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A B S T R A C T

The increasing availability of condition-monitoring data for components/systems has incentivized the develop-
ment of data-driven Remaining Useful Life (RUL) prognostics in the past years. However, most studies focus on
point RUL prognostics, with limited insights into the uncertainty associated with these estimates. This limits the
applicability of such RUL prognostics to maintenance planning, which is per definition a stochastic problem.
In this paper, we therefore develop probabilistic RUL prognostics using Convolutional Neural Networks. These
prognostics are further integrated into maintenance planning, both for single and multiple components. We
illustrate our approach for aircraft turbofan engines. The results show that the optimal replacement time for
the engines is close to the lower bound of the 99% confidence interval of the RUL estimates. We also show
that our proposed maintenance approach leads to a cost reduction of 53% compared to a traditional Time-
based maintenance strategy. Moreover, compared with the ideal case when the true RUL is known in advance
(perfect RUL prognostics), our approach leads to a limited number of failures. Overall, this paper proposes
an end-to-end framework for data-driven predictive maintenance for multiple components, and showcases the
potential benefits of data-driven predictive maintenance on cost and reliability.
1. Introduction

Modern systems are currently monitored by multiple sensors that
generate large volumes of data. As an example, for a Boeing 787,
approximately 1000 parameters are continuously monitored for the
engine, leading to a total of 20 terabytes of data per flight hour [1].
Using such datasets, several AI algorithms have been developed in the
past years to estimate the Remaining Useful Life (RUL) of components
and systems [2].

The integration of data-driven RUL prognostics into maintenance
planning has been shown to significantly reduce maintenance costs
and the number of failures [3–5]. However, most existing studies focus
either on developing RUL prognostics only, or on developing predic-
tive maintenance planning models where the probability of failure
is based on simple, generic probability distributions of the time-to-
failure/RUL [6].

Data-driven RUL prognostics for mechanical components/systems
are often obtained using AI algorithms and sensor measurements. Ex-
amples of such studies are [7], where point RUL prognostics are devel-
oped for batteries using a deep neural network. Point RUL prognostics
are also developed in [4,8] for turbofan engines using a convolutional
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neural network. Only few studies also estimate the distribution of the
RUL. In [9,10], the probability distribution of the RUL of turbofan
engines is predicted using deep Gaussian processes and neural networks
with Monte Carlo dropout, respectively.

For predictive maintenance planning, many studies propose ad-
vanced planning models, but assume that the degradation of compo-
nents/systems follow a generic distribution with fixed parameters, in-
stead of component-specific data-driven RUL prognostics. For instance,
such studies assume that the degradation of components/systems fol-
lows a generic Gamma process [11–14], a Wiener process [15], or
a non-homogeneous Poisson process [16]. With these assumptions,
the maintenance planning of the components/systems is posed as a
renewal process [13], a Markov decision process [17,18], or a dy-
namic grouping heuristic [14]. In practice, however, the degradation of
components/systems rarely follows such generic degradation processes.
Rather, the degradation trends exhibited by the sensor measurements
are often noisy and reactive to the dynamic environment in which the
components/systems are operated.

Few studies develop data-driven RUL prognostics by tracking the
specific degradation of a component/system via sensor measurements,
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Fig. 1. Overview of the roadmap for predictive maintenance, from raw sensor measurements to probabilistics RUL prognostics using Convolution Neural Networks to maintenance
planning.
and actually integrate these prognostics into maintenance planning.
As the degradation trends are specific for each component/system,
maintenance planning should consider RUL prognostics specific to each
component/system and propose customized maintenance tasks. In [5],
data-driven probabilistic RUL prognostics for an aircraft engine are
integrated into a deep reinforcement learning (RL) model to optimize
the moment of engine replacement. The RL approach, however, pro-
vides little insight into the maintenance decision process (black-box).
In contrast, in this paper we propose a renewal process (white-box)
that considers data-driven RUL prognostics to specify the replacement
time of engines. In [4,19], data-driven point RUL prognostics are
developed for aircraft engines using a Convolutional Neural Network
and a bidirectional LSTM neural network, respectively. These point RUL
prognostics are integrated into maintenance planning using an integer
linear program and a threshold-based approach, respectively. Having
point RUL prognostics, however, maintenance planning is done without
any insight into the uncertainty of the estimated RUL. In contrast, we
propose a maintenance planning framework that integrates probabilistic
RUL prognostics into maintenance planning. In [20], the probability of
failure of an engine within a pre-defined time-window is determined
using a Short Long-Term Memory (LSTM) neural network. With this es-
timate, the engine replacement and ordering of spare parts is optimized.
The choice of the time window, however, limits the applicability of the
estimates for maintenance planning. Instead, we directly estimate the
probability density function (PDF) of the RUL. Moreover, we propose
models for predictive maintenance for both a single engine, as well as
multiple engines. In [21] the distribution of the RUL for aircraft cooling
units is estimated using a physics-based model. Similarly, in [22], the
future degradation of a railway track is predicted using a physics-based
model. These predictions are further used to plan the maintenance of
the cooling units and railway tracks, respectively. Physic-based models
for RUL prognostics, however, require a high-fidelity modeling of the
degradation, which is not often obtainable in practice.

In this paper, we propose an end-to-end framework for multi-
component predictive maintenance starting from raw sensor measure-
ments, to probabilistic RUL prognostics, to maintenance planning (see
Fig. 1). We develop data-driven probabilistic RUL prognostics using Con-
volutional Neural Networks with Monte Carlo dropout. The obtained
distributions of the RUL are shown to be accurate and reliable. The
prognostics are integrated into a single-component maintenance plan-
ning model using renewal–reward processes. These results are further
extended to a multi-component maintenance planning model, where
additional constraints regarding maintenance resources are consid-
ered. According to [14], the use of prognostic/predictive information
in maintenance decisions for complex multi-component systems is a
relatively underexplored area. With this paper, we address the area
of data-driven predictive maintenance, from the development of RUL
prognostics to the integration of these prognostics into maintenance
planning for multiple components. Moreover, we show the utility of
having probabilistic RUL prognostics for maintenance planning. For
2

example, knowing that there is a high probability that a component will
fail soon (high probability that the RUL is small) incentivizes the soon
replacement of this component. In fact, the probability associated with
the predicted RUL weighs in the decision to replace or not a component,
together with the costs of replacement.

We illustrate our approach for turbofan engines. We compare our
maintenance approach with a traditional, Time-based Maintenance
strategy. The results show that our approach leads to a 53% reduc-
tion of maintenance costs compared to the Time-based Maintenance
strategy. Compared with the case when perfect RUL prognostics are
available, our approach leads to only a slight increase in the number
of failures.

The main contributions of this paper are:

• We obtain reliable, data-driven probabilistic RUL prognostics (PDF
of RUL) for turbofan engines using Convolutional Neural Net-
works with Monte Carlo dropout. The availability of PDFs of RUL
opens up the opportunity to plan maintenance tasks taking into
account the uncertainty associated with RUL estimates.

• We show how a renewal–reward process is specified for data-
driven probabilistic RUL prognostics, instead of using a one-fits-
all (exponential/Weibull) distribution of failure times assumed for
all components.

• For maintenance planning, a maintenance cost is proposed that
integrates the data-driven RUL prognostics, instead of using a
generic, scalar value (which is often proposed in existing stud-
ies). Moreover, for the multi-component maintenance planning,
the model is extended to consider the availability of resources
(e.g., hangar availability, capacity of maintenance slots).

• While most existing studies focus only on single component main-
tenance planning, we propose maintenance planning models both
for a single and multiple components that integrate data-driven
probabilistic RUL prognostics.

The remainder of this paper is structured as follows. In Section 2
we develop probabilistic RUL prognostics using Convolutional Neural
Networks with Monte Carlo dropout. We analyze the accuracy and
reliability of these prognostics in Section 3. In Section 4 we propose
an optimization model for the maintenance planning of components,
taking into account estimates of the PDF of their RUL. In Section 5 we
illustrate our approach for a set of turbofan engines. We also analyze
the performance of our approach relative to a Time-based maintenance
strategy, and relative to the case when perfect RUL prognostics are
available. Conclusions are provided in Section 6.

2. Probabilistic RUL prognostics for turbofan engines using con-
volutional neural networks

In this section, we estimate the PDF of the RUL of aircraft engines
after each flight cycle using a Convolutional Neural Network with
Monte Carlo dropout.
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Table 1
C-MAPSS data subsets for aircraft engines [23].

