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Adaptive Differentially Quantized Subspace
Perturbation (ADQSP): A Unified Framework for
Privacy-Preserving Distributed Average Consensus

Qiongxiu Li , Member, IEEE, Jaron Skovsted Gundersen, Milan Lopuhaä-Zwakenberg ,
and Richard Heusdens , Senior Member, IEEE

Abstract— Privacy-preserving distributed average consensus
has received significant attention recently due to its wide
applicability. Based on the achieved performances, existing
approaches can be broadly classified into perfect accuracy-
prioritized approaches such as secure multiparty computation
(SMPC), and worst-case privacy-prioritized approaches such as
differential privacy (DP). Methods of the first class achieve
perfect output accuracy but reveal some private information,
while methods from the second class provide privacy against the
strongest adversary at the cost of a loss of accuracy. In this paper,
we propose a general approach named adaptive differentially
quantized subspace perturbation (ADQSP) which combines
quantization schemes with so-called subspace perturbation.
Although not relying on cryptographic primitives, the proposed
approach enjoys the benefits of both accuracy-prioritized and
privacy-prioritized methods and is able to unify them. More
specifically, we show that by varying a single quantization
parameter the proposed method can vary between SMPC-type
performances and DP-type performances. Our results show the
potential of exploiting traditional distributed signal processing
tools for providing cryptographic guarantees. In addition to
a comprehensive theoretical analysis, numerical validations are
conducted to substantiate our results.

Index Terms— Secure multiparty computation, differential
privacy, decentralized networks, subspace perturbation, data
aggregation, consensus, quantization.

I. INTRODUCTION

AS THE world is becoming increasingly interconnected
and digitized, data are often collected and stored in

personal devices such as tablets and phones [1]. To process
such massive amounts of data over different devices poses
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many challenges including: (1) the requirement for distributed
processing tools that are able to process data in a network
of devices without any centralized coordination; (2) the
need for lightweight solutions as these devices are often
limited in computational resources, and (3) the demand
for privacy-preserving algorithms, as these devices often
contain sensitive personal data captured by sensors such
as images and GPS data [1]. Combined, these challenges
call for interdisciplinary research across different fields such
as cryptography, information theory and distributed signal
processing for developing efficient and privacy-preserving
distributed computation methods.

The average consensus problem has been intensively
investigated and widely applied in many applications, e.g.,
optimization [2], group coordination [3], and federated
learning [4]. Recently, privacy-preserving distributed average
consensus, which aims to guarantee all participants in a
network to output an accurate average consensus without
violating privacy concerns, has received a lot of attention [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24]. There are
at least five aspects to be considered when designing
privacy-preserving distributed average consensus algorithms:
centralized vs. decentralized coordination, computational
complexity, communication costs, and most importantly, the
achieved privacy level and output accuracy. With respect
to the first concern, in this paper we only consider fully
distributed/decentralized solutions which do not require any
centralized coordination such as a trusted third party. Secondly,
the computational complexity depends heavily on the so-
called security model, i.e., whether we demand computational
or information-theoretical security. In this work, we will
restrict ourselves to information-theoretical security based
algorithms since they are generally computationally less
complex compared to computational security based approaches
as the former does not involve complex encryption operations.

With respect to communication cost, privacy, and accuracy,
most existing work focuses on privacy and accuracy, while
the aspect of communication cost is rarely addressed. Ideally,
one would like perfect accuracy while guaranteeing privacy
even against the strongest adversary, which is all participants
except one collude. This, however, has been shown to be
impossible [25]. The main reason is that having knowledge
of the average result will reveal the private data held by
the only non-colluding participant. As a result, existing
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work falls into two categories. The first category contains
algorithms that guarantee privacy against the worst-case
adversary using differential privacy (DP) techniques [26], [27]
by inserting noise into the calculations [10], [11], [12], [13].
This guarantees one individual’s privacy even when all other
participants are compromised, at the cost of output accuracy.
The second category contains secure multiparty computation
(SMPC) based approaches like secret sharing [14], [15], [16],
[17] and correlated noise insertion [20], [21], [22], which offer
perfect accuracy but only guarantee privacy under additional
assumptions on the set of compromised participants.

A. Paper Contribution
In this paper, we present a communication efficient

algorithm that links the performances of SMPC and DP
approaches in a unified framework. Our key results are
summarized as follows:

1) We analyze the problem of privacy-preserving dis-
tributed average consensus over networks and prove two
impossibility results about the performances of privacy
and accuracy given the network topology. In particular,
we prove that the so-called ideal world defined in SMPC
is impossible to achieve if the adversary disconnects the
network.

