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1 Introduction

In more and more industries, there is a push towards lightweight, slender designs. Especially
in aerospace and automotive engineering, fields naturally subject to strict weight requirements,
thin-walled structures are everywhere. The problem is, however, that these structures can
vibrate in unpredictable ways even when subjected to relatively moderate-intensity dynamic
loads. Understanding these vibrations in order to predict fatigue, creep, or even failure of
these structures is the topic of concern of the field of structural dynamics.

Understanding vibrations is essentially an energy question: how does the outside energy, acting
upon the structure as forces, get absorbed or dissipated within the structure? This question can
be answered in multiple ways. Before computers, variational methods like the Rayleigh-Ritz
[1] or least-squares [2] methods were used for simple cases, where the expressions could be
made to satisfy all the present boundary conditions. These methods assume the solution is a
combination of a finite number of functions, thus discretizing the problem and reducing the
infinite number of degrees of freedom (DoFs) into a finite number.

Since the advent of computers, however, structural dynamics has shifted more and more to
using the Finite Element method. In this method, first, computer-aided design (CAD) models
are made of the structure under consideration. finite element modelling (FEM) is then used
to discretize the CAD drawing into a discrete "mesh" of subdomains or "elements" with small,
finite dimensions [23]. Applying the element kinematics of a certain finite element on each
subdomain results in a set of equations of motion (EoMs) which can then be solved to find the
mechanical behaviour of the entire structure.

Performing finite-element based dynamic analysis for thin-walled structures runs into an issue,
however. As these structures tend to behave nonlinearly rather quickly, the set of EoMs must
be recomputed regularly to reflect the changing geometry of the structure. This can be very
computationally costly, as the size of the system of equations of motion depends on the amount
of DoFs in the finite element discretization. model order reduction (MOR) methods attempt to
avoid this issue by reducing the required computational cost of performing dynamic analysis of
the model under consideration (Figure 1).

Figure 1: Generalized block diagram of an example workflow of finite element-based analysis of
structural dynamics, including model order reduction, which is highlighted as the focus of this
thesis.
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Most MOR methods aim to reduce the cost of (re)computation of the EoMs by reducing the
size of a model, thus avoiding the "curse of dimensionality" (Bellman, 1956) [3].

1.1 The Curse of Dimensionality in FE-based Nonlinear Dynamics

When using finite elements to investigate forced structural dynamics specifically, we obtain a
set of time-dependent second-order differential equations of motion from our mesh:

Mü(t) +Cu̇(t) +Ku(t) = F(t) (1)

with M, C, and K ∈ RN×N as the mass, damping and stiffness matrices, respectively. The
vector u(t) ∈ RN represents the displacements of the nodes of the finite element mesh as they
change through time. Note that, owing to the use of linear finite elements, none of the system
matrices exhibit any dependency on the configuration u of the structure. For a more detailed
review of the mathematics behind Finite Element discretization, I refer to Newland (1965) [9].

The dimensionality N of the full model is equal to the amount of degrees of freedom in the
finite element mesh, that is, a finer mesh results in a larger N [75]. The number of DoFs of
complete finite element models, also known as the dimensionality or "order" of the model, can
run into the millions [39, 42, 46]. As this order or dimensionality of a system of equations of
motion increases, the required computational effort for recomputation (which is necessary for
dynamic calculcations) scales quadratically with it.

1.1.1 Geometric nonlinearities

A second complication in the FEM process described above arises when the thin-walled struc-
tures of interest display nonlinear behaviour. One example of nonlinearity is geometric non-
linearity, where the relations between kinematic quantities (e.g. displacements, rotations, or
strains) are nonlinear:

ϵ(x) =
du

dx
+

1

2
(
du

dx
)2 (2)

If du
dx

is small, the quadratic term tends to zero and we get the linear strain approximation:

ϵ(x) ≈ du

dx
(3)

Because thin-walled structures can flex easily, however, strains and rotations are finite, and the
(du
dx
)2 term is non-zero. These nonlinearities often cannot be set aside: they arise in a myriad of

different situations and often have dramatic effects. To demonstrate this we take a look at two
simple static bending cases analyzed with both linear and nonlinear finite elements (Figure 2).
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Figure 2: Static simulations of a cantilever (left) and clamped-clamped beam (right) using linear
(green) and nonlinear (blue) finite elements. Reprinted from J. B. Rutzmoser (2018) [75].

As shown, the linear finite elements (green) overestimate the deformation of both beams.
This is due to non-realistic behaviour, as the linear elements stretch and take up more volume
than they originally did. Additionally, the linear finite element analysis does not account for
stiffening effects caused by the present geometric nonlinearity of the beams. This means that
when large rotations and/or displacements occur, including geometric nonlinearities in a model
is imperative in order to accurately describe its deformation. This can be done, for instance, by
including geometric nonlinear terms on the element level in the tangent stiffness and mass
matrices [26]. After assembly of the full system, the geometric nonlinearities are reflected in
the dependence of the stiffness matrix K on the displacement vector u:

Mü+Cu̇+K(u)u = F (4)

Finding the displacements u of nonlinear models of this size under static loads F can be costly,
but is usually within the realm of possibility. A problem arises, however, when the nonlinear
dynamic behaviour of a large model is of interest. Accurately capturing this behaviour requires
solving the "statics" problem for a lot of small time steps, and updating the model configuration
and system matrices after each step. This is computationally very costly and thus takes a lot of
time, which often makes this approach unfeasible as a whole.

1.2 Model order reduction

Model order reduction (MOR) methods can be used to reduce the amount of degrees of freedom
in the equations of motion, thus reducing the size of the M, C, and K matrices. After this
reduction, solving or performing time integration on the system of differential equations is
computationally much cheaper, allowing for faster analysis of structures or use of the reduced
equations of motion in real-time control loops.
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To reduce the dimensionality of a model, two overarching strategies can be chosen:

• one can attempt to reduce the size of the model without ever computing the solution
of the full model. This is known as simulation-free or "model-based" MOR, as the only
information available to construct the reduced-order model (ROM) is that which is present
in the full model;

• one can solve the full model, and then work backwards to try and find the best reduced-
order model that produces (almost) the same results as the full model. This is known as
"data-driven" MOR, as the data produced by solving the full model is also available as a
basis for the reduced model.

As model-based MOR methods attempt to reduce the dimensionality of the problem at hand
without ever computing the full solution, they are usually computationally cheaper than data-
driven methods, but the downside of their predictive nature is that they lack the information
generated by fully solving the problem. Data-driven approaches, however, defeat the original
purpose of model order reduction of not having to solve the full problem under consideration.

Model-based model order reduction methods can be further split up into non-intrusive meth-
ods, which do not require access to the underlying finite element framework, and intrusive
methods that do need this access. As non-intrusive methods can be applied more easily to
models resulting from commercial software packages (which often do not grant access to the
underlying nonlinear system matrices), non-intrusiveness is generally seen as a desirable trait
for MOR methods [61].

In subsection 1.3, a short overview of some popular model-based model order reduction
methods is given. In subsection 1.5 an often used data-driven approach, proper orthogonal
decomposition (POD), is treated.

1.3 Model-based model order reduction methods

In this subsection a short overview of (the development of) model-based MOR methods and
their most important characteristics is given. For a more detailed overview, I refer to van
Woerkom [20], Noor [31], Qu [49], Rutzmoser [75], and Pilania [87].

1.3.1 Static condensation

The method of static condensation is one of the oldest ways of reducing the number of degrees
of freedom in a finite element mesh, proposed in 1965 by Guyan & Irons [6, 8]. It achieves the
order reduction by deleting the unwanted internal "slave" DoFs, and forcing them to follow
the external "master" DoFs . Because this disregards the dynamic effects of the internal DoFs,
this method is only valid for the frequency range up to the "cut frequency", which is the lowest
frequency of the full model with all its master DoFs grounded (i.e., fixed) [24]. The accuracy
of the static condensation-based reduction is then dependent on the ratio of the cut frequency
to the frequency of interest [49].
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Static
Condensation

Condensed "slave" nodes

Retained "master" nodes

Figure 3: Static condensation reduces the inner nodes of a structure by forcing them to follow the
"master" outer nodes. Adapted from Wu et al. (2019) [80].

1.3.2 Component mode synthesis

component mode synthesis (CMS) or "dynamic substructuring" relies on partitioning the
complete meshed structure into separate components or "substructures". Each component can
then be separately analyzed or reduced, and afterwards assembled back into a global model.
This achieves a couple of things:

• Reduction of the required computational effort, by splitting up a large dynamic problem
into several smaller problems;

• Parallel analysis of multiple substructures becomes possible;
• Repeated analysis of the full structure is not necessary when only a small part of it is

changed.

Component mode synthesis methods can broadly be divided into three categories: fixed-
interface methods, free-interface methods, and hybrid methods. This division rests upon if the
mode shapes used for the substructures are obtained by leaving their respective master DoFs
fixed, free, or a mix of both [49].

Hurty was the first to propose component mode substructuring [7]. His method was quickly
simplified by Craig and Bampton, whose names thus became permanently connected to this
fixed-interface CMS technique. Goldman and Hou went in a different direction, by leaving the
component master DoFs free [11]. Macneal subsequently combined their two approaches in
his hybrid CMS method [12]. One of the more influential contributions came from Rubin [13],
who extended the method of Macneal by including second-order residual effects of modes
deleted from the final set of substructure normal modes. For a more detailed description of
component mode synthesis methods, see Pilania [87].

1.3.3 Reduced basis projections

A key observation in the field of structural dynamics is that the actual dimension of a dynamic
problem is generally much smaller than the dimensionality of the full model resulting from
a FEM discretization. This is because the structure can only exhibit physically possible or
"admissible" configurations, which represent a small part of the total number of configurations.
The MOR methods detailed in this subsection all exploit this observation to construct a reduced
basis and then use this basis to project the full model down onto a smaller subspace.
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Linear modal truncation & superposition
The method of modal coordinate reduction posits that the smaller subspace containing all
the physically feasible configurations is spanned by m modal basis vectors, also known as
eigenvectors, mode shapes, or vibration modes. These mode shapes ϕi are the solution to the
linear eigenvalue problem:

(Keq −ω2
iM)ϕi = 0 (5)

and in this reduction method are taken to form the columns of the reduction basis R:

R =
[
ϕ1|eq ϕ2|eq . . . ϕi|eq

]
. (6)

Generally, the number of solutions to this eigenvalue problem (and thus the number of vibration
modes) is as large as the dimensionality N of the full model. The modal coordinate reduction
method assumes, however, that the basis can be "truncated": the nodal displacements u can be
represented as a linear combination or superposition of a small number m of low-frequency
modes. This can be stated as

∆u =
N∑
i=1

ϕiqi ≈
m∑
i=1

ϕiqi (7)

where qi represents the amplitudes of the mode shapes, also known as the generalized modal
coordinates, and m ≪ N.

This transformation onto a reduced basis, consisting of eigenmodes or "spectral subspaces" that
exist in the phase space, can be visualized as projecting onto surfaces in Euclidean space as
shown in Figure 4. The full solution (in red) can be approximated, for example, by a linear
superposition (shown in blue) of the first two eigenmodes. This holds for geometrically linear
systems, where the mode shapes or eigenvectors spanning this space are independent of each
other or "invariant". This means that they do not influence each other: if we only excite one
mode, the other modes stay quiet.

With the transformation to the modal space from Equation 7 done, we can now write our
system of equations of motion as

M̂q̈+ Ĉq̇+ K̂q = F̂ (8)

where M̂, Ĉ, and K̂ ∈ Rm×m represent the reduced modal mass, damping and stiffness matrices,
and F̂ represents the reduced force vector, all denoted by the hat superscript:

M̂ = RTMR (9)

Ĉ = RTCR (10)

K̂ = RTKR (11)

F̂ = RTF (12)
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Figure 4: Linear reduction methods are often based around a projection onto a smaller subspace,
in this example spanned by eigenvectors or "mode shapes". Adapted from G. Haller: “Fast reduction
of nonlinear finite-element models to spectral submanifolds”, NODYCON 2021.

The number of degrees of freedom in the equations of motion is thus reduced from N tom, and
with that the computational cost of the associated solve of the system of differential equations
is also reduced.

Ritz-Wilson methods
The Ritz-Wilson method, also called the method of load-dependent Ritz vectors (LDRVs), was
proposed in 1982 by Wilson, Yuan and Dickens [15]. Their theory was based on the seminal
paper on determining frequencies and mode shapes by Ritz from 1909 [1]. In their method
the information of the forces or "loading" on the structure is used to efficiently generate a
sequence of Ritz vectors that span the reduced basis. This can be more accurate than exact
eigenvectors, in the case that eigenvectors orthogonal to the loads aren’t excited even though
their eigenfrequencies lie within the frequency bandwidth of the loading [49]. Apart from this,
the Ritz-Wilson technique has another major advantage: the basis vectors are usually cheaper
to compute than modal basis vectors, as there is no need for a computationally expensive
eigensolve.

However, as the Ritz-Wilson reduced model is dependent on the specific loading pattern, the
Ritz vectors have to be computed again if the loading pattern changes. Thus, when using the
Ritz-Wilson technique, use must be made of an incremental-iterative formulation in order to
maintain an accurate solution. There have been many extensions to the method of Wilson,
which can be grouped into static Ritz vector methods [17, 19] and quasi-static Ritz vector
methods [38, 62].

1.4 Accounting for nonlinearities in model-based ROMs

Model order reduction methods are often based on assumptions that have to be valid in order
for the reduction to produce good results. Static condensation, for example, assumes that
the in-plane dynamics of the interior degrees of freedom can be neglected, and reduced basis
projections assume that the dynamics of a structure can be closely approximated by a linearly
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invariant combination of a small set of basis vectors. However, when displacements are large
and we enter the geometrically nonlinear regime, these assumptions are often not valid any-
more. Large displacements can, for example, cause the assumption that the basis vectors in a
reduced basis projection are linearly independent to no longer hold true. Model order reduction
methods deal with complications resulting from nonlinear behaviour in multiple ways, which
are described in more detail in this section.

