are slightly compressible
as it leads to a minimal volume decrease [68].

Figure 2.12: Principle of electrostriction - visualisation [79]. UC and UE denote the en-
ergy required to compress or extend an ion pair respectively, a is the distance between
negative ions and Q33 is the electrostrictive coefficient.

As presented by Kornbluh [71] the basic law for electrostrictive materials describes the
stress generated under influence of electric field:

σ= εr ε0E 2 (2.12)

Also as defined by multiple authors [27, 79, 134] for a uniform material :

εi j = εr ε0
E 2

Y
= γi j kl Ek El (2.13)
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Where:
εr - relative dielectric constant of the material
ε0 - permittivity of vacuum
E - Electric field applied between the electrodes
Y - Young’s modulus
γi j kl - fourth rank electrostriction tensor

The relationship between stress or strain and the electric field is presented by equations
2.12 and 2.13 and is clearly quadratic, leading to theoretically stronger actuation for the
same field than in the case of piezoelectrics [8]. This kind of relationship is a result of the
field affecting the material in a twofold way - firstly it induces and maintains the charges,
secondly it pulls the charges towards each other [27].

In the case of materials with large elastic compliance like soft polymers or materials with
low dielectric constant the Maxwell stress contribution needs to be included [79]. Lon-
gitudinal strain in dielectrics caused by Maxwell stress is:

εM axwell =−1

2
sεd E 2 (2.14)

Where s is the elastic compliance of the investigated material and εd is the material’s
dielectric permittivity.

Electrostrictive polymers were suggested for use in artificial muscles by Kornbluh et al. in
1998. Flexible Electrostrictive Polymer Artificial Muscle (EPAM) devices were described
as matching and even surpassing biological muscles in terms of some of their properties.
Typically strains of such polymers reach up to 4% [169] and stresses are as high as 43 MPa
[116]. Reaction times observed are below 1 ms and efficiencies as high as 90%, while
typically above 80% due to low energy losses in electrostrictive polymers (mainly due to
viscoelasticity) [71].

The application of electrostrictive polymer films in actuators is usually done by spin or
dip coating. It is crucial for the film to be uniform in order to avoid electrical break-
down of the polymer [71]. The electrodes used with electroactive polymers must be
compliant in order to maximize the strains and limit energy losses [8]. Common op-
tions are brushed powdered graphite electrodes (wear off with time) or polymers with
conductive particles like carbon black (more durable but add stiffness) which are ap-
plied by spraying or dipping [71]. Despite development of the described manufacturing
techniques the use of electrostrictive polymers is still restricted to thin films due to the
high required electric fields (measured in MV /m) [116]. Therefore, the electrostrictive
polymers may only be considered in elements like bimorph/uniform bending beams in
macroscale.
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DIELECTRIC ELASTOMERS

Dielectric elastomers are materials which can be used for quick response large strain ac-
tuators [164] with high efficiency and energy density [87] as well as reliability and dura-
bility [171]. According to Carpi [27] highly deformable materials with moduli up to 10
MPa usually fall into either the category of elastomers or gel materials. Pelrine et al.
[109] suggest that the former ones (dielectric elastomers) could be used to mimic natu-
ral muscles [155].

In terms of structure the dielectric elastomer based actuators can be represented as par-
allel plate capacitors (see Figure 2.13) with flexible electrodes and compliant dielectric
core [8]. The main cause for actuation is the Maxwell stress [17].

high-voltage
power supply

(off)

high-voltage
power supply

(on)

electrostatic force

Figure 2.13: Actuation of a dielectric EAP by Wang et al. [155]

Carpi [27] suggests a few assumptions that simplify the analysis of dielectric elastomer
actuation. Namely:

• Polymer and electrode materials are isotropic

• The electrodes are infinitely conductive and compliant

• Constant moduli of elasticity for the dielectric and zero modulus of elasticity for
the electrodes

• Negligible hysteresis and viscoelasticity

• Material is incompressible

It is impossible to find a material ideally matching the assumptions, however some of
them are close enough or it is possible to mitigate the differences. For instance the im-
perfection of electrode compliance can be included in the strain equation in the form of
compliance matrix coefficient [27]. The constitutive law [109], often called the "Pelrine
law" [160] for materials with negligible electrostrictive effects is:

ε= εr ε0
E 2

Y
= εr ε0

V 2

Y z2 (2.15)

Where z is the thickness of the element and V is the voltage applied.
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In the case of large strains a z - direction strain szz correction for thickness of the actua-
tor is required [27] in the form:

z = z0(1+ szz ) (2.16)

An alternative formulation of the constitutive law for isotropic dielectrics showing both
electrostrictive and Maxwell effects was explained by Krakovsky et al. [72]:

σxx = 1

2
ε0εr E 2

(
1+ a2

εr

)
(2.17)

σzz =−1

2
ε0εr E 2

(
1− a1 +a2

εr

)
(2.18)

Where a1 and a2 are parameters related to the electrostriction, which describe the changes
in dielectric properties under shear and bulk deformation [72]. The terms which do not
contain the a coefficients are the ones related to Maxwell stress [72]. Petcharoen [111]
confirms that for some materials like polyurethane the electromechanical response is a
result of both electrostriction and Maxwell stress with a significant contribution of both
(65 % and 35% respectively).

A discrepancy in formulae describing the stress and strain can be seen in the form of
the 1

2 coefficient. Carpi [27], Pelrine et al. [109], Löwe et al. [91] or Zhang et al. suggest
the use of eq. (2.15). On the other hand Krakovsky et al. [72], Li et al. [79] recommend
using equations containing the 1

2 constant. Pelrine et al. [110] explain the doubled strain
and pressure as a result of an assumption that the electrodes are perfectly compliant,
only small strains are obtained and that the material is incompressible with a Poisson’s
ratio of 0.5. This causes the material to be solely compressed along the direction of field
application and stretched transversely (increase in area).

Dielectric elastomers are characterised by low stiffness, high dielectric breakdown strength
and large strain capability (up to 380% [87]) [8]. The typical activation times are mea-
sured in milliseconds [116]. It is worth noting that the strain can decrease over time due
to creep release [8].

Dynamic mechanical analysis of dielectric elastomers may be more complicated due to
their structure as application of electric field causes stiffening of the elastomer as de-
scribed by Petcharoen [111].

The dielectric elastomers consist of three components - elastomer, catalyst and plasti-
cizer with variable ratios which can be used to tune the actuator. Other crucial elements
are the electrodes which need to be compliant, exactly in the same way as in electrostric-
tive polymer actuators which is why carbon grease is a suitable material [87].
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Figure 2.14: Stacked DEA [8] Figure 2.15: Prestretching process as pre-
sented by Qiu et al. [113]

The main two dielectric elastomers utilized are acrylate and silicone [169]. Acrylate pro-
vides higher maximum stress of around 7.2 MPa and maximum areal strain of almost
400% [169] while the silicone based mechanisms provide faster responses, broader tem-
perature range stability and less viscosity [91]. The process responsible for increasing
the strains and also the resistance to electrical breakdown in dielectric elastomers is pre-
straining the dielectric material [87] up to five times the original size (Figure 2.15) [91].
The force exerted by the mechanism can be multiplied by stacking them in layers (Fig-
ure 2.14) while the displacement can be increased by connecting them in series [91].
Application of the dielectric elastomer films is usually done similarly to electrostrictive
polymers by spin coating or dipping, otherwise by casting or spraying [109].

Despite great strains that can be achieved with such materials and excellent activation
times one would need a full analysis of a stacked dielectric actuator in order to design
a metamaterial made out of it. Otherwise the dielectric elastomers can only be used in
sheets and their thickness is limited to tens of micrometres which is not suitable for the
application.

2.3.4. SHAPE MEMORY MATERIALS

Shape memory materials are capable of generating high strains and forces but often at
the cost of slow actuation and large hysteresis [170]. They can show either shape memory
effect, shape change effect or both [57]. If the material is capable of elastic or viscoelastic
shape change it is defined as the shape change effect and if it is able to maintain the de-
formed shape until a stimulus is applied it is called shape memory effect [59]. Within the
group possessing the shape memory trait one can distinguish shape memory polymers
and shape memory alloys, some of both can be electroactivated [57].

The shape memory effect in shape memory alloys is a result of a martensitic transfor-
mation, while in the shape memory polymers it comes from a dual segment system as
described by Leng et al. [77]. The shape recovery can be induced by various stimuli
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depending on the material, including stress or temperature change [57] as well as stim-
ulation by water (swelling/drying out) or electricity [59].

According to Liu et al. [86] the shape memory polymers are defined as macromolecular
smart materials capable of changing their macroscopic properties under the influence
of an external stimulus. They are lightweight, inexpensive materials which due to being
highly deformable can be easily manufactured. Other advantages include biodegrad-
ability in most cases and tailorability of glass transition temperature [86]. On the other
hand, their low stiffness leads to low recovery stresses, which can be alleviated by ad-
dition of fillers and creation of shape memory polymer composites. Such fillers usually
include carbon black, carbon nanotubes or fibres of various kinds to increase stiffness.
Additionally, electrically conductive fillers can be utilized to provide electroactivity [86].
The shape memory polymers and polymer composites come in two forms - either ther-
moplastic or thermoset. The thermoplastic ones lose shape memory after a few cycles
while thermosets keep it for longer as well as provide higher stiffness, transition temper-
ature and durability [86].

Both shape memory polymers and alloys have variable properties at different tempera-
tures with glass transition and melting temperatures being critical [86]. As can be seen
in Table 2.4 the shape memory materials can usually operate within a narrow range of
temperatures, which fit those found in human body. Nevertheless, recovery times are
too long and disqualify shape memory polymers as potential candidates for the meta-
material based structure [163].

Additional information in the following references:

• Shape memory alloys: [100, 107]

• Shape memory polymers: [73, 76]

• Optimization and programming of the shape memory effect: [143]

• Types of shape memory effect: [58]

The tabulated comparison (Table 2.4) yields a verdict that neither SMPs nor SMAs can be
considered as suitable for the actuation mechanism in the metamaterial. SMPs have low
strengths and long actuation cycles while the shape memory alloys despite being much
faster, stronger and durable are too difficult in handling and shaping for a device which
needs to be manufactured quickly in urgent situations.
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Table 2.4: Comparison of shape memory polymers and alloys. Adapted from [84, 95, 144]

Property Shape memory polymers Shape memory alloys
Density [g/cm3] 0.9 -1.1 6 - 8
Phase transformations Glass transition Martensitic transformation
Strain [%] < 800 < 8
Young’s modulus at T<Ttran

[GPa]
0.01 - 3 83 (NiTi)

Young’s modulus at T>Ttran

[GPa]
(0.1−10) ·10−3 28 - 41

Stress required for defor-
mation [MPa]

1 - 3 50 - 200

Stress generated during re-
covery [MPa]

1 - 3 150 - 300

Critical temperature [°C] (-10) - 100 (-10) - 100
Recovery speeds < 1 s - several minutes > 0.1 s
Efficiency [%] 18 25
Biocompatibility Can be biocompatible

and/or biodegradable
Some are biocompatible
not biodegradable

Processing conditions < 200 °C, low pressure > 1000 °C and high pressure
Corrosion performance Excellent Excellent
Shape training Easy and fast Difficult
Cost Cheap Expensive
Cycle life < 106 < 5 ·106

2.3.5. ELECTROACTIVE CERAMICS

Ceramics are also a member of the electroactive material family [155]. Their properties
could probably be best described as extreme with dielectric constants reaching thou-
sands [61] and strains being limited to as little as 0.1% [170]. The main examples are
lead based ceramics like zirconate titanate (PZT) [69], lead magnesium niobate (PMN)
or lead magnesium niobate-lead titanate (PMN-PT) [93]. Lead free materials also ex-
ist, for instance the barium titanate (BaTiO3) [166]. The group of piezoelectric ceramics
shows possible stresses above 100 MPa, efficiencies above 90% and fast reaction times
[109]. The ceramics have also previously been successfully used in metamaterials on
nanoscale including alumina as described by Meza et al. [92].

Ceramics have relatively good shaping properties and can be formed by molding (press,
tape or injection), extrusion or starch consolidation. with good reproducibility [69]. The
main issue are the low displacements, which could potentially be alleviated by creation
of bimorph [69] or multilayer structures [145]. However, this and high processing tem-
peratures (above 1000 °C) [69] make their use infeasible in this project.
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2.3.6. COMPOSITE ELECTROACTIVE MATERIALS

Piezoelectric composites are materials formed as a combination of a piezoelectric poly-
mer or ceramic with non-piezoelectric materials. Voids as a constituent part are also
possible [136]. It is highly advantageous to mix piezoelectric ceramics with polymers in
order to combine the high coupling factor and dielectric constant of ceramics and flexi-
bility of polymers [114].

Three main groups of piezoelectric composites are considered - the (1-3) and (0-3) or (3-
3) piezocomposites. The former ones are created by embedding inorganic piezoelectric
pillars (square or cylindrical) in a polymer matrix [136]. The (0-3) and (3-3) forms are
composites where the matrix is loaded with piezoelectric particles which are completely
separated or in contact respectively [78]. For more information on various connectivity
type composites please see Uchino [152].

