
Domain Adaptation for Enhancing Visual Hand Landmark Prediction AI in
Infrared Imaging

Application in Early Diagnosis of Leprosy

Vladimir Sachkov1

Responsible Professor: Jan van Gemert1
Supervisors: Zhi-Yi Lin1, Thomas Markhorst1

Examiner: Kaitai Liang1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty
Delft University of Technology,

In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

January 26, 2025

Name of the student: Vladimir Sachkov
Final project course: CSE3000 Research Project
Thesis committee: Jan van Gemert, Zhi-Yi Lin, Thomas Markhorst, Kaitai Liang

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Abstract

In this work, we investigate how domain adapta-
tion techniques can improve the performance of
hand landmark detection models originally trained
on RGB images when deployed on infrared (IR)
data. Our motivation stems from a medical use case
in Nepal, where clinicians require reliable temper-
ature estimation at hand keypoints to detect early
signs of leprosy. We evaluate three methods on a
small IR dataset (80 labeled images & 5000 un-
labeled frames): a shallow adaptation (AdaBN), a
deep alignment approach (Deep CORAL), and a
test-time subspace alignment method (SSA).
Our experiments show that while AdaBN and
SSA yield moderate improvements, Deep CORAL
achieves stronger gains through targeted training of
specific model components. The combination of
these methods produces superior results, yielding
an 11% improvement in percentage of correct key-
points (PCK@0.05) on our custom annotated IR
dataset.
These findings demonstrate that combining
lightweight and deep domain adaptation ap-
proaches can effectively enhance IR hand landmark
detection accuracy without requiring large labeled
datasets, enabling practical deployment for clinical
thermal imaging in resource-limited settings.
Keywords: domain adaptation, infrared imaging,
test-time adaptation, medical imaging, hand land-
mark detection, AdaBN, Deep CORAL, subspace
alignment.

1 Introduction
Motivation. Infrared (IR) imaging is crucial in certain med-
ical scenarios where measuring temperature from hand key-
points is required. For example, leprosy detection relies on
accurate temperature measurements at anatomical joints in
the hand, which are not obtainable from standard RGB im-
ages [17]. Although multiple hand landmark detection meth-
ods can accurately predict 21 skeletal keypoints (as in Figure
2) from RGB images, no model to date is designed to handle
IR images of hands. Collecting a large dataset of annotated
IR hand images is challenging and expensive, motivating us
to investigate whether existing RGB-trained models can be
adapted to the IR domain through domain adaptation.

Domain Adaptation. Domain adaptation is a subfield of
machine learning and transfer learning that addresses the
challenge of training a model on one data distribution (the
source domain) and applying it to a different but related
distribution (the target domain) [20]. In unsupervised do-
main adaptation, the target-domain data have no annotations,
which suits scenarios where labeled IR images are scarce.
Further, test-time adaptation explores adjusting the model at
inference stage, even when the source (RGB) dataset is not
accessible during testing.

Problem Statement. Although the MediaPipe Hands
model [22] and its related versions (e.g., BlazePalm, Blaze-
Hand [24]) utilized in related IR hand landmark detection re-
search conducted by Schemkes [17] have shown high accu-
racy on RGB data, they are difficult to retrain effectively for
new domains due to limited source code and minimal pub-
licly available training layers. These models detect 21 skele-
tal keypoints in each hand (where the points correspond to
anatomical joints), but direct application to IR images signifi-
cantly drops in accuracy. Moreover, our dataset of IR-labeled
images is extremely small (only 80 labeled images, plus 5000
unlabeled images), making standard supervised retraining in-
feasible. This work thus seeks to determine whether unsuper-
vised and test-time domain adaptation methods can improve
IR hand landmark detection without requiring a large, anno-
tated IR dataset.

Approach Overview. We focus on adapting an existing
RGB-based hand landmark detection pipeline for IR im-
ages. Specifically, we use Facebook’s InterWild model [4],
an open-source hand pose estimation framework that offers
greater flexibility for adaptation compared to closed-source
alternatives. We employ three unsupervised domain adapta-
tion strategies and a test-time adaptation approach, avoiding
the need for IR labels and sidestepping the full retraining of
the source model. Because memory and efficiency are also
concerns, we investigate spatial reduction (i.e., reducing in-
put resolution while preserving essential spatial information)
to mitigate computational overhead.

Example IR Images. Figure 1 shows IR examples in which
the hands have different exposures to cold, resulting in partial
occlusion and varying brightness. The left image exhibits a
normal temperature distribution, while the right image dis-
plays colder fingertips:

(a) Infrared hand with no cold
exposure.

(b) Infrared hand with partial
cold exposure.

Figure 1: Example IR images under different temperature conditions
and partial occlusions.

Research Question. Ultimately, this research aims to an-
swer:

To what extent can domain adaptation techniques
improve the performance of a hand landmark de-
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Figure 2: Hand keypoint structure showing the 21 skeletal points
detected per hand.

tection model trained on RGB images when tested
on IR images?