2) We propose a novel approach, referred to as adaptive
differentially quantized subspace perturbation (ADQSP),
by combining the potential of quantization schemes and
the subspace perturbation technique. It enjoys superior
performance compared to existing approaches in terms
of accuracy, privacy and communication efficiency.

3) We show that our proposed approach can achieve SMPC
and (relaxed) DP performances by appropriate parameter
settings. To the best of our knowledge, the proposed
approach is the first information-theoretical approach
that unifies both SMPC and DP in this context.

Both theoretical investigations and numerical validations are
presented to consolidate our claims. We published preliminary
results in [28] where only the connection of quantized
subspace perturbation and DP is shown. In this paper we
show that the proposed ADQSP approach can achieve both
SMPC and DP related performances. In addition, we give
a complete information-theoretical analysis of privacy via
mutual information.

B. Outline and Notation
The paper is organized as follows. In Section II,

we introduce the problem setup and define the adversary
model and privacy metrics. In Section III, we analyze the
problem at hand and prove two impossibility results regarding
the performances. In Section IV, we introduce the proposed
approach. In Section V, we analyze the performance of
existing SMPC and DP approaches, while in Section VI,
we analyze the performance of the proposed approach and
show that by tuning a single parameter the performance can
vary between that of SMPC and (relaxed) DP. Numerical
validations are demonstrated in Section VII and conclusions
are drawn in Section VIII.

We use bold letters for vectors (x) and matrices (X), where
capital letters are used for matrices. Sets are denoted by

calligraphic letters (X ). I denotes the identity matrix. We refer
to the i-th entry of a vector x as xi .1 With a slight abuse
of notation, we denote a random variable by a capital letter
X no matter if the outcome is a scalar x , a vector x, or a
matrix X .

II. PRELIMINARIES

In this section we review some necessary fundamentals for
the remainder of the paper.

A. Privacy-Preserving Distributed Average Consensus
A network is modelled as a graph G = (V, E), where

V = {1, . . . , n} is the set of vertices representing the
nodes/agents/participants in the network, and E ⊆ V × V
is the set of m := |E | (undirected) edges, representing the
communication links in the network. The set of neighbors of
node i is denoted as Ni = { j | (i, j) ∈ E} and its degree is
di = |Ni |. A graph is connected if for every pair of nodes
there is a path between them. In this paper, for the feasibility
of the average output, we assume the graph G is connected.

Assume each node i ∈ V in the network holds private
data si . The goal of privacy-preserving distributed average
consensus is to allow each node to obtain the average of all
private data over the network, i.e.,

save =
1
n

∑
i∈V

si , (1)

without revealing each node’s private data and without any
centralized coordination.

B. Adversary Model
In this paper we consider both the well-known eavesdrop-

ping adversary and the so-called passive (i.e., honest-but-
curious) adversary. Throughout the paper, we assume these
two adversaries can cooperate by sharing information to
increase the chance of inferring private data. The eavesdrop-
ping adversary works by eavesdropping all communication
channels (edges) between nodes in the network. The passive
adversary is assumed to be able to corrupt a subset of the
nodes, referred to as corrupt nodes. The nodes that are not
corrupt, on the other hand, are referred to as honest nodes. The
corrupt nodes are assumed to not deviate from the protocol,
but collect all information they see throughout the protocol.
The collected information includes for example the inputs
of the corrupt nodes and the messages they receive during
the computation from neighboring nodes. Denote the set of
honest nodes as Vh and the corrupt nodes as Vc. We let
Eh = {(i, j) ∈ E | i, j ∈ Vh} be the set of edges between two
honest nodes and Ec = E \ Eh be the set of edges containing
at least one corrupt node. Furthermore, the set of honest
neighbors of node i is denoted by Ni,h = { j | (i, j) ∈ Eh}.

C. Performance Evaluation and Corresponding Metrics
To evaluate the performance of a privacy-preserving

algorithm, there are at least two key requirements.

1For simplicity we assume that the entries xi are scalar variables but the
results can easily be generalized to arbitrary dimensions.
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1) Output Accuracy: The output accuracy measures how
good the functionality of the algorithm is. A typical way
to quantify the output accuracy is to adopt some distance
measures to evaluate “how far” the output of the privacy-
preserving algorithm is, denoted as ỹ ∈ Rn , to the desired
output y ∈ Rn . In this paper we use the mean squared error
(MSE) to quantify the output accuracy as it is widely used for
iterative processes. It is defined as:

e =
1
n
|| ỹ − y||2 . (2)

