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Abstract
Slender beams are often employed as constituents in engineering materials and structures. Prior experiments on lattices of
slender beams have highlighted their complex failure response, where the interplay between buckling and fracture plays a
critical role. In this paper, we introduce a novel computational approach for modeling fracture in slender beams subjected to
large deformations.We adopt a state-of-the-art geometrically exact Kirchhoff beam formulation to describe the finite deforma-
tions of beams in three-dimensions. We develop a discontinuous Galerkin finite element discretization of the beam governing
equations, incorporating discontinuities in the position and tangent degrees of freedom at the inter-element boundaries of the
finite elements. Before fracture initiation, we enforce compatibility of nodal positions and tangents weakly, via the exchange
of variationally-consistent forces and moments at the interfaces between adjacent elements. At the onset of fracture, these
forces and moments transition to cohesive laws modeling interface failure. We conduct a series of numerical tests to verify
our computational framework against a set of benchmarks and we demonstrate its ability to capture the tensile and bending
fracture modes in beams exhibiting large deformations. Finally, we present the validation of our framework against fracture
experiments of dry spaghetti rods subjected to sudden relaxation of curvature.

Keywords Slender beams · Geometrically exact beam formulation · Discontinuous Galerkin finite elements · Fracture
mechanics · Cohesive zone models

1 Introduction

Slender beams are essential constituents of engineering
materials and have a long history of serving as reinforce-
ment elements in composite laminates [1], textiles [2], and
paper products [3]. More recently, developments in additive
manufacturing technology have enabled the combination of
slender beams into engineered periodic truss lattices, giv-
ing rise to truss architected materials [4, 5]. In the wake
of these technological advancements, there has been grow-
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ing emphasis on designing optimal material microstructures
capable of yielding specific target mechanical properties.
For example, recent efforts within the scientific community
have focused on designing material architectures aimed at
achieving a desired anisotropic stiffness [6], optimal vibra-
tion control [7, 8], high specific stiffness and strength [9–11],
and unprecedented specific impact energy absorption [12,
13]. While characterizing the failure modes of these materi-
als is of paramount importance, particularly in the context of
the performance-weight trade-off, the fracture mechanics of
truss architected materials is not completely understood and
remains an area of ongoing scientific interest.

Compression experiments on truss architected materials
have highlighted the relevance of the interplay of buckling
and fracture of the individual beam structural constituents in
their overall failure response [9]. While buckling has been
extensively studied in the literature in isolation, the inter-
play between buckling and fracture has traditionally received
limited attention, perhaps due to the fact that buckling often
leads to structural failurewell before fracture initiation.More
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recently, as the structural engineering community has broad-
ened its focus from developing buckling-safe structures to
leveraging buckling instabilities as a design opportunity to
create structures capable of adapting their shape to their sur-
rounding environment [14–16], the study of the complex
interplay between buckling and fracture in slender structures
has gained increasing relevance.

Clearly, the complex fracture behavior of truss architected
materials is significantly influenced by the combination of
responses of the individual beam constituents. However, it is
noteworthy that the buckling-to-fracture transition in a single
slender beam already exhibits remarkable richness and com-
plexity. A celebrated example is the fracture behavior of dry
spaghetti rods, which consistently break into more than two
pieces when subjected to large pure-bending stresses. This
intriguing fracture behavior has puzzled numerous scientists,
including the great physicist Richard Feynman [17]. Audoly
and Neukirch later shed light on this phenomenon by uncov-
ering a peculiar mechanical behavior of elastic rods in that
the removal of stress leads to an increase in strain [18]. More
specifically, the authors of that study theoretically predicted
and confirmed through extensive experimentation that the
sudden relaxation of curvature can trigger a burst of flexural
waves, which locally increase the rod’s curvature, ultimately
leading to cascading fragmentation.

While physical experiments are essential for understand-
ing the fracture mechanics of slender beams, computational
approaches offer complementary insights, especially in sce-
narios where experimental methods become impractical or
where the efficient exploration of extensive parameter spaces
is necessary. Preliminary research efforts aimed at devel-
oping computational models for fracture in beams can be
found in the works of Armero and Ehrlich [19], Becker
and Noels [20] and, more recently, Lai et al. [21]. These
studies are based on Euler–Bernoulli beam theory [22] but
propose different approaches for fracturemechanics. Armero
and Ehrlich [19] describe material failure via softening
hinges modeled with the strong discontinuity approach. This
approach, pioneered by Simo et al. [23], introduces discon-
tinuities in the form of jumps of the solution field, which
allow the characterization of the localized dissipative mech-
anisms associated with strain softening. Becker and Noels
[20] adopt the discontinuous Galerkin / cohesive zone model
approach, originally introduced by Radovitzky et al. [24].
This computational fracture mechanics approach employs a
discontinuous Galerkin discretization of the governing equa-
tions and models fracture as a process of decohesion across
interfaces between finite elements. In contrast, Lai et al. [21]
describe the fracture process via a phase-fieldmodel [25, 26].
Although these computational models have been successful
in modeling failure in beams exhibiting small deformations,
they cannot be used to model buckling-to-fracture transition,
due to the infinitesimal-deformations assumption inherent in

the underlying Euler–Bernoulli beam theory [22]. Likewise,
beam fracture models that rely on Timoshenko beam the-
ory [22], e.g. [27–29], are also unsuitable for capturing the
transition from buckling to fracture.

Clearly, a fundamental requirement for a computational
model for fracture of beams experiencing significant defor-
mations is its foundation in a beam model able to accurately
describe geometric nonlinearities.1 For example, Heisser et
al. [31] found their beam fracture model on Kirchhoff beam
theory, while Tojaga et al. [32] model fracture based on the
finite-strain beam formulation by Simo [33]. More specifi-
cally, Heisser et al. [31] model the fragmentation of a beam
by disconnecting adjacent elements instantaneously, upon
satisfaction of a stress-based fracture criterion. However,
this approach neglects the time-dependent aspects of the
fracture process, which are known to be significant, par-
ticularly in the context of dynamic fragmentation [34, 35].
By contrast, Tojaga et al. [32] employ the strong disconti-
nuity approach discussed above. In their work, the authors
enrich the displacement field by introducing discontinuous
modes at the elements midpoints. Beyond a critical load,
they model failure at these discontinuities as a softening
hinge. It is important to highlight that their approach mod-
els discontinuities exclusively in the displacement degrees of
freedom, but not in the rotation degrees of freedom.As a con-
sequence, their framework is capable of capturing fracture
modes arising from tension and shear but not those resulting
from bending.