There are two industrially available composite types within the (1-3) group - lead zir-
conate titanate (PZT) based, and composites based on lead magnesium niobate–lead ti-
tanate (PMN - PT). While both types are suitable for macroscale applications, PZT based
composites only reach coupling coefficients up to 65% and PMN - PT based composites
achieve ones as high as 85% thanks to reactive ion etching [114].

Smith [136] suggests that for applications requiring flexibility the piezoelectric rods should
be embedded in polymers which allows for more strain. In such a case best traits of both
materials are utilized - electromechanical coupling of the piezoelectric material and flex-
ibility of the polymer [114]. In the (0-3) and (3-3) composites piezoelectric particles need
to be mixed with the matrix and cured. This type of manufacturing, despite better appli-
cability introduces modelling issues which are beyond the scope of this thesis.

It is particularly hard to find reliable information about all parameters of electroactive
composites [114] especially the ones related to cycle lifes and Young moduli. This option
could potentially be explored in further investigation.

2.3.7. MAGNETOACTIVE POLYMERS

Magnetoactive polymers (MAPs) are smart hybrid materials whose mechanical proper-
ties can be controlled with an external magnetic field. They bear similarity to rheological
fluids, however MAPs are based on magnetic particles distributed in a solid matrix. This
composite approach allows for their formation into complex shapes and retention of
particles dispersion within the material [37].

Their properties and reaction to a magnetic field depend on the type and size of the
magnetic particles. A unique feature is transition of the particles into single magnetic
domains which as a system have paramagnetic properties if the size of particles drops
below a specific size. They show no hysteresis, no remnant magnetisation and achieve
high magnetic moments [44]. A common material used for the nanoparticles is Mag-
netite (Fe3O4) [74], for which the critical size is 30µm [31]. An important feature one
must pay attention to is the correct spread of particles inside the matrix as aggregated
particles may show a different behaviour under an external field application [44].
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An interesting material for the desired application, which was used for the analysis pre-
sented in the following chapters, is based on polycaprolactone (PCL) used as a matrix
doped with 20% of magnetite - reduced graphene oxide rGO−Fe3O4 nanoparticles em-
bedded in it (see Figure 2.16). Similar particles were already described in terms of prop-
erties and manufacturing by Munasir and Kusumawati [98]. In such a combination mag-
netite plays the role of the magnetic material and the reduced graphite oxide adds great
thermal and electrical properties to the design [98] which can be utilized at later stages
of the project. Polycaprolactone, on the other hand, is a 3D printable [63], biocompat-
ible, recyclable polyester, insoluble in water and alcohols, capable of significant strains
up to 1000% [75].

Figure 2.16: Simplified nanoparticle preparation process (courtesy of Dr. M. Dias
Castilho)

According to Dr. Castilho, a co-advisor of this work, the composite MAP is capable of
activation up to 10% strain under the influence of an external magnetic field. Figure 2.17
shows the magnetic moments of the PCL based MAP. Most of the moment is achieved at
around 5000 Oe which converts into 0.5 T .

Figure 2.17: Magnetic moments induced in PCL+mGO printed fibres vs the strength of
the external magnetic field (courtesy of Dr. M. Dias Castilho)
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The Young’s modulus of the MAP doped with 20% rGO−Fe3O4 particles is 405 MPa and
it was obtained from tensile tests. Values for other particle percentage contents as well as
the achievable magnetic moments can be seen in Table 2.5. Such should be checked un-
der magnetization as according to literature [37] if any magnetorheological effect takes
place, material’s stiffness may change. This is usually true for very soft elastomers with
Young moduli well below 1 MPa [142], hence it is not expected to distort the analysis
significantly.

Table 2.5: Properties of the MAP produced by Dr. Castilho at different rGO−Fe3O4 dop-
ing percentages

rGO −Fe3O4 content [%] Magnetic Moment Elastic Modulus
2 0.04 360

10 5 382
20 9 405

100 74 -

2.4. MACHINE LEARNING

Similarly to the cases considered by Bessa et al. [13, 15] and Glowacki [45] the analysis
of potential metamaterial designs is carried in a multidimensional design space. This
kind of a problem requires a suitable method which can extract the patterns from mul-
tiple FEM simulations outputs and which is computationally inexpensive. While tuning
the models for small databases can be done by trial and error, for larger ones it can be
streamlined with machine learning techniques [13]. It is worth defining machine learn-
ing then, which according to Mitchell is:

Definition of Machine Learning: A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

An overview of pattern recognition techniques and machine learning, specific to the
metamaterial analysis was created by Glowacki [45]. Only a brief summary is presented
below.

Learning can be described as either supervised when the model is trained on the basis
of a set of preclassified data or unsupervised if the data is not labelled and classes are de-
fined in the learning process [131]. Pattern recognition can be done with various systems
out of which the best known ones include template matching, statistical classification,
structural machining and neural networks [62]. In the previous work done by Glowacki
[45] both classification and regression were utilized. What falls into the scope of this
thesis is supervised machine learning in the form of regression (modelling a function
which describes the quantity of interest [53], see section 2.4.1) and Bayesian optimiza-
tion which is described in section 2.4.3. The former one is used for determination of
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how quantities of interest depend on parameters which describe the geometry of the
designed structure. Bayesian optimization, on the other hand, leads to establishing the
values of parameters which describe a configuration that performs best in terms of a
predefined objective.

In the statistical approach one defines the features in a d-dimensional space and in
the machine learning process decision boundaries are found with criteria like a mean
squared error for instance [62]. On the basis of the training dataset the program finds
relationships between the features and classes, which later can be tested and applied for
classification on pre-processed datasets [53]. In the case of a regression problem there is
not a limited number of classes but rather the data is continuous, which means that the
program is expected to learn and come up with a model which predicts the target value
on the basis of the input [53].

Figure 2.18: Statistical pattern recognition model [62]

The statistical machine learning framework (so called " The learner’s input") [131] can
be divided into :

• Domain set: An arbitrary set of objects X to be labelled, usually shown as a d-
dimensional vector containing all the features

• Label set: Set of output values (y), either in the form of labels for discretized out-
puts or an infinite set in the case of continuous outputs

• Training set: Part of the known set of (X,y) pairs which is used to train the model

• The prediction rule: The classifier or equations expected on the basis of the learn-
ing process, which map inputs X to outputs Y

• Test set: The remainder of the known set of (X,y) pairs used to assess the validity
of the found prediction rule

• Measures of success: An error of the predictor represented in the form of proba-
bility of it predicting an incorrect output on a random point from the input data
set. A commonly chosen one is the mean squared error function
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2.4.1. GAUSSIAN PROCESS REGRESSION

The regression problem in this thesis is mostly addressed with Gaussian processes. They
are non-parametric, stochastic models utilizing Bayesian theory with a Gaussian prior
[128]. Gaussian process regression models are based on definition of probability distri-
bution over possible functions and subsequent inference [115].

Gaussian processes can be used for multiple purposes [127]:

• Function modelling: Establishing a relation between inputs and outputs in a
function form

• Function exploration: Choosing the input points for which one wants to observe
the outputs so that the model is as accurate as possible and obtained efficiently

• Function exploration - exploitation: Choosing the inputs points for which one
wants to observe the highest outputs and maximize total reward within specific
time

The first purpose is related to the function regression. The second and third applications
of Gaussian process regression are linked to determination of trends in the design space
and optimization, where the Gaussian Process can play the role of a surrogate model,
respectively.

Left side of Figure 2.19 presents an initial belief about expected functions in the form
of probability distribution. Average of functions presented in the figure is zero due to
lack of additional information. If it becomes available, the knowledge about functions
and therefore probability is updated [115]. When new points become known, the prior
probability function is combined with the likelihood and a posterior distribution is ob-
tained for which the functions pass through the known points [115] (see the right side
of Figure 2.19). The task which the machine learning process is supposed to perform is
optimization of the covariance function parameters [115].

Figure 2.19: Comparison of prior and posterior descriptor function distributions [127].
Grey lines are samples from the Gaussian Process, black dots indicate observations and
dark lines represent mean of the function.
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The Gaussian process is fully specified by the mean m(x) and covariance k(x, x ′) func-
tions:

f (x) ∼GP
(
m(x),k(x, x ′)

)
(2.19)

Where:

m(x) = E
[

f (x)
]

(2.20)

k(x, x ′) = E
[(

f (x)−m(x)
)(

f (x ′)−m(x ′)
)]

(2.21)

The covariance function, often called a kernel, models the joint variability of the random
variables and needs to be defined by the user [20] on the basis of factors like expected
function smoothness and patterns [127]. Choice of the kernel sets prior information
about the distribution and affects convergence of the process [115]. It usually assumes
more similarity between close points and less between distant ones. A commonly used
kernel for smooth and stationary functions is the radial basis function kernel [127] with
hyperparameters in the form of variance of the noise signalσ2

f and length-scale l :

k
(
x, x ′)=σ2

f exp

(
−|| x −x ′ ||2

2l 2

)
(2.22)

The likelihood of the functions of interests is obtained with the help of Bayes rule [115]:

posterior = likelihood×prior

marginal likelihood
(2.23)

The posterior distribution is denoted as:

f∗ | X , y, X∗ ∼N
(
K (X∗, X )[K (X , X )+σ2I ]−1 y, K (X∗, X∗)−K (X∗, X )[K (X , X )+σ2I ]−1K (X , X∗)

)
(2.24)

The log marginal likelihood, which is used to train the GP by finding a local maximum
(with respect to the kernel hyperparameters) [137] is equal to:

log p(y | X ) =−1

2
yT (K +σ2

n I )−1 y − 1

2
l og | K +σ2

n I | −n

2
l og 2π (2.25)
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Where:
f∗ - Gaussian process prediction
X - D x n matrix of the training inputs
D - number of dimensions
n - number of data points
X∗ - matrix of test inputs
K - covariance matrix
y - scalar output
σ2

n - noise variance
I - identity matrix of size n

For all other equations and derivations the reader is advised to look into the summary
written by Glowacki [45], a tutorial on Gaussian distribution [127] as well as other rele-
vant sources [20, 115].

2.4.2. SPARSE GAUSSIAN PROCESS REGRESSION

The standard Gaussian process approach has a primary limitation in the form of its cubic
time complexity O (n3) which results from the need to invert the determinant of the ker-
nel matrix [85]. A solution to this problem was proposed in the form of scalable Gaussian
processes which can be categorized as local or global approximations. The former ones
assume the divide-and-conquer approach in order to train the models on local subsets of
data [85]. Global approximations simplify or approximate the kernel matrix by consider-
ing only a subset of the training data (subset of data), removal of uncorrelated entries in
the kernel matrix (sparse kernels) or employment of low - rank approximations (sparse
approximations) [85].

Subset of data approach uses only a part of the training data with size m, reaching time
complexity of O (m3) with m << n. Limitation of the training data subset leads to a lower
confidence about the prediction in comparison to the case when all datapoints are uti-
lized [85].

Sparse kernels simplify the kernel matrix elements by setting them to zero for a distance
between input points which exceeds a certain value. The time complexity is then O (αn3)
with 0 < α < 1. Such a solution is mostly suitable for capturing local patterns [85] so its
employment could lead to overlooking some global trends.

Sparse approximations achieve an improved performance with training time complex-
ity of O (nm2) [137]. m is the number of inducing points (pseudo - input points), which
through Nyström approximation eq: (2.26) are used to summarize the training data de-
pendencies [85].

Knn ≈Qnn = KnmK −1
mmK T

nm (2.26)
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Global sparse approximations were previously utilized in the metamaterial analysis by
Glowacki [45] and proved to be suitable for this design process. Thanks to focusing on
global trends instead of local patterns they help with avoiding overfitting and prediction
discontinuity which may be the case if the local approximations are used [85]. For this
reason as well as availability of software which employs the global sparse approximations
they are further investigated.

The sparse approximations are based on a set of inducing pairs (Xm , fm), which rep-
resent the whole data set [85]. The inducing variable fm is assumed to be statistically
sufficient for the test data latent function f [85].

The sparse approximations to Gaussian processes can be further categorized [85] into:

• Prior approximations: Prior approximation with exact inference ( complexity
O (nm2) )

• Posterior approximations: Exact prior with approximated inference (complexity
O (nm2) )

• Structured sparse approximations: Exploitation of specific Kronecker structures
in the kernel matrix (complexity O (n) )

• Stochastic variational sparse approximations: which utilize stochastic optimiza-
tion (complexity O (m3) )

Where m is always the number of inducing points and n the total number of datapoints.

Full GP

Ο(n3)

Sparse kernels

Ο(αn3) Ο(nm2) Ο(n)

Product-of-experts

Prior approx.

Ο(m3)

Structured
sparse approx.

Posterior approx.

Stochastic
variational sparse

approx.

Scalability

C
a
p
a
b
ili
ty

Mixture-of-experts

Subset-of-data

Global approx. Local approx.

