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ABSTRACT Traditional methods such as Steinmetz’s equation (SE) and its improved variant (iGSE) have
demonstrated limited precision in estimating power loss for magnetic materials. The introduction of Neural
Network technology for assessing magnetic component power loss has significantly enhanced accuracy. Yet,
an efficient method to incorporate detailed flux density information—which critically impacts accuracy—
remains elusive. Our study introduces an innovative approach that merges Fast Fourier Transform (FFT)
with a Feedforward Neural Network (FNN), aiming to overcome this challenge. To optimize the model
further and strike a refined balance between complexity and accuracy, Multi-Objective Optimization (MOO)
is employed to identify the ideal combination of hyperparameters, such as layer count, neuron number,
activation functions, optimizers, and batch size. This optimized Neural Network outperforms traditionally
intuitive models in both accuracy and size. Leveraging the optimized base model for known materials,
transfer learning is applied to new materials with limited data, effectively addressing data scarcity. The
proposed approach substantially enhances model training efficiency, achieves remarkable accuracy, and
sets an example for Artificial Intelligence applications in loss and electrical characteristic predictions with

challenges of model size, accuracy goals, and limited data.

INDEX TERMS Power magnetics, core loss, data-driven method, neural network.

I. INTRODUCTION
The empirical Steinmetz Equation (SE), introduced in 1890,
has long served as the basis of the standard modeling
techniques for loss estimation in power magnetics. Despite
various improvements, such as iGSE and i2GSE, the ac-
curacy of these curve-fitting techniques is still relatively
low [1], [2]. The imprecise model will lead to a rough
magnetic design. Thus, a large design margin is needed
to achieve an acceptable loss performance of the magnetic
components.

The 2023 MagNet Challenge [3], [4], [5], [6], led by Prince-
ton University, focuses on improving the Steinmetz equation

by leveraging an extensive dataset encompassing diverse ma-
terials, frequencies, waveform shapes, and temperatures. The
objective is to develop innovative and refined data-driven
methods to deepen the power electronics community’s grasp
of magnetic core properties, particularly in core loss. Exten-
sive data for ten known materials and limited data for five un-
known materials were released consecutively. The final eval-
uation criteria are based on the accuracy of loss prediction for
the five unknown materials and the complexity of the model.
To accurately predict the loss of magnetic material, one
possible approach is using neural networks. Neural networks
have been utilized in the modeling of magnetic hysteresis
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FIGURE 1. Three approaches for modelling magnetic material properties
using neural networks: (a) scalar values to scalar values, (b) time series
signals to scalar values, (c) time series signals to time series signals.

loops, as referenced in [7], [8]. However, using hysteresis
loops as an indirect predictor of power loss can introduce
notable inaccuracies in the estimation of core losses due to
minor phase discrepancies, as discussed in [5].

A more effective approach involves employing neural net-
works to directly predict the power loss and temperature
of magnetic components [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19]. Reference [9] introduced Neural
Network-aided Loss Maps (NNALMs) for both inductors and
transformers, taking load conditions as inputs to predict both
winding and core losses with an average error of less than
10%. Additionally, a Knowledge-Aware Artificial Neural Net-
work (KANN) was developed in [11], [12], incorporating the
output of the SE function or iGSE function as one of the inputs
to a Feedforward Neural Network (FNN), thereby achieving
high accuracy even with limited training datasets. Due to the
minimal computational demands of trained FNNs, Reference
[14] proposed utilizing two FNNSs to predict real-time maxi-
mum temperatures and loss distributions in medium frequency
transformers. Reference [10] employed a Convolutional Neu-
ral Network (CNN) to forecast inductance and core loss. One
area for further investigation in these studies is the inclusion
of detailed flux density waveform information, which has the
potential to significantly enhance the accuracy of power loss
predictions.

Based on extensive open-source magnetic materials data
provided by MagNet [20], the current state-of-the-art method-
ologies in this field are those presented in [5], which include
various neural network structures such as the Feedforward
Neural Network (FNN), Long Short-Term Memory (LSTM),
and the Encoder-Decoder structure, as depicted in Fig. 1(a),
(b), and (c) , respectively. The FNN uses a four-layer FNN,
taking peak flux density B, duty ratio D, and fundamental
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FIGURE 2. Proposed FNN with FFT structure. The Magnetic Flux Density is
first decomposed into harmonics using FFT, then fed into the FNN.

frequency f to predict core loss density Py. The disadvantage
of this method is that the B waveform shape information
cannot be included by only using the peak flux density value.
One possible approach is to train different FNNs for different
B waveforms. However, there are an unlimited number of B
waveform shapes. Thus, it is impractical to first categorize and
then design separate FNNs for each case.

To effectively capture the waveform shape information of
the flux density, other advanced neural networks can be ap-
plied, e.g., LSTM and encoder-decoder structures. LSTM and
encoder-decoder architectures offer enhanced temporal data
processing and sequence-to-sequence prediction capabilities
[21], [22], outperforming traditional FNNs in handling long-
term dependencies and complex patterns in time-series data.
However, these models are more complex and require longer
training time, which can be a critical drawback in practical
applications where large volumes of data need to be processed
with limited computational resources. Section III will analyze
these advanced methods in detail.