By investigating unsupervised and test-time adaptation, we
test the hypothesis that such techniques can substantially en-
hance IR-based hand keypoint detection under small-labeled-
data constraints. The findings could benefit medical practi-
tioners by providing more robust and accurate IR-based hand
landmark detection, aiding early diagnosis of leprosy and
supporting other domains where IR imaging is critical.

Summary of Contributions. Our work makes several key
contributions to domain adaptation for infrared hand land-
mark detection.

First, we construct and release a novel multimodal dataset
containing aligned RGB-IR image pairs with systematic tem-
perature variations (as seen in Figure 1), annotated with hand
keypoint locations to enable cross-domain validation.

Our comprehensive evaluation framework introduces adap-
tive PCK metrics that account for hand pose variability, cou-
pled with visualization tools that reveal both quantitative im-
provements and qualitative feature alignment patterns.

We implement and evaluate three distinct adaptation ap-
proaches (AdaBN [11], Deep CORAL [18], and SSA [7])
on the InterWild architecture, demonstrating that combined
methods achieve an 11% improvement over baseline through
complementary parameter space optimization on our custom
small-scale IR dataset.

Through extensive experimentation, we observed that spa-
tial reduction techniques like average adaptive pooling can
maintain model accuracy, while reducing computational over-
head, crucial for real-world deployment.

2 Literature Review
Domain adaptation research [5; 23] highlighted three viable
approaches. AdaBN [11] offered simple batch normalization
layer [6] statistic recalibration, compatible with InterWild’s
accessible layers. For deeper adaptation, Deep CORAL
[18] provided covariance alignment through its CORAL loss,
though its joint training requirement posed challenges with
our 200GB source datasets. This made test-time adaptation
methods appealing, though most classification-oriented ap-
proaches [5] proved unsuitable for our regression task.

Regression-specific methods revealed two candidates:
SSA [7] for subspace alignment and RegDA [8] for heatmap
adaptation. While RegDA showed theoretical promise, its

adversarial framework added complexity compared to SSA’s
simpler implementation. Our constrained IR dataset (5000
frames) further favored SSA’s efficient target-only training,
aligning with the practical considerations outlined in Sec-
tion 4.

The final selection—AdaBN for shallow adaptation, Deep
CORAL for feature alignment, and SSA for test-time adap-
tation—balanced performance with our technical constraints:
regression-focused outputs, limited target data, limited com-
putational resources, and large unwieldy source domains.

3 Methodology
3.1 Model Architecture
Model Structure. The InterWild model [14] architecture
was modified to focus solely on 2D skeleton prediction by re-
moving the 3D mesh reconstruction layers. The streamlined
architecture consists of four primary components operating in
sequence:

The body backbone network serves as the initial feature
extractor, processing the input image to generate rich visual
features. These features are then processed by body box net
for hand bounding box detection. The detected regions, along
with the original image, are passed to hand roi net, which ex-
tracts hand-specific features for both left and right hands in-
dependently. Finally, hand detection net processes these fea-
tures to predict the final keypoint coordinates.

The model’s forward pass can be configured to operate
in different modes: full prediction (both detection and key-
points), detection-only using only bbox flag, or keypoint-
only prediction with only hand flag when bounding boxes are
pre-computed. This modular design enables targeted training
and inference optimizations. The complete architecture and
data flow are illustrated in Figure 3.

3.2 Domain Adaptation Methods
Domain Adaptation Techniques implementation.

• AdaBN[11]: A shallow method focusing on re-
estimating batch normalization statistics using the tar-
get (IR) domain. The original paper describes the need
to calculate mean and variance of neuron responses on
all target domain samples for each batch normalization
layer, specifically by concatenating all neuron responses
right before BN layer xj = [..., xj(m), ...] from the
target domain t and computing their statistics as µt

j =

E(xt
j) and σt

j =
√

Var(xt
j), and then those statistics

should be replaced inside each BN layer. But the origi-
nal paper provides no implementation details for modern
deep learning frameworks.
Working with PyTorch’s BatchNorm2d [2] implemen-
tation, several key implementation considerations were
identified. The BatchNorm layers can operate in either
train or eval mode. In eval mode, pre-computed statis-
tics from training are used, while train mode uses current
batch statistics and updates running estimates according
to x̂new = (1 − momentum) × x̂ + momentum × xt,
where x̂ represents accumulated statistics and xt is cur-
rent batch statistics.

3



This understanding led to multiple possible implemen-
tation approaches: directly updating statistics using all
target domain data at once, gradually updating through
batches with momentum, or employing a mixed ap-
proach using different modes for different BN layers.
The implementation required careful tuning of several
hyperparameters, including the batch size for statistics
computation, momentum value for running statistics up-
dates, BN layer modes (train/eval) for different network
components, and the dataset sampling strategy during
inference. These considerations formed the hyperpa-
rameter search space for our AdaBN implementation.