Figure 2.20: Comparison of available scalable Gaussian processes with respect to their
scalability and capability [85]
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Figure 2.20 reinforces the information available on various GP approximations. The
highly scalable approaches may result in shorter computational time, however, apart
from stochastic variational approximation their use results in loss of prediction capa-
bilities. The methods with complexity O (m3) do not benefit fully from increasing the
dataset size. What can be inferred is that the best GP algorithms for the given applica-
tion are the posterior approximations. They provide high capability and as proved by
Bessa et al. can be used in the design process of a simply-parametrized metamaterial
structure within time constraints of this project.

SPARSE POSTERIOR APPROXIMATIONS

The posterior approximations evaluate the prior exactly but approximate at the infer-
ence step. A well known solution for the posterior approximation procedure is the vari-
ational free energy described by Titsias [148]. Variational inference is used in order to
approximate the posterior distribution [9] and the inducing inputs are defined as vari-
ational parameters [148], which protects them from overfitting [2]. Their selection is
done on the basis of minimization of the Kullback - Leibler divergence between the ap-
proximated posterior distribution p( f , fm | y) and a variational distribution q( f , fm | y)
[85, 148]:

K L(q( f , fm | y) || p( f , fm | y)) = log p(y)−Fq (2.27)

Where the so called evidence lower bound (ELBO) or the aforementioned variational free
energy Fq can be used for optimization of the variational parameters and hyperparame-
ters by its maximization [85, 148] and is represented as:

Fq =
〈

l og
p(y, f , fm)

q( f , fm | y)

〉
q( f , fm |y)

(2.28)

Maximization of Fq with respect to the variational parameters results in an improved
match between the evidence p(y) and the posterior p( f , fm | y) [85].

Further knowledge on this method can be obtained from a summary done by Glowacki
[45] or the relevant sources [2, 85, 148].

2.4.3. BAYESIAN OPTIMIZATION

Bayesian optimization has become a common way of finding the optimal solutions in
cases such as hyperparameter tuning for machine learning applications [138] or con-
strained experiment design for example in the world of Materials Science [5, 108]. Typ-
ical global optimizers will usually reach the minimum of the given function, however at
the expense of multiple function evaluations [43]. Bayesian optimization is applicable in
situations when the cost of probing the values repeatedly is prohibitive and one desires
to reach the optimum quickly and at low expense [43].

The Bayesian approach towards optimization evaluates the black-box functions sequen-
tially, meaning that data is evaluated and sampling continues until a satisfying result is
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obtained without a necessary predetermination of exact sample size [11, 94]. With an
unknown function that is expensive to probe one may want to utilize two well known
strategies - Gaussian Process (GP) surrogate model or tree structure Parzen estimator
approach (TPE) [11]. For the sake of simplicity only the Gaussian Process approach is
described as the analysis carried out in this thesis is mostly related to Gaussian Process
based machine learning techniques.

The Bayesian framework solves a basic problem in the form:

min
x

f (x) (2.29)

where f (x) is the objective function to be minimized. Gaussian Process is used to up-
date the prior belief about the function and quantify uncertainty at each point in order
to pick the best location x∗ for the next sample (look back at Figure 2.19). Function is
evaluated at the point x∗ and the posterior belief about it is updated with the Gaussian
process model [43]. The described next point choice is taken on the basis of an acqui-
sition function, which can lead to exploitation of the function, its exploration or be a
trade-off between the two options [36].

The most common acquisition functions are expected improvement [65], maximum prob-
ability of improvement [94], upper confidence bound methods [33] or entropy search
[54].

EXPECTED IMPROVEMENT

An acquisition function which balances exploration and exploitation is the expected im-
provement [36]. This expected improvement (E I ) method tries to maximize the gain in
the objective function as follows:

Ĩ (x̂) = max
(
0, f (x+)− f̃ (x̂)

)
(2.30)

E I (x̂) = E[
Ĩ (x̂)|x̂]

(2.31)

Where x+ is the best point so far, x̂ is a potentially considered point and f̃ (x̂) is a GP
posterior random variable for f (x̂) [43, 94]. This approach assigns a reward to the con-
sidered point if the predicted result would be better than the current minimum or 0 if it
does not improve the result. The point with highest reward is then selected as the next
sampling position [65].

An analytical evaluation of the expected improvement looks as follows:

E I (x̂) =
{(
µ̃(x̂)− f (x+)

)
Φ(Z )+σ(x̂)φ(Z ) if σ(x̂) > 0

0 if σ(x̂) = 0
(2.32)

Where:

Z = µ̃(x̂)− f (x+)

σ(x̂)
(2.33)
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Φ is the standard normal cumulative distribution and φ is the standard normal prob-
ability density function. The expected improvement acquisition function works with a
balance between choice of points with high variance for exploration and low mean for
exploitation [24].

MAXIMUM PROBABILITY OF IMPROVEMENT

Another old approach, presented by Kushner in 1964, maximizes the probability of im-
provement with respect to f (x+) defined as:

PI (x̂) = P
(

f (x̂) É f (x+)−ξ)=Φ(
µ̃(x̂)− f (x+)+ξ

σ(x̂)

)
(2.34)

This method is more exploitative than expected improvement as points with a high chance
of yielding an even slightly lower value of the objective function will be chosen. It is
possible to add a decreasing trade-off modification ξ which is not its inherent part. It
leads to more exploration in the initial stage of optimization by accepting only improve-
ment bigger than the given parameter ξ. This approach is also possible with expected
improvement function to promote more exploration in the beginning of the process
[24, 94].

ENTROPY SEARCH

Alternatively the entropy search method can be utilized. Its main aim is minimization
of uncertainty of the optimal value x∗. Having obtained the posterior distribution for
the location x∗ which is p(x∗|D) one wants to select the next probing point x̂ so that the
reduction in negative differential entropy is maximized [54, 56]. The acquisition function
looks as follows:

α(x) = H
[
p(x∗|D)

]−E[
H

[
p

(
x∗|D, x, f (x)

)]]
(2.35)

Where D is the previous observation set and H
[
p(x)

] = −∫
p(x) log p(x)d x is the argu-

ment’s differential entropy [56]

Evaluation of equation (2.35) is tough due to entropy computations not being analytical
as well as due to the necessity of evaluation of p(x∗|D) for multiple points at every iter-
ation [56]. Rather complicated approximations are required and for details the source
articles should be checked [54, 56]. Wang and Jegelka [156] suggest that entropy search
algorithm tend to be inefficient in multi-dimensional analyses as evaluation of a large
number of samples may be required. For this reason as well as the aforementioned com-
plexity of the method it is not utilized in this project.
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CONFIDENCE BOUND

The last type of acquisition function described is the upper confidence bound algorithm
or in the case of minimizing the objective function the lower confidence bound. It im-
plicitly utilizes the mean and uncertainty while choosing the next sampling point in or-
der to maximize the exploration and exploitation [24, 33, 140]:

αLCB(x;β) =µ(x)−βσ(x) (2.36)

Where β > 0 is a trade-off parameter which can decrease with time to smoothly switch
from exploration to exploitation and σ(x) is the marginal standard deviation of the ob-
jective function at x. This method is based on optimism related to uncertainty, meaning
that the algorithm will pick the next sampling point which poses a chance of being the
minimum based on its mean and uncertainty [24]. Value of the objective is sampled
at the chosen point and if it is smaller than the current minimum it becomes the new
one and the process is repeated. Choice of higher β coefficient usually leads to higher
confidence about finding the global minimum of the objective [33].

Figure 2.21: Graphical representation of the upper/lower confidence bound

Having chosen the acquisition function one can choose the right framework which al-
lows for the desired optimization properties. Most of them like GpyOpt [4], GPflowOpt
[70] or Dragonfly [67] allow for multiple design parameters, bounds imposed on them
and use of parameter constraints as well as most or all of the described acquisition func-
tions. Some of the frameworks like Dragonfly [67] allow for multi-objective optimization
and some like GPflowOpt [70] allow for imposing black-box constraints on the outcomes.
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2.4.4. ARTIFICIAL NEURAL NETWORKS

An approach which complements Gaussian processes in regression, presented in this
work, is artificial neural network (ANN) based analysis. Artificial neural networks mimic
the human brain, which consists of around 1011 neurons that perform the cognitive
functions [39]. Such biologically motivated models are based on various networks of
processing units (artificial neurons) [132] as shown in Figure 2.22.

In supervised learning, which falls into the scope of this project, data is fed into the sys-
tem through the input layer and processed within the network until it learns how to map
the outputs to the inputs correctly. Finally, the results can be read from the output layer
[49, 132]. Some applications of artificial neural networks other than function approxi-
mation include: classification, clustering, associative memory, process control and op-
timization [35, 39].
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Figure 2.22: Types of neural networks: a) Layered feedforward network, b) Recurrent
network, c) two-dimensional lattice network, d) layered feedforward network with lat-
eral connections, e) cellular network. Numbered circles represent neurons and the blank
ones depict input nodes [39].

This review focuses on the feedforward networks due to their popularity and simplicity
which results from the layered approach and lack of feedback between such layers [39].
Additionally, implementation of this approach in the machine learning software, with
Keras Python library [30], was readily available to the author.
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Feedforward neural networks are based on information flow, without feedback connec-
tions, between the input layer, through the processing layers up to the output layer [48].
The input pairs

(
x, f ∗(x)

)
provide information about the points sampled from a desired

function f ∗(x) [48]. The model needs to match the output function f (x) with the func-
tion f ∗(x) as closely as possible, which is quantified with accuracy metrics [39]. Number
of layers between the input and output ones defines the depth of the network. Such lay-
ers are called the hidden layers because it is not clear on the basis of only the training
data what the output of each of them should be [48].

NEURONS

Figure 2.23 depicts a simplified biological neuron which consists of [35, 49]:

• Dendrites which bring inputs into the neuron

• Cell body which performs the processing of information

• Axon which leads the impulse to other neurons

• Synapses that connect the neuron with dendrites of other neurons

dendrites soma

axon

cell nucleus

cell membrane

cytoplasm

synaptic terminal

Figure 2.23: Representation of a biological neuron [35]

In artificial neural networks the processing unit can be represented similarly (see Figure
2.24). Inputs x1, x2, ..., xn are weighted with weights w1, w2, ..., wn and summed with a
linear aggregator. A bias B is subtracted from the sum in order to set a threshold for signal
generation. If the activation potential u expressed by equation (2.37) is non-negative
then a signal is generated and further limited by the activation function g to the desired
range of values, which becomes the output y [35].

u =
n∑

i=1
(wi · xi )−B (2.37)
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Figure 2.24: Representation of the most frequently used artificial neuron model, pro-
posed by McCulloch and Pitts [35]

TRAINING

Training of feedforward neural networks is based on establishment of a loss function on
the output and its minimization which is done by adjustment of the weight and bias
values. If the model function is in the form f (x;θ) with θ being a set of parameters
then an exemplary mean squared error loss function J is evaluated on the testing set
as [48]:

J (θ) = 1

4

∑
x∈X

(
f ∗(x)− f (x;θ)

)2 (2.38)

The method utilized for minimization of the loss function, which is usually used in neu-
ral networks, is the gradient descent [48]. It is based on calculation of the loss function’s
partial derivatives with respect to the parameters of the last layer and back-propagation
over the previous layers until the beginning of the network is reached [97]. Parameters
are adjusted according to the following equation which applies to both weight and bias
values [132]:

∆w j i = η
k∑

p=1

(
d J

d w j i

)
p

(2.39)

Where w j i represents the weight between j th and i th neurons, k is the number of batches
and p is the batch counter. η is the learning rate, which can be constant or variable in
order to ease achievement of the loss function’s minimum [97].
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Batch is the number of samples analysed by the network before the parameters are up-
dated [97]. One can split the gradient descent based optimizations of parameters with
respect to this quantity as follows [97]:

• Batch gradient descent with batch size being equal to the training set size

• Stochastic gradient descent with batch size equal to one

• Mini-batch gradient descent with batch size which assumes values between one
and the size of the training set

According to Goodfellow et al. [48] larger batch sizes lead to more accurate gradient es-
timates, however if processed in parallel the amount of memory required scales with the
batch size. On the other hand small batches often help with regularization (reduction of
overfitting) due to the noise they introduce [48] and their use can result in faster learning
[97].

The parameter optimization process runs over a set number of epochs, which defines
the number of times the algorithm goes through the whole dataset, or until a satisfying
convergence is reached [97].

ACTIVATION FUNCTIONS

Activation functions employed in artificial neural networks assume continuous or dis-
continuous forms and usually map the output into the range (−1,1) or (0,1) [39]. The
activation functions can also be split with regards to their differentiability [35] or linear-
ity [103]. Their choice affects how the hidden layer values are calculated and how much
information can be gained during training [48]. The weighted sum along with the bias
processed by each neuron give an output linear in nature. For this reason, if a non-linear
final output is expected, then such non-linearity needs to be introduced with the activa-
tion functions [103].