1.4.1 Stiffness evaluation procedure

The stiffness evaluation procedure (STEP) was proposed in 2003 by Muravyov & Rizzi [45].
Its core principle is writing the EoMs of a system in modal coordinates and then accounting
for the nonlinear stiffness force components by writing them as second and third order modal
displacements multiplied by (at first unknown) coefficients. By then prescribing displacement
fields they create a set of linear and nonlinear static problems, which can be solved to determine
the unknown coefficients of nonlinearity.

The STEP is not a model order reduction method; rather, it’s a way of finding the nonlinear ge-
ometric stiffness components present in a system of equations of motion. However, by applying
the STEP after a modal basis reduction, for example, it can be applied to reduced-order models
as well. This procedure is non-intrusive in the sense that no access to the underlying FEM
implementation or code is required in order to determine the nonlinear stiffness components.
This is a great advantage of the STEP over other methods, such as the analytical derivation
method described in [21]. For a more thorough review of this method, I refer to Mignolet &
Rizzi [61] and Givois et al. [77].

1.4.2 Modal Derivatives

Idelsohn and Cardona were the first to propose modal derivativess (MDs) as an extension of
the modal basis vector reduction methods described in section 1.3.3 [18]. They argued that, as
the eigenmodes ϕi are found by solving the eigenvalue problem

(Keq −ω2
iM)ϕi = 0, (13)

that if K is dependent on displacements, this dependence should also exist for ϕi. This would
change the linear superposition of basis vectors that we derived in Equation 7:

∆u ≈
m∑
i=1

ϕiqi =
m∑
i=1

ϕi(q)qi (14)

Therefore, as the displacements∆u depend on q, we can use a Taylor expansion to approximate
them around the equilibrium configuration [18, 87]:

∆u = ∆u(qi) ≈
∂∆u

∂qi

∣∣∣∣
eq

qi +
∂2∆u

∂qi∂qj

∣∣∣∣∣
eq

qiqj
2

+O3 + ... (15)

We see that the first Taylor term signifies the linear vibration modes, as it describes how the
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configuration changes when we excite a mode shape. The second, quadratic term is comprised
of the modal derivatives, which tell us how a change in configuration will change the linear
vibration modes. This information predicts the nonlinear behaviour of our model without
requiring the reduction basis to be updated after some steps of a time integration scheme.

The method of modal derivatives was subsequently further elaborated upon by Slaats et al.
[33]. In recent years, work by Wu, Tiso and others has revived interest in the method as a
valid approach to nonlinear model order reduction [60, 66, 76, 79, 86]. The method promises
to improve modal reduction-based approximations of geometrically nonlinear systems, which
cannot be properly described solely by linear vibration modes, by adding to the reduction basis
second-order terms that include information on in-plane displacements.

Slaats et al. showed that these second-order terms show great promise when used in combina-
tion with vibration modes to approximate geometrically nonlinear truss problems (Figure 5).
Figure 6 shows that adding modal derivatives results in a significantly reduced approximation
error. The computation time required for each of the reductions in Figure 6 was about 20 times
less than for the full solution. This reduction in computation time can be even greater when
the number of DoFs in the original problem is increased, as certain "overhead" costs slow down
reduction methods when used for small problems.

Figure 5: Geometrically nonlinear truss problem with 39 degrees of freedom. Reprinted from
Slaats et al. (1995) [33].
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Figure 6: Full solution of the structure in Figure 5 compared to various approximations based on
tangent modes, static modes and modal derivatives. Adapted from Slaats et al. (1995) [33].

Static vs. original Modal Derivatives
A distinction must be made between the original modal derivatives, as intended by Idelsohn and
Cardona in their 1985 paper, and the later simplification of "static" modal derivatives. Modal
derivatives (the quadratic terms in Equation 15) can be computed by taking the derivative of
the linear vibration modes with regards to the modal amplitudes q [87]:

∂

∂qj
((Keq −ω2

iM)ϕi) = 0 (16)

Using the product rule for differentiation:

(
Keq −ω2

iM
) ∂ϕi

∂qj
+

(
∂Keq

∂qj
− ∂ω2

i

∂qj
M

)
ϕi = 0 (17)

In Equation 17 the term ∂ϕi

∂qj
= θij signifies the modal derivative of the ith mode w.r.t. the jth

mode. At this point, we could try to solve for this term; however, a problem arises as the
coefficients matrix

(
Keq −ω2

iM
)
is singular [18, 87], which cannot be solved exactly in an

instant fashion. Additional constraints are required, like imposing the requirement that the
derivative of the mass normalization condition remains zero [75]:

∂

∂qj

(
ϕT

i Mϕi

)
= 0 (18)

which signifies that the norm of an eigenmode ϕi remains constant throughout a change in
geometry in the direction of mode qj. This additional constraint, together with Equation 17,
then forms a system of equations:
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[
Keq −ω2

iM −Mϕi

− (Mϕi)
T 0

] θij

∂ω2
i

∂qj

∣∣∣
q=0

 =

 ∂KNL

∂qj

∣∣∣
q=0

ϕi

0

 . (19)

This system of equations can be solved to find the modal derivatives of a system. Alternatively,
approximate procedures like the pseudo inverse method, Nelson’s method, or other methods
can be used to solve Equation 17 [27, 29, 56].

A second issue with the "classic" Idelsohn & Cardona MDs from Equation 19 is that they are
not symmetric: θij ̸= θji. Therefore, every modal derivative has to be calculated independently,
and for each calculation a new factorization of the coefficients matrix is required [75]. This
is associated with a large increase in computation time, even more so because, as the modal
derivatives are second-order derivatives of the modes with respect to each other, the number
of MDs associated with a certain amount of linear normal modes increases quadratically (see
Figure 7).

Therefore, in most literature on modal derivatives the authors choose to disregard the mass
terms in Equation 19. This leads to a simpler computation of the modal derivatives, which now
also become symmetric θST

ij = θST
ji :

θST
ij =

∂ϕi

∂qj
= − K−1

eq

∂KNL

∂qj

∣∣∣∣∣
q=0

ϕi (20)

These are known as static modal derivatives (SMDs), denoted by the superscript "ST", which
can then be added to the reduction basis from Equation 6:

R =
[
ϕ1|eq ϕ2|eq . . . ϕi|eq θST

11 θST
12 . . . θST

ij

]
. (21)

Computation of Modal Derivatives
The modal derivatives in Equation 20 can be computed in two ways: either by using a fi-
nite difference method to capture the change of the nonlinear stiffness matrix around the
equilibrium configuration, or by analytically delving into the element stiffness formulation
and differentiating those matrix elements dependent on displacements. The first method is
non-intrusive; that is, no deeper access to the source code of the underlying FEM package is
required. The second method, in contrast, is always considered intrusive. Both methods are
described in more detail in Appendix A.
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Figure 7: The amount o of SMDs (denoted by θ) associated with a certain reduction basis scales
quadratically with the number of vibration modes (denoted by ϕ). Reproduced from Rutzmoser
(2018) [75].

1.4.3 Selection of Modal Derivatives

As discussed previously in subsubsection 1.4.2, the number of "normal" modal derivatives o
that is associated with m vibration modes scales quadratically:

o = m2 (22)

However, as static modal derivatives are symmetric, we can disregard the lower portion of the
triangle (Figure 7), which almost halves the amount of static modal derivatives to consider:

o =
m(m+ 1)

2
(23)

Nonetheless, even after disregarding the lower diagonal of symmetric modes, the amount of
static modal derivatives scales quadratically with the number of vibration modes. This can
cause the total number of DoFs n = m+ o to balloon quickly. For example, using 10 vibration
modes and their associated SMD will result in a base consisting of 65 reduced degrees of
freedom, which can result in an increase in the required computational effort during later
solution procedures. To curb this quadratic growth, a selection can be made of the modal
derivatives. This can be done at two stages:

• a priori selection: before computing any SMDs, a guess is made as to which will be
relevant, and only these are computed. Usually, modal derivatives associated with the
lowest frequency vibration modes are significant and should be included in an a priori
selection of static modal derivatives.
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• a posteriori selection: after computing all SMDs associated with a set of vibration modes,
a variety of selection methods can be applied to select the static modal derivatives that
are expected to be most influential on the dynamic response.

Both types of methods can be used to make a selection of modal derivatives by completely
disregarding those scoring badly on the selection criterion. Alternatively, the selection methods
can be used to build a weighing matrix W which, instead of completely disregarding unimpor-
tant DoFs, simply places more weight on the modal derivatives considered important.
As a priori methods have the advantage of not having to compute all static modal derivatives be-
fore selecting them, this type of selection criterion has received the most attention in literature
and previous work and will therefore be described here in more detail:

Frequency Weighting (FW): First proposed by Barbic and James in 2005 [52], the frequency
weighting selection criterion is based on the assumption that the low-frequency modes and
their associated modal derivatives dominate the dynamic response of the structure under
consideration:

Wϕ
i =

ω1

ωi

,Wθ
ij =

ω1
2

ωiωj

(24)

Where ωi is the eigenfrequency associated with vibration mode ϕi. These weights Wij are then
applied to respectively the vibration modes ϕi and the mass-normalized modal derivatives θ̄ij:

R =
{
Wϕ

i ϕi | i = 1, . . . , k
}
∪
{
Wθ

ijθ̄
ij | i ≤ j; i, j = 1, . . . , k

}
(25)

The reasoning behind this scaling is simple - as low-frequency modes are generally more
important, the frequency weighting criterion prioritizes these modes and prevents them from
being masked by higher frequency modes and their derivatives.

Maximum Modal Interaction (MMI): Tiso proposed an a priori selection criterion in 2011
based on the convergence of the underlying (linear) modal truncation approximation [59].
This convergence is split into a spatial part which depends on the shape of the vibration modes
ϕi and the applied load f, and a spectral part which depends on the eigenfrequencies of the
vibration modes and that same load. The spatial weighing criterion will prioritize selecting
modes that have large deflections in the directions of the load; in other words, vibration modes
that are orthogonal to the loading direction will be disregarded sooner. The spectral weighing
criterion will prioritize vibration modes that have eigenfrequencies close to that of an applied
harmonic load.

Both the spatial and the spectral components of the MMI selection criterion have solid "common
sense" foundations in that they would select vibration modes that move in the direction of and
have approximately the same frequency as the applied load, which are likely to be large part
of the solution of the dynamic problem. Tiso shows that these selection criteria outperform
random selection of modal derivatives (or "second-order modes" as he calls them) for certain
numerical examples [59].

(Symmetric) Modal Virtual Work (SMVW): Jain proposed a selection criterion in 2017
in which the weighing coefficient for a certain modal derivative is equal to the virtual work
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done by the nonlinear elastic forces that arise when the first underlying vibration mode acts
upon the second underlying mode [69]. In this sense, this selection criterion also quantifies
a priori the interaction between two modes and then ranks the resulting modal derivatives
accordingly. However, as the weighing matrix W in this case is not symmetric (as is the case
for the Maximum Modal Interaction proposed by Tiso), this weighing matrix is also suited for
selecting normal "non-static" modal derivatives and is this sense a more flexible approach to a
weighing matrix for modal derivatives.

In all the above cases, the a-priori selection criteria are based on information that is solely
obtained from the linear vibration modes and their interaction with the applied loading and
other modes in linear analysis. While they intuitively give some information about the im-
portance of the selected modes, the assumption is then made that modal derivatives derived
from these vibration modes will also be significant for the nonlinear dynamic problem at hand.
This assumption does not always hold, and these a-priori criteria thus cannot be used to make
statements with 100% certainty regarding the use of these degrees of freedom in subsequent
nonlinear analysis. Therefore, the weighing matrix resulting from an a priori selection method
should ideally be used to rank the degrees of freedom and weigh their contribution, instead of
disregarding completely those DoFs scoring badly.

1.4.4 Quadratic manifold

In recent years, another approach has been proposed by Jain & Tiso to counteract the quadratic
growth issue apparent in Figure 7 [69, 72]. This method, dubbed "quadratic manifold", adds
the information normally contained in the additional modal derivative basis vectors to the
linear basis vectors instead. In this way, it constructs a "quadratically curved" manifold on
which the true solution can be projected.

Vizzacarro (2020) has recently identified additional constraints on this method, however: for
structures with strong quadratic coupling, such as arches and shells, quadratic manifolds might
not produce accurate results [83]. Furthermore, it was shown by Haller and Ponsioen (2017)
and Vizzacarro that this QM is accurate only when a slow/fast assumption holds: namely, when
the ratio

ρ =
ωslave

ωmaster

(26)

of the eigenfrequencies of the slave coordinates to those of the master DoFs is larger than 4
[67, 83]. This is illustrated in Figure 8.
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Figure 8: A full solution (purple) compared to two forms of the quadratic manifold theory
(yellow/orange) and an approximation based on normal form theory. As shown, the quadratic
manifold predictions converge to the full solution for high values of ρ. Reproduced from Vizzacarro
(2020) [83].

1.4.5 Nonlinear normal modes

The theory of nonlinear normal modes (NNMs) was first proposed in the 60s by Rosenberg [5,
10], and was developed further in the 90s by Shaw & Pierre [22, 28, 32] and Vakakis [35, 41,
57]. They are an extension of the linear normal modes (LNMs) discussed in subsubsection 1.3.3.
Shaw and Pierre define NNMs as a "two-dimensional invariant manifold in phase space": the
manifold is invariant in the sense that nonlinear orbits starting out in the manifold will remain
in it indefinitely. The invariance-property of the LNMs is therefore extended to nonlinear
analysis. Kerschen [57] states that

"Geometrically, LNMs are represented by planes in phase space, and NNMs are
two-dimensional surfaces that are tangent to them at the equilibrium point."

A visualization of this statement can be seen in Figure 9.

Figure 9: Linear normal modes (grey) and nonlinear normal modes (colored) of a 2-DoF example
system. Reproduced from Kerschen et al. (2009) [57].