• Deep CORAL [18]: A deep method incorporating a
CORAL loss term to align features between source and
target domains during training. We handle high feature
dimensionality by applying spatial pooling [1] before
computing the covariance-based CORAL loss. Specif-
ically, we use adaptive average pooling, which reduces
spatial dimensions while preserving feature character-
istics by averaging values within dynamically-sized re-
gions. For an input tensor X of size C × H × W , the
output Y of size C ×H ′ ×W ′ is computed as:

Yc,h′,w′ =
1

|Rh′,w′ |
∑

(i,j)∈Rh′,w′

Xc,i,j (1)

where Rh′,w′ represents the set of pixels in the input re-
gion that map to output position (h′, w′), and |Rh′,w′ | is
the size of this region. This operation reduces our fea-
ture maps to C × 1 × 1 before computing the CORAL
loss.
The CORAL loss is defined as:

ℓCORAL =
1

4d2
∥CS − CT ∥2F (2)

where CS and CT are the feature covariance matrices
from the source and target domains respectively, d is the
feature dimension, and ∥·∥2F denotes the squared Frobe-
nius norm, as defined in [18].
The total loss for each module combines task-specific
supervision losses with the CORAL loss:

Lbody = Lbbox + λℓbody
CORAL (3)

Lhand = Lkp + λℓhand
CORAL (4)

where Lbbox represents the bounding box detection
losses, Lkp is the keypoint prediction loss (computed as
absolute coordinate differences), λ is the CORAL loss
weight, and ℓbody

CORAL and ℓhand
CORAL are the CORAL losses

computed at the body and hand feature levels respec-
tively.
This loss was applied at two levels of the model, as
shown in Figure 3. This is done since, model con-
tains two different feature representations, one for de-
tecting bounding boxes, and one for hand keypoints.
To facilitate efficient training and feature alignment, we

Figure 3: Schematic representation of Deep CORAL training pro-
cess in the InterWild model. The model consists of two main mod-
ules: (1) hand detection module (left) with body backbone (feature
extractor, green) and body box net (box predictor, purple), and (2)
keypoint prediction module (right) with hand roi net (feature ex-
tractor, green) and hand detection net (keypoint predictor, purple).
CORAL loss aligns feature representations between source (RGB)
and target (IR) domains at both feature extractor outputs, while su-
pervision losses are computed from predictor outputs.

modified the model’s forward method to process both
target and source domain batches simultaneously, en-
abling CORAL loss computation at both feature lev-
els. Coral weight is a crucial hyperparameter for this
method, since by increasing it too much we could
achieve higher feature consistency across domain, but
lose model’s predictive power.

• SSA (Test-time Adaptation for Regression by Sub-
space Alignment) [7]: A test-time adaptation technique
specifically designed for regression tasks that operates
only on the target domain during training. SSA up-
dates only the affine parameters (γ and β) of BN layers
(only for feature extraction layers, body backbone and
hand roi net in our case), while keeping other weights
frozen.
The method addresses a key challenge in regression
models where features tend to be less diverse than in
classification tasks, often distributed in a small subspace
with many dimensions having zero variance. This makes
naive feature alignment unstable due to variance terms in
the denominator of KL divergence calculations.
SSA performs subspace detection by computing covari-
ance matrices, and means of source domain features
from body backbone and hand roi net, calculating their
eigenvectors and eigenvalues, projecting target domain
features onto the space mapped by top-K eigenvectors,
computing mean and variance of the projected vectors,
and finally calculating the loss between two Gaussians
in this subspace, where the source distribution has zero
mean and eigenvalues as variance.
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The projection of target domain features into the source
subspace is given by:

zti = Vs(zti − µs), (5)

where zti represents the i-th target domain feature vector,
Vs is the matrix of top-K eigenvectors from the source
domain, and µs is the mean of source domain features.
The SSA loss is defined as:

LTTA(ϕ) =

K∑
d=1

{DKL(N (0, λs
d)∥N (µ̃t

d, σ̃
t2
d ))+

DKL(N (µ̃t
d, σ̃

t2
d )∥N (0, λs

d))}

(6)

where K represents the number of top eigenvectors
used for projection and λs

d are eigenvalues from the
source domain. The terms µ̃t

d and σ̃t
d represent the

mean and standard deviation of projected target features,
while DKL represents the Kullback-Leibler divergence
between two Gaussian distributions. Note that we ig-
nored the importance weights αd from the original pa-
per in our experiments, as they were derived for linear
regression layers, while our model uses heatmap regres-
sion with convolution layers and softmax.
Due to memory constraints with large feature dimen-
sions ([2048, 8, 8] and [2048, 8, 6]) in body backbone
and hand roi net respectively, we had to adapt our ap-
proach to feature alignment.
We explored two approaches: using spatial pooling
(1x1) to reduce feature size to [2048, 1, 1], and com-
puting separate covariance matrices for each spatial po-
sition [2048, i, j]. Note that, spatial position covariance
matricies were only calculated for body features because
of the limited computational resources. Computation
of source statistics were done on all of the images in
COCO-WholeBody, and InterHand2.6M datasets.