In this paper, we present a computational framework to
model the tensile and bending modes of fracture in slender
beams subjected to finite deformation. We model the defor-
mation of the beam with the geometrically exact torsion-free
Kirchhoff beam finite element framework by Meier et al.
[36, 37] and we adopt the discontinuous Galerkin/cohesive
zone model (DG/CZM) approach for fracture mechanics.
Specifically, we approximate the beam’s deformation based
on the finite element method using third-order Hermitian
polynomial shape functions and mixed interpolation involv-
ing both position and tangent degrees of freedom.This choice
is well-suited for the spatial discretization of the Kirchhoff
beam formulation in view of the ability of third-order Her-
mitian polynomials to meet the C1 continuity requirement.
However, instead of imposing the compatibility strongly,
we adopt a discontinuous Galerkin finite element approach
and incorporate discontinuities in the position and tangent
degrees of freedom at the inter-element boundaries of the
finite elements. Before fracture initiation, we enforce com-
patibility of nodal positions and tangents weakly, via the
exchange of variationally-consistent forces and moments at
the interfaces between adjacent elements. At the onset of

1 See the introduction of Meier et al. [30] for a recent review of geo-
metrically exact beam models.
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Fig. 1 Illustration of the kinematics of a geometrically exact Kirch-
hoff beam in the case of a beam with circular cross-section. The beam
configuration is characterized by the line of centroids r(s) and by the

orthonormal intrinsic frame {g1(s), g2(s), g3(s)}. The Kirchhoff con-
straint enforces that g1(s) be tangent to the line of centroids, that is
g1(s) = r ′(s)

||r ′(s)||

fracture, these variationally-consistent forces and moments
transition to cohesive laws that model the fracture process.
The finite element discretization described above results in
a time-dependent algebraic system, which is solved in time
with the second-order explicit Newmark scheme.

The resulting computational framework effectively cap-
tures both tensile and bending modes of fracture of slender
beams in the geometrically nonlinear regime. Compared
to existing state-of-the-art computational models for beam
fracture, our approach offers the following key advantages.
Unlike themodel proposed byHeisser et al. [31], which lacks
an energy dissipation mechanism, our approach is firmly
rooted in a sound physical model for fracture mechanics.
Consequently, it is able to describe the energy dissipation
resulting from the fracture process, eliminating the need
for ad-hoc measures such as enforcing a minimal fragment
length to prevent unphysical crack formations [31]. Addi-
tionally, unlike the approach presented by Tojaga et al. [32],
our approach is able to describe the bending fracture modes.

We conduct a series of numerical tests to verify our
computational framework against a set of benchmarks and
demonstrate its capability of accurately modeling tensile and
bending fracture in slender beams exhibiting large deforma-
tions. First, we verify that the discontinuous Galerkin dis-
cretization is able to capture the analytical buckling load for a
column. We then verify the discontinuous Galerkin/cohesive
zone model fracture mechanics approach in a bar spall frac-
ture benchmark. Next, we show that the incorporation of
discontinuities in the tangent degrees of freedom is essential
for capturing the bending mode of fracture. Finally, we apply
our computational framework to reproduce experiments by
Audoly and Neukirch [18] on the fracture of dry spaghetti
rods bent and suddenly released.

The structure of the paper is as follows. In Sect. 2, we
briefly review the geometrically exact Kirchhoff beam for-
mulation of [33, 36]. Section3 discusses the resultant based
cohesive zone modeling approach for tensile and bending
fracture of beams. In Sect. 4, we derive the discontinuous
Galerkin weak formulation of the beam governing equations
and the DG/CZMweak formulation to model the tensile and
bending modes of fracture in slender beams. We, then, out-

line the space and time discretization of the DG/CZM weak
form and discuss our solution strategy for the discrete system
of equations. We perform thorough verification and valida-
tion of the computational framework in Sect. 6. Conclusions
are drawn in Sect. 7.

2 Geometrically exact Kirchhoff beam
formulation

For completeness, we provide a concise summary of the geo-
metrically exact beam governing equations by Simo [33] in
their shear-free variant, as derived by Meier et al. [36]. We
refer the reader to those two works for a more detailed and
comprehensive discussion.

2.1 Kinematics

FollowingSimo [33],we characterize the beamconfiguration
by the position of the beam centerline and by the orientation
of its cross-sections. The centerline of the beam, i.e. the curve
of the cross-sections centroids, is described with a suitable
parametrization r(s) ∈ R

3, where s ∈ [0, L] is the arc-
length parameter, while the orientation of the beam cross-
sections is described in terms of the orthonormal intrinsic
frame {g1(s), g2(s), g3(s)}, see Fig. 1. By convention, g1(s)
is chosen orthogonal to the beam cross-section at s, while
g2(s) and g3(s) are chosen parallel to its principal axes of
inertia. Note that, in general, g1(s) is not tangent to the line
of centroids r(s).

The deformed configuration of the beam can be expressed
in terms of r , g2, and g3 as:

x(s, ξ2, ξ3) = r(s) + ξ2 g2(s) + ξ3 g3(s), (1)

where ξ2 and ξ3 are coordinates on the beam cross-section in
the reference configuration.

For simplicity, it is often assumed that the beam is straight
in its reference configuration, so that the intrinsic frame in
the reference configuration can be chosen as a fixed basis
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{E1, E2, E3} of R3.2 Because the vector basis {gi (s)} is
orthonormal at any cross-section s, there exists a rotation
tensor �(s) such that:

gi (s) = �(s)Ei , i = 1, 2, 3. (2)

Kinematically admissible variations of r and gi are
denoted with δr and δgi , respectively. A direct consequence
of Eq. (2) is that kinematically admissible variations of gi
can be expressed as

δgi (s) = δ�(s)�T (s)gi (s). (3)

Because tensor (δ�)�T is skew-symmetric, Equation (3)
can be rewritten as

δgi (s) = δθ(s) × gi (s), (4)

where δθ is the axial vector of (δ�)�T and is also referred
to as the spin vector. Under the hypothesis of negligible shear
strains, which is a well-accepted assumption in the case of
slender beams [36], δθ is not independent of δr ′. In fact,
a relation between δθ and δr ′ can be obtained by kinemati-
cally enforcing that the beamcenterline remain perpendicular
to the cross-sections during the deformation (Kirchhoff con-
straint):

g1(s) = r ′(s)
||r ′(s)|| , (5)

where (·)′ denotes the derivativewith respect to the arc-length
parameter. Plugging Equation (5) into Eq. (4), we obtain the
following relation:

δθ(s) = r ′(s) × δr ′(s)
||r ′(s)||2 + r ′(s)

||r ′(s)||δα,

prescribing the kinematically admissible variations of rota-
tions δθ in terms of the kinematically admissible variations
of the centerline tangents δr ′ and the tangential component
of the spin vector:

δα(s) := δθ(s) · r ′(s)
||r ′(s)|| .

where δα represents the kinematically admissible variation
of the total twist angle. In this work, we limit our attention to
the simpler torsion-free formulation and, following [37], we
completely resign the degrees of freedom representing the
torsional deformation modes, resulting in:

2 This assumption is not fundamental and can be removed as discussed
in [23].

δθ(s) = δθ⊥(s) := r ′(s) × δr ′(s)
||r ′(s)||2 . (6)

We refer the reader to [38] for a comprehensive discussion
on the conditions under which a torsion-free beam formula-
tion is appropriate.