FD FD FD FD
001 002 003 004

# of training instances 100 260 100 249
# of test instances 100 259 100 248
# of operating conditions 1 6 1 6
# of fault conditions 1 1 2 2

2.1. Description of the dataset

In this study, we consider the aircraft turbofan engines in the
C-MAPSS dataset [23]. In C-MAPSS, the degradation of engines is
simulated using the Commercial Modular Aero-Propulsion System Sim-
ulation (C-MAPSS) program developed by NASA.

The C-MAPSS dataset consists of four subsets: FD001, FD002, FD003
and FD004. In turn, each subset consists of a training and a test set.
For each engine in the training set, one measurement per sensor per
flight cycle is generated, from the installation of the engine until the
failure (i.e., run-to-failure instances). In the test set, one measurement
per sensor per flight cycle is generated as well. However, the sensor
measurements stop at some time before failure. The goal is to predict
the RUL at that moment, i.e., the number of flight cycles until the
engine fails. For subset FD002 and FD004, six different flight conditions
are present, where each flight is performed under one flight condition.
Moreover, in subset FD003 and FD004, two different fault conditions
are present (see Table 1).

There are 21 sensors in C-MAPSS. Seven of these 21 sensors have a
constant sensor measurement over the flight cycles. We therefore only
consider the remaining 14 sensors with non-constant measurements.
We normalize the sensor measurements in each subset with min–
max normalization with respect to the operating condition as follows
[24,25]:

�̂�𝑖𝑗 =
2(𝑚𝑜

𝑖𝑗 − 𝑚min
𝑗𝑜 )

𝑚max
𝑗𝑜 − 𝑚min

𝑗𝑜

− 1, (1)

ith 𝑚𝑜
𝑖𝑗 the sensor measurement of sensor 𝑗 during flight cycle 𝑖, where

light cycle 𝑖 was performed under operating condition 𝑜, 𝑚min
𝑗𝑜 and 𝑚max

𝑗𝑜
re the minimum and maximum value in the training set of sensor
under operating condition 𝑟 respectively, and �̂�𝑖𝑗 the normalized
easurement of sensor 𝑗 during flight cycle 𝑖.

.2. Architecture of the Convolutional Neural Network

Fig. 2 shows the proposed architecture of the CNN. At flight cycle
of an engine 𝑣, we consider data sample 𝑋𝑣

𝑓 as input:

𝑣
𝑓 = [𝑥𝑣𝑓−𝑁 , 𝑥𝑣𝑓−𝑁+1,… , 𝑥𝑣𝑓 ]. (2)

ere, 𝑁 denotes the number of past flight cycles included (i.e., the
indow size), and 𝑥𝑣𝑖 denotes the normalized sensor measurements of

ngine 𝑣 at flight cycle 𝑖:
𝑣
𝑖 = [�̂�𝑣

𝑖1, �̂�
𝑣
𝑖2,… , �̂�𝑣

𝑖𝐻 ], (3)

ith 𝐻 the total number of considered sensors, and �̂�𝑣
𝑖𝑗 the normalized

ensor measurement of flight cycle 𝑖 of engine 𝑣 from sensor 𝑗 (see
q. (1)).

The CNN consists of 𝐿 convolutional layers (see also Fig. 2). Each
onvolutional layer consists of 𝐾 filters, where each kernel has a size of
×𝑆, i.e., we use one-dimensional kernels. The convolutional operation
n the 𝑙th convolutional layer for the 𝑛th filter 𝑘𝑙𝑛 is [26]:

𝑙
𝑛 = 𝑡𝑎𝑛ℎ(𝑘𝑙𝑛 ∗ 𝑧𝑙−1 + 𝑏𝑙𝑛) (4)

here 𝑧𝑙𝑛 is the 𝑛th feature map of layer 𝑙, * is the convolutional
𝑙−1 𝑙
3

perator, 𝑧 are the feature maps in layer 𝑙 − 1, 𝑏𝑛 is the bias of the
𝑛th filter of layer 𝑙, and 𝑡𝑎𝑛ℎ(⋅) denotes the tanh (hyperbolic tangent)
activation function. Next, we consider a single convolutional layer with
one filter, where each kernel has a size of 1 × 𝑆′. This layer combines
all 𝐾 feature maps in one single feature map. We denote the output of
this last convolutional layer by 𝑧𝐿.

Last, we add two fully connected layers to the CNN. These layers
predict the RUL based on the extracted features of the last convolu-
tional layer. The output 𝑧𝑓 of the first fully connected layer is [26]:

𝑧𝑓 = 𝑡𝑎𝑛ℎ(𝑤𝑓 𝑧𝐿 + 𝑏𝑓 ), (5)

where 𝑏𝑓 is the bias and 𝑤𝑓 be the weights of the first fully connected
ayer. Last, a second fully connected layer with one neuron and the
eLU activation function outputs the final RUL prediction.

.3. Monte Carlo dropout

We apply a dropout rate 𝜌 in each layer of the CNN, except the first
to avoid the loss of input information). We perform 𝑀 forward passes
hrough the neural network for each test sample. During each forward
ass, different, randomly selected neurons (𝜌 percent) are dropped (see
ig. 3). Thus, a different RUL prediction is obtained with each forward
ass. In [27], it is shown that a neural network with Monte Carlo
ropout approximates a Bayesian neural network representing a deep
aussian process. Below, we give a short overview of this result and
ow we apply it to construct a PDF of the RUL.

Let 𝑋 be the samples with sensor measurements in the training set of
NN, and let 𝑌 be the corresponding RUL values. In a Bayesian neural
etwork, the goal is to predict the posterior distribution 𝑝(𝑦|𝑥,𝑋, 𝑌 ) of

the RUL 𝑦 belonging to a test sample 𝑥, given the training samples 𝑋
and 𝑌 :

𝑝(𝑦|𝑥,𝑋, 𝑌 ) = ∫ 𝑝(𝑦|𝑥, 𝜔)𝑝(𝜔|𝑋, 𝑌 )𝑑𝜔, (6)

here 𝜔 denotes all the weights in the neural network. Here, 𝑝(𝑦|𝑥, 𝜔)
s the probability that the RUL equals 𝑦, given test sample 𝑥 and the

weights of the neural network 𝜔. Moreover, 𝑝(𝜔|𝑋, 𝑌 ) is the posterior
distribution of the weights, and denotes the probability that the weights
are 𝜔, given the training samples 𝑋 and 𝑌 .

It usually is computationally very expensive to analyze the posterior
distribution 𝑝(𝜔|𝑋, 𝑌 ) exactly. In variational inference, the posterior
distribution 𝑝(𝜔|𝑋, 𝑌 ) is therefore approximated with a distribution
𝑞(𝜔)∗ instead. Here, we first define a family (i.e., set) 𝑄 of possible
posterior distributions 𝑞(𝜔). The goal is then to find the distribution
𝑞(𝜔)∗ ∈ 𝑄 that minimizes Kullback–Leibler divergence 𝐾𝐿 with the
true posterior distribution 𝑝(𝜔|𝑋, 𝑌 ) [28]:

𝑞(𝜔)∗ = arg min𝑞(𝜔)∈𝑄 {𝐾𝐿(𝑞(𝜔)|𝑝(𝜔|𝑋, 𝑌 ))}. (7)

This is equivalent to finding the distribution 𝑞(𝜔)∗ ∈ 𝑄 that maximizes
the evidence lower bound (ELBO) ELBO [27,28]:

ELBO = ∫ 𝑞(𝜔)log (𝑝(𝑌 |𝑋,𝜔)) 𝑑𝜔 −𝐾𝐿(𝑞(𝜔)|𝑝(𝜔)), (8)

here 𝑝(𝜔) is the prior of the weights. We assume that the prior is the
tandard multivariate normal distribution. Using 𝑞(𝜔)∗, we approximate
he posterior distribution 𝑝(𝑦|𝑥,𝑋, 𝑌 ) of the RUL of a test sample by:

(𝑦|𝑥) = ∫ 𝑝(𝑦|𝑥, 𝜔)𝑞(𝜔)∗𝑑𝜔, (9)

here 𝑞(𝑦|𝑥) is the approximation of 𝑝(𝑦|𝑥,𝑋, 𝑌 ).
In [27], the family 𝑄 of possible distributions 𝑞(𝜔) is defined as

ll Gaussian mixture distributions with two components. The authors
f [27] show that this mixture can be approximated by setting 𝑞(𝜔) in
ach layer 𝑖 as:

𝜔𝑖 = 𝜔original
𝑖 ⋅ diag([𝜃𝑖,𝑗 ]

𝑅𝑖
𝑗=1), (10)

𝑖𝑗 ∼ Bernoulli(1 − 𝜌), 𝑗 = 1,… , 𝑅𝑖 (11)
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𝑦

Fig. 2. A schematic overview of the considered Convolutional Neural Network.
Fig. 3. A schematic example of Monte Carlo dropout for a neural network with three
fully connected layers, during two passes of a sample through a neural network.

where 𝜔𝑖 are the weights of layer 𝑖, 𝑅𝑖 the number of nodes in layer
𝑖, and 𝜔original

𝑖 are the weights of layer 𝑖 without dropout. Moreover,
diag(𝑧) denotes the diagonal matrix constructed with a vector 𝑧 and 𝜃𝑖𝑗
is zero when node 𝑗 of layer 𝑖 is dropped out, and one if not. Here, we
minimize Eq. (8) by changing the weights 𝜔 of the neural network. With
this family 𝑄, we obtain the following estimator of the −ELBO [27]:

̂MC = 1
𝑇

𝑇
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 + 𝜆

𝑇
∑

𝑖=1
‖𝜔𝑖‖

2
2, (12)

with 𝑇 the number of training samples, 𝑦𝑖 and �̂�𝑖 the actual and
predicted RUL of training sample 𝑖 respectively, and 𝜆 a weight decay
parameter. This is the same objective as minimized when training a
neural network.