3.3 Evaluation Framework
To comprehensively assess model performance, we devel-
oped a flexible evaluation framework that incorporates mul-
tiple complementary metrics. The framework is built around
a custom PyTorch Dataset [3] implementation that manages
both training and evaluation data, featuring a specialized
HandLandmarks class for efficient storage and manipulation
of hand keypoint annotations and images. This dataset class
can perform self-evaluation with any trained model, gener-
ating comprehensive performance reports with configurable
metrics. The framework supports custom annotation formats
and provides built-in visualization capabilities for qualitative
analysis, allowing researchers to visually inspect prediction
quality alongside quantitative metrics. Evaluation framework
was also used during training of the models, to evaluate vali-
dation dataset using PCK and IOU metrics after each epoch,
in most of the graphs provided later adaptive PCK was chosen
as the primary metric. The complete implementation of these
metrics and evaluation framework is available in our public
GitHub repository [3].

PCK Metrics. Our primary evaluation metric is the Per-
centage of Correct Keypoints (PCK), which we implement in
two variants. Following [25], the first variant considers a pre-
diction correct if its distance from the ground truth is within
α = 0.05 of the image size. Additionally, we introduce an
adaptive PCK threshold that scales with hand size and pose.
While previous work [13] normalizes based on the distance
between specific finger landmarks (e.g., between middle and
lower points of the middle finger), our approach uses the min-
imum distance between any two ground truth keypoints as
the normalization factor. This adaptive threshold ensures fair
comparison across varying hand scales and poses, particu-
larly important for our domain adaptation scenario.

Figure 4: Example visualization produced by our evaluation frame-
work showing hand landmark predictions (shown in blue) connected
by lines to corresponding ground truth annotations (shown in green).

The framework includes a visualization module that over-
lays predicted landmarks with ground truth annotations,
color-coding points based on their PCK accuracy (as shown in
Figure 4). This visual feedback helps in identifying system-
atic errors and understanding model behavior across different
hand poses and lighting conditions.

Bounding Box Evaluation. To evaluate the accuracy of
hand detection, we compute the Intersection over Union
(IoU) between predicted and ground truth bounding boxes for
both hands. The final score is the average IoU across both
hands per image. For cases where ground truth annotations
lack explicit bounding box information, we derive boxes from
keypoint coordinates by computing the minimum rectangular
region containing all landmarks. The IoU is calculated as:

IoU =
|Bpred ∩Bgt|
|Bpred ∪Bgt|

(7)

where Bpred and Bgt represent the predicted and ground
truth bounding boxes respectively.

4 Experimental Setup and Results
4.1 Implementation Details
Hardware and Software Environment. Our experiments
were conducted on a single GPU-enabled workstation
equipped with an RTX4060 (8GB VRAM).
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Table 1: Performance comparison across different adaptation methods

Method Full Dataset Cleaned Dataset
IOU PCK@0.05 APCK IOU PCK@0.05 APCK

InterWild (baseline) 0.625 0.656 0.498 0.718 0.777 0.650
AdaBN 0.654 0.676 0.524 NA NA NA
Deep CORAL (hand) 0.675 0.741 0.585 0.763 0.840 0.705
SSA (body) 0.646 0.693 0.543 0.710 0.753 0.635
Deep CORAL + AdaBN (best) 0.682 0.756 0.596 NA NA NA
SSA (body) + AdaBN (best) 0.656 0.704 0.553 NA NA NA
SSA (body) + DeepCORAL (hand) 0.717 0.780 0.617 0.787 0.874 0.727

The implementation utilized PyTorch (2.5.1+cu124) [16]
and Python 3.10.11 for model training and evaluation.

During development, we extensively tuned hyperparame-
ters for both AdaBN and Deep CORAL approaches.

For AdaBN, this included optimizing batch size, BN mo-
mentum, dataset splits, and BN layer train mode activation
criteria.

The Deep CORAL implementation required careful tuning
of CORAL loss weight, spatial pooling kernel sizes, learn-
ing rate, batch size, data splits, number of epochs, and layer
freezing strategies.

Datasets. Our experiments utilized three main datasets:

• Source Domain Dataset: For domain adaptation, we
used two large RGB datasets: COCO-WholeBody [9]
(∼20GB) and InterHand2.6M [15] (∼160GB). These
datasets provided source domain statistics for methods
such as Deep CORAL and SSA.

• Target Domain Dataset: We utilized 5000 IR frames
extracted from medical videos [10], sampled at 1 FPS
to ensure diversity. Approximately 500 frames were re-
moved during manual cleaning to exclude transitions be-
tween patient hand switches, resulting in 4500 frames
containing clear hand presentations. For training sce-
narios involving the hand module, we generated bound-
ing box annotations using Grounding DINO [12]. The
consistent camera positioning and standardized hand
placement allowed us to optimize the detection process
by analyzing half-frames, which also provided reliable
left/right hand classification.