2.2 Balance of linear and angular momentum

The governing equations of the beam can be derived by inte-
grating the linear and angular momentum balance equations
from the 3D continuum theory over the cross-section of the
beam. We refer the reader to Simo [33] for a detailed deriva-
tion, while we report here only the final expressions:

f ′ + f̃ = ρA r̈, (7)

m′ + r ′ × f + m̃ = Iρω̇ + ω × (Iρω). (8)

Here, the prime and dot symbols denote arc-length andmate-
rial time derivatives, respectively, while ρ, A, and Iρ are the
referential mass density, area of cross-section, and spatial
inertia tensor of the beam. ω is the axial vector correspond-
ing to the the skew-symmetric angular velocity tensor �̇�T ,
while f (s, t) and m(s, t) are the internal force and moment
stress resultants:

f =
∫
A
PE1 dA, (9)

m =
∫
A

(x − r) × PE1 dA, (10)

where P is the Piola-Kirchhoff stress tensor. Finally, f̃ and
m̃ are the external distributed forces and moments per unit
referential arc-length.

Forces f , f̃ and moments m, m̃ can be additively decom-
posed into axial f||, f̃|| and shear f⊥, f̃⊥ forces, and bending
m⊥, m̃⊥ and torsional m||, m̃|| moments, where the nota-
tion (11) is used.

a|| :=
(
a · r ′

||r ′||
)

r ′

||r ′|| , a⊥ := a − a||. (11)

Under the assumption that rotational inertia (i.e. the
right-hand side of Eq. (8)) can be neglected, which is a well-
accepted assumption for the case of slender beams [39, 40],
the following equation expressing the internal shear forces
as a function of the bending moments can be obtained by
performing the cross product of Eq. (8) with r ′:

f⊥ = r ′

||r ′||2 × (
m⊥′ + m̃⊥

)
(12)
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Equation (12) can be plugged into Equation (7), leading to:

f||′ +
[

r ′

||r ′||2 × (
m′

⊥ + m̃⊥
)]′

+ f̃ = ρA r̈. (13)

Note that, in the torsion-free formulation, Equation (12) is
equivalent toEq. (8).As a consequence, Eq. (13) is equivalent
to the original system of governing equations (7) and (8). In
this work, we focus on the simpler torsion-free case and we
use Equation (13) to model the finite deformations of the
beam.

Equation (13) is complemented with suitable initial con-
ditions for positions and tangents, and boundary conditions,
in terms of applied forces and bending moments on the Neu-
mann boundary or imposed positions and tangents on the
Dirichlet boundary.

2.3 Constitutive equations

In this study, we confine our attention to isotropic beams
with circular cross-sections. Assuming hyperelastic material
behavior, the internal axial forces and bending moments are
related to the axial strain ε = ||r ′|| − 1 and the curvature
κ = r ′×r ′′

||r ′||2 through the following constitutive relations [37]:

f|| = E Aε
r ′

||r ′|| , m⊥ = E Iκ, (14)

where E , A and I are the Young’s modulus, cross-sectional
area and moment of inertia of the beam, respectively.
It should be emphasized that the constitutive relations (14)
are only applicable in the context of small strains. Neverthe-
less, the proposed computational framework is general in the
sense that the constitutive relations can be extended to incor-
porate variousmaterial behaviors. For instance, plasticity can
be included to simulate fracture in metals, while viscoelas-
ticity [41] or elasto-visco-plasticity [42] can be integrated to
model fracture in 3D-printed polymers.

3 Cohesive zone approach for fracture in
beams

We discuss the fracture modes of beams and propose cohe-
sive laws to model the tensile and bending modes of beam
fracture in this section. Beams exhibit several modes of frac-
ture, which we illustrate in Fig. 2. In fact, beams can fail
under tensile, transverse, torsional or bending loads. In this
work, we focus our attention on the tensile and bending frac-
ture modes in slender beams, while we neglect the shear and
torsional fracture modes.

We adopt the cohesive zone approach to model the beam
fracture behavior. Cohesive zone models employ a traction-

Fig. 2 The fracture modes of beams: a tension, b shear, c torsion and
d bending

separation law to characterize the evolution of a crack,
under the assumption that fracture processes occur within
a region of finite-length ahead of the crack tip, referred to as
the cohesive zone. However, instead of employing the con-
ventional traction-separation laws typical in cohesive zone
models [43], we formulate the cohesive laws in the stress
resultant form, see [44, 45]. Following common practice in
the cohesive zone modeling framework, we make the cus-
tomary assumption that cohesive forces andmoments depend
solely on the kinematic jumps in the proximity of the crack
tip.

We introduce cohesive boundaries at interfaces of adja-
cent elements of the beam, where jump discontinuities in the
kinematic fields can occur. At these interfaces we define the
axial and bending kinematic jumps �|| and � as:

�|| = [[r]] · n̂coh
� = [[g1]], (15)

where n̂coh is the unit normal to the cohesive boundary in
the current configuration:

n̂coh = 〈g1〉
||〈g1〉|| . (16)

and the notations

[[•]]
∣∣∣
s=a

:= lim
s→a+ • − lim

s→a− •

〈•〉
∣∣∣
s=a

:= 1

2

(
lim
s→a+ • + lim

s→a− •
)

represent the jump and average of the field • at any arbitrary
point s = a ∈ (0, L).
Note that Θ has a vanishing component along the normal to
the cohesive boundary, asΘ ·n̂coh = 0 holds by construction.

To enable mixed-mode fracture under tension and bend-
ing, we introduce a scalar effective separation �:

� =
√

{�||}2 + (
αR||Θ||)2, (17)
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Fig. 3 The force-separation cohesive law prescribes a linear decay of
the scalar effective cohesive force fcoh with the scalar effective sepa-
ration �, from a critical value fc to zero. Irreversibility is modeled by
introducing a history variable �max representing the maximum effec-
tive separation achieved. The unloading path follows a trajectory back
to the origin, while reloading occurs on the same unloading path. The
total area under the force-separation curve is equal to the effective frac-
ture energy of the material while the black and grey areas at any point
� = �max represent the dissipated and maximum recoverable energies
at the cohesive boundary. Complete fracture is achieved when � ≥ �c

where R is the radius of the beam and α is a mode-mixity
parameter, akin to that traditionally employed for mixed-
mode cohesive laws [46]. In the equation above, {·} =
max (· , 0) denotes the Macaulay operator.