To effectively encapsulate the information of the B wave-
form while reducing model complexity, employing FFT (Fast
Fourier Transform) in conjunction with FNN presents a more
efficient approach. This paper employs the FFT to convert
the waveform data into its harmonic components. These har-
monics are subsequently utilized as inputs for the FNN. This
approach limits the number of parameters and decreases the
complexity; thus, the training time is considerably shorter
compared to other more complex methods. To the best of the
authors’ knowledge, this is the first research to integrate FFT
with FNN for estimating magnetic power loss.
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In the AI modeling process, a common dilemma is bal-
ancing model size with accuracy, where a model with more
parameters typically offers higher accuracy but demands
greater computational resources and larger dataset. The trade-
off among various alternatives for generating the FNN dataset
is analyzed in [13]. References [15], [16] are concentrated
on optimizing the number of layers and neurons in neural
networks. Reference [17] demonstrated that the GELU activa-
tion function and Huber loss function outperform the RELU
activation function and MSE loss function. Despite these ad-
vancements, there remains an evident gap in the systematic
optimization of neural network hyperparameters for magnetic
component power loss estimation applications.

A viable solution to this challenge is implementing Multi-
Objective Optimization (MOO) [23], where accuracy and the
number of parameters are set as objectives. This approach
facilitates the identification of optimal model hyperparame-
ters from the generated Pareto Front, effectively resolving the
trade-off between complexity and performance. In this study,
Optuna is employed for MOO, which is an efficient hyperpa-
rameter optimization framework renowned for its simplicity
and flexibility in various optimization tasks [24].

Although the methods mentioned above are sufficient for
materials with extensive data, in real-world applications, engi-
neers may not be able to measure a large amount of data when
dealing with new materials. Yet, there is often a need to pre-
dict the performance of new materials quickly and accurately,
which is exactly the goal of the Magnet competition. In such
situations, transfer learning can play a significant role [25],
[26]. Transfer learning allows the application of knowledge
acquired from extensive datasets of known materials to predict
the characteristics of new materials, even with limited data.
This approach is particularly effective in reducing the need
for extensive data collection for new materials, thereby accel-
erating the prediction process while maintaining accuracy.

In summary, the main contributions of this paper include
the following:

1) We propose an FFT+FNN neural network structure for
magnetic loss estimation, which can effectively cap-
ture key information of the B waveforms influencing
the core loss. Compared to the advanced LSTM and
encoder-decoder structure, the proposed structure has
the simplest structure, comparable or better accuracy,
and the shortest training time.

2) We demonstrate the necessity of conducting the MOO
study and choosing hyperparameter combinations from
the Pareto Front, which helps balance model complexity
and prediction accuracy.

3) We demonstrate that applying transfer learning to new
materials can mitigate the low accuracy issue of power
loss prediction brought by data scarcity.

In this paper, we detail a neural network modelling ap-
proach that integrates MOO and transfer learning to accu-
rately forecast the power loss in magnetic materials under
conditions of limited data availability. Accordingly, the paper
is organized as follows. Section II presents the employed FNN
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TABLE 1. Number of Data Points for the Ten Known Materials in the
MagNet challenge: Each Data Point Includes the Complete B-H Loop,
Frequency, Temperature, and Volumetric Loss information

Material Sine Triangular | Trapezoidal total
TDK N27 479 3542 7375 11396
TDK N30 500 2691 5787 8978
TDK N49 334 2839 5429 8602
TDK N87 1426 13190 26000 40616

Ferroxcube 3C90 1601 13123 25989 40713
Ferroxcube 3C94 1776 12627 25665 40068
Ferroxcube 3F4 146 2314 4103 6564
Ferroxcube 3E6 503 2045 4448 6996
Fair-Rite 77 482 3528 7434 11444
Fair-Rite 78 472 3524 7384 11380

B waveforms are categorized into sine, triangular, and trapezoidal shapes.

TABLE 2. Number of Data Points of the Five New Materials of MagNet

challenge
Material Sine Triangular | Trapezoidal total
Material A 101 694 1637 2432
Material B 364 2253 4783 7400
Material C 215 1679 3463 5357
Material D 145 400 35 580
Material E 57 667 1289 2013

The identities of the new materials are undisclosed.

architecture and elaborates on the rationale behind the chosen
input layer format and the number of harmonics. Section III
conducts a comparative analysis with other sophisticated Al
methodologies. Section IV details two approaches for pre-
dicting power loss in new materials: normal training and
transfer learning, each integrating MOO. This section further
compares the developed FNNs, aiming to identify the most
effective model regarding parameter count and accuracy. Fi-
nally, Section V concludes the paper.

1. PROVIDED DATASET AND PROPOSED NEURAL
NETWORK

A. MAGNET CHALLENGE PROVIDED DATASET

Table 1 describes the number of data points provided by the
MagNet challenge. Each data point encompasses single-cycle
B-H loop data with 1024 time steps per cycle. For each ma-
terial, the provided data includes five CSV files, including B
Field (N x 1024, in T), H Field (N x 1024, in A/m), Frequency
(N x 1, in Hz), Temperature (N x 1, in °C), and Volumetric
loss (N x 1, in W/m?), where N refers to the number of data
points. The B field data are presented in various waveforms —
sinusoidal, triangular, and trapezoidal — to simulate different
excitations in magnetic materials. Temperature values are dis-
tributed at 25, 50, 70, and 90 °C. The Frequency of the B field
varies from 50 kHz to 800 kHz. The provided data have been
open-sourced in GitHub [6].