With this result, we approximate the expected value �̂� of the RUL
of a test sample as:

̂ = 𝐸𝑞(𝑦|𝑥)(𝑦) =
1
𝑀

𝑀
∑

𝑗=1
�̂�𝑗 (𝑥, 𝜔𝑗 ), (13)

where 𝑀 is the number of forward passes through the neural network,
𝜔𝑗 are the weights of the neural network belonging to the 𝑗th forward
pass (i.e., where some neurons are dropped out), and �̂�(𝑥, 𝜔𝑗 ) is the
resulting RUL prediction from the 𝑗th forward pass through the neu-
ral network. For the PDF of the RUL, we give each individual RUL
prediction �̂�𝑗 (𝑥, 𝜔𝑗 ) a probability of 1

𝑀 .

3. Results - Probabilistic RUL prognostics for aircraft turbofan
engines

In this section, we present probabilistic RUL prognostics for turbo-
fan engines.
4

Table 2
Considered hyperparameters of the CNN.
Hyperparameter Value

Hyperparameters — architecture

Window-size 𝑁 30
Convolutional layers 𝐿 5
Number of filters 𝐾 10
Kernel size 𝑆 10
Kernel size 𝑆′ last
convolutional layer

3

Number of nodes fully
connected layer

100

Monte Carlo dropout rate 𝜌 0.5
Number of passes 𝑀 1000
𝑅early 125

Hyperparameters — optimization

Optimizer Adam [32]
Number of epochs 250
Training–Validation split 80%–20%
Initial learning rate 0.001
Decrease learning rate when
no improvement in validation
loss for ... epochs in a row

10

Decrease learning rate by 1
2

3.1. Hyperparameter tuning

The considered hyperparameters of the neural network are in
Table 2, optimized with as starting point the hyperparameters of the
CNN in [4,24]. In contrast with these papers, the window size equals 30
for all four data subsets. For data subsets FD002 and FD004, however,
some test instances do not have 30 historical flight cycles. For these
test instances we apply zero padding [29], i.e., we set all the sensor
measurements of the missing flight cycles to zero. This technique is very
common in image processing. Moreover, we use a piece-wise linear RUL
target function [24,30,31] with 𝑅early = 125 flight cycles, i.e, the target
RUL is 𝑅early = 125 flight cycles when the actual RUL is larger than 125
flight cycles.

3.2. Mean RUL prognostics

Table 3 shows the Root Mean Square Error (RMSE) [33] with the
mean RUL prediction (see Eq. (13)) for the four data subsets. The RMSE
of the mean RUL prediction is a higher for subset FD002 and FD004,
probably due to the multiple operating modes.

Table 3 also shows the results of existing studies employing various
machine learning algorithms for the same dataset. The performance of



Reliability Engineering and System Safety 234 (2023) 109199M. Mitici et al.
Table 3
RMSE for RUL prognostics using C-MAPSS and various machine learning algorithms.
Here, 𝑅early = 130 in [34], and 𝑅early = 125 in the other considered studies. The best
results are denoted in bold.

FD FD FD FD
001 002 003 004

Our approach 12.42 13.72 12.16 15.95
CNN [24] 12.61 22.36 12.64 23.31
LSTM-MLSA [31] 11.57 14.02 12.13 17.21
CNN-LSTM [35] 11.17 – 9.99 –
HAGCN [34] 11.93 15.05 11.53 15.74
HDNN [36] 13.02 15.24 12.22 18.17
MPHD-NN [37] – 14.25 – 16.44

Table 4
𝛼-Coverage (𝛼-C) and 𝛼-Mean width (𝛼-MW, in flight cycles) for the RUL prognostics
of the engines in the C-MAPSS dataset.

FD FD FD FD
001 002 003 004

𝛼 = 0.50
𝛼-C 0.54 0.51 0.57 0.52
𝛼-MW 16.3 15.2 16.7 16.8

𝛼 = 0.90
𝛼-C 0.91 0.85 0.92 0.85
𝛼-MW 39.2 36.1 40.3 40.1

𝛼 = 0.95
𝛼-C 0.95 0.89 0.97 0.90
𝛼-MW 46.4 42.4 47.6 47.3

our RUL prognostic method with respect to the mean RUL is compara-
ble to the state-of-the art solutions, especially for data subset FD002
and FD004. Potential contributing factors to the good performance
of our approach are that we consider larger sizes of the window for
FD002 and FD004 than most existing studies, and that we normalize the
measurements with respect to the operating conditions (see Eq. (1)).

3.3. PDF of the RUL prognostics

Instead of predicting only one number for the RUL, however, we
predict the PDF of the RUL. Fig. 4 shows the PDF of the RUL for two
test instances of data subset FD004. For test instance 67 (Fig. 4(a)), the
mean RUL prediction is close to the actual RUL. The PDF, however, is
very wide. For test instance 38 (Fig. 4(b)), the mean RUL prediction is
far away from the actual RUL. Moreover, the actual RUL falls outside
the predicted PDF, even though this PDF is very wide as well.

The RMSE only evaluates the mean RUL prediction. We therefore
use the 𝛼-Coverage and the reliability diagram to evaluate the relia-
bility of the PDF of the RUL, i.e., how well the predicted probabilities
match with the observed outcomes [10,38]. The 𝛼-Coverage is defined
as [10]:

𝛼-Coverage = 1
𝐷

𝐷
∑

𝑖=1
(𝛼)𝑖, (14)

with (𝛼)𝑖 =

{

1, 𝑦𝑖 ∈ [�̂�0.5−0.5𝛼𝑖 , �̂�0.5+0.5𝛼𝑖 ]
0, Otherwise,

where 𝛼 ∈ [0, 1] is an user-defined parameter, �̂�𝑘𝑖 is the 𝑘th percentile
of the estimated RUL distribution for test instance 𝑖, and 𝐷 is the num-
ber test instances. [�̂�0.5−0.5𝛼𝑖 , �̂�0.5−0.5𝛼𝑖 ] is thus the 𝛼 percent confidence
interval around the median of the PDF of test instance 𝑖. The closer the
𝛼-Coverage is to 𝛼, the more reliable the RUL predictions are. Related
to this metric is the 𝛼-Mean width, which is the mean width in flight
cycles of the confidence intervals at 𝛼 [10,38]:

𝛼-Mean width = 1
𝐷

𝐷
∑

𝑖=1
(�̂�0.5+0.5𝛼𝑖 − �̂�0.5−0.5𝛼𝑖 ). (15)

Table 4 shows the 𝛼-Coverage for 𝛼 ∈ {0.5, 0.9, 0.95}. As an example,
we illustrate the 𝛼 = 0.9 coverage. With 𝛼 = 0.9, we obtain the confi-
dence interval [�̂�0.05, �̂�0.95], where �̂�0.05 and �̂�0.95 are the RUL predictions
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𝑖 𝑖 𝑖 𝑖
Fig. 4. Histogram of the predicted RUL of two test instances.

belonging to the 5%th and the 95%th percentile respectively. If we
estimate the RUL and the corresponding 90% confidence interval for
test instance 𝑖 a large number of times, we thus expect that 𝛼 = 90% of
the resulting confidence intervals contains the actual RUL. To calculate
the 𝛼-Coverage, we construct this confidence interval with width 𝛼 =
0.9 for all 𝐷 test instances of each data subset. It is expected that
for 𝛼 = 90% of the test instances, the actual RUL 𝑦𝑖 falls within the
considered confidence interval. For data subset FD003, the actual RUL
𝑦𝑖 falls within the confidence interval for 92% of the test instances.
This means that the uncertainty for data subset FD003 and 𝛼 = 0.9 is
slightly overestimated. In contrast, for data subset FD002 and FD004,
the 𝛼-Coverage equals 85%, i.e., the actual RUL 𝑦𝑖 of 85% of the test
instances falls within the considered confidence interval. This means
that the uncertainty for data subsets FD002 and FD004 and 𝛼 = 0.9 is
underestimated.