We introduce the following cohesive axial forces and
cohesive bending moments resisting the opening of cracks
in the beam:

fcoh, || = fcoh(�, q)
{�||}
�

n̂coh,

mcoh, ⊥ = α2 fcoh(�, q)
R2

�
Θ,

(18)

where the effective cohesive force fcoh is a scalar function
of the effective separation � and of a set of internal vari-
ables q. The function fcoh(�, q) can be tailored based on
the desired representation of the constitutive fracture behav-
ior (e.g. brittle, quasi-brittle, ductile). Here, we assume that
cohesive axial forces and cohesive bending moments decay
linearly with �, as illustrated in Fig. 3, and account for irre-
versibility by introducing a history internal variable �max ,
as is customary in cohesive zone modeling.

Specifically, in the loading stage, we set:

fcoh(�,�max ) =
(
1 − �

�c

)
fc for � ≥ �max , (19)

where�max is themaximumeffective separation in the entire
loading history, �c = 2Gc/σc is the effective separation at

which complete decohesion occurs, and Gc is the effective
fracture energy. In the unloading and reloading stage, we set:

fcoh(�,�max ) = �

�max
fmax for � < �max , (20)

where fmax is the effective cohesive force at �max .
The cohesive laws described above are activated at an

inter-element boundary of the beam upon meeting the fol-
lowing fracture initiation criterion:

feq(〈 f 〉, 〈m⊥〉) ≥ fc, (21)

where fc = σc A is the critical effective cohesive force
expressed in terms of the material’s cohesive strength σc,
and feq is an equivalent force given by the scalar:

feq( f ,m⊥) =
√√√√{ f · n̂coh}2 +

∣∣∣∣
∣∣∣∣m⊥
αR

∣∣∣∣
∣∣∣∣
2

. (22)

4 Computational framework for fracture
in geometrically exact slender beams

In this section,wederiveour discontinuousGalerkin/cohesive
zonemodel approach for fracture in geometrically exact slen-
der beams. We first derive the discontinuous Galerkin weak
formulation of the beam governing equations presented in
Sect. 2. We, then, present the weak formulation of the dis-
continuous Galerkin/cohesive zone model followed by its
space and time discretization.

4.1 Derivation of the discontinuous Galerkin weak
form

We consider a space discretization 	h of the straight unde-
formed beam 	 into segments 	e = (se0, s

e
1), e = 1, . . . , E ,

so that 	h = ⋃E
e=1 	e, see schematic in Fig. 4. We denote

with ∂	h = {0, L} the boundary of the beam, whose exter-
nal normal ne is ne = 1 at s = L and ne = −1 at s = 0.
Finally, we denotewith ∂N f 	h and ∂Nm	h theNeumann por-

tions of ∂	h , where we apply forces f̄ and moments m̄⊥,
respectively.

We consider Eq. (13), where we allow r(s) and its asso-
ciated kinematically admissible variations δr(s) to exhibit
discontinuities at the interfaces sn , n = 1, . . . , E − 1 of
adjacent elements. We start the derivation of the discon-
tinuous Galerkin weak form of Eq. (13) by multiplying it
with δr , integrating over the individual subdomains 	e,
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Fig. 4 The discontinuous Galerkin discretization of the straight undeformed beam. Internal nodes, e.g. nodes se1 and se+1
0 , are duplicated to allow

the embedding of potential discontinuities at the element interfaces sn for n = 1, . . . , E − 1

e = 1, . . . , E , and performing the integration by parts:

−
E∑

e=1

∫
	e

f|| · δr ′ ds −
E∑

e=1

∫
	e

f⊥ · δr ′ ds

−
E−1∑
n=1

[[ f · δr]]
∣∣∣
sn

+
(
f̄ · δr

) ∣∣∣
∂N f 	h

+
E∑

e=1

∫
	e

f̃ · δr ds =
E∑

e=1

∫
	e

ρA r̈ · δr ds,

(23)

where we have applied the Neumann boundary condition

f̄ = ne f on ∂N f 	h . In Eq. (23), the notation •
∣∣∣
a
means •

evaluated at s = a.
Using the identity [[a · b]] = 〈a〉 · [[b]] + [[a]] · 〈b〉, we can
rewrite the jump term in Eq. (23) as:

E−1∑
n=1

[[ f · δr]]
∣∣∣
sn

=
E−1∑
n=1

[
〈 f 〉 · [[δr]]

]∣∣∣
sn

+
E−1∑
n=1

[
[[ f ]] · 〈δr〉

]∣∣∣
sn

. (24)

In addition, Eq. (12), together with the vector identity a ·
(b × c) = c · (a × b), allows us to rewrite the second term
of Eq. (23) as:

−
E∑

e=1

∫
	e

f⊥ · δr ′ ds =
E∑

e=1

∫
	e

(
m⊥′+m̃⊥

) · r
′ × δr ′

||r ′||2 ds

=
E∑

e=1

∫
	e

(
m⊥′+m̃⊥

) · δθ⊥ ds.

(25)

Note that the kinematically admissible variation δθ⊥ of
Eq. (6) arises naturally as the work conjugate of the bending
moments. In the following derivation, we will omit the sub-
script in δθ⊥ and simply write δθ for the sake of a lighter
notation. The right-hand side of Eq. (25) can be, in turn,
integrated by parts, leading to:

E∑
e=1

∫
	e

(
m⊥′ + m̃⊥

) · δθ ds =
E∑

e=1

∫
	e

m̃⊥ · δθ ds

−
E∑

e=1

∫
	e

m⊥ · δθ ′ ds −
E−1∑
n=1

[
〈m⊥〉 · [[δθ]]

]∣∣∣
sn

−
E−1∑
n=1

[
[[m⊥]] · 〈δθ〉

]∣∣∣
sn

(m̄⊥ · δθ)

∣∣∣
∂Nm	h

,

(26)

where we have applied the Neumann boundary condition
m̄⊥ = nem⊥ on ∂Nm	h and used again the identity [[a ·b]] =
〈a〉 · [[b]] + [[a]] · 〈b〉.

Gathering Equations (23), (24), (25), and (26), we obtain:

E∑
e=1

∫
	e

ρA r̈ · δr ds +
E∑

e=1

∫
	e

f|| · δr ′ ds

+
E−1∑
n=1

[
〈 f 〉 · [[δr]]

]∣∣∣
sn

+
E−1∑
n=1

[
[[ f ]] · 〈δr〉

]∣∣∣
sn

+
E∑

e=1

∫
	e

m⊥ · δθ ′ ds +
E−1∑
n=1

[
〈m⊥〉 · [[δθ]]

]∣∣∣
sn

+
E−1∑
n=1

[
[[m⊥]] · 〈δθ〉

]∣∣∣
sn

=
E∑

e=1

∫
	e

f̃ · δr ds

+
(
f̄ · δr

) ∣∣∣
∂N f 	h

+
E∑

e=1

∫
	e

m̃⊥ · δθ ds

+ (m̄⊥ · δθ)

∣∣∣
∂Nm	h

,

(27)

Since jumps in forces f and bending moments m⊥ need
not be penalized to ensure the consistency of the numerical
scheme, the terms involving their jumps in Eq. (27) can be
ignored, see also [20, 47]. However, the inter-element com-
patibility has to be enforced weakly to ensure the stability of
the numerical scheme. Here, we do so through the interior
penalty method, following [20, 47]. Specifically, we add the
following terms to the left-hand side of Equation (27):

E−1∑
n=1

βp

[〈 E A

h

〉
[[δr]] · [[r]]

]∣∣∣
sn

+
E−1∑
n=1

βt

[〈 E I

h

〉
[[δg1]] · [[g1]]

]∣∣∣
sn

,
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where we recall that g1 = r ′
||r ′|| (see Eq. (5)), while βp > 1

and βt > 1 are position and tangent jump penalty parameters
and h is the element size.