For the final test, the competition committee has provided
five new materials, as shown in Table 2. The identities of the
new materials are undisclosed and designated as A, B, C, D,
and E. The dataset has the complete information, including
B Field, H Field, Frequency, Temperature, and Volumetric
loss. As seen in the tables, the data points of the five new
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TABLE 3. Comparison of Different FNN Input formats

Neurons in Total number of Avg. relative Error
Cases .
hidden layers parameters on test set
0 (32,64,32) 4929 1.17
1 (64,64,64) 10433 2.2
2 (32,64,32) 4641 1.69
Case 0 represents [fj, My, f, M, ..., fn, M,, T], with harmonics magnitudes and

frequencies information. Case 1 represents [f}, My, @1, f2, M2, 92,y frs My, @0y T,
with harmonics magnitudes, phases, and frequencies information. Case 2 represents
[My, M, ..., M,, fi, T], with harmonics magnitudes information and only the
fundamental frequency.

materials are much fewer than the ten existing materials. This
setup holds practical significance as there are countless types
of magnetic materials in reality, and engineers often need to
accurately predict the losses of these materials based on lim-
ited data obtained in a short period. The data scarcity scenario
will be considered in the subsequent analysis.

In machine learning, datasets with complete information,
encompassing parameters such as the B Field, H Field,
Frequency, Temperature, and Volumetric loss, are typically
divided into three sets: training, validation, and test. The train-
ing dataset is used to train the model, allowing it to learn
and adapt to the data patterns. It usually comprises the largest
data portion, often ranging from 50% to 80%. The validation
dataset serves as a tool for tuning the model parameters and
providing an unbiased evaluation of a model fit during the
training phase. It typically constitutes about 10% to 25% of
the data. Finally, the test dataset is used to assess the perfor-
mance of the model after the training is complete. It provides
an unbiased evaluation of the final model fit and is usually
about 10% to 25% of the data. The exact proportions can
vary based on the size and specifics of the dataset. A typical
training process will be demonstrated in Section II-C.

B. PROPOSED FFT+FNN METHOD

The proposed Neural Network structure is shown in Fig. 2.
Initially, the magnetic flux density B(t) is broken down into its
harmonic components, characterized by frequencies f, mag-
nitudes M, and phases ¢. For training the FNN, we input
the harmonic frequencies f and magnitudes M, along with
temperature data 7. The inputs of FNN are thus formatted as
f1, My, fo, Mo, ..., fu, My, T], as illustrated in Fig. 2. The
rationale behind the selection of this input format is discussed
further in Section II-D.

Apart from the input layer, as illustrated in Fig. 2, the FNN
also has an output layer and several hidden layers. The output
layer directly generates the predicted volumetric loss Py. The
interconnected parameters of the network, which form the
core of the FNN’s operational mechanics, are mathematically
characterized as follows

n
7 =0 (Z (w]{‘i A bi)) (1)
k=1

where w represents the weight connecting each pair of hidden
neurons, while b denotes the bias associated with each hidden
neuron. The subscripts indicate the indices of hidden neurons,
whereas the superscripts refer to the layer indices. Each
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hidden neuron employs a nonlinear activation function, o (x),
enabling the network with the ability to learn nonlinear
relationships. The term z computes the output of each hidden
neuron, with its subscript and superscript following the
same notation used for w and b. This architecture enables
the FNN to effectively model complex relationships in
magnetic materials, such as those between B, Frequency, and
Temperature, ultimately allowing the output layer to predict
power loss precisely.

In this study, as the analyzed B(7) and H(7) waveforms
are in a steady state, FFT serves as an efficient method for
decomposing these signals. Should non-stationary signals be
analyzed in other studies, alternative sophisticated analytical
tools, such as Wavelet Transform, Empirical Mode Decom-
position (EMD), and Walsh-Hadamard Transform, could be
employed to address their complexity.

C. TRAINING PROCESS OF THE PROPOSED METHOD

This section presents an example of the training process
and explains the hyperparameters of the model. Suppose the
FFT+FNN model aims to predict the N27 material loss, and
N27 data is split into 60%, 20%, and 20% for train, validation,
and test datasets, respectively.

In this example, we select [f1, My, fo, M2, ..., fio, Mo,
T with ten harmonics information of B as the input format
of the FNN. The number of neurons in the hidden layers is
determined based on the experience, which is (32, 64, 32),
and the activation function is ReLU. The batch size is set to
128, which refers to the number of training samples processed
before the internal parameters of the model are updated. This
size balances the training efficiency and the computational
resource requirements. The training optimizer, set as Adam, is
an algorithm used to adjust the weights of the neural network
to minimize the loss function, thereby improving the perfor-
mance of the model [27]. The model is trained in PyTorch,
an open-source machine learning library widely used for deep
learning and neural network modeling applications, known for
its flexibility and ease of use [28]. An exponentially decayed
learning rate strategy is implemented to yield a better model
convergence, where the initial learning rate is 0.004, and the
decaying rate is 90% per 150 epochs [5]. In Section IV-A, a
hyperparameter optimization will be carried out.

Fig. 3 shows an example of the training process. In the
model training process, training and validation losses are
computed to monitor and enhance performance. Each epoch,
defined as a complete pass through the training dataset, in-
volves adjusting model weights to minimize training loss.
During each epoch, the training dataset is shuffled to present
the data in a randomized order, ensuring that the model does
not learn any potential sequence biases and improving its
ability to generalize from the training data. Simultaneously,
validation loss is evaluated to assess the generalization capa-
bilities of the model. A pattern where validation loss initially
decreases and then increases suggests overfitting, indicating
that the model excessively captures noise and fluctuations in
the training data, impairing its generalization ability.
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FIGURE 3. Example of training progress and early stopping method, with
MA indicating Moving Average. The red circle marks the epoch with the
lowest validation loss, and the corresponding model is saved during
training.
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FIGURE 4. Distribution histogram of the N27 core loss relative errors,
including average error, 95% error, and maximum error.