2) Individual Privacy: Individual privacy measures how
well the private data of an honest node is being protected
against the considered adversaries. Since the approaches
considered here are information-theoretical ones, privacy
should also be quantified using an information-theoretical
measure. Widely used information-theoretical metrics for
assessing privacy loss include for example ϵ-differential
privacy and mutual information [29]. In this paper we adopt
mutual information as our primary privacy metric for two
main reasons. Firstly, its efficacy has been demonstrated in
the realm of privacy-preserving distributed processing and
in various applications [25], [30]. Secondly, it has been
shown in [31] and [32] that mutual information is a relaxed
version of ϵ-differential privacy (thus in Section V we refer
that our proposed approach can achieve performances of
relaxed DP approaches). And it is easier to implement mutual
information in practice [33]. Considering two (continuous)
random variables X and Y , the mutual information is defined
by

I(X; Y ) = h(X)− h(X |Y ), (3)

where h(X) denotes the differential entropy of X and h(X |Y )

is the conditional differential entropy, assuming they exist.2

We have that I(X; Y ) = 0 when X and Y are independent,
meaning that Y does not carry any information about X
and I(X; Y ) is maximal when there is a one-to-one relation
between Y and X .

III. PROBLEM ANALYSIS AND IMPOSSIBILITY RESULTS

In this section we prove two impossibility results, showing
that in distributed average consensus 1) the twin goals of
perfect accuracy and worse-case privacy guarantee cannot be
achieved simultaneously; 2) if the subgraph of honest nodes is
disconnected, then no protocol can achieve the performances
of the case where a trusted third party (TTP) is assumed to
be available. These two results are related to the performances
of two well-established privacy-preserving techniques: DP and
SMPC, respectively. Without loss of generality, throughout the
paper, we assume the following (recall the private data si is a
realization of random variable Si ).

Assumption 1: All private data are statistically indepen-
dent, i.e., ∀i, j ∈ V, i ̸= j : I(Si ; S j ) = 0.

Assumption 2: The size of the network n = |V| is known
to all nodes. Hence, knowing the average of the data implies
knowing the total sum and vice versa.
We have the following results.

2In the case of discrete random variables we replace both differential
entropies by the Shannon entropy so that I (X; Y ) = H(X)− H(Y |X).

A. Impossibility Result I: Perfect Accuracy and Worst-Case
Privacy Cannot be Achieved Simultaneously

Lemma 1: By assuming perfect accuracy and worst-case
privacy, i.e., Vc = V \ {i}, the individual privacy leakage
becomes

I(Si ;
∑
j∈V

S j , {S j } j∈Vc ) = I(Si ; Si ), (4)

which is maximal.
The proof follows trivially from the fact that

∑
j∈V S j −∑

j∈Vc
S j = Si [25]. Similar results have also been proved

via different metrics such as differential privacy [10]. Thus,
if there are n − 1 corrupt nodes, it is impossible to achieve
any privacy for the only remaining honest node without
compromising accuracy. Hence, there is an inherent trade-off
between privacy and accuracy for differential privacy related
approaches.

B. Impossibility Result II: An SMPC-Like Ideal World
Cannot be Achieved Unless All Honest Nodes Are Connected

In SMPC, the ideal world describes the setting in which
a TTP is assumed to be available. The TTP will (securely)
collect all private data from each node and then compute the
output of the function and send back the output to the nodes.
However, in practice a TTP might not exist. The goal of SMPC
is to design a protocol to replace a TTP. In the context of
average consensus, as the corrupt nodes have available both
their own private data and the average result, the information
observed by the adversary in an ideal world setting is given
by:

Oideal,Vc = {Si }i∈Vc ∪ {
∑
i∈V

Si }. (5)

Hence, for an arbitrary honest node i ∈ Vh we have

I(Si ;Oideal,Vc ) = I(Si ;
∑

i∈Vh

Si ). (6)

Hence, a perfect SMPC protocol for privacy-preserving
distributed average consensus outputs the correct average value
and guarantees that the adversary obtains no more information
about the honest nodes’ private data than (6). The following
result shows that such a protocol cannot exist when the honest
nodes do not form a connected subgraph.

Proposition 1: Let Gh = (Vh, Eh) be the subgraph of G
obtained by removing all corrupt nodes. Let Gh,1, . . . ,Gh,kh be
the components (connected subgraphs that are not part of any
larger connected subgraph) of Gh and let Vh,k denote the vertex
set of Gh,k .

Then for any protocol outputting f (s1, s2, . . . , sn) =∑n
i=1 si to all nodes, after the protocol the adversary will

always have learned {
∑

i∈Vh,k
Si }k=1,2,...,kh .

