
 
 

Delft University of Technology

Influence of turbulence anisotropy on RANS predictions of wind-turbine wakes

Luan, Yuyang; Dwight, Richard P.

DOI
10.1088/1742-6596/1618/6/062059
Publication date
2020
Document Version
Final published version
Published in
Journal of Physics: Conference Series

Citation (APA)
Luan, Y., & Dwight, R. P. (2020). Influence of turbulence anisotropy on RANS predictions of wind-turbine
wakes. Journal of Physics: Conference Series, 1618(6), Article 062059. https://doi.org/10.1088/1742-
6596/1618/6/062059

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1742-6596/1618/6/062059
https://doi.org/10.1088/1742-6596/1618/6/062059
https://doi.org/10.1088/1742-6596/1618/6/062059


Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Influence of turbulence anisotropy on RANS predictions of wind-turbine
wakes
To cite this article: Yuyang Luan and Richard P. Dwight 2020 J. Phys.: Conf. Ser. 1618 062059

 

View the article online for updates and enhancements.

This content was downloaded from IP address 145.94.74.183 on 26/10/2020 at 11:04

https://doi.org/10.1088/1742-6596/1618/6/062059
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjst3abWVA_jU5jpxJXVWLiPa7ku_tZH0tbPVkPr_kw0KDZdU0pXZDG1cuPaOIaL_etPDjFvOX7Q8ZEz42N78_QF8RCIEqFieqt1EIhY3AXdXLSDuGLJ8BWpf_znoDc1FXGnPVQGeXOsJ7NjiEw7HWGEqEofXiOow3Aj_fIV8aOEy_P2D1scvPZcjYsG3wf_5azrgOhw26EyApRPiP31e3e0Rx9jWK0GFOBanSG23iHUSkmO9Fb1-&sig=Cg0ArKJSzP3dA46hvyVt&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 062059

IOP Publishing

doi:10.1088/1742-6596/1618/6/062059

1

Influence of turbulence anisotropy on RANS

predictions of wind-turbine wakes

Yuyang Luan1, Richard P. Dwight2

1,2 Aerodynamics Section, Aerospace Faculty, TU Delft, 2629HT Delft, The Netherlands

E-mail: y.luan@outlook.com, r.p.dwight@tudelft.nl

Abstract. Simulating wind-turbines in Reynolds-averaged Navier-Stokes (RANS) codes is
highly challenging, at least partly due to the importance of turbulence anisotropy in the
evolution of the wake. We present a preliminary investigation into the role of anisotropy in RANS
simulations of vertical-axis turbines, by comparison with LES. Firstly an LES data-set serving
as our ground-truth is generated, and verified against previously published works. This data-set
provides raw turbulence anisotropy fields for several turbine configurations. This anisotropy is
injected into RANS simulations of identical configurations to determine the extent to which
it influences (i) the production of turbulence kinetic energy, (ii) the turbulence momentum
forcing, and finally (iii) the mean-flow. In all these quantities we observe the anisotropy has a
surprisingly limited effect, and is certainly not the leading-order error in Boussinesq RANS for
these cases. Nevertheless we go on to show that it is feasible to predict anisotropy fields for
unseen configurations based only on the mean-flow, by using a tensorized version of random-
forest regression.

1. Introduction
In studies of wind farm design, control and maintainance, turbine wake evolution is of
great interest for turbine loading as well as power extraction. Several modelling tools have
been developed to simulate turbine wakes under the Atmospheric Boundary Layer (ABL). In
particular Large Eddy Simulations (LES) has gained popularity as a tool that seems able to
reliably predict the majority of the important flow-dynamics, and produce useful predictions
for the purposes of scientific study [1, 2]. LES is however much too expensive to be used in
an engineering context of real-time control, or farm layout optimization. In these areas, simple
empirical models such as Jensen [3] and Larsen [4] models dominate. These are extremely cheap,
but include very little physics, relying on sufficient data for fitting, and generally consistent wake
behaviour. RANS-based models are in-betweeners, containing lots of physics and therewith the
hope of generalizability, but still significantly cheaper than LES. The problem is that the complex
nature of the turbulent flow around turbines makes RANS closure models generally quite poor
performers in this domain – improving RANS closures for this specific application is therefore
a subject of great interest and recent work [5, 6]. For example, one consistent deficit is RANS
well-known significant overprediction of turbulence eddy-viscosity in the near-wake, and the
consequent much-too-rapid wake recovery [6].