We, therefore, obtain the following stabilized discontinu-
ous Galerkin weak form:

∫
	h

ρA r̈ · δr ds

+
∫

	h

E A ε δε ds +
E−1∑
n=1

[
〈 f 〉 · [[δr]]

]∣∣∣
sn

+
E−1∑
n=1

βp

[〈 E A

h

〉
[[r]] · [[δr]]

]∣∣∣
sn

+
∫

	h

E I κ · δκ ds +
E−1∑
n=1

[
〈m⊥〉 · [[δθ]]

]∣∣∣
sn

+
E−1∑
n=1

βt

[〈 E I

h

〉
[[g1]] · [[δg1]]

]∣∣∣
sn

=
∫

	h

f̃ · δr ds +
(
f̄ · δr

) ∣∣∣
∂N f 	h

+
∫

	h

m̃⊥ · δθ ds

+ (m̄⊥ · δθ)

∣∣∣
∂Nm	h

,

(28)

where we have also applied the constitutive relations (14).

4.2 The discontinuous Galerkin/cohesive zone
model (DG/CZM) weak formulation

As discussed in Sect. 4.1, within the discontinuous Galerkin
formulation, the position and tangent fields are allowed
to exhibit discontinuities at the boundaries of the finite
elements. However, prior to fracture, the solution’s com-
patibility across element boundaries is maintained via the
variationally-consistent interface forces andmoments derived
in that section.

Upon satisfaction of the fracture criterion (21), the inter-
face axial forces and bending moments in Equation (28) are
replacedwith the cohesive axial forces and the cohesive bend-
ing moments of Equation (18). However, because we assume
negligible shear strains and, consistently,we do notmodel the
shear modes of fracture, we ensure that the component of the
interface force term perpendicular to the unit normal of the
cohesive boundary in Eq. (28) remains active until complete
interface failure [20]. Specifically, this is achieved by intro-
ducing two binary parameters αn and γn , which take value
at each interface n. While we set both αn = 1 and γn = 1
before fracture initiation, we set αn = 0 after the fracture
criterion (21) is met, and γn = 0 upon complete decohesion
(i.e. � ≥ �c).

The discontinuous Galerkin/cohesive zone model weak
form reads, therefore:

∫
	h

ρA r̈ · δr ds

+
∫

	h

E A ε δε ds +
E−1∑
n=1

αn

[
fDG, || · [[δr]]

]∣∣∣
sn

+
E−1∑
n=1

γn

[
fDG, ⊥ · [[δr]]

]∣∣∣
sn

+
E−1∑
n=1

αn

[
βp

〈
E A

h

〉
cDG, || · [[δr]]

]∣∣∣∣
sn

+
E−1∑
n=1

γn

[
βp

〈
E A

h

〉
cDG, ⊥ · [[δr]]

]∣∣∣∣
sn

+
∫

	h

E I κ · δκ ds +
E−1∑
n=1

αn

[
〈m⊥〉 · [[δθ]]

]∣∣∣
sn

+
E−1∑
n=1

αn

[
βt

〈
E I

h

〉
[[g1]] · [[δg1]]

]∣∣∣∣
sn

+
E−1∑
n=1

(1 − αn)
[
fcoh, || · [[δr]]

]∣∣∣
sn

+
E−1∑
n=1

(1 − αn)
[
mcoh, ⊥ · [[δg1]]

]∣∣∣
sn

=
∫

	h

f̃ · δr ds +
(
f̄ · δr

) ∣∣∣
∂N f 	h

+
∫

	h

m̃⊥ · δθ ds

+ (m̄⊥ · δθ)

∣∣∣
∂Nm	h

(29)

where we have set:

fDG, || = (〈 f 〉 · n̂coh
)
n̂coh,

fDG, ⊥ = (
I − n̂coh ⊗ n̂coh

) 〈 f 〉,
cDG, || = ([[r]] · n̂coh

)
n̂coh,

cDG, ⊥ = (
I − n̂coh ⊗ n̂coh

) [[r]].

Finally, in the event of recontact of the cracked surfaces
after fracture initiation (i.e. when �|| < 0 and �max > 0),
we reactivate the variationally-consistent axial forces and the
position stabilization term, so as to allowpropagation of com-
pressive stress waves across cracked interfaces.

4.3 Discretization in space and time

We discretize r in space with third-order Hermite polyno-
mials, which are shown to yield convergence order of four
in continuous Galerkin settings, see [30]. The preference for
Hermite polynomials over Lagrange polynomials stems from
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the advantage that the arc-length derivative r ′ at each node is
directly available as a primary degree of freedom associated
with that particular node, which simplifies the computation
of the terms at the element interfaces inEq. (28).We therefore
discretize r as follows:

r(ξ) ≈
2∑

b=1

Nb
p(ξ) pb + L

2

2∑
b=1

Nb
t (ξ)tb :=

4∑
a=1

Na(ξ)xa,

(30)

where pb and tb are the position and tangent degrees of
freedom at the element nodes b = 1, 2, ξ ∈ [−1, 1] is
the parametric coordinate in the reference element, which
is mapped to the arc-length coordinate s ∈ [0, L] as s =
L
2 (1+ ξ), and Nb

p and Nb
t are the following shape functions:

N 1
p(ξ) = 1

4
(2 + ξ)(1 − ξ)2 ; N 2

p(ξ) = 1

4
(2 − ξ)(1 + ξ)2,

N 1
t (ξ) = 1

4
(1 + ξ)(1 − ξ)2 ; N 2

t (ξ) = −1

4
(1 − ξ)(1 + ξ)2.