• Labeled RGB+IR Dataset: We created a validation
dataset of 160 images (80 IR and 80 corresponding
RGB) using 5 subject hands. The collection included
systematic variations in:

– Temperature Conditions: Eight cooling patterns:
(1) no cooling, (2) hands briefly submerged in wa-
ter, (3-7) 1 to 4 fingers cooled for 30s, and (8)
whole hand cooled for 30s

– Backgrounds: Two different surfaces: rubber mat
and plastic tabletop

Additionally, we created a separate cleaned dataset of
25 images where all fingers were clearly visible and no
cooling was applied. This subset allowed us to evalu-
ate model performance under optimal conditions with-
out the challenges introduced by temperature variations.

All annotations follow a standardized JSON format (see
Appendix A for details).

4.2 Results and Observations
Baseline Performance (No Adaptation). Our baseline
model (InterWild without domain adaptation) was initially
evaluated on a set of 80 IR images. For a constant thresh-
old PCK@0.05, we recorded a baseline PCK of 0.608, and
an IOU of 0.625, but on a cleaned dataset it reached 0.718
and 0.777 respectively, which shows that interwild perfroms
better even on infrared data if the hands are visible.
AdaBN. AdaBN provided moderate improvements of
about +3%. For IOU, baseline performance was sometimes
slightly improved, although not significantly. For a constant
threshold PCK, the best AdaBN configuration reached 0.644
with an IOU of 0.654. Hyperparameter tuning have shown
that adding additional target domain data (which was 5000
frames from videos) in addition with data which the model
will be tested only decreased the results, as well as manual
update of the BN statistics after inference on entire dataset,
outlining the most important hyperparameters which are BN
layer momentum parameter and batch size.
Deep CORAL. We conducted domain-adaptive experi-
ments with Deep CORAL, focusing primarily on the hand
keypoint detection module while using ground truth bound-
ing boxes during training. This decision was motivated by
our observation that hand localization in the IR domain is rel-
atively straightforward, with hands being the dominant ob-
jects in each frame. This was validated by the high accuracy
of the Grounding DINO model (trained on RGB) to produce
bbox annotations for IR images. However several experiment
were conducted on training body module as well, achieving
an IOU of 0.57 (compared to 0.55 baseline) acting as a proof
that improvement is possible.

For the keypoint detection training, we implemented Deep
CORAL under several hardware-imposed constraints. We
used a 1×1 kernel for average adaptive pooling [1] and re-
stricted the batch size to 12 samples. Following the orig-
inal paper’s recommendations, we unfroze all layers in the
hand roi net module while keeping other layers frozen, and
set the learning rate of the last layer (layer4) 10 times higher
than other layers (0.001 vs 0.0001). We also experimented
with freezing additional layers, though this did not yield bet-
ter results. The training process jointly optimized the original
InterWild keypoint loss and CORAL loss.

Figure 5 shows the training progression through three
key metrics. The joint img loss represents the orig-
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inal InterWild loss for keypoint detection accuracy on
the source domain, while hand coral loss tracks the
CORAL loss during training. Additionally, we monitored
validation hand coral loss, which calculates CORAL
loss on unseen validation data. An interesting pattern emerges
in these curves: the CORAL loss rapidly decreases in the ini-
tial epochs, regardless of the chosen coral weight and learn-
ing rate parameters. This behavior likely stems from the sig-
nificant size and diversity disparity between our source and
target domains. The model quickly learns to align the limited
target domain features with the source domain, after which
the joint loss becomes the dominant training signal. This
is reflected in the validation curves (Figure 6), where accu-
racy initially decreases as the model adapts to the domain
shift, then gradually recovers as it continues training with the
already-aligned feature representations.

Figure 5: Training Metrics and Coral Body Feature alignment over
60 epochs. The joint img loss (green) represents the original In-
terWild loss for keypoint detection, hand coral loss (red) tracks the
CORAL loss during training, and validation hand coral loss (pur-
ple) shows CORAL loss on unseen validation data. The consis-
tent reduction in validation CORAL loss indicates successful feature
alignment between domains.

Figure 6: Validation PCK (IR subset of 80 images) and IOU for
Deep CORAL over 60 epochs.

SSA Method. We then investigated the Subspace Align-
ment (SSA) approach, which trains primarily on the target
domain. By doing so, and as the original SSA paper [7]
suggests, we were able to freeze most of the model param-
eters except for the BN layers, thus allowing batch sizes as
large as 64. Larger batch sizes not only accelerate training

but also provide better estimation of target domain statistics,
since SSA loss is based on the mean and variance of the batch.

Analysis of feature spaces revealed interesting sparsity pat-
terns in our model’s representations (Table 2). The source
domain statistics were computed through a two-pass process
over the combined MSCOCO and InterHand2.6M datasets
(approximately 200GB). The first pass calculated mean fea-
ture values across both body and hand features using the full
feature space. The second pass computed the global covari-
ance matrix using previous computed mean values iteratively,
making use of spatially pooled features of size [2048, 1,
1]. Analysis of resulting covariance matrices revealed that
the body backbone maintained full rank with all 2048 di-
mensions having significant variance, the hand roi net ex-
hibited substantial sparsity with only 1265 valid dimen-
sions (variance > 1e − 10). This observation aligns with
SSA’s core premise that regression features often concentrate
in lower-dimensional subspaces, particularly evident in the
hand roi net’s compact 7-dimensional subspace compared to
body backbone’s 175 dimensions.