The first, partially differentiable function, is the heaviside function which assumes the
value of 1 if the activation potential is positive and a value of 0 if it is negative [35,
133]:

g (u) =
{

1 if u ≥ 0

0 if u < 0
(2.40)

This function is the simplest activation function in existence, however, its use is limited
to equally uncomplicated applications like binary classifiers due to the zero gradient
which affects the back-propagation [133].
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In the group of functions whose first derivative exists in the whole domain one can find
the popular: linear function, logistic function, hyperbolic tangent and rectified linear
unit function (ReLU) [35, 39].

The simplest, linear function assumes the form [133]:

g (u) = au (2.41)

Where a denotes the gradient. Such a function due to its simplicity can be fit quickly and
reliably, however, use of linear models is limited to modelling linear functions only [48].
Additionally, the network based on linear functions can not improve the error in the next
iterations due to a constant gradient [133].

The logistic and hyperbolic functions assume values from ranges (0,1) and (−1,1) re-
spectively and belong to the group of nonlinear activation functions [35]. The former
one is represented as [35]:

g (u) = 1

1+e−β·u
(2.42)

And the latter as [35]:

g (u) = 1−e−β·u

1+e−β·u
(2.43)

Whereβ is a real constant related to the slope at the function’s inflection point [35].

The sigmoid function is an easy to understand function, which is mostly used in shal-
low networks in applications like binary classification problems and modelling logistic
regression [103]. The basic version of the sigmoid function suffers from gradient satura-
tion and slow convergence [48] which make it unlikely to be used.

The hyperbolic tangent activation function tends to be easier to train and shows better
performance in multi-layer networks than the sigmoid function [103]. It is also zero-
centred, unlike the sigmoid function, which helps with the back-propagation [103, 133].

The last and most important activation function described is the rectified linear unit
(ReLU), which is defined as:

g (u) = max(0, x) (2.44)

It is recommended for use in majority of feedforward neural networks [48]. Its closeness
to linearity allows for easy optimization with gradient descent methods [48]. Addition-
ally, its use results in better generalization and performance than in the case of using
sigmoid or hyperbolic tangent functions [103]. However, one needs to pay attention to
overfitting and neuron death, which happens if a neuron outputs zero for any input,
while using this function [103]. Some softwares offer improved versions of this function
in the form of Leaky ReLU which alleviates some of the disadvantages [48].



3
DESIGN AND DATA-DRIVEN

ANALYSIS

A Successful analysis relies on preparation of the right framework. The one utilized
in this project is based on previous work done by Bessa and Glowacki [13, 45] and

extended by addition of a Bayesian optimization module. The first part consists of a
data - driven examination of parameters which affect the performance of the investi-
gated smart structure. Their importance and bounds to be imposed on the optimization
problem are determined with the use of sensitivity analysis and design space projec-
tions. Additionally, trends in behaviour are analysed with the help of regression models
which describe the quantities of interest. The optimization step (described in Chapter 4)
on the other hand leads to choosing values which describe the design whose behaviour
matches the reference performance in the closest way.

This chapter describes the idea behind the designed structure and steps of its develop-
ment as well as parametric approach towards the geometry in Section 3.1, introduction
to the data-driven analysis in Section 3.2 and its results in Section 3.3. It is also concluded
with optimization of the data-driven model (Subsection 3.3.3) which could be used for
designing an optimal VAD with configuration that matches prescribed constraints with-
out the need for additional FEM simulations.

43



3

44 3. DESIGN AND DATA-DRIVEN ANALYSIS
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Figure 3.1: Framework visualisation adapted from [15]

3.1. MAGNETOACTIVE VENTRICULAR ASSIST DEVICE

The investigated, metamaterial based, myocardium supporting structure is a result of
three months of iterations and redesigning the starting geometry in order to achieve the
expected functionality. Development of the novel structure can be seen on the right side
of Figure 3.4 and starts with the initial supercompressible, but passive metamaterial [14].
As described in Section 2.1 the choice of metamaterial developed by Bessa et al. [14] was
motivated by the possibility of its adjustment to heart’s shape and inclusion of elements
which can perform the required squeezing motion.

The following step includes addition of diagonal elements, attached to the rigid base
and the longerons. They proved to be successful in inducing rotation and vertical strain
when contracted as they bend longerons to the side and down to an extent defined by
the height of attachment. In structures designed by Roche et al. [118, 119] (on the left
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side of Figure 3.4), which act as a reference, the rotation is induced by contractive mo-
tion of angled pneumatic muscles. In the case of the described, magnetically actuated
device, induction of longerons’ contraction would only be possible with one of the meth-
ods described below - field inducing coils wrapped around them. In order not to limit
the possibilities at this stage, before feasibility of both proposed solutions is practically
examined, the universal design with diagonal elements was chosen.

The final design, visible in Figure 3.5, inspired by devices researched by Roche et al.
[118, 119], incorporates the diagonal elements concept. Vertical elements (longerons)
have a shape that matches that of a human heart and can be described by an exponen-
tial function derived on the basis of geometrical dimensions presented by Roche et al.
[119]. They are held together by an active, compressive ring, which causes radial com-
pression, and diagonals capable of shortening and inducing rotation within the struc-
ture. With longerons fixed at the top, as shown in Figure 3.7, the actuation results in
the ring pulling the longerons towards the centre of the structure and their tips move
upwards which is perceived as longitudinal and radial deformations respectively. Simul-
taneously, diagonals pull on the longerons sideways which causes the twist between the
apex and base planes. The investigated metamaterial structure forms an active scaf-
folding of the desired device. For application inside a human body and uniform strain
application to myocardium it would have to be encompassed by an elastic sleeve at a
later stage of development.

Figure 3.2: Visualisation of the circu-
lar field based mode of actuation (mag-
netic field direction in blue)

Figure 3.3: Visualisation of the device’s
configuration with field inducing coils
(in purple)
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All elements have a circular cross-section for simplicity of design and ease of modelling.
At this stage all joints within the structure are treated as compliant (as opposed to hinges)
due to the expected manufacturing process choice being 3D printing. The device would
be custom designed and made for every patient. Hence, 3D printing was chosen for
its capability of building complex-shaped structures without the need of long machine
adjustments to accommodate a new geometry. The material chosen for the device (poly-
caprolactone doped with 20% of rGO −Fe3O4) is printable, which makes this process a
suitable solution.

The structure can potentially be activated magnetically by application of fields in the di-
rections of the ring and the diagonals. The exact activation mechanism design is beyond
the scope of this thesis, however, two ideas were considered:

• Field inducing vest which would create a circular magnetic field inside patient’s
chest, in the direction of the ring and closely matching the direction of slightly
inclined diagonals (see Figure 3.2)

• Compliant, insulated coils around the ring and diagonals which could be pow-
ered across the skin through an induction based circuit or temporarily from an
internal battery (see Figure 3.3)

The main advantage of the first solution is the minimal number of parts implanted into
patient’s body, which may cause pain if they occupy excessive space [52]. The magnetic
vest would, however, be highly inconvenient in everyday life so its use would mostly be
restricted to bridge therapies on the way to a transplant. The second approach would
allow for more versatility in its applications. An external exchangeable and an internal
rechargeable batteries could be used in order to provide a full-time heart support to the
patient. Additionally, the magnetic field would be applied locally to the device instead
of the whole chest, especially if the device is shielded. This would result in more precise
field application to the active elements and its lower influence on human body. What
may become prohibitive is the size and number of parts which would have to be im-
planted in order to power the device.
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Figure 3.4: Development steps of the final geometry (Initial geometry (top right) [14],
other designs on the left [118, 119])
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3.1.1. PARAMETRIZATION

Each configuration of the device is described as a separate Design of Experiment (DoE).
Every DoE is a result of sampling 6 variables which, along with the fixed features, fully de-
fine the geometry. The variable parameters (as presented in Figure 3.5) include:

• Height of ring attachment normalized by structure’s height HR

• Height of diagonal attachment normalized by structure’s height HD

• Radius of the longerons RL

• Radius of the diagonals RD

• Radius of the ring RR

• Number of longerons Pol y g on

Choice of bounds for each of them was based on similar devices designed by Roche et
al. [118, 119] as well as a considerable number of design iterations which led to conclu-
sions about the geometrical limitations. Yet, the choice is not believed to be final and
may be subject to change when progress is made in manufacturing and testing the first
samples.

Number of longerons used by Roche et al. in their design was 7 [119] or 8 [118]. This
parameter affects the sturdiness of the structure to the highest extent so the minimum
number of longerons was set at 6 and maximum at 12. Height of diagonal attachment
points was chosen so that the angle between the circular magnetic field in the ring’s di-
rection and the diagonals does not become highly significant. The ring was "mounted"
at various heights between the very bottom of the device and close proximity of the diag-
onals. Radii of all elements were picked so that they do not clash with each other, in an
undeformed configuration, on the basis of pre-design iterations. All variables are contin-
uous between their bounds apart from the number of longerons which is discrete.

Table 3.1: Bounds of design parameters

Parameter HR HD RL RD RR Pol y g on
Lower Bound 0.1 0.9 1 mm 1 mm 1 mm 6
Upper Bound 0.8 1 2.5 mm 2.5 mm 2.5 mm 12
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Figure 3.5: Parametrization of the cardiac sleeve design

In this analysis the shape of the structure fits the size of an adult’s heart [119]. It can,
however be tailored or scaled with the values, currently fixed at:

• Apex radius: 12 mm

• Base radius: 37 mm

• Height of the structure: 71mm

Additionally to fixing the radii and height of the structure, the material properties were
set constant throughout the analysis. Doped PCL was used for the magnetically active el-
ements and longerons were "made" of pure PCL unaffected by the magnetic field. Prop-
erties of both are presented in Table 3.2. It is possible to analyse the influence of variable
material parameters on the structure’s behaviour, however, it is beyond the scope of this
thesis and is recommended as a potential material development stage.

Table 3.2: Properties of the materials used in the analysis

Property PCL + 20%rGO −Fe3O4 Pure PCL
Young’s modulus [MPa] 405 363.3

Poisson’s ratio 0.3 0.3
Maximal strain [%] 10 0
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3.2. ANALYSIS

Having reached the final parametrized design of the structure, its data-driven perfor-
mance quantification is performed on the basis of 50000 datapoints obtained with FEM
simulations. As described in Figure 3.1, each datapoint represents a separate DoE with
a unique geometrical configuration based on the variable parameters sampled from the
domain presented in Table 3.1 and on the fixed inputs - height and radii of the base
and apex. Quantities of interest: longitudinal strain, radial deformation and rotation
are extracted from each simulation and saved to a database, which acts as a source of
information for training the performance predicting models.

3.2.1. FINITE ELEMENT SIMULATIONS

Similarly to analyses done by Bessa [13] and Glowacki [45], as the same kind of frame-
work is used, the design of experiment (DoE) sampling is done with Sobol sequence
[139]. This approach generates sequences of points in the multidimensional hypercube
in a manner which fills it with high "evenness" and allows for a better description of
the design space [124]. An example can be seen in Figure 3.6 where Sobol sequence is
compared with random sampling.

1
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0.2

0
10.80.60.40.20

1

0.8

0.6

0.4

0.2

0
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Figure 3.6: Random sampling (left) comparison against Sobol sequence (right) [124]

Analysis of each DoE is performed with Finite Element Method (FEM) implicit static sim-
ulations in which a predefined local thermal strain is assigned to the diagonal elements
and the ring. Such a solution has been used before instead of other activation modes
like piezoelectric one [34, 38]. Only the final deformation is crucial and the transient
behaviour is beyond the scope of this thesis, hence the thermal model is used to imi-
tate the predefined deformations of the material in a magnetic field. This approach is
a major simplification of the analysis which, with more computational power and time
available, could potentially be done with electromagnetic simulations. When the mag-
netic material is fully developed and the exact mode of actuation chosen, the accuracy
of the thermal model simplification needs to be validated experimentally.
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In the simulations an identical local strain value of 10% is applied to both the ring and
diagonals for simplicity and limiting the number of parameters which determine the
resultant behaviour. However, both types of active elements (ring and diagonals) are
unlikely to deform to the same extent, under the influence of an external circular field,
unless their respective doping percentage of rGO −Fe3O4 is adjusted. As can be seen
in Figure 3.2 the field in the direction of the ring would create an angle with the diago-
nals so a better understanding of the material’s behaviour in differently angled magnetic
fields is required to determine the feasibility of this mode of activation. The coil-based
mechanism seems to be superior in this matter as desired fields can be achieved inde-
pendently for each element by varying the currents flowing through the coils. Therefore,
the coil activation idea justifies the choice of applying identical strains to active elements
and the circular field concept can be investigated at further stages of the project.

Figure 3.7: Top view of the
structure along with fixed feature
names, fixed constraints applied
to the structure (in red) and di-
rection of rotation (in blue)

Quantities of interest in the form of:

• Longitudinal strain

• Radial deformation

• Rotation between the base and apex

are extracted after each simulation and saved to a
file. The former two are measured at 26 points along
the first longeron and after addition of a symmetri-
cal reflection can be used to display the X-Z plane
deformation of the structure like the one seen in
Figure 4.1. Relative rotation between the base and
apex of the device is quantified on the basis of the
first longeron’s tip displacement as shown in Figure
3.7.