This space discretization results in the following semi-
discrete system of equations:

Mabẍb + f inta + f jump
a± = f exta , (31)

where the inertia Mabẍb, internal (bulk) f inta , internal

(interface) f jump
a± , and external f exta forces are reported in

“Appendix A”.
Given the strong nonlinearities involved with fracture, we
opted for an explicit timediscretization for simplicity. Specif-
ically, we discretize Eq. (31) in time using the second-order
explicit Newmark scheme. We perform a special mass
lumping [48] to avoid the cost of solving a linear system
for computing the accelerations. As explicit time stepping
schemes are conditionally stable, we compute the stable time
step �tc from the Courant-Friedrichs-Lewy condition:

�tc = 2

ωmax
, (32)

where ωmax = maxNi=1(||λi ||) is the maximum natural fre-
quency of the system.
In our simulations, we compute the stable time step�tc only
once at the beginning of the calculation and we set�t = �tc
for the entire calculation. Specifically, we calculate �tc by
solving the following linearized eigenvalue problem:

(
K int
ab + K jump,DG

ab± − λ2 Mlump
ab

)
Φ = 0, (33)

where λ and Φ are the eigenvalue and eigenvector pair,
Mlump

ab is the lumped mass matrix, and the stiffness matrices

Table 1 Physical properties used in the bending of a cantilever beam
benchmark

Property Value

Length (L) 1 m

Radius (R) 0.01 m

Young’s modulus (E) 200.0 GPa

K int
ab and K jump,DG

ab± are reported in “Appendix B”. It should
be noted that the eigenvalues obtained by solving Eq. (33)
may be complex since matrix K jump,DG

ab± is not symmetric.

5 Convergence analysis of the discontinuous
Galerkin discretization

This section presents a convergence analysis of the discon-
tinuous Galerkin space discretization in the geometrically
nonlinear regime.

5.1 Bending of a cantilever beam

In this example, we analyze the convergence of the discontin-
uous Galerkin finite element discretization on a benchmark
from Simo andVu-Quoc [49].We consider a cantilever beam
of length L , radius R and Young’s modulus E with a concen-
trated end moment of magnitude M = π2ER4/L , causing
the beam to wind around itself twice forming a double cir-
cle. Table 1 summarizes the physical properties used in this
problem.

We consider uniform meshes with element sizes starting
at 0.125 m up to six levels of refinement, where each mesh
refinement reduces the element size by a factor of 2. We also
vary the penalty parameters (βp,n and βt,n) amongst three
values, namely 10, 100 and 1000, to investigate their influ-
ence on the convergence order of the framework. We solve
this problem with our discontinuous Galerkin discretization
in a quasi-static setting using a Newton–Raphson solver
(linearization provided in “Appendix B”) by applying the
concentrated end moment in 50 load steps for each case. Fol-
lowing [36], we calculate the error in the deformed position
of the beam centerline with the following relative L2 norm:

||e||2rel = 1

umax

√
1

L

∫ L

0
||rh − rre f ||2 ds (34)

where rh and rre f are the numerical and reference (analyt-
ical) beam centerline positions respectively and umax is the
maximum displacement obtained in a particular case.

The results of the convergence analysis are shown inFig. 5.
We observe that the convergence order of the discontinu-
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Fig. 5 Convergence analysis of the discontinuous Galerkin (DG) finite
element discretization for the bending of a cantilever beam benchmark.
The plot shows the relative L2 error in the deformed beam centerline
positions as a function of the mesh size for different penalty parameter
values (βp,n and βt,n). Reference lines representing the convergence
orders two and four are shown with dotted lines. The convergence order
of the DG discretization approaches four, which is the expected value
for a continuous Galerkin (CG) discretization, for higher values of the
penalty parameters. Convergence deteriorates for smaller values of the
penalty parameters

ous Galerkin finite element discretization approaches the
expected value of four, as obtained in the continuousGalerkin
setting [36], for increasing values of the penalty parameters,
while it deteriorates for smaller values of βp,n and βt,n . Our
results are consistent with the findings by Brezzi et al. [50]
that suggest the need for large penalty parameters to achieve
the expected order of convergence in penalty basedDGmeth-
ods, especially for higher order polynomials. However, in
implicit analyses, large penalty parameters lead to a large
condition number of the stiffness matrix [50], resulting in an
increased number of iterations for convergence of iterative
linear solvers and in a larger simulation runtime. Conversely,
in explicit analyses, large penalty parameters result in smaller
stable time steps [51], thus also increasing the simulation run-
time. Therefore, βp,n and βt,n should be chosen considering
the usual tradeoff between accuracy and computational time.
Nevertheless, a relative error of less than 1% and a consistent
reduction in the error with h-refinement is observed across
all examined mesh sizes and penalty parameter values.

6 Results

This section presents verification and validation of our com-
putational framework.

Fig. 6 Schematic of the
geometry and boundary
conditions for the slender
column buckling benchmark.
The column is supported with a
pin at the bottom end, a roller at
the top end, and is loaded with
an imposed axial displacement
�. To facilitate the occurrence
of the buckling bifurcation, a
small, transverse perturbation
force P is applied at the center
of the column to break the
problem’s symmetry

6.1 Framework verification: buckling of a slender
column

We first verify our computational framework in the absence
of fracture for the case of a column buckling under quasi-
static axial compression. Specifically, we consider a slender
column of length L , radius R andYoung’smodulus E andwe
verify that the first buckling mode occurs at Euler’s critical
axial force:

fcr = π3

4

ER4

L2 . (35)

The problem geometry and boundary conditions consid-
ered are illustrated in Fig. 6. We apply a pin support at the
bottom end of the column (x = y = 0), and a roller sup-
port allowing displacement in the x-direction at the top end
(x = L , y = 0), where we also impose a displacement
in the negative x direction, ramping up quasi-statically to a
maximum � through 1000 load steps. In addition, we apply
a constant perturbation force P at the center of the column
(x = L/2 , y = 0) as a means to break the symmetry of
the problem. Table 2 summarizes the physical properties and
numerical parameters used.

We apply ourDG/CZMcomputational framework to solve
the problem in aquasi-static setting using aNewton–Raphson
solver with the linearization provided in “Appendix B”.
Figure7 shows that the load–displacement response of the
column is in agreement with the theoretical predictions.

6.2 Framework verification: fracture of a slender bar
under tension

We verify the fracture modeling capability of our compu-
tational framework by simulating the spall of a bar, i.e. the
development of a crack as a result of the interaction of two
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Table 2 Physical properties and numerical parameters used in the slen-
der column buckling benchmark

Property/parameter Value

Length (L) 10 m

Radius (R) 0.1 m

Young’s modulus (E) 200.0 GPa

Final applied displacement (�) 5.0 mm

Applied perturbation force (P) 1.0 N

Mesh size (h) 1.0 m

Penalty parameters (βp,n and βt,n) 10

Fig. 7 Verification of our computational framework in the case of
buckling of a slender column. The plot shows the force-displacement
response at the top end of the column. The axial force f|| is normal-
ized with respect to the theoretical critical axial force fcr , while the
axial displacement δ|| is normalized with respect to the final applied
displacement �. The theoretical buckling point is marked with a cross

tensile stress waves. We consider a slender bar subjected
to tensile axial loading, while transverse displacement is
restrained through roller supports at the bar ends, as illus-
trated in Fig. 8. We apply the following axial displacement
signal:

δ(t) = σ f

2

t

ρcl
, (36)

where cl = √
E/ρ is the bar longitudinal wave speed and σ f

is a stress loading factor. Table 3 summarizes the physical
properties and the numerical parameters used in this compu-
tational experiment.