Table 2: Feature space dimensionality analysis for SSA

Module Total dims Valid dims Subspace dims
body backbone 2048 2048 175
hand roi net 2048 1265 7

We started by adapting the body backbone portion of the
model (accounting for around 0.16% of total parameters).
An AdamW optimizer was employed with a weight decay of
0.01. Two principal SSA hyperparameters were explored:

1. The subspace dimension K retained during the align-
ment, where literature suggests K = 100 as a highly
effective choice.

2. The learning rate schedule.

In our experiments, K = 100 was not always optimal, so we
tested multiple values. Figure 7 (training) and Figure 8 (val-
idation) demonstrate a clear positive trend, with validation
performance typically converging after 1–3 epochs. Through
SSA on just the body backbone, we achieved an adaptive
PCK of 0.543 (+4% from the baseline of 0.50) and an IOU
of 0.646 (+0.02 from baseline of 0.625).

Figure 7: SSA training curves (body backbone). Loss converges
within the first few epochs.
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Figure 8: SSA validation curves (body backbone). Validation accu-
racy typically stabilizes after 1–3 epochs, yielding about 0.50 PCK
and 0.40 IOU.

To further investigate spatial constraints, we considered
computing separate covariance matrices for each spatial loca-
tion of the feature map (e.g., a 2048×8×6 feature map leads
to 48 covariance matrices). The aggregated SSA losses did
not improve performance, potentially due to the large num-
ber of subspace alignment objectives. Training curves with
this spatial extension can be seen in Appendix B.

Lastly, we explored adapting the hand roi net module us-
ing a similar SSA pipeline, starting from the best checkpoint
for the body backbone. Various subspace dimensions (K val-
ues from 5 to 300) and learning rates (ranging from 1× 10−5

to 5 × 10−2) were tested, but no improvement over baseline
was observed (see Appendix C for training curves). A likely
reason is that hand roi net receives bounding boxes (RoIs)
that are already suboptimal in IR data, so optimizing BN
layers alone may be insufficient. The experiments feeding
hand roi net with ground truth bboxes from RGB Data also
have not shown any improvements, although proper hyperpa-
rameter tuning could potentially improve the results.

(a) Body - No adapt. (b) Body - SSA

(c) Hand - No adapt. (d) Hand - CORAL

Figure 9: PCA vis. Red: IR, blue: RGB.

Feature Space Visualization Analysis. To further validate
the effectiveness of our adaptation methods, we conducted

(a) Before AdaBN application

(b) After AdaBN application

Figure 10: t-SNE mapped 2-dimensional representation of fea-
ture distributions from the last three batch normalization layers in
hand roi net module. The x and y axes show t-SNE’s first and sec-
ond components (t-SNE 1 and t-SNE 2) respectively. Red points
represent target domain (IR) features, while blue points represent
source domain (RGB) features. The visualization demonstrates how
AdaBN helps align the feature distributions between domains.

feature space visualizations comparing both domains before
and after applying each adaptation technique.

Figure 9 presents PCA visualizations using the two most
significant components of feature outputs from both the
hand roi net (for Deep CORAL) and body backbone (after
SSA) modules. The visualizations demonstrate clear evi-
dence of feature alignment, though the nature of this align-
ment differs between methods. While both domains’ features
show increased proximity post-adaptation, they maintain dis-
tinct clusters rather than complete overlap.

This partial separation can be attributed to our use of av-
erage adaptive pooling, which, while necessary due to com-
putational constraints, resulted in some information loss that
prevented complete feature space alignment.

In contrast, Figure 10 shows t-SNE visualizations of fea-
ture distributions in the final batch normalization layer of
hand roi net before and after applying AdaBN. These visu-
alizations reveal nearly complete feature alignment between
source and target domains. However, despite achieving the
strongest feature correlation among our methods, AdaBN’s
performance improvements were more modest compared to
other approaches. This observation suggests that while adapt-
ing batch normalization statistics is beneficial, comprehen-
sive domain adaptation requires modifications beyond just the
BN layers.

Ensemble of Methods and Performance Analysis. We
evaluated our adaptation methods both individually and in
combination, testing on both the full IR test set and a cleaned
subset (where all fingers are clearly visible). The comprehen-
sive results are presented in Table 1.

AdaBN alone showed modest improvements (+2-4%) but
proved unstable, requiring extensive hyperparameter tuning
across batch sizes and momentum values. Its effectiveness di-
minished when combined with other methods, likely because
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both CORAL and SSA inherently update batch normalization
statistics during training. Additionally, AdaBN’s evaluation
on our limited IR dataset may have constrained its potential.