In general, the 𝛼-Coverage is close to 𝛼 for all subsets and all
the considered values for 𝛼 (see Table 4). This means that the pre-
dicted probabilities match well with the observed outcomes, and the
RUL prognostics are thus reliable. However, the mean widths of the
confidence interval are quite large, as also observed in Fig. 4. The
uncertainty of the RUL prognostics is thus large, despite the reliability
of the prognostics.

Fig. 5 shows the reliability diagram of the four subsets of C-
MAPSS [10]. Here, 𝐶(𝛼)𝑖 = {𝛼-Coverage, 𝛼 ∈ {0.00, 0.01, 0.02,… , 1.00}}
is the reliability curve of subset 𝑖 ∈ {FD001, FD002, FD003, FD004}.
Moreover �̃�(𝛼) = 𝛼, 𝛼 ∈ {0.00, 0.01,… , 1.00} is the ideal curve, i.e., the
curve where the coverage 𝐶(𝛼) = 𝛼. When the reliability curve is
beneath the ideal curve for a certain 𝛼, then the uncertainty is under-
estimated at this value for 𝛼. In contrast, when the reliability curve is
above the ideal curve for a certain 𝛼, the uncertainty is overestimated
at this value for 𝛼. Fig. 5 shows that the reliability curves of all four
data subsets are close to the ideal curve. Thus, the uncertainty of the
RUL prognostics is well estimated.

4. Maintenance scheduling

In this section, we propose a model for optimal replacement of a
component based on the probabilistic RUL prognostics and the expected
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Fig. 5. Reliability diagram for the four subsets of C-MAPSS.

costs associated with maintenance. For the maintenance planning of
a single component, we pose the problem of identifying an optimal
replacement time as a renewal–reward process. For the maintenance
planning of multiple components, we propose an integer linear program
that additionally takes into account the availability of maintenance
slots and the capacity of these slots.

4.1. Single-component replacement using probabilistic RUL prognostics and
renewal–reward processes

We pose the problem of single-component replacement as a
renewal–reward process. Let {𝑁(𝑡), 𝑡 ≥ 0} be a renewal process where
the process regenerates when a component is replaced [39]. Let 𝐶𝑛 be
the cost incurred during the 𝑛th renewal cycle, due to a replacement
of the component, and let 𝐿𝑛 be the length of the 𝑛th cycle, i.e., the
time between the 𝑛th and the (𝑛 − 1) replacement. In our case, an 𝑛th
component is thus used for a 𝐿𝑛 amount of time. Defining 𝐶(𝑡), 𝑡 ∈
{1, 2,…} as the cumulative cost incurred up to time 𝑡, we have that
[39]:

lim
𝑡→∞

𝐶(𝑡)
𝑡

=
E[𝐶1]
E[𝐿1]

.

To determine an optimal replacement time, we thus analyze the long-
term average cost per unit of time:
E(cost incurred during one cycle)

E(length of one cycle) . (16)

We assume that at some present moment, a component (aircraft
engine) has been used for 𝑘 time steps. At this present moment 𝑘, an
optimal replacement moment that minimizes Eq. (16) is determined.
If a preventive replacement is scheduled at 𝑘 + 𝑡𝑘 time steps (i.e., in
𝑡𝑘 time steps from the present moment), and the component does not
fail until time 𝑘 + 𝑡𝑘, then a cost 𝑐r is incurred for this preventive
replacement. Here, the risk is that the component may fail at some time
𝑘 + 𝑗, 0 ≤ 𝑗 < 𝑡𝑘. If the component indeed fails after 𝑗 time steps, than
a cost 𝑐f > 𝑐r is incurred and this component is immediately replaced
by a new one. The component is thus either (i) replaced upon failure
at a cost 𝑐f, or (ii) is preventively replaced at cost a 𝑐r after using it for
𝑘 + 𝑡𝑘 time-steps.

The component is continuously monitored by sensors. The sensor
measurements of the first 𝑘 time steps of usage are available. In
Section 2, 𝑥𝑣𝑖 , 𝑖 ∈ {1, 2,… , 𝑘} denotes this series of measurements up
to time step 𝑘. Based on these sensor measurements, the probability
that the RUL of the component is 𝑖 time steps, 𝑖 ≥ 0, is estimated
using Convolutional Neural Networks with Monte Carlo dropout (see
Section 2). Let 𝜙𝑘(𝑖) denote the probability that, after being used for 𝑘
time steps, the component has a RUL of exactly 𝑖 time steps, 𝑖 ≥ 0, as
estimated in Section 5.1.

Let 𝐶(𝑘, 𝑡𝑘) denote the replacement costs of the component and let
𝐿(𝑘, 𝑡𝑘) denote the lifetime of the component, given that this compo-
nent has already been used for 𝑘 time steps. Here, the component is
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Fig. 6. An example of the probability 𝜙𝑘(𝑖) for a single component, as estimated at
time 𝑘 = 100.

replaced(i) upon failure, or (ii) preventively after being used for 𝑘 + 𝑡𝑘
time-steps. We are interested in identifying the optimal value of 𝑡𝑘,
i.e., an optimal time to replace the component, which minimizes the
long-term average cost per unit of time (see Eq. (16)):
E[𝐶(𝑘, 𝑡𝑘)]
E[𝐿(𝑘, 𝑡𝑘)]

, (17)

where the expected replacement cost of the component is:

E[𝐶(𝑘, 𝑡𝑘)] = 𝑐f

𝑡𝑘−1
∑

𝑖=0
𝜙𝑘(𝑖) + 𝑐r

(

1 −
𝑡𝑘−1
∑

𝑖=0
𝜙𝑘(𝑖)

)

, (18)

and the expected lifetime of the component is:

E[𝐿(𝑘, 𝑡𝑘)] = 𝑘 +
𝑡𝑘−1
∑

𝑖=0
𝑖 ⋅ 𝜙𝑘(𝑖) + 𝑡𝑘

(

1 −
𝑡𝑘−1
∑

𝑖=0
𝜙𝑘(𝑖)

)

. (19)

Let 𝑡∗𝑘 denote the optimal value for 𝑡𝑘, that minimizes Eq. (17). In
general, if there is a high probability that the RUL is zero, then 𝑡∗𝑘 is
also expected to tend to zero. Conversely, if there is a high probability
that the RUL is large, then 𝑡∗𝑘 is also expected to be large.

Fig. 6 shows an example of the probability 𝜙𝑘(𝑖) of a component of
having a RUL of 𝑖 time steps, given that it has already been used for
𝑘 = 100 time steps. We evaluate the expected costs over the expected
lifetime if 𝑡𝑘 = 5, i.e., if we replace the component at day 𝑘 + 𝑡𝑘 = 105.
The probability that the component fails in the next 𝑡𝑘 = 5 days equals
∑4

𝑖=0 𝜙𝑘(𝑖) = 0.14 (blue, dotted area in Fig. 6). The expected cost when
replacing the component at day 105 is 𝑐f ⋅0.14+𝑐r(1−0.14). The expected
lifetime is 100 + 0.41 + 5 ⋅ (1 − 0.14) = 104.71.

4.2. Multi-component replacement using probabilistic RUL prognostics

We now consider the maintenance planning for multiple compo-
nents. Let 𝑉 denote the set of components (aircraft engines). Let
𝑑p denote the present day, and 𝑑𝑣0 denote the installation day of a
component 𝑣 ∈ 𝑉 . Let 𝑘p = 𝑑p−𝑑𝑣0 denote the usage time of component
𝑣 ∈ 𝑉 at present day 𝑑p.

At present day 𝑑p, a probabilistic RUL prognostic, i.e., the estimated
PDF of the RUL, is available for each component 𝑣 ∈ 𝑉 (see Section 2).
Let 𝜙𝑣

𝑘p
(𝑖) denote the estimated probability that the RUL of component

𝑣 ∈ 𝑉 is exactly 𝑖 flight cycles, after being used for 𝑘p flight cycles.
Again, 𝜙𝑣

𝑘p
(𝑖) is estimated using CNN with Monte Carlo dropout in

Section 2. We assume that each engine performs one flight cycle per
day.