Proof: See Appendix C. □
In other words, any algorithm with perfect accuracy will

always leak the partial sums of the components of Gh to the
adversary. Note that Gh is very likely to be disconnected in
incomplete networks, especially in the presence of a lot of
corrupt nodes. Hence, a perfect SMPC protocol for privacy-
preserving distributed average consensus does not exist if the
adversary disconnects the honest nodes [34].
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C. Redefined Ideal World for Incomplete Networks

Using Proposition 1, we can derive a tighter bound on
the information view of the adversary by taking the network
topology into account, which we refer to as the redefined
ideal world. The information observed by the adversary in
this redefined ideal world setting, referred to as Oreideal, is

Oreideal,Vc = {S j } j∈Vc ∪ {
∑

i∈Vh,k

Si }k=1,2,...,kh . (7)

Hence, since Vh,k ⊆ Vh we have I(Si ;Oreideal,Vc ) ≥

I(Si ;Oideal,Vc ) and equality holds if and only if the subgraph
Gh is connected, i.e., if kh = 1.

For the simplicity of notation, assume that the honest
node i belongs to the first honest component, i.e., i ∈ Vh,1.
We conclude that a perfect SMPC protocol should reveal no
more information about si than

I(Si ;Oreideal,Vc ) = I(Si ;
∑

j∈Vh,1

S j ). (8)

IV. PROPOSED ADQSP PROTOCOL

The proposed ADQSP is constructed from two building
blocks in distributed optimization, namely adaptive differential
quantization [28], [35] and subspace perturbation [18], [19].
In what follows, we first briefly introduce the fundamentals
of distributed optimization and these two building blocks, and
afterwards we explain the details of the proposed approach.

A. Distributed Optimization

To solve (1) in a distributed manner, we first formulate it
as a constrained optimization problem:

min
{x1,...,xn }

∑
i∈V

1
2
∥xi − si∥

2

s.t. ∀(i, j) ∈ E : xi = x j , (9)

where xi is a local optimization variable at node i with optimal
value x∗i = save. A typical way to solve the above problem
is to apply a solver like ADMM [36] or PDMM [37], [38].
As shown in [38] these distributed optimization algorithms can
be described in a general framework using monotone operator
theory [39] and operator splitting techniques.

For average consensus, the local updating functions are
given by

x (t+1)
i =

si −
∑

j∈Ni
Bi | j z

(t)
i | j

1+ cdi
(10)

z(t+1)
j |i = θ z(t)

j |i + (1− θ)
(

z(t)
i | j + 2cBi | j x

(t+1)
i

)
. (11)

Here z ∈ R2m is an auxiliary variable having entries indicated
by zi | j and z j |i , held by node i and j , respectively, related
to edge (i, j) ∈ E . The matrix B ∈ Rm×n is the graph
incidence matrix and Bi | j and B j |i are edge-related (scalar)
weights, which are related to entries of B as Bk,i = Bi | j and
Bk, j = B j |i for ek = (i, j), i.e., the k-th edge in the graph.
We will use the convention that Bi | j = 1 and B j |i = −1 if
i < j . In addition, c > 0 and θ ∈ [0, 1) are constants,
with c controlling the convergence rate and θ controlling
the averaging of the (non-expansive) operators (recall that

di = |Ni | is the degree of node i). The case θ = 0 corresponds
to PDMM and θ = 0.5 corresponds to ADMM.

The protocol is summarized in Algorithm 1 where tmax
denotes the maximum number of iterations. Note that there
is also an alternative broadcast algorithm that requires only
broadcasting of x (t+1)

i ’s to all neighbors, instead of exchanging
the z(t+1)

j |i ’s one by one; the reception of x (t+1)
i is all that is

needed for node j ∈ Ni to compute z(t+1)
j |i (see Appendix B

for details).

Algorithm 1 Distributed Optimization for Average Consensus
At each i ∈ V:

1) Initialize z(0)
i | j = 0;

2) For t = 0, 1, . . . , tmax − 1 do
a) Compute x (t+1)

i and {z(t+1)
j |i } j∈Ni using (10)

and (11), respectively;
b) Send z(t+1)

j |i to neighbor j ∈ Ni ;
3) Output x (tmax)

i

B. Subspace Perturbation

By inspection of (10), we can see that there can be two
noise-insertion options to protect the private data si : adding
noise to the optimization variable x ∈ Rn directly or adding
noise to the auxiliary variable z ∈ R2m . The subspace
perturbation approach adds noise to the auxiliary variable z,
as it often has more degrees of freedom [18], [19]. We have
shown in previous work [19], [35] that only a part of z
is predictable (like x converges to a value known by the
adversary), while the other part is not. To explain this in more
detail, we first write the local functions (10) and (11) in a
compact form as follows:

x(t+1)
= (I + cC⊤C)−1(s − C⊤z(t)) (12)

z(t+1)
= θ z(t)

+ (1− θ)
(

P z(t)
+ 2c PCx(t+1)

)
, (13)

where C = [B⊤
+
, B⊤
−
]
⊤
∈ R2m×n and B+ and B− contains the

positive and negative entries of B, respectively. Furthermore,
P ∈ R2m×2m is a permutation matrix switching the upper
m rows and lower m rows of the matrix it operates on, i.e.,
PC = [B⊤

−
, B⊤
+
]
⊤.