The most effective approach combined SSA and Deep
CORAL methods, which target complementary parts of the
model (body backbone and hand roi net respectively). This
combination yielded an 11% average improvement over base-
line, surpassing all other configurations. Adding AdaBN to
this ensemble provided no additional benefits, as both major
model components were already well-adapted to the target
domain via BN statistics refinement during training.

For evaluation, we used two PCK variants: PCK@0.05
(fixed threshold at 5% of image size) and APCK (adap-
tive threshold based on minimum inter-keypoint distance).
The baseline InterWild model showed significantly better
performance (+9%) on the cleaned dataset compared to the
full dataset, highlighting the impact of finger visibility on
model performance. However, the relative improvements
from our adaptation techniques remained consistent across
both datasets, suggesting that our adapted models success-
fully address both the RGB-to-IR domain shift and demon-
strate improved robustness to finger occlusions and visibility
challenges.

5 Discussion
Our results show that lightweight domain adaptation meth-
ods can meaningfully improve IR hand landmark detec-
tion without exhaustive retraining. In particular, we ob-
served that aligning earlier feature extraction layers (the
body backbone) with Subspace Alignment (SSA) addresses
much of the IR domain shift, while adapting hand-specific
modules remains limited by imperfect bounding boxes. No-
tably, combining SSA on the body backbone and Deep
CORAL on the hand roi net brought an 11% gain in PCK
over the baseline. This pattern highlights the importance
of module-specific strategies for domain adaptation in tasks
where errors propagate from body to hand levels.

Adopting simpler approaches also paid off: AdaBN alone
improved PCK by roughly 3–4% with minimal GPU mem-
ory usage. However, its impact diminished when paired
with more complex methods that inherently update batch-
normalization statistics. Despite hardware constraints re-
stricting our batch sizes—undermining some theoretical ad-
vantages of Deep CORAL—both Deep CORAL and SSA
demonstrated effectiveness when carefully tuned. Compared
to the original model, these methods placed less emphasis on
large-scale source training and more on fitting IR-specific dis-
tributions through adjustment of key parameters.

In analyzing cleaned IR images (where fingers are fully
visible), we found that a significant fraction of the perfor-
mance gap stems from physical limitations: ”thermal van-
ishing” occurs when finger temperature aligns with ambient
conditions. This effect underscores that even the best-adapted
models cannot fully recover missing thermal cues. As a re-
sult, our findings confirm that external factors such as visibil-
ity of hands— beyond modeling choices—impact IR perfor-
mance.

Given the results here, we recommend modular adaptation

pipelines, where early layers undergo thorough domain align-
ment and later layers incorporate specialized corrections or
complementary sensing to mitigate thermal vanishing issues.

Limitations The most critical limitation of this study was
hardware constraints, specifically our 8 GB VRAM capacity,
which prevented full model training for more advanced meth-
ods like Deep CORAL. As a result, we only trained separate
modules and could not investigate or align the entire feature
space due to the prohibitive size of the covariance matrix. Ad-
ditionally, these memory constraints impeded thorough hy-
perparameter tuning for Deep CORAL and disallowed larger
batch sizes, prolonging the experimental process even though
our dataset was relatively small (5,000 images). Another ma-
jor limitation lies in the availability and diversity of the in-
frared data itself. The frames—extracted at a rate of 1 fps
from videos where hands always remained in the same po-
sition—did not provide the necessary variability to adapt the
model to a wider range of infrared hand detection scenarios.
Furthermore, the evaluation of our adaptation methods (pre-
sented in Table 2) was conducted on only 80 infrared images
annotated by our research team, which is not a sufficiently
large sample size to robustly validate the reported improve-
ments in model performance.

6 Conclusion and Future Work
Most existing domain adaptation techniques like Ad-

aBN [11] and Deep CORAL [18] were developed several
years ago and Deep CORAL [18] paper experiments primar-
ily focused on classification tasks (thus tailored differently
in their implementation details), whereas our work requires
a regression-oriented approach for hand landmark detection
with heatmap regression.

Although recent methods such as SSA [7] from 2024
specifically address domain adaptation in regression settings,
they do not incorporate the latest advanced deep learning in-
novations, particularly attention-based techniques that have
sparked interest in medical and computer vision applica-
tions [19].

Moreover, large-scale synthetic IR data generation and
augmentation strategies—inspired by works that leverage
synthetic data for more robust training [14] and guided by
IR scene simulation methodologies [21]—could significantly
enhance model performance. Specifically, combining syn-
thetic IR images with real data, collected under diverse con-
ditions, would yield a broader distribution of thermal hand
poses for training.

In addition, prior work such as RegDA [8] has shown
promise for unsupervised domain adaptation in keypoint de-
tection (also leveraging heatmap regression, which is used
in InterWild). Integrating these insights, alongside deeper
networks with attention, likely offers a fruitful direction for
achieving robust, clinically viable IR-based hand landmark
detection.