Nonlinear normal modes differ from their linear counterparts in that the vibrations they describe
have a frequency-energy dependence. This is shown in frequency response functions (FRFs)
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of nonlinear systems as peaks change shape and can "tip over" when the forcing amplitude is
increased (Figure 10). The FRFs of nonlinear systems are thus no longer invariant and can
show behaviour such as jumps, bifurcations, internal resonances and limit cycle oscillations.

Figure 10: As the forcing amplitude increases, the shape of the frequency response function changes,
showing a clear frequency-energy dependence. Reproduced from Kerschen et al. (2009) [57].

1.4.6 Spectral submanifolds

In recent years, Haller, Ponsioen and others have developed the theory of spectral submanifolds
(SSMs) as a generalization of the theory of nonlinear normal modes [64, 71, 74, 82]. More
specifically, they define a spectral submanifold as an

"invariant manifold asymptotic to a NNM, serving as the smoothest nonlinear
continuation of a spectral subspace of the linearized system along the NNM."

While the math used to compute these SSMs seems very involved, the method promises to
produce robust results, which can be done in a non-intrusive manner for up to third-order
approximations [82]. Recent comparisons by other authors [83, 88] seem to agree that the
method has merit, but more investigation is required to assess how easy it is to implement this
method.
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Figure 11: The theory of spectral submanifolds (SSMs) looks for nonlinear continuations of the
eigenmodes (Ek) around the point of origin. Reproduced from Haller (2021) [85].

1.5 Data-driven model order reduction methods

Data-driven model order reduction methods use snapshots or full-system simulation runs to
retroactively find a reduced-order model approximating the full system. In this sense, they
differ from model-based reduction methods in that they always require some amount of solving
of the full (nonlinear) system. A multitude of data-driven reduction methods exist, such as the
proper orthogonal decomposition (POD) method [54], dynamic mode decomposition (DMD)
[65], the sparse identification of nonlinear dynamics (SINDy) method [63], and many more.
Proper orthogonal decomposition, for example, uses the results from a full system solve to
find a projection matrix which minimizes the average squared distance between the original
solution and its reduced representation - in this sense it is comparable to principle component
analysis, which is well-known in the field of statistics [75].

For this thesis, data-driven methods were briefly considered as a means to construct reduced
order models. For most structural dynamics problems, however, a time integration to acquire
the full system solves and/or snapshots isn’t feasible, and this thesis therefore focuses on
model-based reduction methods. For more information on data-driven model order reduction
methods, I refer to Kerschen et al. [54], Sampaio et al. [55], and Brunton & Kutz [81].
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1.6 Research goals

Based on the research presented above the following research objectives were identified:

• Construct a method to automatically analyze nonlinear vibrations of thin-walled structures
from the starting point of a FE discretization;

• Verification of the work previously done, regarding the integration of geometrically
nonlinear shell elements, by other members of the Hybrida research group [73];

• Verification of the work previously done on nonlinear model order reduction by other
members of the Hybrida research group [87];

• Validation of all these methods by comparison to numerical experiments of nonlinearly
forced vibrating structures.

• Application of the Modal Derivative model order reduction method to flat, single-curved,
and double-curved shell structures.
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2 Modal Derivatives-based Model Order Reduction for Non-
linear Structural Analysis

2.1 Verification of triangular shell finite element

Method

As this thesis considers solely thin-walled structures, the shell element described by Van Keulen
in 1993 was used to discretize all structures under consideration [26]. To verify that the
Hybrida implementation of Van Keulen’s triangular shell element is valid for large rotations
and displacements, it was first compared to three static problems often used to benchmark
nonlinear finite element analysis of shells [50]. To show that large rotations could be captured
by the element kinematics alone, coarse meshes made up out of triangular shell elements
were generated in GMSH v4.8.4. Details of the meshes and other parameters used in the
experimental setups can be found in Appendix B.

The meshes were discretized using the Van Keulen s3f element as described in subsection A.1.
The incremental-iterative solver for nonlinear statics as described in subsection A.5 was then
used to find static displacements of three cantilever structures undergoing large rotations [68].
In their 2004 paper, Sze, Liu & Lo report the deflection values they calculated in datasets of n
points per benchmarking problem [50]. As the incremental-iterative solver with arc-length
control (described in Appendix A.5) used for these static problems does not find balanced
solutions at steady forcing intervals, the mean average percentage error (MAPE), being the
difference between the Hybrida deflection values hi and the reported values xi from literature:

MAPE =
1

n

n∑
i=1

∣∣∣∣hi − xi
xi

∣∣∣∣ , (27)

was calculated from these datasets for all benchmark problems by fitting a cubic spline to
the deflections calculated in Hybrida and then sampling that interpolation at the benchmark
forcing intervals from literature.

Cantilever subjected to end shear force
The first benchmarking problem is shown in Figure 12; this problem considers a flat, rectangular
cantilever being subjected to an end shear force. The benchmark deflections can be found in
Table 1; the experimental parameters used to perform nonlinear analysis in Hybrida are found
in Table 2. The material constants and geometric parameters are scaled such that

EI

L2
= 1 (28)

which is equal to the load parameter P0. The maximum load applied is equal to 4P0.

The final deflection of the structure as computed in Hybrida using a mesh of 67 Van Keulen
elements is shown in Figure 12d. A comparison of the deflection of the tip in x- and z-direction
(Utip and Wtip, respectively) given by Sze, Liu & Lo to the results from Hybrida is shown in
Figure 13. As can be seen, the results from Hybrida match those from the literature very well;
the MAPE within the nonlinear regime for this problem was 0.17% for the displacement in
x-direction (Utip) and 0.27% for the displacement in z-direction (Wtip), respectively.
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Figure 12: (a) Constant cross-section cantilever loaded with an end shear force. (b) Deformed
benchmark mesh under maximum load. (c) Material constants and geometric parameters used
in benchmark. (d) Final displacement of the cantilever subjected to an end shear force from
Hybrida, using 67 triangular van Keulen elements. This final configuration was reached in 31
force increments. Adapted from Sze, Liu & Lo (2004) [50].
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Figure 13: Incremental static displacements of a cantilever subjected to a shear force at its free
end. Comparison of results from literature (Sze, Liu & Lo [50]) to results from Hybrida nonlinear
finite element analysis.
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Cantilever subjected to end moment
The second benchmarking problem is shown in Figure 14; it describes a rectangular flat
cantilever subjected to an end moment around the y-axis. The benchmark deflections can be
found in Table 3; the experimental parameters used to perform nonlinear analysis in Hybrida
are found in Table 4. The final deflection of the structure as computed in Hybrida, achieved
using a mesh of 341 Van Keulen elements, is shown in Figure 14d. A comparison of the results
from Sze, Liu & Lo to the results from Hybrida is shown in Figure 15. The MAPE within the
nonlinear regime for this problem was 0.026% for the displacement in x-direction (Utip) and
0.058% for the displacement in z-direction (Wtip), respectively.

Figure 14: (a) Constant cross-section cantilever loaded with an end moment. (b) Deformed
benchmark mesh under maximum load. (c) Material constants and geometric parameters used in
benchmark. (d) Final displacement of the cantilever subjected to an end moment from Hybrida,
using 341 triangular van Keulen elements. This final configuration was reached in 396 moment
increments. Adapted from Sze, Liu & Lo (2004) [50].
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Figure 15: Comparison of incremental static displacements from literature (Sze, Liu & Lo [50])
to results from Hybrida finite element analysis.

Slit annular plate subjected to shear force
The third benchmarking problem is shown in Figure 16; it describes a flat annular plate
subjected to a shear force.The final deflection of the structure as computed in Hybrida is shown
in Figure 17. A comparison of the results from Sze, Liu & Lo to the results from Hybrida is
shown in Figure 18. The average errors throughout the nonlinear regime for the displacements
at points A and B are about 3.2% and 2.5% for this experiment, respectively.

Figure 16: (a) Slit annular plate loaded with a line shear force P . (b) Deformed mesh under
maximum load. (c) Material constants and geometric parameters used in this experiment. Adapted
from Sze, Liu & Lo (2004) [50].
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Figure 17: Final displacement of the slit annular plate subjected to an line shear force from
Hybrida, using 266 triangular van Keulen elements. This final configuration was reached in 215
force increments.

Figure 18: Comparison of incremental static displacements from literature (Sze, Liu & Lo [50])
to results from Hybrida finite element analysis.
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2.2 Verification of static modal derivatives

After verifying the implementation of the Van Keulen in Hybrida by Markestein [73], verification
of the computation method for static modal derivatives, given by

θST
ij =

∂ϕi

∂qj
= − K−1

eq

∂KNL

∂qj

∣∣∣∣∣
q=0

ϕi (29)

was necessary to be sure that our reduction basis is set up correctly. Verification was done in
two ways:

1. Comparison of the static modal derivatives computed by intrusive and non-intrusive
methods, respectively, to see whether they give the same results;

2. Comparison of the static modal derivatives computed in Hybrida to those from literature,
to see whether these results line up with those from earlier work.

Intrusive vs. Non-intrusive Static Modal Derivatives

The intrusive method of computing SMDs was developed by Pilania in 2021 and is described
in more detail in Appendix A.2.2 [87]. It computes the critical term of the SMDs by taking the
derivatives of the components Da and G of the nonlinear stiffness matrix KNL with respect to
the modal amplitudes qj:

∂KNL,e

∂qj

∣∣∣∣∣
q=0

=
∂DT

a

∂qj
· S ·Da +DT

a · S · ∂Da

∂qj
+

∂G

∂qj
(30)

In contrast, the non-intrusive method uses a central difference scheme, in which the structure
is excited in the direction of vibration mode (VM) ϕi with amplitude h to approximate the
critical derivative:

KNL
+ = K(u|+h·ϕi

)

KNL
− = K(u|-h·ϕi

)
(31)

∂KNL

∂qj

∣∣∣∣∣
q=0

≈
(KNL

+ −KNL
− )

2h
(32)

In order to compare the two methods, the finite difference scheme was used to compute static
modal derivatives using varying step size h, which were compared to intrusively computed SMDs.
The relative percentage error of the displacements fields found with the central difference
scheme with regards to those found by the intrusive scheme is shown in Figure 19. The
convergence shown here is similar to those found by other researchers. However, the "flatlining"
on the lower end of the step size was probably due to numerical errors during computation.
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Figure 19: Relative difference between results computed with non-intrusive methods to reference
results computed intrusively. As also found by Rutzmoser (2018), the optimal step size h for the
central difference scheme usually falls around h = 100 to h = 101 [75].

Comparison of Static Modal Derivatives to literature

In order to verify that the Static Modal Derivatives computed in Hybrida were comparable to
methods from literature, they were visually compared to SMDs as found by Tiso in 2011 [60].
For this purpose, the cantilever investigated by Tiso was re-created in GMSH and an identical
mesh was generated, as shown in Figure 20; the other parameters used in this numerical
experiment can be found in Table 7. The Static Modal Derivatives θ11, θ13, and θ22 computed
in Hybrida, overlaid in red on top of Tiso’s Modal Derivatives in green in Figure 21, are found
to have an identical shape. The differences in the Static Modal Derivatives θ12, θ23, and θ33

could be explained by differences between the finite element and orthogonalization methods
used in Hybrida and the corresponding methods used by Tiso, which was confirmed by Tiso in
an online meeting in 2021 [89].
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Figure 20: Short cantilever plate subjected to a corner force used as verification experiment to
compare computed static modal derivatives. Adapted from Tiso (2011) [59].

Figure 21: Comparison of Static Modal Derivatives from literature in green (Tiso, [60]) to those
computed in Hybrida (red).
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2.3 SMD-based Model Order Reduction in Non-linear Dynamics

2.3.1 Simply supported square plate, immovable edges

In this experiment, a simply supported rectangular plate with immovable edges is considered,
as discussed by Ribeiro (2002) and Amabili (2004) [43, 47]. As shown in Figure 22, the plate
has width a and height b, with simply supported immovable boundary conditions at all edges:

u = v = w = w0 = Mx = ∂2w0/∂x
2 = 0 at x = 0, a, (33)

u = v = w = w0 = My = ∂2w0/∂y
2 = 0 at y = 0, b. (34)

x

y

a

b
F

0.5a

0.5b

F

F

Figure 22: Rectangular plate with simply supported immovable edges. Adapted from Amabili
(2004) and Pilania (2021) [47, 87].

The harmonic point load F = f̄ sin (Ωt) is located at the center of the plate, with the read-out
point placed at the same location. Amabili, in his research, used von Karman kinematics to set
up an analytical model of linear combinations of panel displacements. In the case of the plate
with simply supported immovable edges, he used a linear combination of 16 DoFs to compute
its nonlinear frequency response around the first resonance frequency Ω0 [47].

In Hybrida, a mesh consisting of 2021 elements was used to construct reduction bases con-
taining linear vibration modes and modal derivatives, as described in Appendices A.2.1 and
A.2.2. These reduction bases were then used to reduce the EoMs, as described in Appendix
A.3.1, after which the AUTO nonlinear continuation software package was used to perform a
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Frequency response of simply supported square plate with immovable edges

Data from Amabili (2004) [16 DoFs]
Backbone Curve Herrmann & Chu (1956)
Linear Modal Analysis [1 DoF]
Linear Modal Analysis [6 DoFs]
Modal Derivatives [2 DoFs]

Figure 23: Comparison of linear modal analysis (green / red) and modal derivatives-based
analysis (blue) of the simply supported plate with immovable edges in Figure 22 to results from
Herrmann & Chu (1956) and Amabili (2004, fig. 2) [4, 47].

frequency sweep with normalized frequency Ω/Ω0 as continuation parameter. The parameters
used to set up these numerical simulations can be found in Table 8.

The results are shown in Figure 23. As can be seen, the reduced-order model consisting of only
vibration modes over-estimates the stiffness of the plate, even when adding additional degrees
of freedom to the reduction basis. This behaviour remains when in-plane modes are added to
the basis, which are hard to find: the first mode with primarily in-plane displacements, ϕ321,
has a resonance frequency of 9933 Hz, which is roughly 180 times higher than the resonance
frequency of the first mode (52.97 Hz).