To prevent overfitting, an early stopping technique is
applied. This approach terminates the training when no im-
provement in validation loss is observed over a predefined
number of epochs, set here as 2000. If the validation loss fails
to decrease over these epochs, the model may no longer be
improving and could be overfitting. For instance, as illustrated
in Fig. 3, where the point of lowest validation loss is circled
in red, the model corresponding to this epoch is saved as the
final model. This ensures that the most efficient version of the
model, with optimal generalization capability, is retained for
practical application. The early stopping method is used in the
following model training process.

Upon finalization of the model, it was applied to the test
dataset to evaluate performance. This process entailed com-
paring the predicted and measured core loss to ascertain model
accuracy. Fig. 4 presents an example of the error distribution.
The error analysis in this study utilizes three key metrics for
assessing the accuracy of core loss predictions. Average Error
is calculated as the mean of the relative differences between
predicted and actual values across all data points, providing a
general indicator of prediction accuracy. The 95% Error, de-
fined as the value below which 95 percent of observed errors
fall, offers insight into the typical error range for the majority
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TABLE 4. Comparison of Different Numbers of Harmonics As Input

No. Neurons in Total number Avg. Error | Max. Error
harmonics | hidden layers | of parameters on test set | on test set
3 (16,32,16) 1217 1.38 7
5 (16,32,16) 1281 1.44 12
10 (32,64,32) 4929 1.17 21

of predictions. Maximum Error, representing the highest error
in the dataset, indicates the largest deviation between pre-
dictions and actual measurements, illustrating the worst-case
scenario in model performance. In subsequent sections, these
three metrics are presented directly without repeating error
distribution diagrams.

D. DESIGN OF INPUT LAYER

Different input formats of FNN can be applied. Apart from
the one [fi, M1, >, Ma, ..., fu, My, T] as presented in Fig. 2,
other input formats also have been considered, for example
[f1, M1, @1, fo, M2, @2, ..., fn, My, @n, T], where @y represents
the phase information of the kth harmonic; and [M{, M», ...,
M,, f1, T], where in this case only the fundamental harmonic
Frequency is included. These three cases are marked as case
0, case 1, and case 2, respectively.

A comparison between these three cases has been carried
out based on N27 material. The number of neurons in the
hidden layers is determined based on the experience. The data
split method and other hyper-parameters are the same as in
Section II-C.

Table 3 shows the comparison results of the three cases,
and there are two conclusions. First, adding harmonics phase
information does not help increase loss prediction accu-
racy. Second, when the model is trained using only a single
fundamental frequency as input, its performance is inferior
compared to when it is trained with both the frequencies and
magnitudes of the harmonic components paired together. This
observation holds under the scenario where the network pa-
rameters are initially selected based on empirical experience
and are not subject to further optimization. Therefore, the
inputs for the FNN are chosen to be in the format of [f;, M,
f2, Mo, ... ’fn’ Mn, T]

A further question is how many numbers of harmonics are
suitable to consider for model training and prediction. In the
provided data of ten materials, there are three different types
of B waveforms, i.e., sinusoidal, triangular, and trapezoidal.
For sinusoidal waveforms, only a fundamental component
exists. As for triangular and trapezoidal waveforms, two ex-
amples are shown in Fig. 5. A general impression is that the
magnitude is negligible over the third harmonic.

Three different FNN models are built for three, five, and ten
harmonic inputs, respectively. A comparison between these
three FNNs is shown in Table 4. The model training and
testing settings are the same as the tests in Table 3.

The difference in neuron settings in the middle layer is due
to the different number of inputs. As can be seen from the
comparison results, though with the total number of param-
eters differences, the results of using three harmonics, five
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FIGURE 5. B waveform examples and harmonic magnitudes. The triangular
and trapezoidal B waveforms are randomly selected from N27 dataset.

harmonics, and ten harmonics are similar. Furthermore, ob-
serving Fig. 5 suggests that reducing the number of considered
harmonics is justified, as the magnitudes of higher harmonics
appear negligible. For the simplicity of the model structure,
which is essential for training and future optimization, three
harmonics are chosen for the input. Consequently, the input
format for the FNN in this study has been established as [f,
My, fo, M2, f3, M3, T1.

1Il. COMPARISON WITH THE STATE OF ART

With the given magnetic flux density B(f), magnetic field
strength H(f), frequency f, temperature 7, and power loss
P information, different Al models can be applied to pre-
dict the power loss. Apart from the scalar-to-scalar model
presented in this paper, [5] also offered two other mod-
els: sequence-to-scalar model using LSTM plus FNN and
sequence-to-sequence model using encoder-decoder structure
with LSTM. This section compares the methods introduced in
this paper with those previously described in [5]. A detailed
description of these two methods is provided in [5]. The fol-
lowing content briefly outlines their key concepts.

A. SEQUENCE-TO-SCALAR: LSTM + FNN MODEL

To effectively address the challenge posed by the diverse
shapes of B waveforms, an alternative approach is to employ
a sequence-based neural network structure.

The LSTM network is a key architecture in regression
problems with sequential input. Its unique capability lies in
memorizing information across data sequences, making it
highly suitable for analyzing time series data. As shown in
Fig. 6(a), the input gate i;, forget gate f;, and output gate o
are essential to the functionality of the LSTM, which regulate
information flow and enable selective memory storage over
specific intervals. Detailed math descriptions can be referred
to [5].