A component can be replaced in dedicated maintenance slots,
i.e. days when the component is available for maintenance, and the
maintenance facility and required equipment are available. In the
case of an aircraft engine, the aircraft is on the ground during these
maintenance slots, and the aircraft maintenance hangar and equipment
are available [4]. At present day 𝑑p, maintenance slots are known up
to 𝑙 days in advance. Let 𝑆𝑣 be the set of maintenance slots available
for a component 𝑣 ∈ 𝑉 in the period [𝑑p, 𝑑p + 𝑙). The set 𝑆𝑣 is specific
to component 𝑣.

We also consider generic maintenance slots, i.e., a day during which
any component 𝑣 ∈ 𝑉 can be replaced, but at an additional high cost
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Fig. 7. Example of a multi-component replacement problem for a single engine 𝑣 = 1.

Fig. 8. Schematic example of two iterations of the rolling horizon approach, with
|𝑉 | = 3 engines, 𝜏 = 5 days, 𝑙 = 10 days, and present days 𝑑p = 1 and 𝑑p = 6.

𝑐g. One generic maintenance slot is available per day. Let 𝑆g be the set
of generic maintenance slots available in the period [𝑑p, 𝑑p + 𝑙).

Let 𝑑𝑠 be the day belonging to slot 𝑠, 𝑠 ∈ 𝑆g ∪ 𝑆𝑣, 𝑣 ∈ 𝑉 , and let 𝑆𝑑

be the set of all slots at day 𝑑 ∈ [𝑑p, 𝑑p + 𝑙), i.e., all 𝑠 ∈ 𝑆g ∪𝑆𝑣, 𝑣 ∈ 𝑉 ∶
𝑑𝑠 = 𝑑. Let 𝑡𝑠p = 𝑑𝑠−𝑑p denote the number of days a maintenance slot 𝑠
is available after present day 𝑑p. Last, due to limited resources, at most
ℎ components can be replaced per day. Fig. 7 shows an example of the
notation in the multi-component maintenance planning for an engine
𝑣 = 1.

We analyze the maintenance planning for a period of 𝑇 days using a
rolling horizon approach. First, at present day 𝑑p = 1, the maintenance
planning is made for the time-window [𝑑p, 𝑑p + 𝑙). Here, the RUL
prognostics are obtained at present day 𝑑𝑝 = 1. Then, the replacements
planned in the first 𝜏, 𝜏 < 𝑙 days of this maintenance planning are
executed. Also, it is assumed that components that fail in the first 𝜏 days
are immediately replaced. Next, we roll to the next time window. We
update the present day 𝑑p ∶= 1+𝜏. We also update the RUL prognostics.
With these new RUL prognostics, a maintenance planning is now made
for the time-window [𝑑p, 𝑑p+ 𝑙), i.e., for [1+𝜏, 1+𝜏+ 𝑙). This is repeated
until the maintenance planning of 𝑇 days is executed.

An example of two iterations of a rolling horizon approach is in
Fig. 8, with |𝑉 | = 3 engines. At the first present day 𝑑p = 1, we
know the maintenance slots of the next 𝑙 = 10 days ahead. Using the
RUL prognostics, we thus make a maintenance planning for the next
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𝑙 = 10 days (Fig. 8(a)). Then, we fix the decisions of the first 𝜏 = 5
days, update the RUL prognostics and move forward to present day
𝑑p = 1 + 𝜏 = 6 (Fig. 8(b)). Note that the mean predicted failure time
changes between present day 𝑑p = 1 and 𝑑p = 6, due to the updating of
the RUL prognostics.

We propose the following Integer Linear Program (ILP) to plan com-
ponent replacements at present day 𝑑p for the time-window [𝑑p, 𝑑p +
𝑙).

Costs

Let 𝑐𝑣𝑠 denote the expected costs over the expected lifetime of the
component (see Eq. (17)) when component 𝑣 is replaced in slot 𝑠, with
𝑑p ≤ 𝑑𝑠 < 𝑑p + 𝑙. We calculate 𝑐𝑣𝑠 by dividing the expected costs
of this replacement by the expected lifetime, given that component
𝑣 is replaced(i) upon failure or (ii) preventively in slot 𝑠, whichever
comes first. The expected costs consists of the expected failure costs,
the expected preventive replacement costs, and the expected costs of
using the generic slot. Formally,

𝑐𝑣𝑠 =
𝑐f
∑𝑡𝑠p−1

𝑖=0 𝜙𝑣
𝑘p
(𝑖) +

(

𝑐r + 𝑐gg(𝑠)
)

(

1 −
∑𝑡𝑠p−1

𝑖=0 𝜙𝑣
𝑘p
(𝑖)
)

(𝑑p − 𝑑𝑣0) +
∑𝑡𝑠p−1

𝑖=0 𝑖𝜙𝑣
𝑘p
(𝑖) + 𝑡𝑠p

(

1 −
∑𝑡𝑝𝑠−1

𝑖=0 𝜙𝑣
𝑘p
(𝑖)
)

, (20)

where

g(𝑠) =

{

1 𝑠 ∈ 𝑆g

0 Other,
. (21)

Let 𝑐𝑣DN denote the expected cost over the expected lifetime of
component 𝑣 ∈ 𝑉 within the period [𝑑p, 𝑑p + 𝑙), when no replacement
is planned for this component in this period, i.e., when we do nothing
(DN). In other words, the replacement of this component is postponed
to after day 𝑑p + 𝑙, and we thus only incur costs in the period [𝑑p, 𝑑p + 𝑙)
if the component fails in this period. Formally,

𝑐𝑣DN =
𝑐f
∑𝑙−1

𝑖=0 𝜙
𝑣
𝑘p
(𝑖)

(𝑑p − 𝑑𝑣0) +
∑𝑙−1

𝑖=0 𝑖𝜙
𝑣
𝑘p
(𝑖) + 𝑙

(

1 −
∑𝑙−1

𝑖=0 𝜙
𝑣
𝑘p
(𝑖)
) . (22)

Decision variables

We consider the following decision variable:

𝑥𝑣𝑠 =

⎧

⎪

⎨

⎪

⎩

1, component 𝑣 ∈ 𝑉 is replaced
in slot 𝑠 ∈ 𝑆𝑣 ∪ 𝑆g

0, otherwise.
(23)

Objective

We aim to minimize the expected costs over the expected lifetime,
i.e.,:

min.
∑

𝑣∈𝑉

⎛

⎜

⎜

⎝

∑

𝑠∈𝑆𝑣∪𝑆g

𝑐𝑣𝑠𝑥𝑣𝑠 + 𝑐𝑣DN

⎛

⎜

⎜

⎝

1 −
∑

𝑠∈𝑆𝑣∪𝑆g

𝑥𝑣𝑠
⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

(24)

Constraints

A component 𝑣 ∈ 𝑉 can be scheduled for replacement at most once
in a time-window, i.e,:
∑

𝑠∈𝑆𝑣∪𝑆g

𝑥𝑣𝑠 ≤ 1, ∀𝑣 ∈ 𝑉 (25)

At most ℎ components can be scheduled for replacement during one
day:
∑

𝑣∈𝑉

∑

𝑠∈𝑆𝑑

𝑥𝑣𝑠 ≤ ℎ, ∀𝑑 ∈ [𝑑p, 𝑑p + 𝑙) (26)

Lastly,
( 𝑣 )
𝑥𝑣𝑠 ∈ {0, 1} ∀𝑣 ∈ 𝑉 ,∀𝑠 ∈ 𝑆 ∪ 𝑆g . (27)
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Fig. 9. Predicted PDF of the RUL of engine 2 of subset FD001, C-MAPSS. This is the first engine selected from subset FD001 for maintenance planning.
Fig. 10. The mean RUL prediction for the last 125 flight cycles for the engines selected
for maintenance planning from subset FD001, C-MAPSS.

5. Results — maintenance planning for turbofan engines

In this section, we illustrate our maintenance planning methodology
proposed in Sections 2 and 4 for aircraft turbofan engines.

5.1. Results — probabilistic RUL prognostics for the maintenance planning
of turbofan engines

In Section 3 we have presented the RUL prognostics for the engines
in the C-MAPSS test sets. For these test engines, the measurements
stop at some moment before failure, i.e., these are not complete series
until the moment of failure. For maintenance planning, however, we
need complete series of measurements up to the moment of failure,
i.e., we need run-to-failure instances. The engines in the C-MAPSS
training set have such complete run-to-failure series of measurements.
Thus, we use the engines in the C-MAPSS training set for maintenance
planning. We first randomly select 80% of the engines of each training
set (568 engines in total) [4,20] to train the CNNs (see Section 2). For
the remaining 20% of engines (a total of 141 engines), we generate
RUL prognostics using the trained CNNs and Monte Carlo dropout. The
RUL prognostics of these 141 engines are then used to analyze the
maintenance planning model proposed in Section 4.