Overall, while shallow domain adaptation shows promise,
deep methods require substantial computational and data re-
sources. Future work will focus on bridging this gap to de-
liver clinically viable IR-based hand landmark detection.
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7 Responsible Research
The study implements ethical considerations through in-
formed consent processes where participants were explicitly
asked about their willingness to include hand images in a
publicly available dataset. Data collection followed strict
anonymization protocols, with all images undergoing mask-
ing procedures to protect identities. While the research mo-
tivation originated from leprosy detection needs, the techni-
cal focus specifically addresses domain shift challenges be-
tween RGB and infrared modalities for hand keypoint pre-
diction under constrained computational resources and small
target domain datasets. Any medical applicability claims
would require additional validation through larger clinical
studies involving certified practitioners and more comprehen-
sive evaluation frameworks. For transparency, the complete
experimental codebase - including training implementations,
evaluation framework, and data visualization tools - will be
archived in TU Delft’s institutional repository and is publicly
available on GitHub [3], utilizing only open-source datasets
and model architectures. The final model weights demon-
strating optimal performance through combined adaptation
methods (AdaBN and Deep CORAL) will be published to en-
able result verification, though potential result variations may
occur due to unset random seeds during training. LLM tools
(Claude Sonnet 3.5) were employed solely for text summa-
rization and grammatical corrections, with no algorithmic or
conceptual contributions from generative AI systems.

A Dataset Annotation Format
The keypoint annotations in our dataset follow a standardized
JSON format as shown below:

[{
"image": "image_name.jpg",
"width": 1080,
"height": 1440,
"landmarks": [

[ // First hand
{"x": 0.5744, "y": 0.6187}, // keypoint
// ... 21 keypoints total

],
[ // Second hand

{"x": 0.4343, "y": 0.5856}, // keypoint
// ... 21 keypoints total

]
],
"normalized": true

}]

B Additional SSA Training Curves
C SSA Training Curves for Hand ROI Net

Figure 11: SSA training curves with spatial covariance matrices.
Computing 48 additional losses proved computationally heavy.

Figure 12: SSA validation curves with spatial covariance approach.
No improvement was observed compared to the simpler SSA vari-
ant.

Figure 13: SSA training curves for the hand roi net module. Signif-
icant parameter unfreezing required, reducing batch size to 16 due
to VRAM constraints.

Figure 14: SSA validation curves for the hand roi net module. No
improvement was observed, possibly due to suboptimal bounding
box inputs.

10



References
[1] Pytorch documentation: AdaptiveAvgPool2d.

https://pytorch.org/docs/stable/generated/torch.nn.
AdaptiveAvgPool2d.html. Accessed: 2024.

[2] Pytorch documentation: BatchNorm2d. https://pytorch.
org/docs/stable/generated/torch.nn.BatchNorm2d.html.
Accessed: 2024.

[3] EraChanZ. Research project: Domain adaptation for
hand pose estimation. https://github.com/EraChanZ/RP,
2024. GitHub repository.

[4] Facebook Research. Interwild: 3D interacting
hands recovery in the wild. https://github.com/
facebookresearch/InterWild, 2023. GitHub repository.

[5] Hao Guan and Mingxia Liu. Domain adaptation for
medical image analysis: A survey. IEEE Transactions
on Biomedical Engineering, 2021.

[6] Sergey Ioffe and Christian Szegedy. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[7] Yihua Jiang, Jiawei Ren, Jianfei Gu, and Yong Jiang.
Test-time adaptation for regression by subspace align-
ment. arXiv preprint arXiv:2410.03263, 2023.

[8] Yihua Jiang, Jiawei Ren, Haoxuan Sun, Jianfei Gu,
and Yong Jiang. Regressive domain adaptation
for unsupervised keypoint detection. arXiv preprint
arXiv:2103.06175, 2021.

[9] Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu,
Chen Qian, Wanli Ouyang, and Ping Luo. Whole-body
human pose estimation in the wild. In Proceedings of
the European Conference on Computer Vision (ECCV),
2020.

[10] A. Knulst. Personal communication, 2024. Medical
video dataset for hand pose estimation research.

[11] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying
Liu, and Xiaodi Hou. Revisiting batch normaliza-
tion for practical domain adaptation. arXiv preprint
arXiv:1603.04779, 2016.

[12] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. Grounding dino: Marrying dino
with grounded pre-training for open-set object detec-
tion. arXiv preprint arXiv:2303.05499, 2023.

[13] MathWorks. Hand pose estimation using HRNet deep
learning. https://www.mathworks.com/help/vision/ug/
hand-pose-estimation-using-hrnet-deep-learning.html,
2024. Online documentation.

[14] Gyeongsik Moon. Bringing inputs to shared domains
for 3D interacting hands recovery in the wild. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2023.

[15] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shira-
tori, and Kyoung Mu Lee. Interhand2.6m: A dataset and
baseline for 3D interacting hand pose estimation from a

single RGB image. In European Conference on Com-
puter Vision (ECCV), 2020.

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Yang, Zach
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