We apply our DG/CZM computational framework to
model the dynamic response of the bar with two values of σ f ,
namely σ f = 0.1 σc and σ f = σc. Figure9 presents the evo-
lution of the axial stress response over time obtained in our
simulations, against the corresponding analytical solution to

Fig. 8 Schematic of the geometry and boundary conditions for the bar
spall benchmark. The axial displacement signal δ(t) in Equation (36)
is applied at the two ends of the bar, while two roller supports restrain
the transverse displacement

Table 3 Physical properties and numerical parameters used in the bar
spall benchmark

Property/parameter Value

Length (L) 0.1 m

Radius (R) 1.0 mm

Mass density (ρ) 3690 kg m−3

Young’s modulus (E) 260.0 GPa

Critical cohesive strength (σc) 400.0 MPa

Fracture energy (Gc) 100.0N m−1

Mode-mixity parameter (α) 1

Simulation time (T ) 10µs

Mesh size (h) 0.1 mm

Time step (�t) 0.01 ns

Penalty parameters (βp,n and βt,n) 10

Fig. 9 Verification of our computational framework applied to the frac-
ture of a slender bar under tensile load. The plot shows a comparison
of the simulated and theoretical axial stress evolution in time, gauged
at a point L/4 from the bar end, for two different applied displacement
signals (Eq. (36)), one with σ f < σc (no fracture) and the other with
σ f = σc (fracture). The theoretical predictions correspond to the solu-
tion of the 1D wave equation on a bar of half length with the same
applied displacement signal on one end and the other end fixed (no
fracture) or free (fracture). The axial stress σ|| = Eε is normalized
with respect to the applied stress σ f , while the time is normalized with
respect to TL/2 = L/(2cl ), which is the time when the longitudinal
stress waves meet at the center of the bar. When σ f < σc, our numeri-
cal results closely match the theoretical response of an uncracked bar.
Conversely, at σ f = σc, our results accurately capture the fracture event
at t = TL/2 due to the interaction of two tensile waves, the develop-
ment of the release wave (see red circle) followed by the vanishing of
the axial force due to fully developed fracture at the center of the beam
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Fig. 10 Snapshots of
pre-fracture and post-fracture
evolution of the bar deformation
and axial force at times: a
0.42 TL/2, b 0.84 TL/2, (c)
1.26 TL/2, and (d) 1.68 TL/2.
The bar is shown in its deformed
configuration (displacements are
scaled by a factor of 10 for
better visualization) and the
contours show the axial forces
in the bar. We observe the
propagation of the two tensile
step waves towards the center of
the bar (a and b), the creation of
a fracture surface as a result of
their interaction at the center, as
well as the reflection of the
stress waves at the newly
created free surface (c and d)

the 1Dwave equation. It can be observed that the applied dis-
placement signal generates two tensile stress waves with step
waveform and intensity σ f /2 propagating inwards from the
beam ends. The two tensile waves meet at the center of the
bar, building up a tensile stresswaveof intensityσ f .Whenσ f

is less than the critical fracture strength σc, our results show
that the bar remains undamaged, as expected. When σ f is
equal to the critical fracture strength σc, our results capture
the fracture response, including the development of a release
wave and the subsequent vanishing of the axial stress due to
the creation of a free surface. Figure10 presents snapshots of
the simulated bar response showing the bar deformation the
propagation of the stress waves in the bar before and after
fracture.

6.3 Fracture of a bar under transverse load

Through this example, we demonstrate the significance of
incorporating inter-element jumps in the tangent (rotational)
degrees of freedom and of modeling the relaxation of the

bending moments as a function of these jumps, in the spirit
of the well-established traction-separation laws of fracture
mechanics. This is in contrast to the computational frame-
work for fracture in geometrically exact beams proposed by
Tojaga et al. [32], where only the displacement degrees of
freedom are enriched with discontinuous modes, but not the
rotational ones.

We consider a slender bar cantilevered at both ends and
loaded at the center, as illustrated in Fig. 11. Specifically, we
apply a time-dependent transverse displacement δ(t):

δ(t) = ṽt (37)

where ṽ is a sufficiently low loading rate to achieve quasi-
static conditions. Table 4 summarizes the physical properties
and the numerical parameters used in this computational
experiment.

We solve this problem computationally with two differ-
ent approaches: (1) our DG/CZM computational framework
as described in Sect. 4, and (2) a variant of such frame-
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Fig. 11 Schematic of the geometry and boundary conditions for the
problem of a bar under transverse load. The beam is cantilevered at
both ends and loaded at the center with a time-dependent transverse
displacement δ(t), see Eq. (37)

Table 4 Physical properties and numerical parameters used in the bar
under transverse load problem

Property/parameter Value

Length (L) 0.1 m

Radius (R) 1.0 mm

Mass density (ρ) 3690 kg m−3

Young’s modulus (E) 260.0 GPa

Critical cohesive strength (σc) 400.0 MPa

Fracture energy (Gc) 100.0 N m−1

Mode-mixity parameter (α) 1

Load rate (ṽ) 0.01 m s−1

Simulation time (T ) 0.2 s

Mesh size (h) 0.1 mm

Time step (�t) 0.1 µs

Penalty parameters (βp,n and βt,n) 10

work that does not model the bending moment decay with
the increasing tangents jumps (i.e. removing the bending
moment term in Eq. (22)). Figure12 compares the load–
displacement responses of the center of the bar obtained with
these twoapproaches.Thefigure shows thebendingmoments
build-up with the increasing applied displacement, including
the transition from the geometrically linear to the geomet-
rically nonlinear regime. We observe that our DG/CZM
approach is able to capture the fracture behavior arising
from a further increase in applied displacement, along with
the vanishing bending moment in the post-fracture behavior.
This stands in stark contrast to the second approach, which
predicts a load–displacement response identical to that of a
simulation without an embedded fracture mechanics model
(pure DG). This demonstrates the essential role of explicitly
modeling jumps in the tangent degrees of freedom to capture
the bending fracture mode.

We also observe that, under these conditions, fracture
occurs inmixed bending and tensilemodes, as complete frac-
ture is achieved for an internal moment m⊥ ≈ 0.8 mcr <

mcr , where mcr = ARσc, where A is the area of the beam
cross section, see Fig. 12.

Figure 13 presents snapshots of the simulated bar response
showing the bar configuration before and after fracture.