The restrictions imposed on the structure are visi-
ble in Figure 3.7 in the form of fixed geometry con-
dition at the top of each longeron. This kind of con-
straints can also be found in the analysis performed
by Roche et al. [119] and is critical for the contractive
behaviour of the structure.

All elements are modelled as spline beams with a
circular cross-section integrated during the analysis,
due to their slenderness and considerable deforma-
tion during analysis. Mesh test was performed with respect to the three quantities of in-
terest: longitudinal strain, radial deformation at longeron’s tip and rotation, which led to
setting the beam element’s length at 0.074 mm. All quantities are measured with relative
inaccuracy lower than 1%. Contact detection is not included in this part of the analysis
due to the need of a large dataset for data-driven examination. Use of contact detec-
tion in the simulation increases its computation time by a factor of around 50−60 which
would make the analysis of 50000 datapoints infeasible with the available computational
power and time. This approach causes incorporation of designs with clashing longerons,
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as shown in Figure 3.16, into design space and makes their rejection impossible at this
stage. This issue is solved at the final step of the analysis - Bayesian optimization, where
contact detection can be applied due to a lower required number of simulations.

3.2.2. MACHINE LEARNING MODELS

Derivation of trends quantifying the behaviour of the smart structure is the first step of
its data-driven analysis and the right machine learning framework is required for it. Sim-
ilarly to work done by Glowacki [45] in this project the main algorithm utilized is sparse
Gaussian process regression (SGPR). It was chosen for its versatility and applicability to
various types of behaviour thanks to the non-parametric approach as well as the limited
risk of overfitting [23, 115]. Additionally, as described in the literature review, it scales
better than the full Gaussian process approach while staying relatively easy to train [85].
This analysis is purely conceptual and contains no geometrical imperfections which re-
sults in noiseless, deterministic data. Despite no need for quantification of uncertainty,
which is an inherent benefit of Gaussian process approach [115], it is used for its reliable
performance in establishing two out of three required models (longitudinal strain and
radial deformation) whose nature was unknown before the analysis.

Rotation model is obtained with an artificial neural network due to its superior perfor-
mance in this application and an ability to model complex relationships, which this one
proves to be (see the sensitivity analysis 3.14). It was chosen as a secondary option
due to the high risk of overfitting and need for more precise training to avoid it [151].
The training takes longer than in the case of SGPR before the right hyperparameters are
found. Application of Bayesian optimization to neural network hyperparameter tuning
is a known and widely used approach [138]. Therefore, its use could help produce even
more accurate models in a shorter time in the next stages of this project.

All models contain single outputs because neither of the algorithms proved to perform
better than the other in all cases at once and because of complications which a dou-
ble output Gaussian process method would bring. Multiple output Gaussian processes
are useful in applications like sensors, where missing signals can be predicted due to
modelled correlation between outputs [90]. Such solutions, however, require additional
steps like the use of full covariance matrices which leads to poor scaling O (n3D3) with
n being the number of datapoints and D being the number of outputs [90]. Alterna-
tively, Gaussian processes can be modelled as white noise sources with the use of smooth
parametrized kernels [23] or approximations to the coupled covariance matrix can be
made [90]. The project did not include creation of multiple output Gaussian process
models for simplicity. The two single models were also deemed sufficient for analysis of
trends in quantities of interest. Obtaining a model which includes correlations between
the outputs could, however, result in its better performance [90].

For simplicity the comparison of machine learning models was done only for Sparse
Gaussian process regression (SGPR) and artificial neural network models. Other Gaus-
sian process models did not provide any improvement over the SGPR or were infeasible
to use in the given time frame as in the case of full Gaussian process regression.
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All models, longitudinal strain and radial deformation as well as rotation, were com-
pared with respect to R2 and mean squared error metrics. Accuracy of the models mea-
sured with R2 coefficient increased as more datapoints were analysed and mean squared
error decreased simultaneously as expected. All models fit the test data well and in the
case of the longitudinal and radial deformation functions there are few prediction out-
liers which results in low MSE. The rotation model has a weaker performance in this
matter with an average mean squared error of 1.176 which is still expected to be of little
significance if potential manufacturing imperfections and the simulation discretization
error are taken into consideration. However, if possible, the model should be improved
to minimize the difference between the expected and actual rotation by inclusion of
more datapoints and better hyperparameter tuning. More information on model per-
formance is provided in Appendix A.

Table 3.3: Model accuracy and mean squared error. In Longitudinal model strain is
considered as fraction of 1, rotation is measured in degrees and the radial deformation
is quantified in mm.

Parameter Longitudinal strain Rotation Radial deformation
Accuracy 0.9996 0.9941 0.9997

MSE 3.273 ·10−7 1.176 0.0035

The sparse Gaussian process models compared below were obtained with a Matern52
kernel each and the number of inducing points was set at the datapoint number for sets
up to a 1000 points and at 1650 for all sets bigger than that due to GPU memory limita-
tion. The hyperparameters were optimized with Scipy optimizer [154] over 2000 itera-
tions with the L-BFGS-B algorithm, which is suitable for large, nonlinear and optionally
unconstrained problems when limited memory is available [172]. The artificial neural
networks (NN) were trained with ReLu activation function and 4 sequential layers with
350 neurons in each of them. Inclusion of more layers and neurons led to worse per-
formance of the model, most likely due to overfitting. Adam optimizer was used for 500
epochs with a learning step of 0.0005 and a batch size of 5000. All final models were ob-
tained for cases with 80% of data being used for training and 20% for testing which cor-
responds to approximately 40000 datapoints and 10000 datapoints respectively.

The disproportion in artificial neural network models’ performance, in the case of the
simpler longitudinal and radial behaviours, is most likely associated with the overfitting
and could potentially be improved at least partially with optimization of the hyperpa-
rameters. This was, however not done as the performance of Gaussian processes was
deemed sufficient for longitudinal and radial deformation and the potential gain in NN
models’ accuracy would not justify the additional effort required at this stage. NN hy-
perparameters for the rotation model, where the SGPR model lacked, were chosen iter-
atively by varying the number of neurons and hidden layers to maximize performance.
A single model with multiple outputs, based on either SGPR or NN, would be much sim-
pler to use and should be obtained for the final design if possible and computationally
feasible.
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LONGITUDINAL STRAIN MODEL

For the final longitudinal strain quantification sparse Gaussian process regression with
80% of training points and around 4.4% inducing/training points ratio was used. When
all of the 50000 datapoints were used the Neural Network algorithm resulted in similar
model accuracy but strongly lacked in terms of average error (over 1 order of magnitude
of difference) as shown in Figure 3.8 and Figure 3.9 respectively. This quantity of interest
seemed to be the easiest one to predict with the use of SGPR as the accuracy of the model
was close to 1 even with smaller datasets and MSE would still be acceptable at the level
of 10−5 obtained with 500 datapoints. This would, however not be recommended as a
good predictor for the whole design space as such a model was only tested on 100-400
datapoints.

Figure 3.8: Accuracy of the longitudinal strain data-driven model plotted against dataset
size with inclusion of inducing to training points ratio for Gaussian process regression
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Figure 3.9: Mean Squared error in the longitudinal strain data-driven model plotted
against dataset size with inclusion of inducing to training points ratio for Gaussian pro-
cess regression
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RADIAL DEFORMATION MODEL

Radial deformation model comparison showed a slight increase in model accuracy when
larger datasets were used for both SGPR and NN with the latter one scoring significantly
lower (see Figure 3.10). It can still be seen that lower test point proportion increases
accuracy, as expected.

Figure 3.10: Accuracy of the radial deformation data-driven model plotted against
dataset size with inclusion of inducing to training points ratio for Gaussian process re-
gression
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The radial deformation MSE plot (Figure 3.11) shows an almost equally strong dispropor-
tion in performance as in the longitudinal strain case, however, for the largest dataset the
NN algorithm obtains just a slightly worse error than SGPR for the case when test point
proportion is 20%. The 10% test point proportion samples are disregarded as too small
and are included only for trend prediction purposes. According to Figure 3.11 the model
obtained with SGPR at 20% of testing point proportion and with 25000 datapoints overall
has a lower MSE than the one obtained with 50000 datapoints. The latter one was still
chosen due to the fact that its performance was evaluated on a twice higher number of
testing points leading to more certainty about the results.

Figure 3.11: Mean Squared error in the radial deformation data-driven model plotted
against dataset size with inclusion of inducing to training points ratio for Gaussian pro-
cess regression
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ROTATION MODEL

Rotation between the base and apex of the smart structure is the most complicated
model as shown by the increase in accuracy when more datapoints are used (see Fig-
ure 3.12. Only at 10000 datapoints the NN algorithm starts to perform better than SGPR.
Both machine learning techniques show a significant increase in accuracy, however NN
algorithm performs visibly better at the maximal dataset size.

Figure 3.12: Accuracy of the rotation data-driven model plotted against dataset size with
inclusion of inducing to training points ratio for Gaussian process regression



3.2. ANALYSIS

3

59

In terms of error both SGPR and NN show a decline as the dataset size increases with the
gradient of decline being being visibly stronger in the case of neural network which again
outperforms SGPR with datasets bigger than 10000 samples (see Figure 3.13). Finally,
the artificial neural network algorithm is chosen to model rotation of the material under
activation.

Figure 3.13: Mean Squared error in the rotation data-driven model plotted against
dataset size with inclusion of inducing to training points ratio for Gaussian process re-
gression
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3.3. RESULTS

This section contains a description of the data-driven analysis results including general
trends in the behaviour of the smart structure and explanation of optimization parame-
ters choice based on sensitivity analysis. As described in subsection 3.1.1 the full geom-
etry was described with three fixed and six variable parameters whose influence on the
VAD’s performance was analysed.

The results presented in this section give an indication of how to find configurations of
the device which performs specific functions. With the use of the three machine learning
models, without any additional simulations, one can find a design which gives specific
longitudinal strain, radial deformation or which twists to a specific extent. This section is
concluded with a sample optimization of the model for longitudinal strain with chosen
constraints as described later in subsection 3.3.3.

3.3.1. SENSITIVITY ANALYSIS

Sensitivity analysis is a process which can be defined as:

Definition of Sensitivity analysis: The study of how uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different sources of uncertainty in the
model input [122].

In this work it is used to determine the most crucial parameters to represent in the form
of design space projections and to make the understanding of the relationships between
them and the outputs easier. Additionally, it suggests which parameters should be vari-
able in Bayesian optimization and which could be fixed in order to save time by limiting
the computational requirements.

Sensitivity of the output to each of the inputs can be quantified with an index of value
between 0 and 1. Such exist in three basic types [123]

• First order indices which measure the independent contribution towards vari-
ance of the output caused by the given input

• Second order indices which measure the combined contribution towards vari-
ance of the output caused by a combination of two inputs

• Total order indices which measure the total contribution towards output’s vari-
ance caused by the given inputs

The library used for sensitivity analysis in this project is SALib. It operates in four steps
which include the previously developed machine learning models [55]:

• Determination of parameters and their ranges

• Generation of inputs with Saltelli sample function [121]

• Evaluation of outputs at the given inputs with the use of regression models

• Computation of sensitivity indices on the basis of inputs and outputs
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Such a sensitivity analysis could potentially be done on the initial datapoints without
inclusion of data-driven models for prediction, however the initial Sobol sequence is
discontinuous because of several simulation failures. Figure 3.14 presents the results
with inclusion of 95% uncertainty confidence intervals.

Figure 3.14: Sensitivity analysis performed with SALib [55] library on all three models:
longitudinal strain, radial deformation and rotation

It can be seen that most of all longitudinal, radial and rotational behaviour of the smart
structure can be explained with positioning of the ring at various heights. This element
causes the inward motion of the longerons and its mounting height defines the extent of
the radial deformation. Ring’s compression is the main driver for the longitudinal strain
and a partial one for rotation. As much as ring height is the most crucial parameter for
the first two quantities of interest, which accounts for most of their amplitude, rotation
also strongly depends on radius of the ring, height at which the diagonals are attached
and radius of the longerons. Height of the diagonal attachment defines the extent to
which longerons are pulled sideways which is perceived as their rotation. Thicknesses
of the ring and longerons affect the stiffness of each of these elements and influence the
extent and, as shown in Subsection 3.3.2, the way in which longerons deform. Judging by
the results of the sensitivity analysis it can be said that all parameters affect the rotation
of the structure to a visible extent. The longitudinal strain and radial deformation be-
haviours are also influenced to some degree by the ring and longeron radii for the same
aforementioned reasons. On the other hand, the radius and height of diagonals as well
as the number of longerons barely affect them.
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3.3.2. DESIGN SPACE PROJECTIONS

Sensitivity analysis described above allowed for determination of the most crucial pa-
rameters in both models. Similarly the Automatic Relevance Determination (ARD) [129]
lengthscales of the kernels were checked to conclude what the variability of strain/rotation
functions is as specific parameters are changed (see table 3.4). Longitudinal strain model
lengthscales indicate significant differences in variability of the output with regards to
the parameters. As expected, it mostly changes as height of the ring and radius of the
longerons are altered, it is also affected the least by the radius of the diagonal. Radial de-
formation varies in all dimensions visibly as suggested by the generally low lengthscales.
As confirmed by the sensitivity analysis the height of the ring affects it the most and ra-
dius of the diagonal the least, however all the other parameters influence the stiffness
of the structure and also contribute to some changes in radial strain. Lengthscales for
the rotation model are not available as it was obtained with artificial neural networks
instead of sparse Gaussian process regression.