Let 9 = ran(C)+ ran(PC), whose orthogonal complement
is equal to 9⊥ = ker(C⊤) ∩ ker((PC)⊤). Moreover, let 59

be the orthogonal projection onto 9 and let z(t)
9 = 59 z(t)

and z(t)
9⊥
= (I − 59)z(t). We then have the following

decomposition

z(t)
= z(t)

9 + z(t)
9⊥

. (14)

It has been proven in [35] that

z(t)
9⊥
=

1
2

(
z(0)

9⊥
+ P z(0)

9⊥

)
+

1
2
(2θ − 1)t

(
z(0)

9⊥
− P z(0)

9⊥

)
.

Thus, for a given graph and θ , z(t)
9⊥

only depends on the
initialization of the auxiliary variable z(0). The main idea
of subspace perturbation is to initialize z(0) with a certain
distribution having a sufficiently large variance, such that it
can help to protect the private data from being revealed to
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others (see Proposition 3 for details of the privacy proof).
Moreover, by inspecting (12), we conclude that the x-update
is not affected by z(t)

9⊥
as (z(t)

9⊥
)⊤C = 0. Hence, the output

accuracy is not affected.

C. Adaptive Differential Quantization
Adaptive differential quantization schemes in distributed

optimization were first introduced in [40] and [41]. They
exploit the fact that when the algorithm converges, the
difference between successive updates will converge to zero.

Let Q(t)
: R → {1(t)(a + 1/2)}a∈A denote an l-bit

uniform (mid-rise) quantization function where a ∈ A =
{−2l−1,−2l−1

+1, . . . , 2l−1
−1}. Here 1(t) is the quantization

cell-width which we define as

1(t)
= max{γ t1(0), 1min}, (15)

where γ ∈ (0, 1) is a constant for controlling the decreasing
rate, 1(0) denotes the initial cell-width and 1min denotes the
minimum cell-width. Given cell-width 1(t) at iteration t , Q(t)

maps each input into its nearest representation value (midpoint
of the quantization cells) in {1(t)(a + 1/2)}a∈A.

Adaptive differential quantization does not operate on the
auxiliary variable z directly but on the difference of successive
variables. That is, let ẑ denote the quantized version of z and
define 1z(t+1)

j |i as

1z(t+1)
j |i =

{
z(1)

j |i − z(0)
j |i if t = 0

z(t+1)
j |i − ẑ(t)

j |i if t ≥ 1.
(16)

and

1ẑ(t+1)
j |i = Q(t+1)

(
1z(t+1)

j |i

)
. (17)

Upon receiving the quantized 1ẑ j |i , each node then calculates
ẑ j |i as

ẑ(t+1)
j |i =

{
z(0)

j |i +1ẑ(1)
j |i if t = 0

ẑ(t)
j |i +1ẑ(t+1)

j |i if t ≥ 1.
(18)

Thus, the quantized ẑ can then be constructed as

ẑ(t)
= z(0)

+

(t)∑
τ=1

1 ẑ(τ )
. (19)

Às such, the quantized auxiliary variable ẑ(t+1) cannot be
reconstructed by the adversary until z(0) is known.

The process of quantization will inevitably introduce
distortion in the computations. Let n(t+1)

j |i denote the
introduced error when quantizing 1z(t+1)

j |i . We then have,
by combining (16) and (18), that

n(t+1)
j |i = 1ẑ(t+1)

j |i −1z(t+1)
j |i

= ẑ(t+1)
j |i − z(t+1)

j |i . (20)

When implementing quantization, i.e., 1z→ 1ẑ, we apply
a popular technique in quantization called dithering [42]
when implementing the quantization function Q(t), this ensure
that the quantization error is uniformly distributed over
[−

1(t)

2 , 1(t)

2 ], and is independent of 1z(t+1)
j |i , thus of z(t+1)

j |i .
In the coming Section VI-C we will show how this property
benefits the privacy analysis.

D. Details of the Proposed Approach

Putting things together, the proposed approach first applies
subspace perturbation and then adopts adaptive differential
quantization to quantize the difference variable before
updating. More specifically, at t = 0, subspace perturbation
is applied by initializing z(0)

i | j at every node i with noise drawn
from a distribution having large variance and sending it to
neighbors j ∈ Ni via a securely encrypted channel. Each node
i then updates its local variable x (1)

i and auxiliary variables z(1)
j |i

according to (10) and (11), respectively, after which 1z(1)
j |i and

1ẑ(1)
j |i are computed using (16) and (17), respectively. After

exchanging these quantities between neighboring nodes, 1 ẑ
is computed as (18).