In a similar vein, several authors have noted that turbulence anisotropy in the near-wake is far
from Boussinesq – and indeed fitting LES Reynolds-stress tensors to a Boussinesq model implies
negative eddy-viscosity in some regions [6]. This observation has been used to explain the failure
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of linear eddy-viscosity closures, and the need for (at least) nonlinear eddy-viscosity models
(NLEVMs) to acceptably model the flow physics [5]. In spite of this, no currently proposed
RANS model for turbines includes a nonlinear eddy-viscosity term – raising the question of
whether anisotropy is really critical. Perhaps these anisotropy issues are a subordinate effect, and
need only be addressed by the modeller after more important leading-order dominant turbulence
modelling effects are correctly treated.

In this work we attempt to quantify the extent to which turbulence anisotropy has a RANS
modelling impact. We use LES to generate statistics of mean-flow and Reynolds-stress for
a number of multi-turbine configurations, which we use as a ground-truth reference. The
normalized turbulence anisotropy bij of the LES is computed, and injected into a RANS k − ε
model (for the same configuration) in place of the Boussinesq assumption. Thus the reference
anisotropy appears in the momentum equation and in production of k and ε, yet no intensity
information from the LES is present. We then observe the predicted flow quantities. With some
notable exceptions, the presence of the correct anisotropy results in a consistent, but relatively
minor improvement in the RANS k-production, turbulence forcing, and mean-flow predictions.

As a final step, we attempt to predict the turbulence anisotropy for unseen flows using a
supervised machine-learning framework. This is in the line of previous works on data-driven
turbulence modelling by Ling et al. [7], Wu et al. [8], and in mixing-length model fitting for
turbines by King et al. [9]. In particular we use the Tensor-Basis Random-Forest (TBRF) method
of Kaandorp and Dwight [10]. We train with LES data from one turbine configuration, and
predict anisotropy for other configurations, demonstrating the feasibility of this broad approach.
We see this work as contributing to the development of effective RANS models for wind-farm
simulation.

2. Methodology
We first discuss the generation of our ground-truth LES data for wind-turbines in neutral
atmospheric stability conditions using the SOWFA code with actuator-line turbine models,
and verify the correctness of these reference results against previous work of Churchfield et
al. [11]. Then in Section 2.2 we discuss a steady RANS model of the same problem (with
now actuator disc models of the turbines) and note how the Boussinesq assumption results
in modelling errors in two terms: the Reynolds-anisotropy tensor, and the turbulence kinetic
energy production. These two terms are approximated using the LES data for the same test-
case. Finally in Section 3.3 we describe how a random-forest model can be build to describe
the anisotropy corrections in terms of the mean-field, in a way that will generalize to other flow
cases.

2.1. Large Eddy Simulation of Wind Farms – Reference data generation
We use the wind farm Large Eddy Simulation (LES) solver SOWFA [12, 13] which has
been developed by the National Renewable Energy Laboratory (NREL). SOWFA is based on
the second-order finite-volume solver OpenFOAM, and adds wind-turbine models, boundary-
conditions, forcing and turbulence models suitable for the intended application. In particular
SOWFA solves the filtered incompressible Navier-Stokes (N-S) equations

∂ũi
∂t

+
∂ũiũj
∂xj

= −2εi3kΩ3ũk︸ ︷︷ ︸
Coriolis

− 1

ρ0

∂p̃

∂xi
− 1

ρ0

∂p0
∂xi︸ ︷︷ ︸

Driving

−
∂σDij
∂xj

− 1

ρ0
g3z

∂ρ̂

∂xi︸ ︷︷ ︸
Buoyancy

+
1

ρ0
fi, (1)

where ·̃ indicates a filtered quantity. Here ρ0 is the (constant) density, u is velocity, p is
pressure without the hydrostatic and driving pressures, and ∂p0/∂xi is a constant horizontal
driving pressure-gradient, controlled to establish a target wind-speed at hub-height. The



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 062059

IOP Publishing

doi:10.1088/1742-6596/1618/6/062059

3

Cartesian coordinate system is oriented such that x is east, y north and z up, with the ground
at z = 0, so that Ω3 is the earth’s rotation rate at this latitude of 45◦, which is assumed constant
across the simulation domain. Turbine forcing is fi, which is non-zero only near actuator lines.
The buoyancy term involving the gravitational force g3 is modelled by solving the potential
temperature transport equation