Table 3.4: ARD Lengthscales for longitudinal and radial strain models

Parameter RL Pol y g on HD RD HR RR

Longitudinal 46.5 131.1 67.0 142.5 28.7 70.5
Radial 8.8 24.8 13.0 25.9 5.7 14.3

Out of the three components of the structure’s behaviour two are represented in the form
of design space projections - longitudinal strain and rotation. This is due to the fact that
they are single output quantities of interest while the radial deformation is more complex
and is measured at 26 points along the first longeron. So, even though the radial defor-
mation data-driven model is solely based on the displacement of the first longeron’s tip,
a decision was taken to analyse the radial compression in the form of X-Z plane cross-
sections of the configurations of interest.

Figure 3.15 shows trends in mean longitudinal strain and rotation as the three most cru-
cial parameters are varied: radius and height of the ring as well as the longeron’s radius.
It can be observed that radius of the ring only slightly influences the longitudinal strain
for low longeron radii and as they increase its influence diminishes even further. This
can be explained by increasing stiffness of the structure coming from larger longeron’s
radius and therefore decreasing impact of ring’s size on how much it can squeeze the
material. Height of the ring invariably influences the longitudinal strain as it is the main
driver for deformation of the structure; the higher the ring is placed the more strain can
be expected (see Figures 3.16 and 3.17). It is worth noting that the minimal and maximal
strains achievable barely change between structures with different longeron radii but for
the thicker ones the high strain region occupies a larger area of the design space. This
may again be due to the stiffness of the longerons which, if thicker, do not bend locally
but rather deform as whole entities when squeezed (see Figures 3.18 and 3.19).
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Figure 3.15: Mean longitudinal strain and rotation values presented as functions of ring
height, ring radius and longeron radius. Included numbers refer to designs shown in
Figures 3.16 - 3.23.

The shape of the rotation contours depends strongly on both radius and position of the
ring with the influence of the former one increasing as the radius of the longerons is in-
creased. Height of the ring plays a significant role in causing the rotation and for thicker
longerons the general trend of the rotation can be described as increasing with increas-
ing the ring’s height. In configurations with thin longerons and low positioned ring tan-
gential bending of the central part of the device can be observed, as shown in Figure
3.20. which leads to little rotation as longeron tips are constrained. In the case of highly
positioned ring (see Figure 3.21) longerons are bent close to the base of the structure
and the ring keeps their bottom parts straight which leads to significant rotation be-
tween the base and the apex. Thickness of the ring (RR ) barely affects the rotation in
configurations where it is highly positioned but does influence it when the ring occupies
an intermediate position, like in Figures 3.22 and 3.23. The thinner it is the less it con-
tributes to tangential stiffness of the longerons which are in turn easier to pull sideways
by the diagonals.
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Figure 3.16: Side view of a structure
with a highly positioned ring. Con-
figuration corresponds to point 1 in
Figure 3.15.

Figure 3.17: Side view of a structure
with a low positioned ring. Config-
uration corresponds to point 2 in
Figure 3.15.

Figure 3.18: Side view of a struc-
ture with thin longerons. Config-
uration corresponds to point 3 in
Figure 3.15.

Figure 3.19: Side view of a struc-
ture with thick longerons. Config-
uration corresponds to point 4 in
Figure 3.15.

Table 3.5: Configuration parameters for Figures 3.14 - 3.17

Parameter Figure 3.14 Figure 3.15 Figure 3.16 Figure 3.17
RL [mm] 1.5 1.5 1.0 2.0
Pol y g on 7 7 7 7

HD 0.95 0.95 0.95 0.95
RD [mm] 1.5 1.5 1.5 1.5

HR 0.8 0.1 0.8 0.8
RR [mm] 1.5 1.5 1.75 1.75



3.3. RESULTS

3

65

Figure 3.20: Top view of a structure
with a low positioned ring. Config-
uration corresponds to point 2 in
Figure 3.15.

Figure 3.21: Top view of a structure
with a highly positioned ring. Con-
figuration corresponds to point 1 in
Figure 3.15.

Figure 3.22: Top view of a structure
with a thin ring. Configuration cor-
responds to point 5 in Figure 3.15.

Figure 3.23: Top view of a struc-
ture with a thick ring. Configura-
tion corresponds to point 6 in Fig-
ure 3.15.

Table 3.6: Configuration parameters for Figures 3.18 - 3.21

Parameter Figure 3.18 Figure 3.19 Figure 3.20 Figure 3.21
RL [mm] 1.5 1.5 2.0 2.0
Pol y g on 7 7 7 7

HD 0.95 0.95 0.95 0.95
RD [mm] 1.5 1.5 1.5 1.5

HR 0.1 0.8 0.5 0.5
RR [mm] 1.5 1.5 1.0 2.0
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The next strain and rotation relationships considered are the ones with radius and po-
sition of the diagonal as well as position of the ring shown in Figure 3.24. All graphs
show small variation in longitudinal strain, especially the ones with low positions of the
ring which leads to little compression of the structure and therefore low strains overall
(see Figure 3.17). Such a phenomenon was expected on the basis of sensitivity analysis
which suggested low influence of diagonal’s radius and attachment point on longitudi-
nal strain.

① ② 

Figure 3.24: Mean longitudinal strain and rotation values presented as functions of diag-
onal radius and height as well as ring’s height. Included numbers refer to designs shown
in Figures 3.25 and 3.26.

Relationship between rotation and the parameters presented in Figure 3.24 mostly de-
pends on the heights at which the diagonals and the ring are mounted. Radius of the
diagonals seems to have a little influence on the range of rotation for low attached diag-
onals and almost no influence above HD > 0.95. Height of the ring affects the extent to
which longerons are pushed inwards so the higher it is mounted the more rotation can
be expected as shown before in Figures 3.20 and 3.21. Finally, the height of diagonal’s
mounting point is the crucial parameter which determines the extent to which longerons
are bent tangentially. Attachment of diagonals further away from the constrained points
(lower) makes the moment, with which diagonals act on longerons, bigger. Additionally,
the further down the less stiff the longeron is, hence more rotation is caused (see Figures
3.25 and 3.26).
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Figure 3.25: Top view of a struc-
ture with a low placed diago-
nal. Configuration corresponds
to point 1 in Figure 3.24. (HR =
0.6 HD = 0.9 RL = 1.75 RD = 1.5
RR = 1.75 Pol y g on = 7)

Figure 3.26: Top view of a struc-
ture with a highly placed diago-
nal. Configuration corresponds
to point 2 in Figure 3.24. (HR =
0.6 HD = 0.999 RL = 1.75 RD =
1.5 RR = 1.75 Pol y g on = 7)

Figure 3.27: Mean longitudinal strain and rotation values presented as functions of diag-
onal height, longeron radius and ring height
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The above analysis suggests that configurations of interest are the ones with highly po-
sitioned rings, which cause more longitudinal and radial strains, while rotation can be
adjusted with diagonal related parameters. What can be observed on the basis of Fig-
ure 3.27 is that in structures with intermediate ring height of HR = 0.6 increasing the
longeron’s thickness leads to increased rotation and longitudinal strains. This can be
explained by relatively long length over which they can bend before being constrained
by the ring and also their consistent bending due to own stiffness. Ring at the height of
HR = 0.8 leaves little space for lateral bending of longerons and either they need to be
thin and possible to be pushed inwards causing more rotation or thick in order to retain
the lateral motion.

So far it can be observed that rotation of the structure in most configurations is devel-
oped in two stages - tangential deformation of longerons in the first place and extending
the effect further with radial compression by the ring. If relatively low rotations (up to
15◦) are to be obtained, diagonal placement plays the key role in definition of the rota-
tion extent. In the case when more rotation is desired, for instance to test its influence
on inflammation of heart’s tissue under application of the structure, the effect needs to
be developed further by increasing the height of the ring as shown in the last quadrant
of Figure 3.27.

① 

② 

③ 

④ 

Figure 3.28: Mean longitudinal strain and rotation values presented as functions of num-
ber and radius of the longerons as well as the height of the ring. Included numbers refer
to designs shown in Figures 3.29 - 3.32.
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The last parameter, which in combination with the height of the ring, strongly affects
both rotation and longitudinal strain is the number of longerons. Regardless of the po-
sition of the ring, increasing the number of longerons leads to an increase in longitudi-
nal strain. It needs to be noted though that strains above around 8% seemed to be im-
possible to achieve in any configuration within the given bounds due to the longerons
clashing. The more longerons included the easier it is for them to clash (see Figure 3.32)
but this could not be quantified with the data-driven analysis due to prohibitive com-
putational expense of contact detection. For this reason a significant part of the fourth
quadrant of Figure 3.28 is not realistically useful. The increasing trend in strain based
on the number of longerons can be explained by less slack in contraction of the ring; the
ring compresses the structure at more points leading to more uniform radial squeezing
and retaining the circular shape as shown in Figure 3.30.

Rotation described in the design space sections presented in Figure 3.28 is relatively
complex. For low ring positions one may expect low variance of this quantity of interest
while as the ring is put higher the possible extent of rotation increases, especially if such
a change is accompanied by an increase in radius of the longerons as described before.
The additional property which can be inferred from Figure 3.28 is that as the number of
longerons increases the expected rotation drops. This is because diagonals are shorter
in such configurations and are able to pull on the longerons to a lesser extent.

As the activation mode has not been decided at the moment of writing this document,
a higher number of longerons is desirable. It makes the diagonals shorter and helps the
upper structure retain the circular shape as shown in Figure 3.30 which makes the use
of a circular magnetic field easier. Otherwise, with a small number of longerons, the
diagonals are long and deform as shown in Figure 3.29. This makes the analysis fully
realistic only with the coil-based mode of activation as such coils can deliver the same
field magnitude regardless of the diagonals’ shape.

General conclusions could be drawn at this stage and the choice of parameters as well as
their bounds for optimization were made. The number of longerons was expected to be
6 or 7 in order to avoid their clashing while providing enough sturdiness to the structure
and allowing sufficient rotation. Height of the ring was deemed unlikely to be the maxi-
mum as it leads to excessive compression but definitely to be above HR = 0.6 in order to
provide enough strain. Small radius of the ring proved to allow for more rotation and did
not affect the longitudinal strain to a significant extent so a value close to the minimum
was expected. Radius of the diagonal was chosen as fixed at 1.5 mm in order not to make
the connection points too stiff. Radius of the longerons was predicted to be close to the
maximal bound as it makes the achievement of high longitudinal strains easier and is
also beneficial to the sturdiness of the structure. As the optimization was designed with
an additional parameter in the form of varying local strain, the above conclusions were
likely to change to some extent.
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Figure 3.29: Top view of a struc-
ture with 6 longerons. Configura-
tion corresponds to point 1 in Fig-
ure 3.28.

Figure 3.30: Top view of a struc-
ture with 12 longerons. Configura-
tion corresponds to point 2 in Fig-
ure 3.28.

Figure 3.31: Side view of a struc-
ture with 6 longerons. Configura-
tion corresponds to point 3 in Fig-
ure 3.28.

Figure 3.32: Side view of a struc-
ture with 12 longerons. Configura-
tion corresponds to point 4 in Fig-
ure 3.28.

Table 3.7: Configuration parameters for Figures 3.27 - 3.30

Parameter Figure 3.27 Figure 3.28 Figure 3.29 Figure 3.30
RL [mm] 1.5 1.5 1.0 1.0
Pol y g on 6 12 6 12

HD 0.9 0.9 0.9 0.9
RD [mm] 1.5 1.5 1.5 1.5

HR 0.6 0.6 0.8 0.8
RR [mm] 1.75 1.75 1.75 1.75
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3.3.3. DATA-DRIVEN MODEL OPTIMIZATION

If the designed ventricular assist device is developed further and passes tests positively it
could be configured and printed in various facilities all over the world. Making this pro-
cess as smooth and fast as possible requires software capable of picking the best design
for a specific patient and their needs. For this reason, with the use of a supercomputer
one should obtain a general model for the VAD whose geometry is not only parametrized
with respect to the 6 variables presented in this thesis but also with respect to general di-
mensions: height, apex radius and base radius. Such, a full model could be used to pick
a suitable design for any heart size within the bounds for which it is created.

If the developed machine learning model is based on a sufficient number of datapoints
one can just impose constraints on the outputs and pick the most suitable configuration
out of the simulated ones. However, if the model is scarce, an optimization process can
be run on the model itself without a need for additional simulations. Such a solution
reduces the need for access to simulation software at the production facilities.