When static modal derivatives are added to the reduction basis, however, the frequency response
curve produced by only 2 DoFs, VM ϕ1 and SMD θST

11 , is nearly identical to the one computed
by Amabili using 16 DoFs and matches the backbone curve predicted by Herrmann & Chu [4,
47]. This shows that the static modal derivatives inherently contain the geometrically nonlinear
in-plane effects, while only needing to compute two degrees of freedom. As the in-plane
displacement components are purely due to membrane stretching, i.e. the displacements of the
sides of the plate are fully constrained, the modal derivatives-based analysis seems especially
well suited to this problem.

2.3.2 Simply supported square plate, movable edges

In this section, a simply supported plate with movable edges subjected to boundary conditions

v = w = w0 = Nx = Mx = ∂2w0/∂x
2 = 0 at x = 0, a, (35)

u = w = w0 = Ny = My = ∂2w0/∂y
2 = 0 at y = 0, b, (36)
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is analyzed by the same method as above. The results from the Hybrida finite element (FE)-
based analysis using several combinations of vibration modes and modal derivatives are com-
pared to an analytical model comprising 27 DoFs as described by Amabili [47]. The slightly
changed boundary conditions are indicated in Figure 24, while the parameters used in this
numerical experiment can be found in Table 9.

x
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b
F

0.5a

0.5b

F

F

Figure 24: Rectangular plate with simply supported movable edges. Adapted from Amabili (2004)
and Pilania (2021) [47, 87].

As shown in Figure 25, in this case the reduction basis using only linear vibration modes
over-estimates the stiffness of the structure even more than for the plate with immovable edges
in subsubsection 2.3.1. The reduced model including SMDs is much more in agreement with
the results from Amabili (2004), but still slightly over-estimates the stiffness of the structure in
comparison with his predicted frequency response curve [47]. This could be due to the edges of
the plate not being fully constrained in this problem, which will lead to in-plane displacement
components that are not only caused by membrane stretching but also by warping of the edges.

When additional DoFs are added to the reduction basis an effect is observed wherein for
purely vibration-modes based analysis, the amplitude of the dynamics increases, but for modal
derivatives-based analysis, the amplitude of the dynamics decreases. In this latter case, the
vibration modes ϕ1,ϕ5,ϕ11 and the static modal derivatives θST

11 , θ
ST
15 , θ

ST
1−11, θ

ST
55 , θ

ST
5−11, θ

ST
11−11

seem to have a dampening effect on the frequency response of the plate. This could be due
to energy being absorbed by vibrations that do not contribute to the vertical deflection of the
read-out point, which is the coordinate plotted in Figure 25.
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Frequency response of simply supported square plate with movable edges

Data from Amabili (2004) [27 DoFs]
Linear Modal Analysis [1 DoF]
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Modal Derivatives [2 DoFs]
Modal Derivatives [9 DoFs]

Figure 25: Comparison of linear modal analysis (purple / red) and modal derivatives-based
analysis (blue / green) of the simply supported plate with movable edges in Figure 24 to results
from Amabili (2004, fig. 4) [47].

2.3.3 Vertical Cantilever

The third numerical experiment considers the vertical cantilever shown in Figure 26 as de-
scribed by Malatkar in 2003 [44]. The cantilever discussed in his paper constitutes a lightly
damped, weakly nonlinear system without internal resonances. Malatkar both numerically
derived equations of motion and performed physical experiments on a steel beam to estimate
the parameters describing the nonlinear behaviour of the cantilever. Malatkar specifically
investigated the third and fourth modes of the vertical cantilever in more detail.

In Hybrida, reduced-order modelling was performed using both linear in-plane vibration modes
and modal derivatives as a reduction basis. The parameters used in these experiments can
be found in Table 10. In Figure 28, the results of the reduced-order modelling using in-plane
vibration modes are shown. As can be seen, the linear modal analysis once again grossly
over-estimates the stiffness of the structure. By adding in-plane modes, we can reduce the
stiffness estimate, but even by using all in-plane modes ϕn with n < 200, the weak softening
response as found by Malatkar cannot be reproduced.

When the static modal derivative θ33 is added to the basis, however, the softening non-linearity
of the third mode is captured by the reduced-order model Figure 29, showing unstable regions
(dotted lines) for the two highest forcing values F = 0.00165 and F = 0.0022. While the static
modal derivative θ33 shown in Figure 27i looks similar to the first in-plane vibration mode ϕ29

(Figure 27b), the in-plane strain is distributed evenly along cantilever for the in-plane vibration
mode whereas it is distributed non-linearly for the modal derivative. This difference in the
distribution of the in-plane strains ensures that the basis containing static modal derivatives
captures the geometric non-linearity much more accurately than the basis containing the
in-plane vibration mode.
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Figure 26: Vertical cantilever. Reprinted from Malatkar (2003) [44].

(a) ϕ3 (b) ϕ29 (c) ϕ60

(d) ϕ84 (e) ϕ104 (f) ϕ122

(g) ϕ152 (h) ϕ180 (i) θST33

Figure 27: Third mode, in-plane modes ϕn with n < 200, and the Static Modal Derivative θST
33

associated with the third mode of the vertical cantilever shown in Figure 26. The results of the
model reduction using these DoFs is shown in Figures 28 and 29.
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Third-mode frequency response of vertical cantilever tip

Experimental data from Malatkar (2003)
Linear Modal Analysis [?3]
Linear Modal Analysis [?3;?29;?60;?84;?104]
Linear Modal Analysis [?3;?29;?60;?84;?104;?122;?152;?180]

Figure 28: Comparison of linear modal analysis (blue / green / red) of the vertical cantilever in
Figure 26 to experimental results from Malatkar (2003, fig. 3.4) [44].
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Third-mode frequency response of vertical cantilever tip

Numerical simulation (Malatkar, 2003)
Forward sweep experimental data (Malatkar, 2003)
Backward sweep experimental data (Malatkar, 2003)
Modal Derivatives, 2 DoFs [F = 0:00110]
Modal Derivatives, 2 DoFs [F = 0:00165]
Modal Derivatives, 2 DoFs [F = 0:00220]

Figure 29: The same graph as in Figure 28, but zoomed in on the x-axis, using static modal
derivatives-based analysis (blue / green / red) of the vertical cantilever in Figure 26 for increasing
forcing values. Comparison to experimental results from Malatkar (2003, fig. 3.4) [44].
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2.3.4 MEMS Double Clamped Beam

This numerical experiment considers a double-clamped beam as investigated by Vizzacarro,
which features an internal 3:1 resonance between the first and fourth modes [83]. Vizzacarro
compared a reduced-order model using the direct normal form (DNF) to a full solve of the
systems’ nonlinear dynamics using the harmonic balance finite element method (HBFEM). In
Hybrida, the same structure was meshed using 96845 elements and a ROM was constructed
using 10 DoFs in both cases. The parameters used to set up this experiment can be found in
Table 11.

Figure 30: Double-clamped MEMS beam. Reproduced from Vizzacarro (2021) [83].
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Frequency response of double clamped MEMS beam with 1:3 internal resonance

Data from Vizzacarro (2021)
Linear Modal Analysis [10 DoFs]
Modal Derivatives [10 DoFs]

Figure 31: Comparison of frequency response functions of the double clamped beam shown in
Figure 30. Responses were computed using reduced order models based on vibration modes (green),
static modal derivatives (blue), and direct normal form (black) [83].

As can be seen, once again the vibration modes overestimate the stiffness of the structure,
while the modal derivatives come very close to the data from Vizzacarro’s full HBFEM solve in
regards to amplitude and nonlinearity of the solution. The internal 1:3 resonances, however,
are not fully reproduced by either the vibration-modes or modal-derivatives based ROM. Great
effort was undertaken to make sure the internal resonance was as close as possible to an exact
1:3 ratio, by slightly increasing the length of the beam and decreasing the mesh size until a
ratio of 3.000± 0.001 between the resonance frequencies of modes ϕ4 and ϕ1 was achieved.
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2.3.5 Single-curved circular cylindrical shell

R

u
vw

x
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Figure 32: Circular cylindrical shell with clamped bottom edge. Adapted from Kurylov (2011)
[58].

After looking at various flat structures, the next step is to look at shells in 3D. The first 3D
experiment is the circular polyester shell as described numerically by Kurylov and Amabili
(2011) [58], which was also tested experimentally by Chiba in 1993 [25]. Kurylov & Amabili
used harmonic functions to describe the vibrations of the structure in radial direction and
Chebyshev polynomials to describe the displacements in axial direction. The bottom edge
of the cylinder is completely clamped. A harmonic concentrated force in radial direction at
x = L/2 acts on the shell. Kurylov & Amabili tried to remove the over-stiffening by adding DoFs
until the frequency response function converged, as shown in Figure 33:
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Figure 33: The frequency response function due to forcing f1 = 0.0012 of the cylindrical shell,
shown in Figure 32, converges to a steady solution when adding enough DoFs: (a) 18 DoFs;(b) 20
DoFs;(c) 22 DoFs;(d) 24 DoFs;(e) 26 DoFs;(f) 28 DoFs; (g) 30 DoFs;(h) 40 DoFs;(j) 43 DoFs;
and (k) 47 DoFs. Reprinted from Kurylov (2011) [58].

In Hybrida, the numerical experiment in Figure 33 was repeated, using a mesh of 98416
triangular shell elements to set up the equations of motion. The reduction bases used to reduce
these EoMs consisted of either 1 DoFs, vibration mode ϕ1, or 2 DoFs, vibration mode ϕ1 +
static modal derivative θST

11 . The results of this experiment are shown in Figure 34. As can be
seen, the numerical analysis using vibration modes grossly overestimates the stiffness of the
structure, whereas the modal derivatives-based analysis converges to the same response as
Kurylov’s 47 DoFs using only two degrees of freedom.

2.3.6 Double curved shallow shell

The last example is the double curved shallow (i.e. relatively large radius of curvature) shell
shown in Figure 35 investigated by Amabili in 2005 [51]. The boundary conditions are the
same simply supported with movable edges as in subsubsection 2.3.2:

v = w = w0 = Mx = ∂2w0/∂x
2 = 0 at x = 0, a, (37)

u = w = w0 = My = ∂2w0/∂y
2 = 0 at y = 0, b. (38)
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Frequency response of circular cylindrical shell

Numerical simulation 18 DoFs (Kurylov, 2011)
Numerical simulation 26 DoFs (Kurylov, 2011)
Numerical simulation 47 DoFs (Kurylov, 2011)
Vibration Mode ?1 [F = 0:0012]
VM ?1 + SMD 311 [F = 0:0012]

(a) (b)

Figure 34: Comparison of frequency response functions of the circular cylindrical shell shown in
Figure 32. Data from Kurylov Figure 2 is shown in blue, showing the convergence of the result
using 47 DoFs in total [58]. The Hybrida MOR results were computed using VM ϕ1 and VM ϕ1 +
SMD θ11, respectively.

Amabili reported resonance frequencies for the out-of-plane modes w1,1, w1,3 = w3,1, and w3,3

of 952.31, 2575.9, and 4472.3 Hz, respectively. In Hybrida, the frequencies of the same modes
were found to be ω0 = 953.2 Hz, ω4 = ω5 = 2569 Hz, and ω10 = 4461 Hz, respectively, for a
maximum relative percentage error of 0.25%.

Amabili used Donnell’s shell theory and a basis of 9 degrees of freedom (being the out-of-
plane mode w1,1 and the in-plane modes u1,1, v1,1, u1,3, v1,3, u3,1, v3,1, u3,3, and v3,3) to find the
minimum and maximum amplitude of the frequency response of a shell with Rx = Ry = 10a,
which is a relatively small curvature with respect to the principal dimensions of the shell. The
other parameters of this experiment can be found in Table 12. Amabili splits the results into
two, giving separate frequency response curves for both the maximum positive and maximum
negative excitation of the generalized coordinate w1,1 at the center of the shell.

In Hybrida, I tried to repeat these results by mimicking the basis created by Amabili, using
the out-of-plane mode ϕ0 and in-plane modes ϕ117,ϕ148,ϕ149, and ϕ162. The results of this
vibration-mode based analysis are shown in Figure 36. As shown, even when adding the
in-plane modes to the reduction basis, the softening-hardening response shown by Amabili
could not be reproduced. However, by adding the SMD θ11 (shown in Figure 37) the response
predicted by Amabili using 9 degrees of freedom is followed up to amplitudes approximately
equal to the thickness of the shell. Afterwards, a large deviation can be seen including higher
order dynamics caused by internal resonances. These are unphysical, as internal resonances
should not be caused by the static modal derivatives.
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Figure 35: Double curved shallow shell with simply supported immovable edges. Adapted from
Amabili (2005) [51].
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(a) Maximum shell amplitude.
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Data from Amabili (2005)
Hybrida VM ?0
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Hybrida 8 VMs ?0;?4;?5;?66;?117;?148;?149;?162

(b) Negative minimum shell amplitude.

Figure 36: Comparison of linear vibration modes-based reduced order modelling to results from
Amabili (Figure 3, 2005) based on out-of-plane and in-plane vibration modes. Results on the
left are the maximum out-of-plane coordinate of the first mode w1,1, while results on the right
represent the negative minimum coordinate −w1,1 [51].
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(a) Maximum shell amplitude.
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(b) Negative minimum shell amplitude.

Figure 37: Comparison of static modal derivatives-based reduced order modelling to results from
Amabili (Figure 3, 2005) based on out-of-plane and in-plane vibration modes. Results on the
left are the maximum out-of-plane coordinate of the first mode w1,1, while results on the right
represent the negative minimum coordinate −w1,1 [51].