Based on LSTM cell structure, a sequence-to-scalar LSTM-
based model is developed, using time sequences of flux
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TABLE 5. Comparison Between the FNN, LSTM Plus FNN, and
Encoder-Decoder Based on N27 data

Total Trainin Avg. relative
Cases number of ning error on the
time
parameters test set
Original 1217 ~1 hour 1.38
FFT+FNN —
Optimized 1419 ~1 hour 0.75
LSTM+FNN 2089 ~20 hours 1.37
Encoder-projector-decoder 28097 ~20 hours 3.34

The optimized FFT+FNN represents the MOO results shown in section I'V.

density B(t) as input (1024-time steps per cycle) and predict-
ing volumetric power loss as output. Fig. 6(b) displays the
model structure, where the LSTM is taken as the input layer
to process the entire flux density waveform. LSTM outputs
are then concatenated with temperature and frequency infor-
mation to feed into an FNN to perform core loss regression.
This specific design features an LSTM with 18 cell states and
18 hidden states, and the FNN consists of three hidden layers
(each with 12 neurons), resulting in an output representing the
volumetric magnetic core loss. Overall, the model comprises
2089 parameters. To assess the performance of this LSTM-
based core loss model, the network depicted in Fig. 6(b) has
been synthesized and trained using PyTorch. N27 data are
randomly split into 60%, 20%, and 20% for train, validation,
and test datasets, respectively. The training results are shown
in Table 5. In addition, the training time for each model is
shown to compare the required computation resources. The
neural network trainings are conducted in a PC equipped with
an AMD Ryzen 7 5800H processor and an NVIDIA GeForce
RTX 3060 graphics card. The results will be analysed in Sec-
tion III-C.

B. SEQUENCE-TO-SEQUENCE:
ENCODER-PROJECTOR-DECODER MODEL
Beyond the direct prediction of power loss in magnetic com-
ponents using B(t), Frequency, and Temperature data, an
alternative approach involves initially forecasting the time
sequence of H(t). Subsequently, both B(t) and H(t) can be
utilized to compute the power loss:
B(T)
H(t)dB(t)

1
Pr=r @

B(0)

The encoder-decoder network framework [29], a leading-
edge architecture, has gained considerable interest in recent
years for its effectiveness in sequence-to-sequence regression
challenges. The encoder-decoder network framework can also
be applied to this magnetic B-H hysteresis loop prediction
target.

To include Temperature and Frequency information, [5]
proposed an encoder-projector-decoder structure as shown in
Fig. 7. The encoder comprises a single-layer LSTM network
with 32 states, employing input, forget, and output gates of
LSTM to process the sequence B(t). This processing captures
sequence characteristics in hidden and cell states. Additional
inputs, i.e., Temperature 7 and Frequency f, are combined
with these states to feed into a projector consisting of two
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FIGURE 6. Sequence-to-scalar LSTM network structure. (a) Basic structure of the LSTM cell (b) Structure of the complete LSTM-FNN. The B waveform is
initially input into the LSTM network, and then the output of LSTM is concatenated with temperature T and frequency f to feed into the FNN.
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FIGURE 7. Encoder-projector-decoder network structure. Both the encoder and decoder comprise LSTM networks. The projector integrates the encoder’s
cell and hidden states with temperature and frequency as FNN inputs, generating the cell and hidden states for the decoder.

three-layer FNNs with 64 neurons in each layer. The projector
adjusts state values in response to these additional inputs, re-
sulting in updated states. These updated states are then utilized
to initialize the decoder, which has a structure identical to the
encoder’s. Utilizing the updated hidden and cell states, the
decoder produces the output sequence H(t).

The network employs mean-squared error as the loss func-
tion to measure the discrepancy between the predicted and
target H(t). This function is used to adjust the weights and bi-
ases within the network. To manage the higher computational
demands, the B(t) and H(t) are down-sampled to 102 time
steps per cycle. Other settings and training environments are
the same as LSTM+FNN model. After the model is finalized,
the power loss is calculated according to (2) with the input
B(t) and the predicted H(t). The results are shown in Table 5.

C. COMPARISON RESULTS AND ANALYSIS
Table 5 shows the training results of the LSTM+FNN,
the encoder-projector-decoder structure, and the proposed
FFT+4+FNN method. Additionally, the optimized FFT-+FNN
detailed in Section IV-A is also shown for benchmarking.
The encoder-projector-decoder is the most complex model,
but the power loss estimation is less accurate than the other
two. The reason is that the power loss is not directly generated
as the output of the neural network. On the contrary, the power
loss is indirectly calculated by integrating B(t) and H(t). A
slight phase discrepancy in the predicted H(t) sequence might
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not cause a significant relative error in sequence-to-sequence
regression, yet it could have a substantial effect on the accu-
racy of core loss prediction [5].

In contrast to the encoder-projector-decoder structure,
LSTM+FNN and the original FFT+FNN, which directly cor-
relate B, f, and T data with power loss, show equally high
performance. This leads to the first insight: complexity alone
does not guarantee higher accuracy in power loss prediction;
direct prediction of power loss as the network’s output can
achieve better results, because in this case any intermediate
errors, e.g., phase error of H(t), are avoided.

Although the LSTM+FNN effectively captures detailed
information from B waveforms, its performance does not sur-
pass that of FFT4+FNN. This observation leads to the second
insight: within the scope of the most general waveforms for
power-electronic magnetic components, which is covered by
the existing dataset, the results from FFT+FNN show that the
harmonic magnitudes and frequencies can represent the dom-
inant characteristics influencing the core loss. Besides, this
sequence-to-scalar model presents two disadvantages com-
pared to the proposed scalar-to-scalar model. First, it is more
complex and requires longer training time, which is unsuit-
able for further optimization. Second, in the case of transfer
learning using the data measured by other research groups,
adjustments like down-sampling/up-sampling or modifying
the model structure might be needed for transfer learning,
especially when handling data sequences of different lengths.
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FIGURE 8. Overall model training and comparison process. Two training methods are compared. The first method optimizes and trains on ten existing
materials’ data before applying transfer learning to the five new materials’ data, while the second directly optimizes and trains the model using data from

five new materials.