Fig. 9 shows the obtained PDF of the RUL of engine 2 of subset
FD001 when the actual RUL is 125, 75 and 25 flight cycles. Engine
2 is the first engine randomly selected from FD001 for maintenance
planning. The PDF of the RUL of this engine is centered around the
actual RUL for all three moments in time. However, the mean RUL
prediction is closer to the actual RUL when the actual RUL is 75 or
25 flight cycles.

Fig. 10 shows the mean predicted RUL for the last 125 flight cycles
before failure for all engines selected for maintenance planning from
FD001. Here, each colored line shows the RUL predictions belonging
to one engine. After each flight, the mean predicted RUL is updated
for each engine. Fig. 10 shows the mean predicted RUL from 125
flight cycles before failure (i.e., the actual RUL is 125 flight cycles),
until failure (i.e., the actual RUL is 0). For all engines, the mean RUL
prediction slightly underestimates the actual RUL when the actual RUL
8

Table 5
The RMSE, 𝛼-Coverage (𝛼-C) and 𝛼-Mean width (𝛼-MW) for the RUL prognostics of the
engines selected for maintenance planning from the C-MAPSS training sets.

FD FD FD FD
001 002 003 004

RMSE 13.06 15.15 13.58 15.93

𝛼 = 0.50
𝛼-C 0.50 0.47 0.60 0.60
𝛼-MW 16.3 15.5 16.9 16.5

𝛼 = 0.90
𝛼-C 0.90 0.82 0.89 0.88
𝛼-MW 39.2 37.5 40.7 39.9

𝛼 = 0.95
𝛼-C 0.94 0.88 0.93 0.91
𝛼-MW 46.4 44.4 48.1 47.2

is 125 flight cycles. For a few engines, moreover, the mean predicted
RUL deviates substantially from the actual RUL when the actual RUL is
still large. However, the mean predicted RUL always converges to the
actual RUL when an engine becomes closer to failure.

Table 5 shows the metrics of the RUL prognostics with all the 141
engines selected for maintenance planning. The RMSE is higher than for
the test instances in Section 2, while the 𝛼-Coverage diverges more from
𝛼. This is as expected, since there are less failure instances available to
train the CNN.

5.2. Results — Single-engine maintenance planning

In this section, we discuss the optimal moment for replacement 𝑘+𝑡∗𝑘
from Section 4.1, Eq. (17). Table 6 shows for four engines the optimal
moment for replacement 𝑘+ 𝑡∗𝑘, at five moments during the life of each
engine. Engine 2, 10, 2, and 3 is the first randomly selected engine
for maintenance planning from C-MAPPS subset FD001, FD002, FD003,
and FD004, respectively. As an example, consider engine 2 of subset
FD001 when the actual RUL is 125 flight cycles. At this moment, the
engine has been used for 𝑘 = 162 flight cycles. The mean predicted
RUL is 113.7 flight cycles, and the 99% confidence interval of the
predicted RUL is [83, 144]. Given the current usage of 162 flight cycles,
it is optimal to replace this engine after an additional of 𝑡∗𝑘 = 83 flight
cycles, i.e., at the lower bound of the 99% confidence interval of the
predicted RUL. The optimal moment of a preventive replacement of this
engine is thus 𝑘 + 𝑡∗𝑘 = 162 + 83 = 245 flight cycles.

The optimal moment of replacement 𝑘 + 𝑡∗𝑘 varies over time, since
the RUL prognostics are updated after each flight cycle. In Table 6, 𝑡∗𝑘
is close to the lower bound of the 99% confidence interval of the RUL
prediction. Here, 𝑡∗𝑘 is thus smaller if the RUL predictions are more
uncertain, i.e., if the confidence intervals are wider, and the lower
bound of the 99% confidence interval is thus smaller. On the other
hand, the more certain the RUL predictions are, the closer 𝑡∗𝑘 is to the
mean RUL prediction.

Fig. 11 further illustrates the optimal number of flight cycles 𝑡∗𝑘
for the engines in Table 6. For all four engines, 𝑡∗𝑘 follows the same
trend as the mean predicted RUL. Moreover, when the actual RUL is 25
flight cycles or less, it is optimal to immediately perform a preventive
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Fig. 11. Actual RUL, Mean Predicted RUL and 𝑡∗𝑘. Engine 2, 10, 2 and 3 are the first randomly selected engines for maintenance planning from FD001, FD002, FD003 and FD004,
respectively.
Table 6
The actual RUL, the number of cycles the engine has already been in use 𝑘, the
mean predicted RUL, the optimal number of flight cycles to use the engine before
preventive replacement 𝑡∗𝑘, and the optimal replacement moment of the engine 𝑘 + 𝑡∗𝑘.
The first engines randomly selected for maintenance planning from FD001, FD002,
FD003, FD004 are chosen for illustration.

Actual 𝑘 Mean 99% 𝑡∗𝑘 𝑘 + 𝑡∗𝑘
RUL predicted CI of

RUL the RUL

Engine 2 - subset FD001
True lifetime = 287 flight cycles

125 162 113.7 [83,144] 83 245
100 187 99.3 [66, 128] 66 253
75 212 79.7 [40,114] 40 252
50 237 45.5 [14,75] 13 250
25 262 31 [0,64] 0 262

Engine 10 of subset FD002
True lifetime = 184 flight cycles

125 59 112.5 [82, 141] 85 144
100 84 114.2 [85, 146] 85 169
75 109 91.6 [55, 127] 58 167
50 134 81.1 [49, 114] 48 182
25 159 30.4 [0,60] 0 159

Engine 2 of subset FD003
True lifetime = 253 flight cycles

125 128 115.3 [83, 146] 82 210
100 153 118.4 [89,151] 88 241
75 178 92.9 [67,125] 62 240
50 203 59.3 [27,92] 27 230
25 228 28.4 [0,57] 0 227

Engine 3 of subset FD004
True lifetime = 307 flight cycles

125 182 111.5 [81, 144] 80 262
100 207 101.2 [67,135] 72 279
75 232 68.1 [40,100] 40 272
50 257 50.4 [23,79] 21 278
25 282 23.2 [0,53] 0 282
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replacement for all four engines, i.e., 𝑡∗𝑘 = 0. This is because, at this
moment, we predict with a quite high probability that the RUL of the
engine is 0 flight cycles (see the 99% confidence intervals of the RUL
in Table 6).

For engine 10 of subset FD002 (Fig. 11(b)), the mean predicted
RUL is larger than the actual RUL, when the actual RUL is around 60
flight cycles. Based on these prognostics, Eq. (17) is minimized when
the engine is replaced after the failure time. For example, the mean
predicted RUL is 93 flight cycles, with a 100% confidence interval of
[62, 123], while the actual RUL is only 55 flight cycles. The predicted
probability that the engine fails on or before the actual RUL is thus
zero. The optimal replacement moment, based on the RUL prognostics
and Eq. (17), is therefore 𝑡∗𝑘 = 65 flight cycles, i.e., after the failure time
of the engine. Around 40 flight cycles before failure, it is again optimal
to replace engine 10 of FD002 before the failure time.

Fig. 12 shows the Actual RUL − 𝑡∗𝑘 for all 141 engines considered
for maintenance planning, at five moments during the engines’ life. As
an example, for engine 2 of subset FD001 in Table 6, it is optimal to
replace the engine after 𝑡∗𝑘 = 83 flight cycles, while the actual RUL is
125 flight cycles. The Actual RUL − 𝑡∗𝑘 = 125 − 83 = 42 flight cycles,
i.e., the optimal moment of replacement is 42 flight cycles before
engine failure.