Fig. 12 The load–displacement response at the center of a bar fractur-
ing under transverse load, in terms of bending moment versus applied
transverse displacement. Simulation results are plotted on top of the
analytical predictions of Euler–Bernoulli beam theory (dashed line) to
highlight the departure from the geometrically linear regime. The bend-
ing moment is normalized with respect to the critical bending moment
mcr = ARσc, where A is the area of the beam cross section, while the
transverse displacement of the beam is normalized with respect to the
maximum applied transverse displacement� = ṽT . The plot compares
simulation results from our DG/CZM framework with (blue line) and
without (red line) discontinuities in tangent degrees of freedom. In the
former case, bar failure under bending is accurately captured, resulting
in a drop in bending moment, while in the latter case, fracture behavior
is absent, and the bending moment follows a response predicted by a
simulationwithout an embedded fracturemechanicsmodel (green line).
(Color figure online)

Note that in this physical scenario, the occurrence of frac-
ture within the beam is anticipated both at its supports and at
the center. However, our computational framework does not
describe fracture at the supports as it limits the possible frac-
ture initiation sites to the inter-element boundaries. While
our computational framework can be adapted to model frac-
ture at the beam’s ends as well, we did not pursue that route,
as the purpose of this example was purely to illustrate the
significance of incorporating inter-element jumps in tangent
(rotational) degrees of freedom when modeling the bending
mode of fracture.

6.4 Framework validation: fracture of a bar bent
and suddenly released

In this section, we validate our computational framework
against experiments by Audoly and Neukirch [18] on
the fragmentation of dry spaghetti. Specifically, that work
presents experiments on dry spaghetti rods initially bent into
an arc of circle and suddenly released at one end, while the
other end remains clamped. The experiments show that this
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Fig. 13 Snapshots of the
simulated bar response before
(top picture, δ(t) = 1.0 mm)
and after (bottom picture,
δ(t) = 1.92 mm) fracture. The
bar is shown in its deformed
configuration (displacements are
scaled by a factor of 2 for better
visualization) and the contours
show the transverse
displacement

sudden relaxation of curvature results in a burst of flexural
waves, which locally increase the curvature of the rod, ulti-
mately leading to fracture.

We model these experiments with a two-stage solution
strategy. As in experiments [18], the spaghetti rod remains
clamped at one end in both stages of the analysis. In the
first stage, we perform a quasi-static simulation using a
Newton–Raphson solver with the linearization provided in
“Appendix B” to bring the spaghetti rod to a curvature κ0.
Specifically,we apply a nodalmoment of E Iκ0 at the free end
of the rod in 10 load steps. Note that this initial pre-loading
stage is necessary because of our model’s assumption that
the beam be straight in the reference (unstressed) configura-
tion. The state achieved through the quasi-static pre-loading
stage is then used as the initial condition for a dynamic sim-
ulation starting with the release of the spaghetti rod’s free
end. The physical properties and numerical parameters used
in this computational experiment are summarized in Table 5.
Specifically, we used the length L , radius R, and density ρ

values reported in Heisser et al. [31] and we computed the
Young’s modulus E of the spaghetti rods with the formula
E = γ 2ρA/I , where γ = 0.521 m2/s, see [18]. Finally, we
obtained σc, andGc based on the time and deformation shape
of the rod reported in the experiments just before fracture.

Figure 14 shows contours of bending moments on the
deformed spaghetti rods, superimposed to the experimen-
tally observed deformed shapes at different times. Our
DG/CZM framework accurately captures the fracture mech-
anism observed in the experiments, including the burst of
flexural waves and the curvature build-up in the proximity of
the clamped end.

7 Conclusions

We presented a computational framework to simulate the
tensile and bending modes of fracture in slender beams

Table 5 Physical properties and numerical parameters used in the bent
and released spaghetti problem

Property/parameter Value

Length (L) 0.24 m

Radius (R) 0.57 mm

Mass density (ρ) 1400 kg m−3

Young’s modulus (E) 5.5 GPa

Critical cohesive strength (σc) 25 MPa

Fracture energy (Gc) 1500 N m−1

Mode-mixity parameter (α) 1

Initial curvature (κ0) 14.18 rad s−1

Simulation time (T ) 0.01 s

Mesh size (h) 2.4 mm

Time step (�t) 0.1 µs

Penalty parameters (βp,n and βt,n) 10

subjected to large deformations. We adopted the geomet-
rically exact Kirchhoff beam finite element formulation by
Meier et al. [37] to model the complex geometric nonlin-
earities involved in the beam deformation. We developed a
discontinuous Galerkin discretization of the beam govern-
ing equations incorporating jumps in position and tangent
degrees of freedom. In our framework, compatibility of nodal
positions and tangents is weakly enforced before fracture
initiation via the exchange of variationally-consistent forces
and moments at the interfaces between adjacent elements.
At the onset of fracture, these forces and moments transition
to cohesive laws modeling softening of the stress-resultant
forces and moments with the increasing interface separation.
We showed that incorporating discontinuities in the tangent
degrees of freedom across adjacent elements is essential
for capturing beam fracture under bending. We conducted
a series of numerical tests to verify our framework’s abil-
ity to capture tensile and bending fracture modes in slender
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Fig. 14 Validation of our computational framework against fracture
experiments of bent and released spaghetti rods [18]. The pictures
show the deformed spaghetti shapes obtained in our computational pre-
dictions overlaid to those observed experimentally (green line). Our
DG/CZM framework captures the local curvature build-up due to the

flexural waves generated by the release, the resulting increase of bend-
ing moment (shown in the contours), as well as the ultimate fracture
event. An animation of the time evolution of this simulation is provided
in the Supplementary Material

beams. Finally, we applied our computational framework to
reproduce experiments by Audoly and Neukirch [18] on the
dynamic fracture behavior of dry spaghetti rods exhibiting
large deformations.

7.1 Declaration of generative AI and AI-assisted
technologies in the writing process

During the preparation of this work the author(s) used Chat-
GPT in order to expedite the language editing process (e.g.
to rewrite particularly complex sentences in a clearer way).
After using this tool/service, the author(s) reviewed and
edited the content as needed and take(s) full responsibility
for the content of the publication.

A Inertia, internal, and external forces in the
semi-discrete system of equations

This Appendix reports the expressions of the inertia, internal
(bulk), internal (interface), and external forces discussed in
Sect. 4.3.

Mabẍb =
[ ∫ 1

−1
NaρANb

L

2
dξ

]
ẍb,

f inta =
∫ 1

−1

[
N ′
a(E At1 + E I t2) + N ′′

a E I t3
] L
2
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t5 = G1[[g1]].

B Linearizations of internal and external
forces

This Appendix reports the expressions of the linearization of
the inertia, internal (bulk), internal (interface), and external
forces discussed in Sect. 4.3.

K int
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where S(·) is a skew-symmetric matrix such that S(a)b =
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