A sample comparison of the two described approaches is presented herein:

• Approach 1: Finding an optimal solution from just the simulated datapoints

• Approach 2: Finding an optimal solution by exploitation of the model with an
optimization process

Constraints imposed were related to scope of motion of a healthy heart and the objective
was the longitudinal strain whose achievement at a sufficient level appeared to be the
hardest throughout this work:

• Objective: Maximization of longitudinal strain

• Constraint 1: Rotation ≥ 13°

• Constraint 2: Rotation ≤ 19°

• Constraint 3: Radial deformation ≤ 10mm

The purpose of limiting the radial deformation was to avoid clashing of longerons as the
apex radius was set at 12mm in this analysis. Constraining this displacement to only
10mm leaves some space for each of the longerons in the deformed position. Intro-
duction of contact detection into simulations which act as training points for the model
would be much more accurate and desired. However, at this stage the imposed limita-
tion seemed to be the best solution to the problem. It makes the device in its optimal
configuration physically capable of performing its function without the contact of el-
ements under compression. Rotation requirement was set between 13 and 19mm for
it being the natural scope of motion in a healthy heart. Such constraints can be tai-
lored to personal needs and imposed on any of the three quantities of interest: longi-
tudinal strain, radial deformation or rotation or on any of the 6 variable parameters if
needed.
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The second approach was realized with augmented Lagrangian algorithm coupled with
the nonlinear optimizer NLopt, both of which are available in pygmo Python library
[19]. This choice was motivated by the algorithm’s capability of global optimization with
constraints and its good performance. The method was unconventional, as the algo-
rithm was fed with an initial population consisting of all available 49994 datapoints and
purely exploited to check the potential scope of improvement over the best datapoint.
All three quantities of interest: longitudinal strain, radial deformation and rotation were
predicted at each iteration with the respective machine learning models. The resultant,
best objective function evaluation was a longitudinal strain of 7.7% obtained with the
configuration whose parameters are shown in Table 3.8.

Table 3.8: Best input parameters

Parameter HR HD RL RD RR Pol y g on
Best input 0.64 0.91 1.39 mm 2.17 mm 1.12 mm 11

Figure 3.33: Configuration obtained from the exploited data-driven model with param-
eters presented in Table 3.8 and longitudinal strain capability at the level of 7.7%

Optimal input components found from both approaches differ by less than 0.3% of each
value and the difference in objective is lower than 0.1% of longitudinal strain. Such re-
sults show that the model developed on the basis of 6 variable parameters, for the spe-
cific heart dimensions, and with the use of 50000 datapoints performs well on its own.
However, development of such a model for 9 parameters, including the general heart di-
mensions within naturally found bounds, would not be possible without the use of a su-
percomputer. Simulations run within such facilities may become expensive, depending
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on the time of analysis. Hence, another solution feasible with the use of just a powerful
PC is proposed in Chapter 4.

What can be seen in Figure 3.33 is that the optimal, model-based configuration would
encompass the heart well due to presence of 11 longerons. The ring is placed at a mod-
erate height, which aids the stiffness of the structure as the longerons are laterally sup-
ported. Parameter suboptimal from the practical point of view is the radius of the di-
agonals, which are significantly thicker than longerons to which they are attached. This
could cause issues while manufacturing so an additional constraint of diagonal radius
being equal or smaller to longeron radius is proposed as a solution. According to sensi-
tivity analysis (see Figure 3.14) diagonal radius has little to no influence on longitudinal
strain and radial deformation so this parameter is expected not to affect the outcome
significantly.





4
BAYESIAN OPTIMISATION

I N this chapter a solution alternative to data-driven approach is proposed. If simula-
tion software like ABAQUS is available and a limited number of designs is to be ob-

tained one can search for the most advantageous configuration with Bayesian optimiza-
tion. As described in Subsection 2.4.3, this algorithm evaluates the black-box function
(with FEM simulations of specific configurations in this case) and suggests every next
sampling point so that the optimum is reached in a small number of trials. This method
could be used to design a suitable VAD for patients until a general data-driven model
is obtained and shared with production facilities. Its computational cost is significantly
lower provided that the number of desired configurations is small. For production at
multiple facilities and for numerous patients it would still be desirable to obtain a full
data-driven model which can be sampled with constraints or exploited without further
simulations.

This chapter describes the methodology applied in the optimization process - Section
4.1, the results obtained from two analyses of different complexities - Section 4.2 and is
concluded with a short analysis of the potential next generation VAD - Section 4.3.

4.1. METHODOLOGY

The developed structure in its basic version was optimized in two stages, once with only
4 most significant parameters, to determine scope for simplification and time saving,
and later with all 7 of them. Data-driven analysis allowed for determination of reason-
able parameter bounds and choosing the ones which should be included in the first stage
of optimization. Additionally to the variables which describe the geometry of the VAD,
local strain was added in order to check if the maximal local deformation of the mate-
rial as well as the maximal magnitude of the magnetic field are required for the optimal
operation of the device.
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Table 4.1: Variable parameters used in optimization at both stages along with their lower
and upper bounds

First stage Second stage
Parameter Low. bound Up. bound Low. Bound Up. bound
Ring height 0.1 0.8 0.1 0.8
Diagonal height 0.92 0.92 0.9 0.999
Longeron radius [mm] 1.0 2.5 1.0 2.5
Diagonal radius [mm] 1.5 1.5 1.0 2.5
Ring radius [mm] 1.0 2.5 1.0 2.5
Polygon 7 7 3 12
Local strain [%] 1 10 1 10

Choice of parameters for the first stage of optimization was performed in a twofold man-
ner. Firstly the longitudinal and radial deformation models were considered as the ones
which influence the outcome to the highest extent because of the way the objective func-
tion was defined. Secondly the three most important factors from sensitivity analysis
were chosen along the local strain and all were given bounds as defined in table 4.1.
The other parameters required for full specification of the geometry were fixed constant
at values which promoted sturdiness of design and were deemed beneficial to the be-
haviour as indicated by the data-driven analysis (see Chapter 3). Number of longerons
was fixed at 7 for such a design rarely resulted in clashing parts. Diagonal relative height
was chosen to be 0.92 with consideration of its change after optimization as this param-
eter barely affects the longitudinal and radial deformation while mostly defining extent
of rotation. Diagonal radius was fixed at 1.5 mm in order to add some material to the
structure while avoiding making it too rigid.

In the optimization process position of the first longeron in all dimensions is sampled
at 26 points along its length which allows for various ways of objective function defini-
tion. The most obvious one would be comparison of deformed geometry of the smart
structure in the X-Z plane with the reference deformation of a perfect myocardium with
the use of an R2 fit coefficient. This was, however, ruled out due to the fact that top of
the structure is fixed as can be seen in Figure 4.1 and maximization of the fit coefficient
could result in overcompressing the bottom of the structure to make up for the immo-
bility of its top part. Therefore, the choice of the objective function went for the distance
between the tip of the longeron in deformed position and average position in which it
should be according to the healthy heart reference. Such distance as shown in Figure 4.1
reflects on both longitudinal and radial deformations, the trade-off of which is supposed
to give the correct longeron’s tip placement. The distance is calculated as:

Ob j =
√

(radial distance)2 + (vertical distance)2 (4.1)
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The deformed reference geometry comes in two forms: the minimal and maximal ones
attainable by a healthy heart as presented in Table 2.1 - with 15.9 - 22.1% contraction
longitudinally and 20.9 - 27.8% circumferentially. The function which describes the un-
deformed outer shape of the sample myocardium [119] was obtained so the specific cir-
cumferential and longitudinal strains are applied as percentage contraction in the X and
Z directions respectively. This is, however, only an approximation made for the sake of
simplicity of the analysis. As described in Subsection 2.1.1, the motion of a healthy heart
is complex and the best approach, impossible at this stage and inconvenient in general,
would be to scan the specific organ for which the VAD is made in order to establish its
range of motion and exact shape.

Figure 4.1: Visualisation of the metamaterial’s deformation in X-Z plane compared
against maximal and minimal deformations typical for healthy myocardia. The black
arrows show the objective for both DoEs, which in this particular case have values of
13.04 mm and 11.58 mm for DoE-1 and DoE-2 respectively. Parameters of the DoEs are
as follows: DoE-1 (HR = 0.31 HD = 0.91 RL = 1.24 RD = 1.89 RR = 1.43 Pol y g on = 8),
DoE-2 (HR = 0.63 HD = 0.96 RL = 2.12 RD = 1.06 RR = 2.09 Pol y g on = 10).

Bayesian optimization was implemented with the GPyOpt module [4] due to its simplic-
ity and ease of connection with the FEM simulation software. Based on the acquisition
function review summarised earlier the Expected Improvement function was chosen for
its trade-off in exploration and exploitation. The required optimization time and num-
ber of iterations were not known before solution of the problem. For this reason at first
a few trials with 1000 iterations were done without contact detection in simulations in
order to estimate the needed number of DoE analyses in short time. In all cases little to
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no improvement (less than 0.1%) in objective function was seen after 250 iterations so
the minimum number of iterations was set at 300 for the same number of parameters
in order not to lose potential improvement but also to limit the time needed to evalu-
ate DoEs with contact detection. This feature was employed to the extent possible with
ABAQUS implicit - contact detection between centerlines of the beam elements. The
optimization algorithm at each stage evaluated an initial population of 150 samples and
then worked until convergence or for additional 300 iterations.

4.2. RESULTS

Bayesian optimization yielded interesting results in the form of design presented in Fig-
ure 4.2 with the objective function value at the level of 11.5 mm. Such a result can be
obtained with parameters given in table 4.2 but similar compression of the myocardium
could also be reached with other configurations. The value to which the objective func-
tion converges is limited by the fixed length of longerons which are unable to contract
along their own axis. A week long second stage analysis with 7 parameters was run in
order to check how much one could improve this result and the outcome suggested an
optimal value at the level of 11.49 mm for the objective. Such a design consisted of 8
longerons with thickness of 2.5 mm and a ring positioned at the maximal relative height
of 0.8 which already results in slight clashing of the longeron tips. Short analysis of con-
vergence of both optimization processes and the results of the second stage analysis with
all parameters are summarized in Appendix B.

Figure 4.2: Visualisation of the design optimized with 4 parameters capable of 7.2% lon-
gitudinal strain and 63◦ of rotation.
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Figure 4.3: Side view of the de-
formed configuration optimized
with 4 parameters

Figure 4.4: Top view of the de-
formed configuration optimized
with 4 parameters

Table 4.2: Parameter values of the design optimized for ring height, ring radius, longeron
radius and local strain

Parameter RL Pol y g on HD RD HR RR Strain
Optimal value 2.5 mm 7 0.92 1.5 mm 0.8 1.0 mm 7.24%

The optimal design suggested by a 4 parameter analysis is capable of 7.2% longitudinal
strain at induced rotation of 63◦ and local strain of 7.1%. This shows that the magnetic
field required to activate the metamaterial does not need to reach the maximal value
which causes 10% of local strain. This specific design as shown in Figure 4.3 and 4.4
utilizes the highest possible placement of the ring which allows for the aforementioned
lowered required local strain, which is the main difference between data-driven predic-
tions and the actual result. Low positioned diagonals of sufficient thickness induce sig-
nificant amount of rotation which according to Trumble et al. [150] should be tolerated
by the myocardium.

At the moment of writing this document the first samples of the optimized metamaterial
were 3D-printed. The tips of longerons at the base were extended and flattened in the
model as can be seen in Figure 4.2 in order to facilitate the manufacturing process. It
was also noted that such a configuration may not be ideal for practical reasons of the
high ring placement and low rigidity of the structure.

Figure 4.5 shows the cross section of the optimized design which for the lower part of the
structure provides enough strain to match the minimal deformation of a healthy heart.
The issue that remains for all configurations is the immobility at the base which should
be removed in the next iteration of the design. Additionally, it can be seen that the apex
of the myocardium is compressed radially but not lifted high enough to match the de-
sired position. Such problem seems to be solvable only with longerons capable of axial
contraction, hence the coil-based mode of activation would be required for it. An opti-
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mization stage with includes this mode and contractible longerons is presented below
in Section 4.3.

Figure 4.5: X-Z plane cross-section of the optimized design plotted against minimal and
maximal deformations typical for a healthy myocardium

As mentioned above it seems to be impossible to break the distance limit of 11.5 mm in
the case of the given objective function because of non-contractible longerons and their
non-zero thickness that prohibits further contraction towards the centre of the struc-
ture. It may, however be possible to achieve similar values of the objective function with
alternative configurations as suggested by the data-driven analysis. This can be utilized
in order to make the structure more rigid and durable or for tailoring the design to spe-
cial needs of the patient. For more information please see the last section of Appendix
A.
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4.3. NEXT GENERATION

The final stage of the Bayesian optimization related work was the brief analysis of a struc-
ture which could potentially alleviate the issues described above. With the assumption of
feasibility of the coil-based mode of actuation the Bayesian optimization framework was
utilized to find an optimal configuration of a device with contractible longerons.