Figure 38: The first static modal derivative θ11 associated with the double curved shallow shell
shown in Figure 35. As shown, the static modal derivative for this structure shows almost purely
out-of-plane behaviour, differing from the flat structures in Subsections 2.3.a - 2.3.d.
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2.4 Conclusions

2.4.1 Verification of finite element implementation

In all three benchmarking problems shown in subsection 2.1, errors are in the order of 1%
throughout the nonlinear regime, even while using relatively course meshes. The final dis-
placements are also very similar to the final reported displacements by Sze, Liu and Lo [50]. I
therefore conclude that the van Keulen triangular shell elements are verifiably accurate for
static geometrically nonlinear displacements of shell structures.

2.4.2 Verification of static modal derivative implementation

Based on the verification results presented in subsection 2.2, I conclude that the Hybrida-based
code to compute static modal derivatives of shell structures, as initially written by Pilania
[87] and thereafter slightly tweaked by the author, produces repeatable results that are in
agreement with existing literature [59, 75]. This conclusion was confirmed by the author of
one of the references papers in a separate interview in 2021 [89]. The correct implementation
of the static modal derivatives is further proven in subsection 2.3, as the SMDs are used to
great effect in computing reduction bases used to reduce equations of motion in analysis of
nonlinear dynamics.

2.4.3 SMD-based model order reduction for nonlinear dynamics

In all 6 numerical experiments discussed in subsection 2.3, it can clearly be seen that model
order reduction bases using only vibration modes overestimate the stiffness and hardening of
nonlinearly vibrating structures, usually to a large extent. This can be duly explained by the
lack of terms in the reduced EoMs which account for geometrically nonlinear effects. However,
when enhancing these VM-based modal reduction bases with static modal derivatives, the
frequency response curves are found to match the results expected from literature to a far
greater extent. This is true even for reduction bases using only two degrees of freedom (usually
ϕ1 + θ11), of which the computed frequency response curves agree with results from literature
using far greater amounts of DoFs (see, for example, subsubsection 2.3.5).

The Hybrida-based nonlinear analysis performed in subsection 2.3 takes only minutes to com-
plete, with ±30% of the time spent on computations related to the finite element discretization
(which only have to be done once if the structure, loading, and readout point do not change
between experiments). The time spent online, that is, computing a reduction basis, reducing
the equations of motion, and performing time integration usually accounts for ±70% of the
total analysis time. This could be shortened further when computer with additional cores are
used, as piece-wise reduction of the equations of motions on the element level, detailed in
subsubsection A.3.1, can be performed in parallel on separate cores. In this case, the main
limiting factor is the amount of DoFs passed to the AUTO nonlinear continuation software. For
a number of DoFs m surpassing 15, slower results were observed, taking more than an hour to
produce results, if any were produced at all.

The projective model order reduction method as implemented in Hybrida, using vibration
modes and static modal derivatives to perform piece-wise reduction of the higher order tensors
in the equations of motion, shows great promise when used for analysis of nonlinear dynamics
with amplitudes of up to 5 times the shell thickness. However, when used for curved structures,
this static modal derivative-based method only holds up to amplitudes of roughly 1 - 1.5 times
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the thickness of the underlying structure, after which large deviations from results found in
literature were observed.

Therefore, based on the method implemented in the Hybrida codebase, I conclude that while
static modal derivatives are a great tool for enhancing vibration mode-based reduction bases
when amplitudes are limited and no higher order dynamics are present, they fall short when
those features are present and/or of interest to the observer.

2.5 Discussion

The results shown in subsection 2.3 show that non-intrusively computed static modal derivatives
can be a quick and easy way to increase the accuracy of model-based model order reduction for
nonlinearly vibrating structures. While a massive decrease in computation time can be achieved
by using only a handful of degrees of freedom in a nonlinear continuation, the method has
limitations in accurately describing nonlinear dynamic effects such as bifurcations and limit
cycles, as vibration modes causing these effects are usually excluded from the reduction basis.
Furthermore, static modal derivatives do not have a "resonance frequency" in the traditional
sense of the word and therefore do not trigger these types of chaotic behaviours themselves.

Taking all this into account, it seems that the method presented in this thesis using (static)
modal derivatives is a compelling "quick and dirty" method of enhancing reduction bases in
nonlinear dynamic analysis for shells with constant wall thickness, as the presented method
produces results that are largely in agreement with results presented in literature while only
taking minutes to compute said results. However, no quantitative comparison to results or
computation times of other model order reduction methods was done, as no such methods
were implemented in the Hybrida library at the time of writing of this report. To really judge
the performance of the presented static modal derivative-based reduction method, such a
comparison would be necessary.

2.6 Recommendations

• Other methods for computing reduced-order models should be implemented in Hybrida,
to quantitatively compare the accuracy and computation time gain of each method;

• While the workflow in Hybrida has been expanded to automatically call the Intel oneAPI
Fortran compiler and the AUTO nonlinear continuation software, this has not yet been
used to perform iterative nonlinear dynamic analysis and/or parameter sweeps;

• The incremental-iterative solution method for reduced-order models in statics should be
further expanded in Hybrida. This will allow for using reduced-order models in statics,
and comparing them to full static solutions.
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3 Process Reflection

At the end of November 2020, I started my thesis project under professors Aragon and Alijani.
Because of the Covid pandemic, which was still raging at the time, I had been looking for a
thesis project which I could mostly do from home (due to closing of schools and universities
during lockdown). Therefore, I looked for a project which would let me pursue my interest in
various applications of the Finite Element method, without requiring me to be present at the
(at that time often closed) faculty for experiments or lab work. A research project into the use
of Model Order Reduction in Non-linear Dynamics, which was originally started in 2018 by
Koen Markestein, was available at that time and piqued my interest.

The work in 2018 done by Markestein focused on the inclusion of the triangular "Van Keulen"
shell element into the Hybrida finite element library, and then using this element in reduced-
order modelling. To this end, he pioneered the still in use tensor decomposition and piecewise
(elemental) reduction of the elements as described in Appendix A.3.1. The method for projective
model order reduction that he used, however, was only based on (linear) vibration modes, with
its associated limitations in describing nonlinearly vibrating systems [73]. His method was
extended, therefore, by Yogesh Pilania in 2020/2021 by including Modal Derivatives. Pilania
showed promising results for some structures, but was not able to fully validate the method
he built for a wider range of structures [87]. My goal was therefore to supply a well-founded
substantiation of the complete method as built by my predecessors and, where necessary,
change the method if it was found to include any errors or oversights.

Work started in December of 2020 by reading literature and having multiple talks with my pre-
decessor, Yogesh Pilania. In a short series of meetings he explained the workings of the method
within Hybrida, and how to use the reduced-order model output by Hybrida in combination
with the AUTO97 nonlinear continuation software. The working method at that time still relied
on the Digital Visual Fortran 6.0 software package, released in April of 1997, to compile the
FORTRAN test.f files output by Hybrida into files executable by AUTO97. Due to the age of this
program it had some limitations, such as a maximum allowable random access memory (RAM)
allocation of 4 MB which prevented it from compiling larger Hybrida output files. I therefore
decided to start work on this immediately, while still in the process of literature review, to see
if it was possible to remove this limitation.

After some attempts to alter or fix the DVF 6.0 software, I asked for help on the Intel community
forums, whos’ users pointed me to the Intel oneAPI toolkit as a potentially useful replacement.
A feature of this software especially useful to me was the inclusion within the Intel oneAPI
HPC toolkit of a classic FORTRAN compiler which is compatible with old FORTRAN files. A first
attempt to implement this new compiler into the existing model order reduction method was
made in January 2021, and quickly afterwards the first results were obtained by running test
programs from my predecessors. I saw this as a first big step, as it continually took me a lot of
effort and time to read through and understand the codebase left behind by my predecessors.
At that time, only the top-level programs specifically aimed at model order reduction consisted
of 2500+ lines of code, which of course does not account for the thousands of lines of code of
the mid-and bottom level functions that these programs were depending on.

With the main method operational on my machine, I started work on verifying and validating
the results it was obtaining. While originally intended as only the first research goal of many,
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this proved far harder than I had anticipated at the start of the project. This was partly due to
me not understanding the way certain methods worked in Hybrida, and partly due to what I
now consider to be wrong strategic choices in how to verify and validate the code: instead of
trying to troubleshoot parts of the code piece by piece, I focused on the end results (nonlinear
static deflections or frequency response curves) in order to assert that everything worked
correctly. This works, of course, when everything does, and you can conclude from 1 complete
result that all the parts do their job correctly. However, when unexpected results are obtained,
it proved difficult for me to ascertain where the root cause lay inside the multiple nested Python
classes and code bases.

After some months of work, however, I slowly realized that partial results were required in
order to systematically, step by step, verify the complete analysis methodology, and I got to
work on finding ways to first verify the Hybrida finite element implementation of the Van
Keulen shell element. In this matter, the benchmarking problems from Sze, Liu & Lo proved
very helpful as they included completely tabled results [50]. Of course, this also included use
of the nonlinear static analysis class, but as this class was already sufficiently proven to work
correctly in the work of Holtzer, I could assume that the only parameter of interest was the FE
implementation of the shell element [68].

After this, it was time to verify the implementation of the intrusive computation of static modal
derivatives as originally created by Pilania [87]. This once again proved to be a lot more
difficult than anticipated, as I wrongfully concluded that when partial results did not align with
those from literature, this could only be due to errors in the code implementation. However, as
the constitutive methods from literature (kinematics, finite element description, etc.) differ
from the Hybrida method, the SMD code implementation could well be correct while still
giving different results than those from literature. In the end, an online meeting with Paolo
Tiso was held to discuss the results I was getting with him. He gave context on the results
he got in 2011 and confirmed that the difference in the computed static modal derivatives
that I was seeing could well be due to different underlying methods. In the end, the partial
verification of the static modal derivatives by comparing two computation methods (intrusive
vs. non-intrusive) was the only way I could think of to isolate the SMD computation step itself
from other potentially influential computation characteristics.

Luckily, the slow partial verification process I had went through had an additional benefit in
that I now understood the code structure and inner workings of the "black box" much better,
and it proved far easier to continue with dynamic analysis of shell structures afterwards. By
the end of 2021, I managed to reproduce results from Amabili (2004) for flat structures, which
at least proved that the reduction of EoMs using a basis of vibration modes and static modal
derivatives was working well for flat structures:
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Figure 39: Some first positive results when using the static modal derivative method to compare
to results from literature [4, 47].

However, now that I finally understood the code well and started getting interesting results, I
got notified that my student loans would end in less than a month, while still roughly half a
month away from graduating. In order to keep being able to afford rent, I accepted a part-time
job, which of course frustrated my graduation efforts. In the end, I decided to put my thesis
on hold while I pursued my career for 2.5 years. This was definitely not the road that I had
planned for myself, and I would not recommend this to anyone else, as I found that working
part-time on a thesis is like not working on a thesis at all: I missed the focus, time and energy
to pursue my research in the same way as before, and therefore progress slowed down to a crawl.

I am very glad that I decided to quit my job and take time to finish my thesis before pursuing
my career further. Taking stock now, at the end of the project, I conclude that the main things
which cost me too much time were:

• Trying to verify and/or validate single analysis steps by looking at results of all steps
combined;

• Jumping into analysis too quickly without a proper basis of research, which led me to not
know about certain conclusions already reached in literature;

• Not asking for help quickly enough, but spending a lot of time figuring out things that
could easily have been answered by colleagues and/or my supervisors;

• Misunderstanding of predecessors’ implementation methods in Hybrida, which led me to
draw wrong conclusions from results especially during the first half year of my graduation
project.

In spite of all these things, I believe that during my thesis project I did make improvements on
the existing reduced-order modelling analysis methodology and did achieve some interesting
results and conclusions, especially when looking at using modal derivatives for curved shell
structures. These conclusions seem to agree with those recently reached by other researchers
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in the field when looking at curved arches [83]. While I would definitely approach the project
completely differently now, for example by implementing more of my own code instead of
often taking legacy code from my predecessors, I feel that I have also learned at lot from the
mistakes I made during it, especially regarding troubleshooting and strategic choices in larger
projects.
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A Model Order Reduction implementation in Hybrida

All numerical analysis performed for this thesis was done using the Hybrida finite element
library, which is run and maintained by a research group at the Technical University of Delft
under the supervision of prof. Alejandro Aragón. This Python-based library houses a large
collection of code relating to finite element analysis, written by master students, PhD students,
and professors. In this section, I will describe the analysis methodology for nonlinear statics,
dynamics, and model order reduction as was used to carry out the numerical experiments in
this thesis.

A.1 Finite Element implementation

The element that I used for all analysis of thin-walled structures is a geometrically nonlinear
triangular shallow shell element devised by van Keulen in 1993 [26], shown in Figure 40. This
element is based on Kirchhoff-Love plate theory and has 12 associated DoFs: 9 translational
DoFs at the corner nodes, and 3 rotational DoFs at the edges.

Figure 40: Degrees of freedom of the nonlinear shell element used in Hybrida for nonlinear
dynamic analysis of thin-walled structures. Reprinted from F. van Keulen (1993) [26].

A detailed description of the derivation of the mass and stiffness matrices associated with this
shell element from the elemental kinematic relations and the discrete constitutive equations,
based on the assumption of linear elastic material behaviour

σ = Sϵ, (39)

can be found in the works of van Keulen, Bout, Markestein and Pilania [26, 30, 73, 87]. I
will not copy these derivations here; rather, I start at the resulting tangent stiffness and mass
matrices from van Keulen and Bout, respectively [26, 30]:

K(u) = DT · S ·D+G (40)

Muu = Mvv = Mww =
ρhA

12

 2 1 1
1 2 1
1 1 2

 (41)
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Here G is the geometric stiffness matrix, D is the matrix containing the discrete strain-
displacement relations, and S contains the constitutive (material) relations. Van Keulen
gives two options for D as it depends on the displacement u: a variant D which is valid only
for small rotations, and a matrix Da which is valid for large rotations, as long as the size of
the elements is defined to be small enough compared to the local deformation pattern and
minimum radius of curvature of the meshed surface [26]. Care should be taken to use the
right variant for the problem at hand. In this thesis, the element description containing the
large-rotation strain-displacement relations Da was used in all cases.