∂θ̃

∂t
+
∂ũj θ̃

∂xj
= Γ

∂2θ̃

∂x2j
− ∂qj
∂xj

, (2)

where the potential temperature θ excludes altitude effects, Γ is the diffusivity and qj are sub-
filter scale temperature fluxes. Given θ, ρ̂ is modelled as

ρ̂

ρ0
= 1−

(
θ − θ0
θ0

)
, θ0 = 300 ◦K. (3)

The velocity field is subject to the incompressibility constraint ∂iũi = 0.
SOWFA is generally applied with a precursor simulation of the Atmospheric Boundary Layer

(ABL) on a doubly periodic domain, to generate instantaneous inflow conditions for a subsequent
simulation with turbine models (as well as identify the driving pressure gradient). In this work
the precursor flow domain is 3× 3× 1 km and the flow is angled at 240◦ to avoid grid-alignment
effects.

In this work we consider only neutral ABL stability (denoted by ‘N’) to allow our results to
be verified against Churchfield et al. [12, 11]. Two surface roughness heights are simulated: low
roughness z0 = 0.001 m (denoted ‘L’); and high roughness where z0 = 0.2 m (denoted ‘H’). At
a reference height of zref = 90 m (hub height), wind speed is specified to be ūref = 8 m/s. Since
stability is neutral, an approximately constant θ(z) ' 300 ◦K profile is expected. Nonetheless to
avoid unlimited growth of the ABL, from 700 m to 800 m a capping inversion layer is enforced
with a prescribed ∂θ/∂z so that θ = 308 ◦K at z = 800 m. Above this capping inversion layer
the potential temperature is approximately constant up to the upper domain boundary. This
potential temperature profile is similar to that used by Moeng [14] when simulating neutrally
stratified ABLs. Additionally since we are simulating neutral stability, the surface temperature
flux qwall,i = 0. Finally molecular viscosity ν = 1×10−5 m2/s while the SGS stresses are modelled
by the k-equation eddy-viscosity model [15].

The terrain is flat, and the background mesh is 300× 300× 100 structured, yielding a cubic
mesh cell size of 10 m. This background mesh is used unmodified in the precursor simulations,
but refined near the turbines in the main simulation, yielding 5 m and 2.5 m cell sizes after the
first and second refinement levels respectively. Figure 1 illustrates the refinement, as well as the
three turbine configurations considered in this study. In Figure 1(a) the baseline case is shown
with only one turbine; (b) shows two parallel turbines at 3D apart; and (c) two sequential
turbines 7D. All turbines in Figure 1 are approximated by the actuator line model proposed by
Sørensen and Shen [16] with the Gaussian width set to twice the cell size around the turbines.

2.2. Reynolds-averaged Navier-Stokes with injected anisotropy
While reasonably accurate, LES is too computationally expensive to be practical for applications
such as wind-farm layout optimization or control. Therefore we consider steady Reynolds-
averaged Navier-Stokes (RANS) as an alterative. However many authors have observed that
standard RANS models perform poorly when predicting wind-turbine wakes - for example
the eddy viscosity in the wake is consistently over-estimated, leading to a much too rapid
wake recovery. In particular, Rethore [6] identified a large region immediately behind the
turbine where Boussinesq (in k − ε) gives non-realizable predictions for the Reynolds-stress
tensor, and regions where the eddy-viscosity computed from LES is negative. We therefore
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Figure 1: Wind farm layout top view for three configurations involving one or two turbines.
Grey regions indicate 5 m and 2.5 m refined mesh-cells respectively.

identify Boussinesq closures as fundamentally inadequate model for these flows, and examine
the magnitude of the resulting error, as well as the possibility of correcting it.

The exact Reynolds-averaged governing equations for the wind-farm are:

∂ 〈ui〉
∂t

+
∂ 〈ui〉 〈uj〉

∂xj
= −2εi3kΩ3 〈uk〉−

1

ρ0

∂ 〈p〉
∂xi
− 1

ρ0

∂p0
∂xi

+
∂ν 〈Sij〉
∂xj

−∂τij
∂xj
− 1

ρ0
g3z

∂ 〈ρ̂〉
∂xi

+
1

ρ0
f̂i, (4)

and ∂i 〈ui〉 = 0, where 〈·〉 is the Reynolds averaging operator. The terms correspond one-to-one

with those of (1), with the exception that f̂i now represents forcing due to actuator disc(s),
and the nonlinear convection term results in a Reynolds stress tensor τij := 〈u′iu′j〉, where

u′i := ui − 〈ui〉 is the fluctuating part of the velocity. The tensor τij can be written in isotropic
and anisotropic parts τij = aij + 2