For t ≥ 1, after achieving the quantized ẑ(t)
i | j , each node i

then repeats the following updating steps:

x (t+1)
i =

si −
∑

j∈Ni
Bi | j ẑ

(t)
i | j

1+ cdi
(21)

∀ j ∈ Ni : z
(t+1)
j |i = θ ẑ(t)

j |i + (1− θ)
(

ẑ(t)
i | j + 2cBi | j x

(t+1)
i

)
.

(22)

Note that except transmitting the initialized z(0) all the
communication channels do not require secure channel
encryption when transmitting the quantized 1 ẑ, since from
(19) we can see that the quantized ẑ(t) cannot be reconstructed
unless the initialized z(0) is revealed (see Theorem 2 for
detailed privacy proofs).

Algorithm 2 summarizes the details of the proposed
approach. In the coming sections we will analyze the
performance of the proposed approach and show its relation
to both SMPC and DP.

Algorithm 2 Proposed ADQSP: Privacy-Preserving Dis-
tributed Average Consensus via Adaptive Differentially
Quantized Subspace Perturbation

Initialization: Each node i randomly initializes z(0)
i | j ’s from

independent Gaussian distributions3 N (0; σ 2
z )

for all j ∈ Ni .
Input : Initialized auxiliary variables z(0), quantization

parameters 1(0), γ, 1min, l, and tmax.
Output : Optimization solution: x (tmax)

i

for t = 0, 1, . . . , tmax − 1 do
if t = 0 then

Receive z(0)
j |i from j ∈ Ni via secure channels [43].

x (1)
i ← (10), {z(1)

j |i } j∈Ni ← (11).
end
else

Send 1ẑ(t)
j |i to j ∈ Ni via non-secure channels.

{ẑ(t)
i | j } j∈Ni ← (18), x (t)

i ← (21),
{z(t+1)

j |i } j∈Ni ← (22).
end
{1ẑ(t+1)

j |i } j∈Ni ← (17), {1z(t+1)
j |i } j∈Ni ← (16)

end

Authorized licensed use limited to: TU Delft Library. Downloaded on January 16,2024 at 13:28:20 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: ADQSP: A UNIFIED FRAMEWORK FOR PRIVACY-PRESERVING DISTRIBUTED AVERAGE CONSENSUS 1785

V. INFORMATION-THEORETICAL ANALYSIS OF EXISTING
SMPC AND DP APPROACHES

Before showing that the proposed ADQSP approach can
obtain both SMPC and (relaxed) DP performances, we first
introduce and analyze two example approaches of SMPC and
DP. In particular, we will give an information theoretical
analysis of individual privacy.

A. Performance Analysis of SMPC-Based Distributed
Average Consensus

1) Application of Additive Secret Sharing in Distributed
Average Consensus: Additive secret sharing is a popular
SMPC technique. As an example, we now briefly explain
how to apply additive secret sharing to distributed average
consensus to achieve privacy-preservation [14], [16]. The
basic idea is to encrypt the private data before performing
averaging using a traditional average consensus algorithm
such as Algorithm 1 or its broadcast alternative. Let Zp be
the cyclic group of p elements, represented by the integers
{0, . . . , p − 1}. In order to apply additive secret sharing,
we first need to transform all private data si to integers in
Zp, where negative numbers are represented by their modular
additive inverse and floating point numbers are scaled up into
integers. In addition, p should be sufficiently large such that
p ≥

∑
i∈V si . Hence, discrete random variables are considered

here. To apply additive secret sharing [44], each node i first
chooses di elements {r j

i ∈ Zp} j∈Ni uniformly at random.
It then sends r j

i to node j ∈ Ni (which requires secure channel
encryption) and computes its own share as

r i
i = si −

∑
j∈Ni

r j
i mod p, (23)

where r i
i is a noisy version of the private data si . Two key

properties of additive secret sharing, which we will prove using
mutual information in Proposition 2, are: 1) the secret can only
be reconstructed when all shares are known; 2) no information
about the hidden secret can be inferred as long as one share
is missing. We have the following result.

Proposition 2: (Properties of additive secret sharing) Let
R j

i be uniformly distributed in Zp and let r i
i be as in (23).

Furthermore, let k be an element in N ′i = Ni ∪ {i}. Then

I(Si ; {R
j
i } j∈N ′i

) = I(Si ; Si ). (24)

I(Si ; {R
j
i } j∈N ′i \{k}

) = 0 (25)
Proof: See Appendix D. □

In order to guarantee that adding noise to the original private
data has no effect on the average result, each node i adds all
received shares r i

j from neighboring nodes to the share r i
i .