In comparison, the proposed FNN model is the simplest
and quickest for training. With hyperparameters optimization
of FNN, the model’s performance can significantly increase.
Given its simplicity and high accuracy, the proposed FNN has
been demonstrated to be suitable for the following develop-
ment and optimization.

IV. MULTI-OBJECTIVE OPTIMIZATION, TRANSFER
LEARNING AND COMPARISON

The overall model construction and selection methods for
the five new materials are presented in Fig. 8. In the nor-
mal training approach without transfer learning, for the
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five new materials, the FNN model for each material is
first optimized with the MOO tool Optuna, as detailed in
the next section. New materials training data as shown in
Table 2 are split into 70%, 20%, and 10% for training, val-
idation, and test purposes, respectively. The proportion of
the training dataset is slightly higher, at 70%, due to the
limited quantity of data. This approach aims to maximize
the use of available data for training purposes. Then, the
most effective hyperparameter combination with a low num-
ber of parameters and low validation loss is selected. The
model performance on the test dataset is recorded for later
comparison.
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Although with MOQ, the test performance is relatively
satisfactory with the normal training process, due to the low
amount of new material data, a better approach is to use
transfer learning. This method holds significant importance
in real-world scenarios, such as for designers who may lack
adequate data on new materials required for normal training
models. This part will be analyzed in IV.B. The second ap-
proach with transfer learning, as shown in Fig. 8, also starts
with a MOO for the ten existing materials. This will increase
the accuracy of the following step, which uses transfer learn-
ing.

The data on the ten existing materials are split into 70%,
15%, and 15% for training, validation, and test purposes,
respectively. This distribution strategy differs slightly from
the previous one, as in this case, the ten existing materials
data are more abundant, providing a more comprehensive
basis for analysis. Once the optimal model for each of the
ten known materials is determined, the five new materials
will be subjected to transfer learning across the ten mod-
els through fine-tuning. As a result, 50 new transfer-learned
models for the five new materials will be acquired, and the
test data results will be recorded. The transfer-learned and
normal training results described previously will be compared
to select the final best model.

A. MULTI-OBJECTIVE OPTIMIZATION

In assessing the neural network model, prediction accuracy
and the number of parameters are crucial metrics. While ac-
curacy reflects the model’s effectiveness, the parameter count
directly indicates its complexity and significantly impacts the
time required for training and fine-tuning. To optimize the
model considering both values, a MOO is needed.

MOO aims to find the optimal set of parameters, simulta-
neously optimizing multiple objectives, leading to trade-offs
and compromises. Optuna, a popular Python library, provides
a comprehensive framework for conducting MOO. Utilizing
Optuna for MOO, we focus on two primary objectives: re-
ducing the validation loss to enhance model accuracy and
minimizing the number of parameters. Different hyperparam-
eters tuning methods have been analyzed in [30], [31], and
NSGA-II (Non-dominated Sorting Genetic Algorithm II) is
favored in this study as the optimization engine for its effec-
tive balance in ranking and diversity preservation in MOO
contexts [32]. The search space is defined as follows: the
number of middle layers in the FNN structure varies between
2 and 5, each containing 8 to 64 neurons. The activation func-
tions considered include ReLLU, LeakyReL.U, Tanh, Sigmoid,
ELU, SELU, and SiLU. These activation functions, each with
distinct characteristics, play a crucial role in introducing non-
linearity into the neural network, enabling it to learn complex
patterns in the data [33], [34]. Possible optimizers are Adam,
SGD, RMSprop, and AdamW [35]. The batch size options are
set at 64, 128, or 256.

For each of the five new materials, MOO involves 500 trials,
each comprising 3000 epochs. In contrast, for the ten existing
materials, which have much larger datasets, MOO consists of
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FIGURE 9. MOO Result Example. The depicted Pareto front represents the
optimization boundary, balancing the trade-off between the number of
parameters and validation loss, illustrating the most efficient solutions
where neither objective can be improved without worsening the other.

TABLE 6. Four Different Points on n49 Moo Results Shown in Fig. 9

Batch Hidden No. Act. N49 Material
case size layers arams Func av E
neurons P ) i & TF avg.
R1 64 (21,17) 560 Tanh 2.01 2.75
R2 128 (29, 29) 1132 Tanh 1.9 2.49
R3 128 (38’1199)’ 33, 2371 SiLU 1.46 2.35
R4 128 (16,32,16) 1217 ReLU 2.2 3

200 trials with 1000 epochs each. An example MOO result is
presented in Fig. 9, where yellow and blue stars indicate the
possible hyperparameter combinations on the Pareto Front. In
addition, the black star represents the previous hyperparam-
eter combinations selected based on experience, as shown in
Section II-D. The following compares these combinations and
describes how to choose the most effective hyperparameter
combinations on the Pareto front.