For the damping matrix C, Hybrida incorporates either a linear combination of the mass and
stiffness matrices known as Rayleigh damping:

Cu̇ = (µM+ λK)u̇, (42)

or a matrix with constant coefficients which are applied to the reduced degrees of freedom,
which is known as modal damping:

Ĉq̇ = ξIq̇. (43)

In all cases, the damping constants µ, λ, and ξ and the forcing vector F are used as input
variables for the dynamic problem under consideration and are therefore based on estimates,
not on numerical or physical analysis of the structure.

A.2 Construction of the reduction basis R

A.2.1 Vibration modes

The method implemented in Hybrida for finding the vibration modes of a structure generally
matches the method described in subsubsection 1.3.3. The vibration modes or "eigenmodes"
of a structure are found by solving the eigenvalue problem of the structure at equilibrium, as
described in subsubsection 1.4.2:

(KLIN
ij −ω2

iMij)ϕi = 0, (44)

This eigenvalue problem is solved in Python by either the numpy linalg.eig function, the ARPACK
package which specializes in large sparse matrices, or the locally optimal block preconditioned
conjugate gradient (scipy.sparse.linalg.lobpcg) eigensolver [37, 40]. All solvers solve the
eigenvalue problem with the K and M matrices in sparse format, to save on computation time.

Selection of Vibration Modes
The method used to compute vibration modes from a FE mesh containingN degrees of freedom
as described above,will also result in N eigenmodes. As we want to reduce the size of our
model and thus the number of DoFs in our model as much as possible, Hybrida uses various
methods to select only those vibration modes of interest:
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• Firstly, a user-defined number of low frequency modes is pre-selected from the total
number N of vibration modes. The goal of this "truncation" is to reduce computation
time further on in the process.

• Secondly, rigid body modes can be deleted by deleting the first six modes with zero (or
close to zero) modal frequencies.

• Thirdly, redundant modes can be deleted. Redundant modes in this context are for
example mirrored or other symmetrical copies of modes already in the basis. As redundant
modes often have very similar, if not exactly the same eigenfrequencies, this is usually
done by specifying a percentage window around the eigenfrequencies of already selected
modes. If a mode that is about to be added to the reduction basis has a frequency that
falls into one of these windows, it is automatically disregarded.

• Lastly, from these non-redundant low frequency deformation modes, the most significant
can be selected using a number of selection criteria implemented in Hybrida. The most
often used criteria are either the norm of a vibration mode, or the maximum modal
amplitude at a specified node or "readout point", for example the tip of a cantilever [73,
75].

After this selection process, we are left with m vibration modes in our reduction basis which
approximate the displacement of the structure by linear superposition:

∆u =
N∑
i=1

ϕiqi ≈
m∑
i=1

ϕiqi, with m ≪ N (45)

While the low-frequency vibration modes usually dominate the dynamic response of a thin-
walled structure, they are also mostly out-of-plane vibration modes. This means that a reduction
basis R comprising solely out of the low-frequency vibration modes

R = [ϕ1 ϕ2 . . . ϕm] . (46)

will most of the time only contain information about out-of-plane motion of thin-walled struc-
tures. This leads to a mechanism called "locking", where the stiffness of a structure undergoing
large displacements is hugely overestimated as the out-of-plane degrees of freedom in the
reduction basis cannot describe the in-plane movement caused by the present geometric non-
linearities [75]. Axial or in-plane vibration modes could be used to add this information to the
reduction basis: however, they are usually found at relatively high frequencies:

Figure 41: The first three vibration modes ϕ1, ϕ2, and ϕ3, and the first in-plane axial vibration
mode ϕ29 of a cantilever with aspect ratio of 13, as described by Malatkar (2003) [44].

As shown in Figure 41, after deleting all rigid body and redundant modes, the 28 lowest
frequency vibration modes of this cantilever are out-of-plane bending and torsional modes. The
first vibration mode exhibiting mostly in-plane motion is the 29th mode, with a frequency 857
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times as high as the first out-of-plane bending mode. Finding these high frequency in-plane
modes is not trivial, and by simply truncating the base at a certain frequency they are almost
certainly cut off, removing the in-plane displacement information from the reduction basis.
Hybrida therefore uses static modal derivatives as described in subsubsection 1.4.2 to easily
find information about the in-plane effects geometrically coupled to the out-of-plane motion of
thin-walled structures.

A.2.2 Static Modal Derivatives

Modal derivatives are the second-order Taylor expansion component of the displacements u
with regards to the modal coordinates qj, and thus give information about how a vibration
mode ϕi will change when excited in the direction of this modal coordinate:

θST
ij =

∂ϕi

∂qj
= − K−1

eq

∂KNL

∂qj

∣∣∣∣∣
q=0

ϕi (47)

In this equation, the ∂KNL

∂qj

∣∣∣
q=0

-term is critical, as the other terms (K−1
eq ) and ϕi are already

available from previous calculations. Hybrida houses two methods for calculating this term:
a non-intrusive method, implemented according to section 6.3 of Rutzmoser (2018), and
an intrusive method, implemented as described by Pilania (2021) [75, 87]. Both methods
compute static modal derivatives, and will be described shortly here.

Non-intrusive computation of Modal Derivatives
For the non-intrusive computation of static modal derivatives, Hybrida makes use of a central
difference scheme: firstly, the structure is excited around the equilibrium position in the positive
and negative direction of a mode shape ϕi by a step size h of a chosen magnitude, and the
nonlinear stiffness matrix is computed at each configuration:

KNL
+ = K(u|+h·ϕi

)

KNL
− = K(u|-h·ϕi

)
(48)

The central difference around the equilibrium q = 0 can then be computed and filled in in
Equation 47:

θST
ij =

∂ϕi

∂qj
= − K−1

eq

∂KNL

∂qj

∣∣∣∣∣
q=0

ϕi ≈ −K−1
eq

(KNL
+ −KNL

− )

2h
ϕi (49)

With regards to the step size h, Rutzmoser (2018, p. 58) found that an optimum is generally
found for 10−1 ≤ h ≤ 101. In Hybrida, a step size of h = 1 is standard [75].

As static modal derivatives are symmetric, that is,

θST
ij = θST

ji , (50)

only the upper triangle of the "matrix" of static modal derivatives needs to be computed. For m
vibration modes, this results in m(m+1)

2
static modal derivatives.
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Intrusive computation of Modal Derivatives
As the name suggests, for the intrusive computation of modal derivatives we dive into the FE
model by Van Keulen (1993), described in subsection A.1, to derive the required matrices
analytically. The method used for this derivation is described more broadly by Pilania (2021,
appendix B) [26, 87].

In order to derive the ∂KNL

∂qj

∣∣∣
q=0

-term from Equation 47, we remember that the nonlinear element
stiffness matrix is formulated as follows from the nonlinear finite element (Equation 40):

KNL,e = DT
a · S ·Da +G (51)

As we assume that our material is linear and isotropic, the constitutive (material) relations S
contain no dependencies on the displacements qj. This term can thus be left out in the following
differentiation of the nonlinear element stiffness matrix:

∂KNL,e

∂qj

∣∣∣∣∣
q=0

=
∂DT

a

∂qj
· S ·Da +DT

a · S · ∂Da

∂qj
+

∂G

∂qj
(52)

The strain-displacement relations matrix (for moderate rotations) Da and geometric stiffness
matrix G resulting from the nonlinear finite element are composed as follows:

Da =


dT
1 + ue,TC1 ve,TC1 we,TC1 0
ue,TC2 dT

2 + ve,TC2 we,TC2 0
dT
2 + ue,TC3 dT

1 + ve,TC3 we,TC3 0
n̂1Dbw n̂2Dbw n̂3Dbw Dbϕ

 (53)

G =


Gd 0 0 0
0 Gd 0 0
0 0 Gd 0
0 0 0 0

 with Gd = σm1C1 + σm2C2 + σm3C3 (54)

Here di, Dbw, and Dbϕ are vectors and matrices containing element side vector constants, n̂i

denotes the velocity component perpendicular to the flat configuration of the element, and

σm = Sϵm = SD(ue;ve;we) (55)

D(ue;ve;we) =

 dT
1 u

e + 1
2

{
ue,TC1u

e + ve,TC1v
e +we,TC1w

e
}

dT
2 v

e + 1
2

{
ue,TC2u

e + ve,TC2v
e +we,TC2w

e
}

dT
2 u

e + dT
1 v

e + 1
2

{
ue,TC3u

e + ve,TC3v
e +we,TC3w

e
}
 (56)

is the generalized membrane stress parameter [26].

At this point, however, we cannot yet take the derivative ofDa andG with regards to the modal
coordinate qj, as they are both still described in terms of the original coordinate system. We
therefore first transform theDa andGmatrices to their reduced counterparts by substituting the
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original element coordinate vectors ue, ve, we and θe for its associated eigenmode contribution
ϕ and modal coordinate qj:

Ue,T =

[
ue,T

∣∣∣ve,T
∣∣∣we,T | θe,T

]
(57)

Ue = ϕe
i qi (58)

Where ue, ve, and we represent the displacements of the three nodes of a triangular element
in the cardinal directions, and θe represents the rotation of the three element sides, giving us a
total of 12 DoFs. C1, C2, and C3 contain element side vector constants, which do not change,
and therefore their derivatives are always 0.

After substitution of Equation 58 in Equations 53 and 56, for example:

dT
1 + ue,TC1 = dT

1 + ϕu,T
i qjC1 (59)

and taking the derivative with regards to qj at the equilibrium position (ue = ve = we = θe = 0):

∂(dT
1 + ϕu,T

i qjC1)

∂qj

∣∣∣∣∣
q=0

= ϕu,T
i · C1 (60)

Equation 30 becomes [26, 87]:

∂KNL,e

∂qj

∣∣∣∣∣
q=0

=


ϕu,T

i · C1 ϕu,T
i · C2 ϕu,T

i · C3 0

ϕv,T
i · C1 ϕv,T

i · C2 ϕv,T
i · C3 0

ϕw,T
i · C1 ϕw,T

i · C2 ϕw,T
i · C3 0

0 0 0 0

 · S ·


dT
1 0 0 0
0 dT

2 0 0
dT
2 dT

1 0 0
Dbw Dbw Dbw Dbϕ



+


dT
1 0 dT

2 Dbw

0 dT
2 dT

1 Dbw

0 0 0 Dbw

0 0 0 Dbϕ

 · S ·


ϕu,T

i · C1 ϕv,T
i · C1 ϕw,T

i · C1 0

ϕu,T
i · C2 ϕv,T

i · C2 ϕw,T
i · C2 0

ϕu,T
i · C3 ϕv,T

i · C3 ϕw,T
i · C3 0

0 0 0 0



+


∂Gd

∂qj
0 0 0

0 ∂Gd

∂qj
0 0

0 0 ∂Gd

∂qj
0

0 0 0 0



(61)

All these terms can be retrieved from the original Finite Element partitioning of the structure
and the computation of the vibration modes described in subsubsection A.2.1. The result of
Equation 61 can then be filled in in Equation 47 in order to (intrusively) compute the static
modal derivatives θST

ij .

Selection of Static Modal Derivatives
As discussed previously in subsubsection 1.4.3, the number of static modal derivatives o that is
associated with m vibration modes scales quadratically:
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o =
m(m+ 1)

2
(62)

A number of ’a posteriori’ selection schemes to automatically select the most relevant SMDs
have been described in literature (see subsubsection 1.4.3). In Hybrida, however, only optional
a priori manual selection of static modal derivatives was implemented to save on computation
time. This means, however, that the relevant SMDs should be selected beforehand by inspection
of the vibration modes and their possible interactions.
After selecting the appropriate degrees of freedom, the VMs and static modal derivatives can
be concatenated together to form the reduction basis:

R =
[
ϕ1|eq ϕ2|eq . . . ϕi|eq θST

11 θST
12 . . . θST

ij

]
. (63)

A.2.3 Post-processing the Reduction Basis

Orthonormalization
After all DoFs in the reduction basis have been computed, they first need to be post-processed
before they can be used to reduce the equations of motion: for a reduced order basis to span
the space in which it is defined, the vectors in the basis should all be orthogonal and thus
linearly independent. While the eigenmodes ϕi are orthogonal with respect to the mass and
stiffness matrices in a generalized sense, and any SMD θST

ij is mass-orthogonal with respect
to their constitutive vibration modes ϕi and ϕj, the static modal derivatives do not have this
property with regards to eachother or other vibration modes [16, 48, 75]. Secondly, the basis
should be normalized to simplify the subsequent calculations in Equations 70 - 72 and make
them more numerically stable. As the M, C, and K matrices are multiplied by the reduction
basis R twice, the condition number of R will be squared. This can cause problems during
time integration, such as poor convergence and instability, as small changes in the input can
lead to large changes in the output.