3kδij where the turbulence kinetic energy k := 1
2τii, and the

normalized anisotropy bij := aij/2k.
The closure problem for RANS consists of providing a model for τij in terms of averaged

quantities only. In the incompressible case the isotropic part of τij has no effect of the mean
velocity, being directly countered by pressure. We therefore only need model aij . A Boussinesq
closure is one that employs the model

aij ' aBij := −νTSij , (5)

where νT is some turbulence viscosity, which is typically identified via transport models for k
and some turbulence time-scale – e.g. in the k − ε model. In these equations τij also appears,
notably in the production term in the exact k-equation Pk = τij∂jui, where it is also replaced
with a Boussinesq approximation.

In the following we solve the RANS equations with (A) the unmodified k − ε model of [17]
(i.e. Boussinesq), and (B) a model with bij injected from the corresponding LES simulation.
In this second solve bij = bLESij is fixed, and used wherever it appears in the equations (in the
momentum equation, and production terms in k and ε equations). As such only the anisotropy
information from the LES is used, and no information about mean-flow or turbulence intensity.
By comparing the results of (A), (B) and the LES, we can directly observe the impact of the
Boussinesq assumption on the mean-flow, and the extent to which the RANS model is corrected
by introducing a “correct” turbulence anisotropy.

While this procedure is useful to identify turbulence anisotropy modelling error, it is not
useful for prediction. For that it is necessary to predict bij based on resolved quantities.
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2.3. Supervised machine-learning predictions of normalized turbulence anisotropy
In order to make predictions we therefore need to approximate bLESij as a function of 〈u〉, k,
and other quantities resolved by the RANS simulation, i.e. a tensor-valued regression problem.
Given such a function f we directly have a turbulence closure based on the LES data, and
we might hope that it: (1) reproduces the LES training case mean-flow when applied within a
RANS solver, and (2) generalizes to similar cases. In the case of wind-farms, we ultimately aim
to train f from LES simulations of multiple pairs of turbines, and apply it to entire farms –
although this ambition is far from realized in this paper.

Before solving the regression problem, we identify a few reasonable properties for f . Like
turbulence itself, f should be (i) Galilean invariant, (ii) invariant under rotations. These
constraints dictate use of the well-known finite base-tensor series of Pope [18]:

bLESij ' f(Sij ,Ωij , c) =
10∑

m=1

T
(m)
ij (Sij ,Ωij)g

(m)(λ1, λ2, ..., λ5, c) (6)

where T
(m)
ij are the tensor bases, T

(1)
ij := Sij , T

(2)
ij := SikΩkj − ΩikSkj , etc. [10], λm are the

corresponding scalar invariants, and c are additional Galilean invariant scalar features. It
remains to identify the arbitrary scalar functions g(m)(·) to regress the data.

At this point we follow the work of Kaandorp and Dwight [10], who developed the Tensor-
Basis Random-Forest (TB-RF) inspired by previous works in neural-networks by Ling et
al. [19, 7], and random-forests by Wu et al. [8]. Random-forests consist of averages of multiple
decision trees. Decision trees approximate data by recursively splitting the input-space into bins
along Cartesian directions, and approximating the function as constant within each bin. Which
variable to split, and the location of the split are chosen by a greedy procedure, minimizing the
data misfit at each step. The TB-RF generalizes this to approximate tensors of the the form
(6). In particular at each split we solve:

min
j,s

 min
g
(m)
L ∈R10

∑
n∈RL(j,s)

∥∥∥∥∥
10∑

m=1

T(m)
n g

(m)
L − bLES

n

∥∥∥∥∥
2

F

+ min
g
(m)
R ∈R10

∑
n∈RR(j,s)

∥∥∥∥∥
10∑

m=1

T(m)
n g

(m)
R − bLES

n

∥∥∥∥∥
2

F

 ,

(7)
where j is the index of the input variable to split, s is the location of the split, and n indexes
the LES data-points (one at each cell of the LES mesh). Also RL(j, s), RR(j, s) are the sets of

data points in the bins on the left and right of the split respectively, and g
(m)
L , g

(m)
R , are the

values of the function in the left and right bins. The norm is the Frobenius norm.
The TB-RF was used successfully in [10] for predicting two-dimensional flows in channels and

square-ducts, and showed the ability to generalize within that limited set of flows. The flows
considered here are substantially less varied from a flow-physics standpoint, and therefore we
expect similar performance. As a result of its speed it can be readily extended to large numbers
of input features, and we use the set of 50 features used by Wu et al. [8].