Table 6 summarizes these combinations training results,
and Adam is the optimizer for four cases. It is important to
note that each trial during the MOO was limited to 1000
epochs. For a fair comparison of the accuracy of the four
combinations in Table 6, the early stopping method, detailed
in Section II-C, is employed. As a result, when training these
combinations, the epochs go beyond 1000. Table 6 initially
suggests that the R4 combination, chosen based on prior ex-
perience, does not perform as well as those on the Pareto
Front. Despite R4 having more parameters than R1 and R2,
it exhibits a higher average error on the test dataset than R1
and R2. This also leads to a lower transfer learning accuracy,
a point further elaborated in Section IV-B. This highlights
the necessity of conducting the MOO study and choosing
hyperparameter combinations from the Pareto Front. For R1,
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TABLE 7. All Materials Optimized Hyper Parameters

Material Ba_ttch Hidden layers No. Activa_tion
S1Z¢€ neurons params. function
N27 64 (30,18,31) 1419 SiLU
N30 64 (33,38,16) 2197 SiLU
N49 128 (29,29) 1132 Tanh
3F4 64 (17,30,45) 2117 Tanh
3E6 64 (18,34,14) 1295 Tanh
3C90 256 (47,35,14,9) 2705 Tanh
3C94 256 (59.,27,32) 3021 Tanh
N87 64 (35,26,11) 1525 SiLU
77 128 (44,24,15,38) 2454 Tanh
78 64 (26,17,55,11) 2285 SiLU
A 64 (21,27,31) 1662 Tanh
B 64 (19,19) 552 Tanh
C 256 (36,17) 935 Tanh
D 64 (62,12,13,29) 1857 SiLU
E 64 (42,11,57) 1551 SiLU

Large-scale Dataset

. . 00
Ten existing % éz
materials S

Transfer-Learned
Network )/

Pre-trained
\__ Network

Small-scale Dataset

FIGURE 10. Transfer learning process for the five new materials. Once the
network is pre-trained, data from the five new materials is used to
fine-tune the network parameters of the pre-trained model.

Five new

materials Fine-tuning pre-trained Network

R2, and R3 on the Pareto Front, the test dataset of N49 demon-
strates that accuracy increases with the number of parameters.
However, to strike a balance between the number of parame-
ters and accuracy, R2 is selected as the most effective choice
for further transfer learning. A similar analysis approach is
applied to the other materials.

A summary of all MOO results is shown in Table 7. The
optimizer for all cases is Adam. The optimization results
reveal variability in the number of neurons of hidden lay-
ers, indicating that optimal network structures differ for each
material. The consistent use of the Adam optimizer across
models emphasizes its effectiveness in handling the complex-
ities of magnetic material properties. Moreover, the frequent
selection of Tanh and SiLU as activation functions reflects
their capability in accurately modeling the nonlinear behavior
inherent in magnetic materials loss prediction.

B. TRANSFER LEARNING

The transfer learning process is shown in Fig. 10. This method
typically begins by pre-training a neural network on a large-
scale dataset. Following this, a smaller dataset is employed
to fine-tune the network’s parameters. This fine-tuning step is
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TABLE 8. Comparison of Transfer Learning Accuracy With Different Base
Materials Combinations

Transfer learning material A
Base model Total number accuracy
training materials of datapoints
Avg. Error Max. Error
3C90 40713 2.16 16.04
3C90+N27+77 63553 2.86 19.2

crucial, as it adjusts the model to align more closely with the
specific characteristics of the smaller dataset, enhancing its
performance and accuracy in tasks related to this dataset. This
approach leverages the generic features learned from the large
dataset, applying them effectively to the more specialized
requirements of the smaller dataset.

Transfer learning’s efficacy hinges on the relatedness of
the source and target domains. A substantial discrepancy be-
tween these domains can render the transferred knowledge
ineffective or even detrimental. In our study, however, the
large-scale dataset features ten existing materials, while the
small-scale dataset includes five new materials. Both datasets
focus on magnetic materials, ensuring a significant correlation
in domain-specific characteristics and thus, a high level of
applicability for the transferred knowledge. This core simi-
larity greatly reduces the chance of the performance drop-off
that usually happens when there’s a big gap between the two
domains.

Further, to establish the pre-trained network, a critical
decision is whether to independently create ten individual
pre-trained models using each of the ten existing materials or
construct a single pre-trained model by combining datasets
from multiple materials.

As shown in Table 8, we have experimented with training
the base model using a combined dataset of several mate-
rials (such as 3C90, N27, and 77). However, the outcomes
of transfer learning with this approach did not surpass those
achieved when training the base model exclusively with data
from a single material (3C90). This observation leads to the
speculation that new materials may exhibit closer properties to
a specific existing material rather than a collective representa-
tion of several. When combining data from multiple materials,
there is a potential for inter-data interference, which might
hinder the model’s ability to learn and predict the properties
of a new material accurately. Based on this insight, we have
decided to utilize a database of a single material as the starting
point for transfer learning to ensure a more focused and effec-
tive model training process. After the MOO, ten base models
trained on existing materials are ready for transfer learning.
New material data will be directly input into the pre-trained
base model to fine-tune the parameters of the network.

A test is conducted to testify the MOO results and the
transfer learning effectiveness. Based on N49 trained models,
as shown in Table 6 in Section IV-A, the new material E
data are applied for fine-tuning. The transfer learning results
are shown in the last column of Table 6, which yields two
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TABLE 9. Transfer Learning Results Based on Moo Models of the Ten Existing materials
Self-training result Transfer learning results
material Material A Material B Material C Material D Material E
(number of Average 95% Average 95% Average 95% Average 95% Average 95% Average 95%
parameters) e(f,;)o)r i%r error error error error error error error error error error
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
N27(1419) 0.75 1.97 2 6.7 0.75 1.89 1.39 3.93 3.16 10 2.4 7.25
N30(2197) 0.41 1.1 2.08 7.85 0.7 1.65 1.1 3.24 3.7 10 2.28 7
N49(1132) 1.9 5.78 2.688 8.9 0.79 2.2 1.37 3.9 5.11 19 2.49 7
3F4(2117) 1.45 3.8 2.58 7.8 0.84 2.17 1.23 34 5.2 15.7 2.66 10.9
3E6(1295) 0.455 1.19 225 6.3 0.74 1.98 1.23 3.62 4.26 10.65 2.77 8
3C90(2705) 0.83 2.35 2.23 8.1 0.76 1.97 1.2 3.78 3.86 10.9 2.38 9.24
3C94(3021) 0.75 2 3.1 10.4 0.75 2.02 1.37 42 59 22.4 2.63 7.09
N87(1525) 0.74 2 2.54 7.67 0.73 1.9 1.19 4 4.6 14.9 2.74 10.7
77 (2454) 0.77 2.1 22 6.37 0.92 2.48 1.21 3.54 477 14 22 6.4
78(2285) 0.72 1.89 2.19 7.1 0.69 1.9 1.21 3.72 5.23 15.38 2.69 8.17

The best-performing model for each new material, after transfer learning, is highlighted in green.