In literature, a number of methods to tackle these issues are proposed. Tiso (2011) and
Rutzmoser (2017) propose a Gram-Schmidt-like scheme to ortho-normalize the SMDs θ with
regards to the VMs ϕ [70]:

θ⊥ϕ =

I−
n∑

i=1

ϕiϕ
T
i

 θ, with ϕT
i ϕi = 1 (64)

In 2019, Cruz Varona proposed using either a rank-revealing QR (RRQR) or a singular value
decomposition (SVD) algorithm to deflate the raw basis, by first normalizing the vectors in the
reduction basis [78]:

Rnorm =
[

ϕ1,eq

∥ϕ1,eq∥ · · · ϕi,eq

∥ϕi,eq∥
θ11

∥θ11∥ · · · θ1j

∥θ1j∥ · · · θij

∥θij∥
]

(65)

and then performing a singular value decomposition on this "raw" basis:

Rnorm = SVD⊤ (66)
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Where S and DT are orthonormal matrices containing singular vectors, and V is a diagonal
matrix with the singular values arranged in descending order. The left singular vectors contained
in S can now be used as orthonormal basis vectors to span the reduction basis:

Rdefl = [s1, · · · , sdefl] (67)

Similarly, in this thesis, the numpy.linalg.qr factorization function, which is an interface
to the Fortran-based LAPACK routines dgeqrf and dorgqr, is used to deflate the basis and
orthonormalize the vibration modes and modal derivatives in the reduction basis with regards
to each other [34]. These LAPACK routines use Householder transformations to perform a
QR-factorization, which generates a "thin" QR factorization of the original raw basis:

A = QR = Q

[
R1

0

]
=
[
Q1 Q2

] [ R1

0

]
= Q1R1, (68)

WhereQ1, similarly to the SVD method above, is a matrix containing orthonormal basis vectors
which can now be used as our reduction basis:

Rdefl = Q1 =
[
ϕ1 . . .ϕi θ

ST
11 . . . θST

ij

]
defl

(69)

A.3 Reduction of Equations of Motion

A.3.1 Reduction of linear System Matrices

The Hybrida model order reduction process uses pre- and post-multiplication of the system
matrices with a reduced basis R, construction of which is described in more detail in Appendix
A.2, in order to dramatically reduce the number of DoFs. With linear system matrices, this is a
fairly straight-forward process:

M̂ = RTMR (70)

Ĉ = RTCR (71)

K̂LIN = RTKLINR (72)

F̂ = RTF (73)

Similarly, the displacements ∆u are defined as the reduction basis multiplied by the modal
coordinates q:

∆u = RTq (74)

However, the stiffness matrix K(u) contains geometric nonlinearities, denoted by the depen-
dency on u, of a quadratic and cubic nature. Therefore, the reduction in Equation 72 cannot
simply be performed, as the dependency of K on q in the reduced equations of motion will not
be carried over correctly.
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A.3.2 Tensor Decomposition and Reduction of Nonlinear Stiffness Matrix

The observation above poses problems for the reduction process, as the nonlinear stiffness
matrix cannot be reduced in the same way as the other system matrices. To solve this, the
nonlinear stiffness matrix is redefined as a combination of third-order and fourth-order tensors
with constant coefficients. This separates the displacement dependencies from the system
tensors, as these tensors will only contain constant components:

Kij(u) = KLIN
ij + αijkuk + βijklukul (75)

These tensors are constructed by the method detailed in the following simplified example [73]:

• Separate the stiffness matrix into matrices corresponding to the polynomial order p of
the displacement dependency of its components:

K(u) =

 u2
1 1 1

1 u0 1
1 1 1

 =

 0 1 1
1 0 1
1 1 1

+

 0 0 0
0 u0 0
0 0 0

+

 u2
1 0 0

0 0 0
0 0 0

 (76)

• Write each matrix corresponding to order p as a tensor of order p + 2 multiplied by p
displacement vectors.

K(u) =

 0 1 1
1 0 1
1 1 1

+


 0 0 0

0 1 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 0


 0 0 0

0 0 0
0 0 0



 u0

u1

u2



+



 0 0 0

0 0 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 0





 0 0 0

0 0 0
0 0 0

 ,

 1 0 0
0 0 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 0





 0 0 0

0 0 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 0





 u0

u1

u2


 u0

u1

u2


(77)
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• Reduce the resulting tensors to sparse form:

indices([[0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1], [2, 2]])
KLIN

ij = values([1, 1, 1, 1, 1, 1, 1])
shape([3, 3])

indices([0, 1, 1])
αijk = values([1])

shape([3, 3, 3])

indices([1, 1, 0, 0])
βijkl = values([1])

shape([3, 3, 3, 3])

(78)

As shown, this does not do much to help reduce the size of the linear stiffness matrix - however,
as the third- and fourth-order tensors contain a lot of zeroes, their size is massively reduced.
The example shown above demonstrates how a 3-by-3 nonlinear stiffness matrix is decomposed
into sparse tensors multiplied by vectors containing the displacement components. A fully
assembled stiffness matrix of a complete structure could have a size of 1000x1000 or larger,
however. This would mean that our βijkl tensor has 1012 elements.

It is therefore not wise to decompose the fully assembled stiffness matrix of the whole structure
into third- and fourth-order tensors. Either a) all analysis must be done in sparse form, or b)
the stiffness matrix must be reduced at the element level, where the size of the matrix (12x12)
is still manageable. In the Hybrida model order reduction implementation, the second option
was chosen [73]. The element stiffness matrices are all separately decomposed into element
stiffness tensors:

K
[e]
ij (u) = K

[e]
ij + α

[e]
ijku

[e]
k + β

[e]
ijklu

[e]
k u

[e]
l (79)

after which the tensors are reduced by multiplication with the components of the reduction
basis R[e]

ij corresponding to the elemental DoFs:

α̂
[e]
ijk = R

[e]
ipR

[e]
jqR

[e]
krα

[e]
pqr (80)

β̂
[e]
ijkl = R

[e]
ipR

[e]
jqR

[e]
krR

[e]
ls β

[e]
pqrs (81)

and only then assembled to form the reduced stiffness tensors α̂ijk and β̂ijkl of the complete
structure:

α̂ijk =
m∑

n=1

α̂
[e]
ijk (82)

β̂ijkl =
m∑

n=1

β̂
[e]
ijkl (83)
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A.3.3 Post-processing the Reduced Equations of Motion

After selection of the basis vectors and orthonormalizing them, the reduced basis can be used
to reduce the system matrices as in Equations 70 - 73, 80, and 81. For the external force, we
choose a harmonic excitation denoted by F̂i sin(Ωt) with excitation frequency Ω:

M̂ijq̈j(t) + Ĉijq̇j(t) + K̂ijqj(t) + α̂ijkqj(t)qk(t) + β̂ijklqj(t)qk(t)ql(t) = F̂i sin (Ωt) (84)

In order to prepare the reduced EoMs for use in AUTO, the continuation software for dynamic
problems used in conjunction with Hybrida, they need to be non-dimensionalized. In order
to simplify and parametrize the equations, all physical quantities (mass, shell thickness, and
natural frequency) are removed from the equation. This is done by pre-multiplying with
the inverse mass matrix M̂−1

ij , dividing the reduced coordinates by the shell thickness of the
structure at hand z = q/h, and substituting τ = ω0t so that the first resonance frequency is
regarded as ω0 = 1. We then multiply the equation by 1/h and 1/ω2

0 to compensate for the
added factors:

z̈i(τ) +
1

ω0

M̂−1
ij Ĉijżj(τ) +

1

ω2
0

M̂−1
ij K̂ijzj(τ) +

h

2ω2
0

M̂−1
ij α̂ijkzj(τ)zk(τ)

+
h2

3ω2
0

M̂−1
ij β̂ijklzj(τ)zk(τ)zl(τ) =

1

hω2
0

M̂−1
ij F̂i sin

(
Ω

ω0

τ

)
, (85)

We can now write all the constants and matrix pre-multiplications into one notation for clarity:

M̆ij = M̂−1
ij M̂ij = I

C̆ij =
1

ω0

M̂−1
ij Ĉij

K̆ij =
1

ω2
0

M̂−1
ij K̂ij with k̆11 = 1

ᾰijk =
h

2ω2
0

M̂−1
ij α̂ijk

β̆ijkl =
h2

3ω2
0

M̂−1
ij β̂ijkl

F̆i =
1

hω2
0

M̂−1
ij F̂i

Ω̆ =
Ω

ω0

(86)

to arrive at our final mass-normalized, non-dimensionalized, reduced equations of motion:

z̈i + C̆ijżj + K̆ijzj + ᾰijkzjzk + β̆ijklzjzkzl = F̆i sin
(
Ω̆τ
)

(87)
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A.4 Dynamic nonlinear solution procedures

In order to solve the nonlinear differential equations of motion in Equation 87, they are first
converted to state-space representation by defining a pair of state variables x

[1]
i = zi and

x
[2]
i = żi:

ẋ
[1]
i = x

[2]
i

ẋ
[2]
i = −C̆ijx

[2]
j −

(
K̆ij +

(
ᾰijk + β̆ijklx

[1]
l

)
x
[1]
k

)
x
[1]
j + F̆i sin

(
Ω̆τ
)
.

(88)

Hybrida houses two methods to solve this system of ordinary differential equations. Firstly,
the scipy.integrate.odeint function, which uses the LSODA routine from the Fortran library
odepack [53]. This time integration scheme is completely contained within the Hybrida library
and can be used without having to compile Fortran code. The LSODA solver starts off using
non-stiff methods, but dynamically monitors data in order to determine when to automatically
switch to a stiff method. In this method, the continuation parameter can be set to be either
force Fext or excitation frequency Ω. For a more detailed description of the use of the ODEint
function within the Hybrida library I refer to Markestein (2018) [73].

The second method used to solve ordinary differential equations is the AUTO97 continuation
and bifurcation software [14, 36]. This Fortran-based program uses a pseudo-arclength
continuation method to follow solution branches. While Markestein (2018) and Pilania (2021)
used the Digital Visual Fortran 6.0 compiler to compile and run Fortran code, this program
had severe limitations with regards to admissible file size and random access memory (RAM) it
could use, as it was written in 1997 [73, 87]. Therefore, in this thesis the Intel oneAPI toolkit
was used, in order to compile Fortran code using the Intel Fortran Compiler Classic (ifort)
and run the AUTO software all from one command window. For a detailed overview of AUTO
parameters and their meanings, I refer to section C-3 of Markestein (2018) [73].

A.5 Static nonlinear solution procedures

When displacements are large, the geometrically nonlinear regime is entered (see subsub-
section 1.1.1). This means that the relation between the force on and the displacement of a
structure (read: stiffness) becomes dependent on its previous state, or "configuration". Conse-
quentially, explicit linear approximations, simple formulas relating forces and displacements,
or purely incremental solution procedures will become increasingly inaccurate.

In order to find accurate displacements of a structure in the nonlinear regime, implicit
incremental-iterative solver strategies can be used. The "incremental" here signifies that
the force applied on the structure is increased incrementally, starting in the linear regime
and slowly working towards the geometrically nonlinear. The "iterative" means that at each
force increment, the displacement solution is reached through iteration until a certain error
measure is reached, for example using a Newton-Raphson root finding algorithm. This is done
to prevent the "drifting" of the solution from the true solution path that is usually present when
purely incremental solution procedures are used (Figure 42a).
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(a) Purely incremental solution procedure.
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Newton-Raphson
iterative loop

(b) Incremental-iterative solution method.

Figure 42: Incremental-iterative solution procedures follow the true solution path more closely
when force-displacement relations become nonlinear [68].

Incremental control strategies
When a force-deflection curve becomes highly nonlinear, care must be taken to control the
incremental increase in the driving parameter or "step size". Not doing this may lead to inaccu-
rate results, as the solution procedure "misses" the solution curve (Figure 43). Even when care
is taken, the true solution might not be obtained if the structure undergoes snap-through or
snap-back behaviour (Figure 44). Using either load or displacement control in these circum-
stances can lead to errors.

Figure 43: The most basic control strategies simply increment either the load or displacement as
driving parameter. Reprinted from DIANA FEA User Manual v10.5, section 75.1 (2021) [84].

Using more advanced control procedures such as the arc-length method can mitigate these
errors. In this control procedure, a combination of load and displacement control is used to
constrain the norm of the incremental displacements to a prescribed value. In this sense the
"length" of the incremental step along the solution curve is limited [84]. Our solution procedure
thus cannot overshoot the true solution curve and go to infinity. The Hybrida incremental-
iterative solver built by B.P.F. Holtzer in 2017 [68] uses a unified approach that works with a
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variety of incremental control strategies. In this thesis the arc-length control strategy was used
for all static analyses.

Figure 44: Force-deflection curves displaying snap-back or snap-through behaviour. An example
of an arc-length control method is shown following the snap-through solution curve in figure (a).
Reprinted from DIANA FEA User Manual v10.5, section 75.1 (2021) [84].

A.5.1 Hybrida Incremental-iterative solver for nonlinear static analysis

The incremental-iterative solution procedure implemented in Hybrida was written by Holtzer
(2017) - for a detailed description of his nonlinear finite element solution procedure I refer to
his thesis [68]. A short overview of his method used to perform nonlinear static solutions of
thin-walled structures is given here:

1. Load mesh and set boundary conditions.
2. Set material and shell thickness parameters.
3. Begin load increment by prescribing an external load f̂ext and load scaling parameter β:

(a) Determine new load step size δl
(b) Begin Newton-Raphson iteration:

i. Compute elemental tangent stiffness matrices and assemble into the nonlinear
stiffness matrix corresponding to the latest calculated displacements.

ii. Apply an external force and solve the external and residual force-displacement
equations:

Kδuext = fext (89)
Kδures = r (90)

iii. Compute the iterative load parameter δλ via the arc-length constraint equation
(Holtzer, 2017 [68]):

δλj+1 =


± δl√

δuext
1 · δuext

1 + β2
for j = 0

−
δu1 · δures

j+1

δu1 · δuext
j+1 + β2δλ1

for j ≥ 1

(91)

and add it to the load parameter λ.
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iv. Compute the new external force fext = λ ˆfext.
v. Compute the new iterative displacement and add it to the total displacement:

u = u+ δures + δλδuext (92)

vi. Compute the new internal force fint caused by the latest total displacement.
vii. Compute new residual force r = fext − fint
viii. Compute new error |r|

|r1| .
ix. If the error is larger than a previously specified tolerance, go through the

Newton-Raphson iteration again.

This method was used to compute nonlinear static displacements for a number of benchmarking
problems from Sze, Liu & Lo (2004) [50] as described in subsection 2.1.
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B Parameters and data used in numerical experiments

In this section, the parameters used to generate the data in the numerical experiments of
subsection 2.1 are listed. Additionally, the data from literature that the Hybrida simulations
are compared to is also listed for sake of reproduction.

B.1 Parameters for statics benchmarking tests

Cantilever subjected to end shear force
The parameters and data listed here originate from section 3.1 of Popular Benchmark Problems
for Geometric Nonlinear Analysis of Shells [50].

Figure 45: (a) Constant cross-section cantilever loaded with an end shear force. (b) Deformed mesh
under maximum load. (c) Material constants and geometric parameters used in this experiment.
Adapted from Sze, Liu & Lo (2004) [50].