3. Results
First we verify our LES reference simulations against previous work; secondly we show the effect
of directly injecting LES anisotropy bLESij into RANS simulations of the same flow case; finally
we demonstrate the ability of the TB-RF regression model to predict bij for an unseen flow.

3.1. LES ground-truth verification
Figure 2 presents the time-averaged inflow velocity, turbulence intensity profiles as well as the
instantaneous energy spectrum at hub height zhub of our LES precursor for neutral stability, and
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low-roughness conditions. The results are substantially similar to reported data from Churchfield
et al. [11]. Differences are visible in the velocity profile near the inversion layer, likely due to
differing numerical treatment of the layer. Our grid is slightly coarser, leading to a somewhat
reduced energy in the spectrum. Note that Figure 2(b) includes SGS variance, while Figure 2(c)
does not, accounting for the difference in the integrated spectra.

0.0 0.5 1.0 1.5 2.0

〈Ũ〉/Uhub

0.0
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0.4
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z
/
z
i
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Churchfield et al.

(a) Mean velocity profile
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〈I〉 [%]
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z
/
z
i
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]
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Churchfield et al.

(b) Mean turbulence intensity profile
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(c) Energy spectrum at zhub

Figure 2: Validation of the ABL-N-L LES precursor with Churchfield et al. [11].

Figure 3 shows the 0.0275 s−2 isosurface Q-criterion, for the instantaneous field of the N-L-
SequentialTurbines case after 23 000 s of physical time. Only the second refinement region as
depicted in Figure 1 has been visualized. In the front turbine wake, vortex breakdown and wake
expansion can be clearly identified. Moreover, bound and tip vortices are clearly visible. The
rear turbine has a more rapid wake expansion as expected, and only small vortical structures
are visible.

Figure 3: Two perspectives of the isosurface of Q-criterion for N-L-SequentialTurbines after
23,000 s of simulation time. The isosurface is coloured by the time-averaged velocity magnitude.

Finally, the normalized hub height horizontal velocity deficit magnitude |∆ ˜〈u〉hor| profile is
presented in Figure 4 and is compared to [11]. The wake profile of this simulation closely
resembles that from Churchfield both in magnitude as well as shape. We consider the correctness
of the reference data hereby verified, and continue with use of the data.
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d
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Figure 4: Normalized |∆ ˜〈u〉hor| profile for N-L-SequentialTurbines LES (——) and Churchfield
et al. [11] (- - - -) at zhub, sampled -1D, +1D, +3D w.r.t. the front and rear turbines.

3.2. Reynolds-averaged Navier-Stokes with injected LES anisotropy
We now inject the LES normalized turbulence anisotropy bLESij into the RANS equations,
following Section 2.2, whereby important to remember is that predictions of k and the mean-
velocity originate in RANS, only bij is artificially supplied. The resulting prediction of
production of turbulence kinetic energy Pk is shown in Figure 5, comparing baseline k− ε, k− ε
with k−ε injection, and the LES reference for two turbine configurations. In both configurations,
injection produces minor improvements of the magnitude and shape of Pk, except close to the
disc (1D profiles) where minor degradation is observed most likely due to the direct effect of
the rotor forcing on the turbulence, which is not accounted for in either RANS model. Note
that Pk depends on bij via Pk = 2k(bij + 1

3δij)∂jui, i.e. the alignment of bij with the velocity-
gradient tensor influences production [20]. However the magnitude of Pk is still controlled to
a large extent by k. In this figure therefore the shape is enhanced by injection – most notably
near the hub region, where baseline RANS misses the production peaks completely, while small
peaks are visible in injected RANS. Of course the magnitude is still clearly under-predicted
everywhere, highlighting that this anisotropy-corrected production term, does not lead to a
sufficiently increased k in the shear layers. We can deduce that anisotropy alone is responsible
for only a very small part of the k deficit we observe here, and other modelling effects are needed
to account for the majority.