TABLE 10. Comparison of the Results with and Without Transfer Learning for the Five New materials

Results without transfer learning Results with transfer learning
New Material Number of Average error 95% error Number of Average error 95% error Base model
parameters (%) (%) parameters (%) (%)
A 1662 2.18 6.73 1419 2 6.7 N27
B 552 0.9 2.2 2197 0.7 1.65 N30
C 935 1.65 4.4 2197 1.1 3.24 N30
D 1857 6.3 21.8 1419 3.16 10 N27
E 1551 2.47 7 2454 2.2 6.4 77

The training methods with and without transfer learning are corresponding to Fig. 8.

key insights. The first insight is that in the absence of MOO
and when hyperparameters are chosen solely based on hu-
man experience, transfer learning is less efficient than those
derived from the Pareto Front of MOO. This inefficiency is
marked by an increased number of network parameters with
a concurrent decrease in accuracy. Second, it can be con-
cluded that for the results on the Pareto Front, an increase in
the number of parameters enhances the accuracy of transfer
learning results. To strike an optimal balance between the
number of parameters and accuracy, the knee point on the
Pareto front is identified as the most effective combination of
hyperparameters.

C. RESULTS WITH AND WITHOUT TRANSFER LEARNING
COMPARISON

Based on the overall process shown in Fig. 8, the results of the
transfer learning approach and the normal training approach
for the five new materials are presented in Tables 9 and 10.
Table 9 compares the transfer learning results for the five new
materials, and the best results are highlighted in green. Ta-
ble 10 presents test dataset accuracy for the MOO models for
the five new materials to compare with the transfer learning
results.

As seen in Table 10, from an accuracy perspective, transfer
learning results significantly outperform those without trans-
fer learning, mainly due to the limited dataset available for the
new materials. Although the number of parameters in transfer
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learning approaches is slightly higher than in normal training
methods, this is not a significant concern for applying transfer
learning to new materials. The rapidity of the transfer learning
process, as demonstrated in our tests, enables quick adaptation
to the characteristics of new materials. Consequently, despite
the larger parameter size, the speed of transfer learning makes
it a more practical choice. Therefore, considering both the
superior accuracy and the efficiency in learning new material
properties, the transfer learning models are deemed the most
effective for new materials.

To ensure unbiased and reliable prediction results, the high-
lighted transfer learning approach, as discussed in Table 10,
was subjected to further validation using a 10-fold cross-
validation method [36], [37]. This process involves dividing
the dataset into 10 equal parts, or "folds", where each fold
is used once as a validation while the remaining 9 folds are
used for training. This cycle is repeated 10 times, with each
fold serving as the validation set once. The accuracy metrics
from each fold are then averaged to produce a composite
measure of model performance. The summarized results in
Table 11 demonstrate the robustness of the proposed method
across new materials, highlighting its effectiveness even with
datasets of varying sizes.

The results from Table 11 clearly indicate that, despite
the varied number of data points across new materials, the
model consistently exhibits low average and 95% errors. This
validates the effectiveness of the proposed MOO and transfer
learning method.
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TABLE 11. Model Performance Metrics on New Materials with 10-fold
Cross Validation

0,

New Total number Number of Ave. 93%
Material of data points model Error Error
P parameters (%) (%)

A 2432 1419 2.0 6.75

B 7400 2197 0.69 1.81

C 5357 2197 1.17 3.39
D 580 1419 3.53 10.58

E 2013 2454 2.12 6.50

V. CONCLUSION

This paper comprehensively presents a neural network-based
modelling approach for accurately predicting the power loss
of magnetic materials with limited data, incorporating MOO
and transfer learning techniques. The fundamental neural net-
work employed in this study is an FNN. Through a detailed
comparison of various input structures and the number of
harmonics, the chosen inputs are the magnitudes and fre-
quencies of the first, second, and third order harmonics,
plus temperature. Compared to other advanced methods, such
as LSTM or encoder-decoder models, the proposed method
achieves satisfactory accuracy with lower complexity. The
model’s performance is further enhanced by MOO, target-
ing both a reduction in the number of parameters and an
increase in accuracy. Finally, a comparative analysis between
results with and without transfer learning, both integrated with
MOQO, is conducted for new materials with limited data. The
transfer learning shows a better performance with consid-
erably lower error and marginal increase in the number of
parameters.

To enhance the practicality and accessibility of our devel-
oped model, especially for engineers without extensive Al
expertise, we are currently developing an optimization tool
for magnetic material power loss prediction. This tool aims
to streamline the application of our model in real-world sce-
narios. Furthermore, our proposed methodology, combining
MOO and transfer learning, not only establishes a benchmark
for similar studies in power electronics but also serves as a
versatile template for addressing a variety of prediction tasks.
These include the forecasting of thermal and electrical charac-
teristics in power electronics, with a focus on achieving high
accuracy while managing model complexity and overcoming
the challenges of limited data availability.
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