The material used for the whole structure was still the PCL doped with 20%rGO−Fe3O4

nanoparticles described in Subsection 2.3.7. All elements of the metamaterial were acti-
vated with the same strain as chosen from the range of 1−10%, which is a vast simplifi-
cation and should not be reproduced as most likely even better results could be obtained
with local strain varied across elements. The framework settings remained unchanged
with variable parameters being the same as in the case of basic 7 parameter optimiza-
tion (see Table 4.1). The simulations were, however, run without contact detection due
to a time constraint and because the clashing of longerons was not expected with their
ability to contract.

As expected, the results brought an improved design which more than halved the value
of the objective function, reaching just 4.6 mm. Shortening of longerons resembles the
natural compression of the heart, hence their endpoints could be brought closer to the
desired position as shown in Figure 4.9. Such a design is capable of 15.6% of longitudinal
strain and 26.7◦ of rotation. Parameters of the optimal configuration are presented in
Table 4.3.

Figure 4.6: Visualisation of the optimized design with contractible longerons capable of
15.6% longitudinal strain and 26.7◦ of rotation

Table 4.3: Parameter values of the optimized design with contractible longerons

Parameter RL Pol y g on HD RD HR RR Strain
Optimal value 2.0 mm 12 0.9 1.6 mm 0.53 1.0 mm 10%
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Figure 4.7: Side view of the op-
timized configuration with con-
tractible longerons (in deformed
state)

Figure 4.8: Top view of the
optimized configuration with
contractible longerons (in de-
formed state)

Deformation of the structure visible in Figures 4.7 and 4.8 does not result in significant
clashing of longerons, hence with a little modification of their ends it could potentially
be used to achieve strains close to the ones of a healthy heart in the vicinity of the apex.
The design presented in Figure 4.6 achieves higher sturdiness than the configurations
from the previous section due to retaining the relatively high thickness of longerons and
a lower position of the ring. The only required improvement is liquidation of the struc-
ture’s immobility close to the base as visible in Figure 4.9.

Figure 4.9: X-Z plane cross-section of the optimized design with contractible longerons
plotted against minimal and maximal deformations typical for a healthy myocardium



5
CONCLUSIONS AND

RECOMMENDATIONS

T HE created framework allowed for development of the first iteration of a metamate-
rial based VAD. This chapter summarises the achievements along with imperfections

of the design and analysis as well as provides suggestions on potential improvements if
the project were to be continued.

5.1. CONCLUSIONS

The current design shows potential to match the radial deformation of a healthy my-
ocardium close to its apex but clearly lacks radial strain in the proximity of the base and
longitudinal strain at the apex in the basic configuration. It is still perceived as worth
prototyping, mainly in order to test feasibility of the desired actuation modes and accu-
racy of the prepared machine learning models.

The next generation design presented in Section 4.3 is even more promising as it allevi-
ates the longitudinal strain deficiency. Its operation is, however, only possible with the
coil-based mode of activation. On the other hand, this mode seems to be more realistic
and until the magnetic material’s behaviour becomes better understood, it can be seen
as the default mechanism.

The developed concept of a metamaterial based VAD shows capability of aiding the
heart to a significant extent. Its actuation, according to the current predictions, can
be achieved without transcutaneous wires and the device itself would not require any
contact with blood as opposed to pump based appliances. The range of motion can be
adjusted either with the variable parameters or with the applied magnetic field which
influences local strains of the active elements. The next generation concept showed
promising longitudinal strain and rotation values, comparable to the ones obtained by
Roche et al. with their devices [118, 119]. Depending on the durability of the device,
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which can only be assessed in the testing phase, the designed VAD could potentially be
used in both bridge and destination therapies due to its non-intrusive nature. Finally,
the developed framework and software show capability of tailoring the configuration to
the patient’s needs in a reasonable time-frame. It would still be beneficial to develop a
general data-driven model including a range of heart sizes along with the currently vari-
able parameters in order to make the configuration choice simpler.

The obtained machine learning models were seen as satisfying for a conceptual design
due to their low mean errors and high accuracy, especially in the case of radial deforma-
tion and longitudinal strain models. The rotation model due to its complexity did not
perform perfectly as shown in Appendix A but was sufficient to suggest trends that were
later confirmed during Bayesian optimization. It needs to be noted that the predictions
are based only on substance data provided by Dr. Miguel Dias Castilho and do not in-
clude imperfection modelling inherent to material or structure manufacturing. Material
stiffness and complex interactions, resulting from geometry of the joints, are also not
taken into account. For these reasons the uncertainty quantification was not performed
and the confidence intervals for deformation magnitudes are not available.

Behaviour of the structure with the current geometry is mostly susceptible to changes in
ring’s height and radius as well as number and radius of the longerons. These parame-
ters along with choice of local strain determine most of the radial and longitudinal strain.
Rotation of the structure can be tuned with selection of the diagonal height attachment
point and their radius barely affects the outcome so it can be chosen to fit other require-
ments like rigidity of the geometry.

The main disadvantage of the model in this field is the application of the same local
strain to the ring and diagonals which was done in order to minimize the number of
parameters and facilitate the analysis in the given time frame. No data was available
to the author regarding behaviour of the magnetically activated material in fields non-
axially aligned with the components. Hence, no additional assumptions could be made
about the extent to which the diagonal elements contract in the same field as the ring or
how the contraction of all elements varies under deformation and misalignment with the
magnetic field. An activation solution which guarantees causation of the strains prede-
fined for the simulations is the use of thin, flexible coils around the ring and diagonals,
capable of creating the exact required fields in the structure. This would, however, be
suboptimal with regards to the number of parts which need to be implanted into hu-
man body in order to power the VAD. The final decision about the mode of actuation still
remains to be made.
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5.2. RECOMMENDATIONS

Author of this thesis would like to acknowledge the fact that the analysis of potential
application for the newly created magnetic material was performed when it was still at
the development stage. For this reason the first recommendations are related to data that
should be obtained in order to utilize the framework in a more informed way:

• Material behaviour under non-axial magnetic fields which would allow for dif-
ferentiation between local strains in the diagonals and the ring

• Quantification of the relationship between achievable local strain and the ap-
plied magnetic field which could be implemented directly in the prepared pro-
grams to provide users with magnitudes of fields required for activation of each
configuration

• Measurement of maximal strain dependence on magnetic nanoparticle content
which could potentially facilitate use of lower magnitude magnetic fields in acti-
vation

• Checking deterioration of material’s properties in time in order to estimate the
safe number of cycles for the device

When such information is obtained and the framework is updated the next crucial step
would be removal of the immobility at the base of the structure. This could potentially
be achieved by utilization of another contractible ring at the metamaterial’s base with a
lower local strain than the main ring. Such a solution alone does not solve all the prob-
lems though as contraction of the geometry at the base leaves less space for the longeron
tips and leads to lower possible longitudinal strains. After choosing the final mode of ac-
tuation - magnetic vest, coil-based system or any other solution which proves to be suc-
cessful in activating the device, the concept of contractible longerons briefly investigated
in Section 4.3 should be developed further. Another suggestion may be consideration of
rotation as a mechanism for longitudinal strain induction. This, however falls beyond
the scope of this document and is just a suggestion of potential improvement.

Finally, the computational approach can be further improved by:

• Addition of imperfection model and uncertainty quantification as performed by
Glowacki[45]

• Increasing the number of datapoints used in data-driven analysis

• Optimization of hyperparameters in both data-driven analysis and Bayesian opti-
mization

• Implementation of a better contact detection algorithm which detects clashing of
elements’ surfaces instead of only their axes

• Investigation of other objective functions for the optimization for instance vol-
umetric contraction of the whole structure, which would provide more physical
meaning of the objective value
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• Development of a data-driven model which would not only include the 6 variable
parameters defining the geometrical configuration but also the height of the struc-
ture as well as the apex and base radii

The additional suggestions listed above were not implemented in the current framework
due to no need for additional accuracy at the conceptual stage of design but could pro-
vide more insight in future phases of the project.
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A
SUPPLEMENTARY MACHINE

LEARNING DATA

This appendix contains supplementary figures which help with understanding of the
model inaccuracies as well as additional space design sections not included in the main
report.
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A.1. MODEL ACCURACY
As mentioned before each of the machine learning models presented a different accu-
racy and mean errors, all of which were deemed appropriate for the conceptual analysis.
In the case of the longitudinal strain and radial deformation models the mean squared
error came mostly from multiple insignificant imprecisions in estimation of the out-
comes (please see fig. A.1 and A.2) while in the case of the rotation model some sig-
nificant mistakes were spotted as shown in fig. A.3.

Figure A.1: Predicted vs actual value graph of longitudinal strain at the tip of the
longerons

Figure A.2: Predicted vs actual value graph of radial deformation at the tip of the
longerons
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Both radial deformation and longitudinal strain model prediction vs actual value com-
parisons show missing values near the right top corner which corresponds to the highest
values of both deformations. This is most likely a result of too scarce Sobol sampling,
however such high strains belong to the range of infeasible ones because of longeron
clashing effect. Therefore lack of coverage of this design space piece does not affect the
results to a significant extent.

Figure A.3: Predicted vs actual value graph of rotation between the apex and base of the
structure

The mispredictions in the rotation model do not seem to be bound to any region of the
design space and appear to be just a few random mistakes which could be fixed by addi-
tion of more datapoints to the base and/or optimization of neural network hyperparam-
eters.
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A.2. SUPPLEMENTARY DESIGN SPACE PROJECTIONS

Figure A.4: Mean longitudinal strain and rotation values presented as functions of num-
ber of longerons, ring height and longeron radius

Figure A.5 represents the sections of design space which show the region close to opti-
mal as predicted with Bayesian optimization. It can be seen that with relative diagonal
mounting height between 0.9 and 1 as well as 7 longerons the ring can be mounted lower
at around 65% of the structure’s height instead of 80% and with thick longerons and low
ring radius longitudinal strains close to optimal (0.067−0.7) can be attained . Such a con-
figuration could be utilized if the sturdiness of the basic one is deemed too low.



A.2. SUPPLEMENTARY DESIGN SPACE PROJECTIONS

A

105

Figure A.5: Mean longitudinal strain and rotation values presented as functions of ring
radius, diagonal height and longeron radius





B
CONVERGENCE AND FULL

OPTIMIZATION MODEL

B.1. 7 PARAMETER OPTIMIZATION
This appendix contains parameters and results of the all - parameter optimization pro-
cess. Table B.1 contains the most optimal parameters and figure B.1 shows the geome-
try visualization. Table B.2 presents the achievable values which are only insignificantly
higher than those achieved with 4 parameter optimization in the case of longitudinal
strain (7.4% instead of 7.2%) at local strain required being 8.24% instead of 7.2% and
the rotation being 72◦. This leads to the objective function being only 0.01 mm lower
which is not justified by the higher required local strain and additional unnecessary ro-
tation.

(a) Projected view (b) Side view (c) Top view

Figure B.1: CAD model of the structure optimized with all parameters as described in
table B.1
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(a) Top view (b) Side view

Figure B.2: Visualisation of deformed optimal configuration obtained with 7 parameter
Bayesian optimization. The geometry is described in table B.1.

Table B.1: Quantities of interest and required local strain for the all - parameter opti-
mization

Parameter RL Pol y g on HD RD HR RR

Value 2.5 mm 8 0.9 2.5 mm 0.8 1.0 mm

Table B.2: Parameters of the fully optimized configuration

Quantity Long strain Local strain Rotation
Value 7.4% 8.24% 72deg

Figure B.3: X-Z plane section of the design optimized with 7 parameters
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As shown in fig. B.2 this configuration results in slight clashing longerons which would
require their trimming at the ends in order to avoid mechanical damage and unpre-
dicted deformations. This design, however may be slightly sturdier than the one with 7
longerons described in chapter 4 due to thicker diagonals. On the other hand this might
be an issue due to thicker joints and tests should be performed to quantify the deviation
of such design from the theoretical predictions.

Above figure B.3 presents the section of the configuration which is insignificantly differ-
ent from the one optimized with just 4 parameters. It suffers from the same issues as the
other geometry and does not provide tangible improvements which would justify the
higher required local strains/magnetic fields.

B.2. CONVERGENCE
Interestingly, the convergence of the optimization process based on 7 parameters in-
stead of one with just 4 with the rest of them being fixed happened faster, around the 50th
iteration. In the case of the optimization process with regards only to ring height and ra-
dius as well as longeron radius and local strain it took around 200 iterations to reach the
near optimal value. Such can partially be explained with difference in starting points or
difficulty in finding optimum within the design space with some of the parameters be-
ing fixed. Optimization of the configuration with contractible longerons approaches the
optimum after 800th iteration which seems to be a result of a wider range of attainable
objective function values. The achieved value of 4.6mm is limited by the extent to which
the longerons can contract.
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(a) 4-parameter optimization 

convergence  

(b) 7-parameter optimization 

convergence  

(c) Contractible longeron configuration

optimization convergence  

Figure B.4: Convergence plots for optimization Approaches 1 and 2 with 4 and 7 param-
eters respectively as well as the one for configuration with contractible longerons
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