That is, node i constructs data s′i as

s′i = r i
i +

∑
j∈Ni

r i
j mod p

= si +
∑

j∈Ni

(r i
j − r j

i ) mod p (26)

3Note that except for being independent, each node can choose its own
noise distributions and variances, as long as they are sufficiently large for
privacy guarantee.

and uses s′i as input to Algorithm 1 (broadcast type). After
obtaining the average of s′i , each node then constructs the
final average output, denoted by ssmpc, as ssmpc = (n ×
s′ave mod p)/n.

2) Output Accuracy: Since
∑

i∈V

∑
j∈Ni

(r i
j − r j

i )

mod p = 0, the sum of s′i is the same as the sum of
si , i.e., ∑

i∈V
s′i mod p =

∑
i∈V

(
si +

∑
j∈Ni

(r i
j − r j

i )
)

mod p

=
∑
i∈V

si

Thus, the MSE is then given by

esmpc = (ssmpc − save)
2

= (

∑
i∈V s′i mod p

n
−

∑
i∈V si

n
)2
= 0.

Hence, output accuracy is not affected by applying additive
secret sharing.

3) Individual Privacy: To analyze privacy, we need to
first specify the view of the adversaries. In this analysis,
we consider a scenario where each honest node has at least
one corrupt neighbor. In that case, the view of the adversaries
is given by

OSMPC,Vc = {S j } j∈Vc ∪ {R
k
j , R j

k }( j,k)∈Ec ∪ {X
(t)
}t≥1.

With (10) and (11) we have that

x (t+3)
i − 2θx (t+2)

i + (2θ − 1)x (t+1)
i

=
−
∑

j∈Ni
Bi | j(z

(t+3)
i | j − 2θ z(t+2)

i | j + (2θ − 1)z(t+1)
i | j )

1+ cdi

=
−
∑

j∈Ni
2c(1− θ)((1− θ)x (t+1)

i + θx (t+1)
j − x (t+2)

j )

1+ cdi
.

(27)

Hence, the adversary can compute x(t) for t ≥ 3 using the
first two iterations (t = 1, 2). We have the following result.

Theorem 1: (Information loss of SMPC protocol) Assume
that each honest node has at least one corrupt neighbor.
Then computing averaging using inputs s′i given by (26),
the adversaries can infer the following information about an
arbitrary honest node i ∈ Vh:

I(Si ;OSMPC,Vc) = I(Si ;
∑

j∈Vh,1

S j ).

Proof: See Appendix E and F. □
Hence, we conclude that the above SMPC approach

achieves perfect output accuracy and the individual privacy
reaches the bound (8) in the redefined ideal world, i.e.,(

eSMPC = 0, I(Si ;OSMPC,Vc) = I(Si ;
∑

j∈Vh,1

S j )

)
. (28)

B. Performance Analysis of DP-Based Distributed Average
Consensus

In this section, we describe how DP-like methods [10],
[11], [12] can be applied in average consensus. Specifically,
this approach falls under local differential privacy (LDP)
[45], in which there is no centralized server available and
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each node considers all other nodes to be corrupt. The most
straightforward way to incorporate LDP in distributed average
consensus is via local perturbation: every node i draws a
random noise ri from some predetermined distribution, and
adds it to its private data to obtain perturbed data, denoted as

∀i ∈ V : s̃i = si + ri (29)

An average consensus protocol is then run on the perturbed
data s̃i instead of the private data si .

1) Output Accuracy: Since distributed average consensus
protocol is performed on s̃i , its output is then given by 1

n
∑

i s̃i ,
so the MSE (2) is given by

eDP =
1
n

n∑
i=1

(s̃i − si )
2
=

1
n

n∑
i=1

r2
i . (30)

2) Individual Privacy: As explained before, mutual infor-
mation is a relaxed version of ϵ-differential privacy [31],
[32]. For consistency with the rest of this paper, here we
also measure privacy leakages of DP approaches via mutual
information. Therefore, we refer that our approach achieves
performances of relaxed DP approaches. DP assumes that
all nodes other than the considered node i are corrupt.
In particular, the DP adversary knows s̃ j for j ̸= i and, from
the output of the average consensus protocol, also 1

n
∑

j s̃ j .
It follows that the DP adversary can always deduce s̃i , and so
individual privacy is given by

I(Si ;ODP,V\{i}) = I(Si ; Si + Ri ). (31)

Existing mechanisms give bounds to this, under assumptions
of the distribution of the Si . For instance, if it is known that
si ∈ [α, α + M] for α, M ∈ R, then taking ri to follow the
Laplace distribution with parameter M/ε ensures that (31) is
bounded by ε [26]. Note that all noises Ri are independent
of each other and their variances, denoted σ 2

ri
, is given by

σ 2
ri
= 2M2/ε2. Given (30), the variance of EDP is thus

1
n2

n∑
i=1

σ 2
ri
=

2M2

nε2 . (32)

This shows that the more privacy we demand, i.e., the lower
ε is, the less accurate the output average will be. Hence, there
is a privacy-accuracy trade-off in DP approaches.