Similar considerations apply to the prediction of turbulence forcing in the momentum
equation caused by the ∂jτij term. Once more bij controls primarily the spatial extent, and
k the magnitude of the forcing, so we would expect the former to be significantly improved,
and the latter less so. This expectation is borne out in Figure 6, which plots the magnitude
of the horizontal component of this forcing (∂jτij)hor. In addition we can observe a gradual
improvement of (∂jτij)hor downstream, hinting that the dominant modelling error is made close
to the turbine (perhaps at the actuator model itself), and that anisotropy may be of increasing
importance in the medium- and far-wake.

Finally, when it comes to mean velocity field, the improvement due to more accurate bij is
most prominent for the vertical velocity component, 〈uz〉, but even there the effect is relatively
minor. By inspecting the wake profiles in Figure 7, we observe a consistent oscillation pattern on
the northern side of the turbine in the reference data (due to the tip vortices) that is completely
missing from the baseline RANS. Hints of the same structure begin to appear downstream in
the injected RANS, but once again, the effect of turbulence anisotropy is swamped by larger
modelling errors.
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Figure 5: Normalized hub height Pk for N-L-ParallelTurbines and N-L-SequentialTurbines at
zhub from LES (— · —), RANS with bLESij injection (——), and baseline RANS (- - - -),
sampled at -1D, +1D, and +3D w.r.t. turbine locations.
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Figure 6: Normalized (∂jτij)hor profile for N-L-ParallelTurbines and N-L-SequentialTurbines at
zhub using LES (— · —), RANS with bLESij injection (——), and baseline RANS (- - - -).

3.3. Machine Learning Predictions of the Turbulence Anisotropy Tensor
In Figure 8, barycentric color-maps of the N-H-ParallelTurbines case at zhub, zmid, and zapex are
presented. The color-maps capture the anisotropy character, in terms of its position within the
barycentric triangle (a transformed version of the Lumley triangle) [21]. Blue represents three-
component turbulence, green two-component and red one-component, etc. The baseline RANS
result is the Boussinesq prediction, and bears no relation to the reference. The reference still
contains streaks in the boundary-layer, indicating that the LES is not sufficiently averaged to
eliminate these relatively long-lived structures. The TBRF prediction reproduces the character
of the LES very well, including the streaks, but also introduces a lot of noise into the prediction,
especially upstream of the turbine. This is a familiar feature of random-forest predictions, which
are unaware of spatial relationships, including correlation. To be used as a turbulence model,
significant smoothing would be required.

Finally, the normalized profiles of Pk for N-L-SequentialTurbines are shown in Figure 9 for
both TBRF and a competing method: Tensor-Basis Adaptive Boosting (TBAB). As the turbine
configuration is sequential, horizontal lines at hub height and -1D, +1D, +3D w.r.t. the front
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Figure 7: Normalized 〈uz〉 profile for N-L-ParallelTurbines and N-L-SequentialTurbines at zhub
using LES (— · —), RANS with bLESij injection (——), and baseline RANS (- - - -).

(a) Barycentric map

(b) RANS (c) TBRF prediction (d) LES

Figure 8: Barycentric map at zhub, zmid, and zapex for N-H-ParallelTurbines using RANS, TBRF
prediction after training on the N-H-OneTurbine LES ground truth, and LES

and rear turbines are plotted. The higher turbulent intensity upstream of the rear turbine is
visible. Opposite to the front turbine where the northern side of its tip free shear layer has a
larger Pk, the rear turbine has a higher Pk at the southern side of the tip free shear layer. All
these effects are reproduced by both regression methods.
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Figure 9: Pk profile of N-L-SequentialTurbines at zhub from LES (——), TBRF (— · —), and
TBAB (- - - -) prediction, sampled at −1D, +1D, and +3D.

4. Conclusions & Recommendations
We have quantified the effect of turbulence anisotropy in isolation on the accuracy of RANS
models for wind-turbines. The corrective effect of using the LES anisotropy are much smaller
than might be supposed, and suggest modelling efforts should first focus on correcting other,
dominating effects. Notable are the under-predictions of k in the strong shear layer, and near-
wake effects due to the actuator model. Our results suggest anisotropy might play a more
important role in the mid- to far-wake. Reproducing turbulence anisotropy with random-forest-
like models works reasonably well in the configurations we considered. Further work must
consider the effect of ABL stability on wake development – this is challenging from both a
data-generation and a model generalization point-of-view.
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