When the actual RUL is 125 cycles or when the actual RUL is 100
cycles, then the optimal moment of replacement is always before the
engine fails. When the actual RUL is 125 cycles, it is optimal to replace
each engine at least 30 cycles before its failure. This is because the
RUL is slightly underestimated when the actual RUL is 125 cycles (see
Fig. 10), and the lower bounds of the 95% and 99% confidence intervals
are always much smaller than 125 cycles. When the actual RUL is 75
or 50 cycles, however, the RUL prognostics sometimes overestimate the
actual RUL: For some engines, the predicted probability that the RUL
is equal to or smaller than the actual RUL is even zero. The optimal
moment of replacement for some engines therefore falls after the engine
failure date when the actual RUL is 75 or 50 cycles. When the actual
RUL is 25 cycles (Fig. 12(e)), however, it is optimal to immediately
perform a preventive replacement for most engines, i.e., 𝑡∗𝑘 = 0.
Moreover, the optimal maintenance moment is at least 10 days before
the engine fails.
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Fig. 12. Histogram of (Actual RUL - 𝑡∗𝑘), for all engines selected for maintenance planning from the C-MAPSS dataset.
5.3. Results - Multi-engine maintenance planning

In this section, we plan maintenance for multiple engines using the
methodology in Section 4.2. We consider a fleet of |𝑉 | = 50 engines,
which are randomly selected from the 141 engines considered for main-
tenance. Maintenance slots are randomly sampled with a frequency of
one per 10–20 days [4]. We assume that at most ℎ = 1 engine per
day can be maintained, and that maintenance slots are known 𝑙 = 50
days ahead. We consider a preventive replacement cost 𝑐r = 10, a cost
of using a generic slot 𝑐g = 10 and a cost of a failure are 𝑐f = 50. As
mentioned before, we also assume that each engine performs one flight
cycle per day.

We analyze the maintenance planning of the engines for a period of
𝑇 = 10×365 days (i.e., ten years). We consider time windows of 𝜏 = 10
days for maintenance planning. Last, we assume that a failed engine
is immediately replaced with a new engine. We implement the ILP in
Python using Gurobi, on a computer with an Intel Core i7 processor
at 2.11 GHz and 8Gb RAM. It requires 109 s to create a maintenance
planning for a period of ten years.

Fig. 13 shows the resulting maintenance planning at present days
𝑑p = 791 and 𝑑p = 801. At day 791, a replacement is planned for 6
engines, namely engines 9, 14, 16, 29, 40 and 41. For each engine
with a planned replacement, we show the available maintenance slots
(blue squares), the actual failure time (red cross in a circle) and the
mean predicted failure time (orange cross in a dotted circle). For an
engine 𝑣 ∈ 𝑉 at present day 𝑑p, we use 𝑡∗𝑘p ,𝑣

to denote the optimal
𝑡∗𝑘 from Eq. (17) in Section 4.1. Here, 𝑑p + 𝑡∗𝑘p,𝑣

thus denotes the
optimal replacement moment from the renewal–reward process with
a single-component (blue cross).

For engine 29, 40 and 41, the engine replacement is planned close to
the optimal moment from the renewal–reward process. For engines 29
and 40, the replacement is planned 4 and 1 day(s) before this optimal
moment, respectively. For engine 41, the replacement is planned 1
day after this optimal moment. For engine 9, 14 and 16, however, the
replacement is planned 16, 16 and 12 days after the optimal moment
from the single-component problem, respectively. For all these three
engines, an earlier maintenance slot closer to the optimal moment from
the single-component is available. However, engine 29 or engine 41
is already replaced at the days of these maintenance slots. Since we
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assume that at most one engine per day can be maintained, we cannot
maintain engine 9, 14 and 16 at these days as well.

Using the rolling horizon approach, the maintenance decisions of
the first 𝜏 = 10 days of the maintenance planning are executed. Engine
29 and engine 40 are replaced at day 793 and day 797 respectively,
and no engine failure occurs. The RUL prognostics are updated, and a
new maintenance planning is then made at present day 801.

At day 801, the replacements for engine 14, 16 and 41 remain
planned in the same maintenance slots. The updated prognostics of
engine 9, however, indicate that this engine could fail very soon: At
present day 791, the first available maintenance slot that fulfilled the
capacity constraint was at day 815. The probability that engine 9 would
fail before day 815 was estimated at 7.7%. The costs of using a generic
slot (10) thus exceeded the expected failure costs (𝑐f ⋅0.077 = 50⋅0.077 =
7.7). The replacement was therefore scheduled at day 815. At present
day 801, however, the estimated probability that engine 9 fails before
day 815 is 26.5%. The expected failure costs (50 ⋅ 0.265 = 13.25) are
thus higher than the cost of using a generic slot. A generic slot (purple,
dotted square) is therefore used to replace this engine immediately at
day 801. Additionally, a replacement is planned for engine 1 at day
822, four days after the optimal moment for a single component, and
for engine 17 at day 829, two days after the optimal moment for a
single component.

Let 𝑑ILP
p,𝑣 be the day of a scheduled replacement of engine 𝑣 ∈

𝑉 , as planned at present day 𝑑p using the ILP for multi-component
maintenance planning. Fig. 14 gives a histogram of the optimal moment
of replacement 𝑑p + 𝑡∗𝑘p ,𝑣

for the case of a single component, minus the
scheduled replacement time 𝑑ILP

p,𝑣 from the multi-component problem.
For example, in Fig. 13(a), it is optimal at present day 𝑑p = 791 to
replace engine 𝑣 = 41 at day 802, i.e. 𝑑p + 𝑡∗𝑘p ,𝑣

= 791 + 11 = 802.
However, it is planned to replace engine 𝑣 = 41 at day 𝑑ILP

p,𝑣 = 803
instead. The replacement of engine 41 is thus scheduled 802 − 803 = 1
day after the optimal moment.

Fig. 14 shows that the results obtained for the maintenance of
multiple engines are similar to the results for single-engine mainte-
nance: Most of the time, the optimal moment of replacement is the
same in the single-component and the multi-component problem. The
optimal replacement time obtained from the multi-component problem,
however, can also deviate up to 20 days from the optimal replacement
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Fig. 13. Maintenance planning at present day 𝑑p = 791 and day 𝑑p = 801. Only the engines for which a replacement is planned during these two present days are depicted.
Fig. 14. The optimum replacement time 𝑑p + 𝑡∗𝑘p ,𝑣
for single-component replacement

(see Eq. (17)) minus the scheduled replacement time 𝑑ILP
p,𝑣 in the multi-component

replacement problem.

time obtained from the single-component problem due to the limited
availability of slots and the limit of ℎ replacements per day.

5.4. Long-term performance: Maintenance with probabilistic RUL prognos-
tics vs maintenance with perfect RUL prognostics and time-based mainte-
nance

In this section, we compare three maintenance strategies: (i) the
proposed maintenance strategy with probabilistic RUL prognostics (Sec-
tion 4), (ii) a maintenance strategy with perfect RUL prognostics, and
(iii) a Time-based maintenance strategy. The long-term performance of
these maintenance strategies is analyzed by means of a Monte Carlo
simulation.

Perfect RUL prognostics. For this maintenance strategy, we assume that
we exactly know the failure time of the engine, i.e., that we have
perfect RUL prognostics. For this strategy, we use the same ILP as in
Section 4.2. However, we now input the actual RUL in Eqs. (20) and
(22), instead of the probabilistic RUL prognostics.
11
Time-based maintenance. For this strategy, we determine the prob-
ability of the failure of an engine based on its current usage. In
Section 5.1, we selected 568 engines to train the CNN, while the
remaining 141 engines were used for maintenance planning. For the
Time-based Maintenance strategy, we use the 568 engines to determine
a generic histogram of the lifetime of engines (see Fig. 16).

For any of the 141 engines selected for maintenance planning, the
probability that the lifetime of this engine is 𝑖 flight cycles at the
moment of installation, is the proportion of the 568 engines for which
the lifetime is 𝑖 flight cycles. For example, 2 out of the 568 engines
have a lifetime of 231 flight cycles. When planning maintenance, we
therefore estimate that, at the moment of installation, the probability
that the lifetime of an engine is 231 flight cycles is 2

568 . Let �̃�(𝑖) denote
the probability that the lifetime of an engine is exactly 𝑖 flight cycles.
In our example, �̃�(231) = 2

568 ≈ 0.0035.
Consider that any engine of the total 141 engines has been used for

𝑘 flight cycles. The lifetime 𝐿 of this engine is thus larger than or equal
to 𝑘 cycles, i.e., 𝐿 ≥ 𝑘. Given that 𝐿 ≥ 𝑘, the conditional probability
�̃�(𝑘+ 𝑖|𝐿 ≥ 𝑘) that the lifetime 𝐿 = 𝑘+ 𝑖 flight cycles is solely based on
the histogram in Fig. 16:

�̃�(𝑘 + 𝑖|𝐿 ≥ 𝑘) =
�̃�(𝐿 = 𝑘 + 𝑖 ∩ 𝐿 ≥ 𝑘)

�̃�(𝐿 ≥ 𝑘)
(28)

=
�̃�(𝑘 + 𝑖)

1 −
∑𝑘−1

𝑖=0 �̃�(𝑖)
(29)

The difference between Section 5.1 and the Time-based Maintenance
strategy is that under the Time-based Maintenance strategy, the proba-
bility of failure for all 141 engines is the same, given an usage period of
𝑘 cycles.