P/Pmax −Utip Wtip P/Pmax −Utip Wtip P/Pmax −Utip Wtip
0.05 0.026 0.663 0.40 1.184 4.292 0.75 2.541 6.031
0.10 0.103 1.309 0.45 1.396 4.631 0.80 2.705 6.190
0.15 0.224 1.922 0.50 1.604 4.933 0.85 2.861 6.335
0.20 0.381 2.493 0.55 1.807 5.202 0.90 3.010 6.467
0.25 0.563 3.015 0.60 2.002 5.444 0.95 3.151 6.588
0.30 0.763 3.488 0.65 2.190 5.660 1.00 3.286 6.698
0.35 0.971 3.912 0.70 2.370 5.855

Table 1: Data used from Sze, Liu & Lo (2004) in the comparison with Hybrida shown in Figure 13
of a cantilever loaded by an end shear force [50].
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Group Parameter Value
Mesh Element Type s3f

Number of elements 67
Boundary conditions Dirichlet: x, y, z,My = 0 at x = 0

Neumann: +Fz at x = L
Material Young’s Modulus 1.2 MPa

Poisson Ratio 0
Density 2700 kgm−3

Shell Thickness 0.1 m
Incremental-iterative Solver Control Strategy Arc-length

Convergence Norm Force
Iteration step size 0.95
Max. iterations 20
Number of increments 31

Table 2: Experimental parameters used in Hybrida nonlinear static analysis shown in Figure 13
of a cantilever subjected to an end shear force.

Cantilever subjected to end moment
The parameters and data listed here originate from section 3.2 of Popular Benchmark Problems
for Geometric Nonlinear Analysis of Shells [50].

Figure 46: (a) Constant cross-section cantilever loaded with an end moment. (b) Deformed mesh
under maximum load. (c) Material constants and geometric parameters used in this experiment.
Adapted from Sze, Liu & Lo (2004) [50].
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M/Mmax −Utip Wtip M/Mmax −Utip Wtip
0.05 0.196 1.870 0.55 13.073 6.775
0.10 0.774 3.648 0.60 13.871 5.758
0.15 1.699 5.248 0.65 14.377 4.665
0.20 2.918 6.598 0.70 14.595 3.571
0.25 4.361 7.639 0.75 14.546 2.546
0.30 5.945 8.333 0.80 14.270 1.650
0.35 7.585 8.664 0.85 13.818 0.926
0.40 9.194 8.637 0.90 13.247 0.405
0.45 10.688 8.281 0.95 12.621 0.098
0.50 12.000 7.639 1.00 12.000 0.000

Table 3: Data used from Sze, Liu & Lo (2004) in the comparison with Hybrida shown in Figure 15
of a cantilever loaded by an end moment [50].

Group Parameter Value
Mesh Element Type s3f

Number of elements 341
Boundary conditions Dirichlet: x, y, z,My = 0 at x = 0

Neumann: +My at x = L
Material Young’s Modulus 1.2 MPa

Poisson Ratio 0
Density 2700 kgm−3

Shell Thickness 0.1 m
Incremental-iterative Solver Control Strategy Arc-length

Convergence Norm Force
Iteration step size 0.5
Max. iterations 20
Number of increments 395

Table 4: Experimental parameters used in Hybrida nonlinear static analysis shown in Figure 15
of a cantilever subjected to an end moment.

Cantilever subjected to end moment
The parameters and data listed here originate from section 3.3 of Popular Benchmark Problems
for Geometric Nonlinear Analysis of Shells [50].
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Figure 47: (a) Slit annular plate loaded with a line shear force P . (b) Deformed mesh under
maximum load. (c) Material constants and geometric parameters used in this experiment. Adapted
from Sze, Liu & Lo (2004) [50].

P/Pmax WA WB P/Pmax WA WB
0.025 1.305 1.789 0.50 10.468 13.768
0.05 2.455 3.370 0.55 10.876 14.240
0.075 3.435 4.720 0.60 11.257 14.674
0.10 4.277 5.876 0.65 11.620 15.081
0.125 5.007 6.872 0.70 11.970 15.469
0.15 5.649 7.736 0.75 12.310 15.482
0.20 6.725 9.160 0.80 12.642 16.202
0.25 7.602 10.288 0.85 12.966 16.550
0.30 8.340 11.213 0.90 13.282 16.886
0.35 8.974 11.992 0.95 13.590 17.212
0.40 9.592 12.661 1.00 13.891 17.528
0.45 10.023 13.247

Table 5: Data used from Sze, Liu & Lo (2004) in the comparison with Hybrida shown in Figure 18
of a slit annular plate loaded with a line force [50].
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Group Parameter Value
Mesh Element Type s3f

Number of elements 266
Boundary conditions Dirichlet: x, y, z,My = 0 at θ = A+1◦

Neumann: +Fz at θ = A
Material Young’s Modulus 21 MPa

Poisson Ratio 0
Density 2700 kgm−3

Shell Thickness 0.03 m
Incremental-iterative Solver Control Strategy Arc-length

Convergence Norm Force
Iteration step size 0.5
Max. iterations 20
Number of increments 215

Table 6: Experimental parameters used in Hybrida nonlinear static analysis shown in Figure 18
of a slit annular plate subjected to a line force.

B.2 Parameters for verification of Modal Derivatives

L
W

x

y
z

-Fz

L

W

L = 40 mm
W = 20 mm
t = 0.8 mm

Figure 48: Short cantilever plate as discussed in subsection 2.2. Adapted from Tiso (2011) [59].

Group Parameter Value
Mesh Element Type s3f

Number of elements 151
Boundary conditions Dirichlet: x, y, z,My = 0 at x = 0

Neumann: −Fz at x = L, y = W
Material Young’s Modulus 70 GPa

Poisson Ratio 0.3
Density 2700 kgm−3

Shell Thickness 0.0008 m

Table 7: Experimental parameters used in Hybrida to re-create the Static Modal Derivatives in
Figure 21 as computed by Tiso in 2011 [59].
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B.3 Parameters for model order reduction for nonlinear dynamics

Simply supported plate with immovable edges (Amabili, 2004)

x

y

a

b
F

0.5a

0.5b

F

F

Figure 49: Rectangular plate with simply supported immovable edges as discussed in subsubsec-
tion 2.3.1. Adapted from Amabili (2004) and Pilania (2021) [47, 87].

Group Parameter Value
Mesh Element Type s3f

Number of elements 2021
Boundary conditions Dirichlet: x, y, z = 0 at x = 0, a and y = 0, b

Neumann: −z at x = 0.5a, y = 0.5b
Material Young’s Modulus 70 GPa

Poisson Ratio 0.3
Density 2778 kgm−3

Shell Thickness 0.001 m
ROM Vibration Modes ϕ1 (1 DoF) , ϕ1,ϕ5,ϕ11,ϕ16,ϕ21,ϕ38 (6 DoF)

Modal Derivatives ϕ1, θ
ST
11 (2 DoFs, Intrusive SMD)

Modal Damping ζ1 0.065
AUTO Forcing value 1.74

Forcing step size 0.005
Continuation parameter Normalized frequency Ω/Ω0

Continuation range [0.8, 1.8]
Continuation step size 0.005

Table 8: Experimental parameters used in Hybrida nonlinear dynamic analysis shown in Figure 23
of a simply supported plate with immovable edges, shown in Figure 49 [47].
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Simply supported plate with movable edges (Amabili, 2004)

x

y

a

b
F

0.5a

0.5b

F

F

Figure 50: Rectangular plate with simply supported movable edges. Adapted from Amabili (2004)
and Pilania (2021) [47, 87].

Group Parameter Value
Mesh Element Type s3f

Number of elements 2021
Boundary conditions Dirichlet: y, z = 0 at x = 0, a and

Dirichlet: x, z = 0 at y = 0, b
Neumann: −z at x = 0.5a, y = 0.5b

Material Young’s Modulus 70 GPa
Poisson Ratio 0.3
Density 2778 kgm−3

Shell Thickness 0.001 m
ROM Vibration Modes ϕ1 (1 DoF) , ϕ1,ϕ5,ϕ11,ϕ16,ϕ17 (5 DoF)

Modal Derivatives ϕ1, θ
ST
11 (2 DoFs, Intrusive SMD)

ϕ1,ϕ5,ϕ11, θ
ST
11 , θ

ST
15 , θ

ST
1−11, θ

ST
55 , θ

ST
5−11, θ

ST
11−11 (9 DoFs)

Modal Damping ζ1 0.015
AUTO Forcing value 0.49

Forcing step size 0.005
Continuation parameter Normalized frequency Ω/Ω0

Continuation range [0.8, 2.0]
Continuation step size 0.005

Table 9: Experimental parameters used in Hybrida nonlinear dynamic analysis shown in Figure 25
of a simply supported plate with movable edges, shown in Figure 50 [47].
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Vertical Cantilever (Malatkar, 2003)

Figure 51: Vertical cantilever as discussed in subsubsection 2.3.3.

Group Parameter Value
Mesh Element Type s3f

Number of elements 836
Boundary conditions Dirichlet: x, y, z,My = 0 at x = 0

Neumann: +y at x = L = 484.759mm
Material Young’s Modulus 207 GPa

Poisson Ratio 0.3
Density 7810 kgm−3

Shell Thickness 0.00079375 m
ROM Vibration Modes ϕ3 (1 DoF) , ϕ3,ϕ29,ϕ60,ϕ84,ϕ104 (5 DoF),

ϕ3,ϕ29,ϕ60,ϕ84,ϕ104,ϕ122,ϕ152,ϕ180 (8 DoF)
Modal Derivatives ϕ3, θ

ST
33 (2 DoFs, Intrusive SMD)

Modal Damping ζ3 0.00252 for F = 0.0011,
0.002814 for F = 0.00165,
0.003114 for F = 0.0022 (Table 3.5, Malatkar)

AUTO Forcing value 0.0011, 0.00165, 0.0022
Forcing step size 0.05 ∗ Forcing value
Continuation parameter Normalized frequency Ω/Ω0

Continuation range [0.5, 4.0]
Continuation step size 0.0025

Table 10: Experimental parameters used in Hybrida nonlinear dynamic analysis shown in Figures
28 and 29 of the third mode of a vertical cantilever, shown in Figure 51 [44].
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Double clamped MEMS beam (Vizzacarro, 2021)

Figure 52: Double-clamped MEMS beam. Reproduced from Vizzacarro (2021) [83].

Group Parameter Value
Mesh Element Type s3f

Number of elements 96845
Length 0.00100565 m
Boundary conditions Dirichlet: x, y, z,My = 0 at x = 0, L

Neumann: +y at x = 0.5L
Material Young’s Modulus 167 GPa

Poisson Ratio 0.22
Density 2350 kgm−3

Shell Thickness 0.000012 m
ROM Vibration Modes ϕ1,ϕ2,ϕ3,ϕ4,ϕ5,ϕ6,ϕ7,ϕ8,ϕ9,ϕ10 (10 DoFs)

ϕ1,ϕ2,ϕ3,ϕ4, θ
ST
11 , θ

ST
12 , θ

ST
22 , θ

ST
33 , θ

ST
14 , θ

ST
44 (10 DoFs)

Modal Damping ζ1 0.0003333
AUTO Forcing value 1.5 ∗ 10−8 N

Forcing step size 0.05 ∗ Forcing value
Continuation parameter Normalized frequency Ω/Ω0

Continuation range [0.8, 1.2]
Continuation step size 0.0005

Table 11: Experimental parameters used in Hybrida nonlinear dynamic analysis shown in Figure 31
of a double clamped MEMS beam, shown- in Figure 52 [83].
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Double-curved shallow shell (Amabili, 2005)

z

ba

Ry Rx

x y

u v

w

t

Figure 53: Double curved shallow shell with simply supported movable edges. Adapted from
Amabili (2005)[51].

Group Parameter Value
Mesh Element Type s3f

Number of elements 22992
Lengths a, b 0.1 m
Radius of Curvature Rx,Ry 1 m
Boundary conditions Dirichlet: y, z = 0 at x = 0, a and

Dirichlet: x, z = 0 at y = 0, b
Neumann: −z at x = 0.5a, y = 0.5b

Material Young’s Modulus 206 GPa
Poisson Ratio 0.3
Density 7800 kgm−3

Shell Thickness 0.001 m
ROM Vibration Modes ϕ1 (1 DoF)

Modal Derivatives ϕ1, θ
ST
11 (2 DoFs)

Modal Damping ζ1 0.004
AUTO Forcing value 31.2 N

Forcing step size 0.1
Continuation parameter Normalized frequency Ω/Ω0

Continuation range [0.6, 2]
Continuation step size 0.0025

Table 12: Experimental parameters used in Hybrida nonlinear dynamic analysis shown in Figure 31
of a double clamped MEMS beam, shown in Figure 52 [83].
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Circular cylindrical shell (Kurylov, 2011)

R

u
vw

x

O

t

L

Figure 54: Circular cylindrical shell with clamped bottom edge. Adapted from Kurylov (2011)
[58].

Group Parameter Value
Mesh Element Type s3f

Number of elements 98416
L 0.48 m
R 0.24 m
Boundary conditions Dirichlet: x, y, z = 0 at x = 0

Neumann: Fw at x = 0.5L, θ = 0
Material Young’s Modulus 4.65 GPa

Poisson Ratio 0.38
Density 1400 kgm−3

Shell Thickness 0.000254 m
ROM Vibration Modes ϕ1 (1 DoF)

Modal Derivatives ϕ1, θ
ST
11 (2 DoFs)

Modal Damping ζ1 0.0005
AUTO Forcing value 0.0012 N

Forcing step size 0.00005
Continuation parameter Normalized frequency Ω/Ω0

Continuation range [0.8, 1.5]
Continuation step size 0.005

Table 13: Experimental parameters used in Hybrida nonlinear dynamic analysis, results shown in
Figure 34, of a clamped circular cylindrical shell clamped MEMS beam, shown in Figure 54 [58].
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