As another example, assume that an engine has been used for 𝑘 =
220 flight cycles. The probability 1 −

∑219
𝑖=0 �̃�(𝑖) that the lifetime of an

engine is 220 flight cycles or larger is 0.4296. The conditional proba-
bility that the lifetime 𝐿 of this engine equals 231 flight cycles is thus
�̃�(231|𝐿 ≥ 220) = 0.0035 = 0.008. Using these conditional probabilities
0.4296
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Fig. 15. The expected number of engine replacements, used generic slots and failures per ten years, and the mean wasted life per replacement, for(i) Time-based maintenance,
(ii) maintenance with probabilistic, imperfect RUL prognostics and (iii) maintenance with perfect RUL prognostics. The 99% confidence interval of the mean (CI) is also given.
Fig. 16. Histogram of the lifetime of the 568 historical failure instances selected for
training the CNN in Section 5.1.

�̃�(𝑘 + 𝑖|𝐿 ≥ 𝑘), we plan the single-component and multi-component
replacements.

Time-based single-component replacement
Now that �̃�(𝑘 + 𝑖|𝐿 ≥ 𝑘) is determined based on the histogram in

Fig. 16, Eq. (18) and (19) become:

E[𝐶(𝑘, 𝑡𝑘)] = 𝑐f

𝑡𝑘−1
∑

𝑖=0
�̃�(𝑘 + 𝑖|𝐿 ≥ 𝑘)

+ 𝑐r

(

1 −
𝑡𝑘−1
∑

𝑖=0
�̃�(𝑘 + 𝑖|𝐿 ≥ 𝑘)

)

,

E[𝐿(𝑘, 𝑡𝑘)] = 𝑘 +
𝑡𝑘−1
∑

𝑖=0
𝑖 ⋅ �̃�(𝑘 + 𝑖|𝐿 ≥ 𝑘)

+ 𝑡𝑘

(

1 −
𝑡𝑘−1
∑

𝑖=0
�̃�(𝑘 + 𝑖|𝐿 ≥ 𝑘)

)

.

Time-based multi-component replacement
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We again plan the multi-component replacement using the ILP in
Section 4.2. Let 𝑘𝑣p = 𝑑p − 𝑑𝑣0 be the number of days engine 𝑣 ∈ 𝑉 is in
use at present day 𝑑𝑝.

Now that �̃�(𝑘 + 𝑖|𝐿 ≥ 𝑘) is determined based on the histogram in
Fig. 16, Eq. (20) becomes:

Nominator
Denominator ,

where

Nominator =𝑐f

𝑡𝑠p−1
∑

𝑖=0
�̃�(𝑘𝑣p + 𝑖|𝐿 ≥ 𝑘𝑣p) +

(

𝑐r + 𝑐gg(𝑠)
)

⋅
⎛

⎜

⎜

⎝

1 −
𝑡𝑠p−1
∑

𝑖=0
�̃�(𝑘𝑣p + 𝑖|𝐿 ≥ 𝑘𝑣p)

⎞

⎟

⎟

⎠

,

Denominator =𝑘𝑣p +
𝑡𝑠p−1
∑

𝑖=0
𝑖 ⋅ �̃�(𝑘𝑣p + 𝑖|𝐿 ≥ 𝑘𝑣p)

+ 𝑡𝑠p
⎛

⎜

⎜

⎝

1 −
𝑡𝑠p−1
∑

𝑖=0
�̃�(𝑘𝑣p + 𝑖|𝐿 ≥ 𝑘𝑣p)

⎞

⎟

⎟

⎠

.

Also,

𝑐𝑣DN =
𝑐f
∑𝑙−1

𝑖=0 �̃�(𝑘
𝑣
p + 𝑖|𝐿 ≥ 𝑘𝑣p)

𝑘𝑣p +
∑𝑙−1

𝑖=0 𝑖 ⋅ �̃�(𝑘
𝑣
p + 𝑖|𝐿 ≥ 𝑘𝑣p)+

𝑙
(

1 −
∑𝑙−1

𝑖=0 �̃�(𝑘
𝑣
p + 𝑖|𝐿 ≥ 𝑘𝑣p)

)

.

Long-term results. We evaluate the long-term performance of the three
maintenance strategies by performing a Monte Carlo simulation with
10,000 simulation runs, where each run lasts 10 years. Fig. 15 shows
the expected results of this simulation.

The expected number of replacements decreases by 32% when con-
sidering imperfect RUL prognostics instead of Time-based Maintenance.
When using perfect instead of imperfect RUL prognostics, the expected
number of replacements further decreases by 11% (see Fig. 15(a)).
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Fig. 17. The expected costs over a period of ten year, for (i) Time-based maintenance,
(ii) maintenance with probabilistic, imperfect RUL prognostics and (iii) maintenance
with perfect RUL prognostics. The 99% confidence interval of the mean (CI) is also
given.

This difference is because the mean wasted life per replacement is
highest (75.8) when using Time-based Maintenance, and lowest when
considering perfect RUL prognostics (9.0, see Fig. 15(c)).

However, when using imperfect RUL prognostics, wasting the life of
the engines prevents many engine failures: Only 26 engines fail in the
10,000 simulations of ten years. When using perfect RUL prognostics,
the exact failure time is known, and no engine thus fails in any
simulation. With Time-based maintenance, on average 62 engines fail
per ten years, even though an engine is replaced 75.8 flight cycles
before failure on average.

Last, we expect to use 30 generic slots when considering imperfect
RUL prognostics, while we expect to use less than one generic slot with
perfect RUL prognostics or Time-based Maintenance (see Fig. 15(d)).
This is because imperfect RUL prognostics are updated over time. The
predicted failure time of an engine may therefore suddenly decrease
when new sensor measurements become available. In this case, it is
sometimes more cost efficient to replace an engine in a generic slot than
to risk a failure. In contrast, the predictions for perfect prognostics and
Time-based Maintenance are constant.

Fig. 17 shows the expected maintenance cost per ten years for
the three maintenance strategies. For all three strategies, most costs
come from replacing the engines. When considering Time-based Main-
tenance, moreover, the expected costs of engine failures are 3082.
In contrast, these costs are negligible when considering perfect or
imperfect RUL prognostics. With imperfect RUL prognostics, however,
the expected costs of using generic slots are 304, while these costs
are negligible for the other two strategies. Overall, the costs decrease
with 53% when considering imperfect RUL prognostics instead of Time-
based Maintenance. Moreover, the maintenance costs further decrease
by 14% when considering perfect RUL prognostics.

6. Conclusions

This paper proposes an end-to-end framework for predictive main-
tenance for complex components/ systems, from sensor measurements,
to probabilistic RUL prognostics, to maintenance planning for sin-
gle and multiple components/systems that integrate RUL estimates.
Our proposed approach is illustrated for C-MAPSS turbofan engines.
Probabilistic RUL prognostics (pdf of the RUL) are obtained using a
Convolutional Neural Network with Monte Carlo dropout. The result-
ing probabilistic prognostics are shown to be reliable, with a high
𝛼-Coverage for all values of 𝛼.

Using these probabilistic RUL prognostics and renewal–reward pro-
cesses, we determine an optimal moment to replace an engine. The
optimal moment of engine replacements is shown to be close to the
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lower bound of the 99% confidence interval of the RUL prognostics.
The results also show that more uncertain the RUL prognostics are,
i.e., the wider the confidence intervals are, the earlier a component is
preventively replaced to avoid a failure.

We further plan the replacements of multiple engines using an
integer linear programming model that integrates RUL estimates. Here,
the planning is further constrained by the availability of maintenance
slots and the limited capability of a maintenance hangar to perform
multiple replacements in the same day. In the long-run, we show
that our approach leads to low expected number of engine failures.
Compared with the ideal case when the true RUL is known in advance
(ideal RUL prognostics), our approach leads to only 11% more engine
replacements and a cost increase of only 14%. We also analyze the
long-term performance of our approach vs a traditional, Time-based
maintenance strategy. The results show that by using our probabilistic
RUL prognostics, the number of replacements decreases with 32% per
year. Moreover, the expected number of failure decreases from over 61
to 0.003 when considering a period of ten years.

As future work, we aim to further analyze the impact of cost
choices on the maintenance planning results. We also aim to further
improve our RUL prognostics by considering additional features such
as attention mechanisms integrated into the neural network.
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