Overall, we conclude the output accuracy and individual
privacy of a DP based approach is given by(

eDP =
1
n

n∑
i=1

r2
i ; I(Si ;ODP,V\{i}) = I(Si ; Si + Ri )

)
(33)

VI. CONNECTION OF PROPOSED APPROACH AND
EXISTING SMPC AND DP APPROACHES

We first analyze the output accuracy and individual privacy
of the proposed approach and then explain how it connects to
existing SMPC and DP approaches.

A. Output Accuracy
As proved in [35], [40], and [41], the output accuracy

is dependent on the parameter of 1min, i.e., minimum
quantization cell-width. Let ri,min denote the residual error in
the output of node i compared to the true average save, so that
the MSE of the proposed approach is given by

eADQSP =
1
n

∑
i∈V

r2
i,min. (34)

We have that

ri,min = x (t)
i − save

(a)
=

si −
∑

j∈Ni
Bi | j ẑ

(t−1)
i | j

1+ cdi
− save

(b)
=

si −
∑

j∈Ni
Bi | j z

(t−1)
i | j

1+ cdi
−

∑
j∈Ni

Bi | j n
(t−1)
i | j

1+ cdi
− save,

(35)

where (a) uses (21) and (b) uses (20). Since the first term in
the right-hand side of (35) equals save as t →∞, we conclude
that

ri,min →−

∑
j∈Ni

Bi | j n
(t−1)
i | j

1+ cdi
as t →∞.

Note that for the special case where 1min = 0, we have that
n(t)

i | j → 0 as t →∞ and thus r2
i,min → 0, hence perfect output

accuracy is guaranteed.

B. Individual Privacy
With the adopted quantization scheme, the total

collection of information transmitted over the network
is {z(0)

i | j }(i, j)∈E, {1ẑ(t)
i | j }(i, j)∈E,t≥1. Of these, only the initialized

{z(0)
i | j }(i, j)∈E are transmitted over a secure channel. Thus,

the eavesdropping adversary has the knowledge of
{1ẑ(t)

j |k }( j,k)∈E,t≥1 The passive adversary has the knowledge of
{S j } j∈Vc ∪ {Z

(0)
j |k , 1Ẑ (t)

j |k }( j,k)∈Ec ,t≥1 and hence combining the
knowledge of these gives that the view of an adversary in our
proposed algorithm is

OADQSP,Vc = {S j } j∈Vc ∪ {Z
(0)
j |k }( j,k)∈Ec ∪ {1Ẑ (t)

j |k }( j,k)∈E,t≥1).

In what follows we will show that the proposed approach
can achieve both SPMC and DP performances under different
parameter settings.

C. Proposed Approach Achieves SMPC Performances by
Setting 1min = 0

We will prove our claim via two main results: 1) the
proposed approach obtains similar properties as the SMPC
technique, i.e., additive secret sharing; 2) The proposed
approach achieves the same performances as the SMPC
approach.

We remark that the initialized z(0)
i | j ’s together with x (1)

i can
be considered as shares of si , similar to the additive secret
sharing scheme. In the following, we prove that it also satisfies
two key properties of additive secret sharing scheme, similar
to Proposition 2.
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Proposition 3: (The proposed ADQSP satisfies two proper-
ties required for additive secret sharing.) Let Z (0)

i | j ∼ N (0, σ 2
z )

and let x (1)
i =

si−
∑

j∈Ni
Bi | j z(0)

i | j
1+cdi

. Furthermore, let k be an
element in Ni and denote the variance of Si by σ 2

s . Then

I(Si ; {Z
(0)
i | j } j∈Ni \{k}, X (1)

i ) ≤
1
2

log(1+
σ 2

s

σ 2
z

) (36)

I(Si ; {Z
(0)
i | j } j∈Ni , X (1)

i ) = I(Si ; Si ). (37)

For σ 2
z →∞ we obtain

lim
σ 2

z→∞
I(Si ; {Z

(0)
i | j } j∈Ni \{k}, X (1)

i ) = 0. (38)

Proof: See Appendix G. □
We now proceed to the main results of individual privacy.
Theorem 2: (Upper and lower bound of the information

loss of the proposed ADQSP approach when 1min = 0.)
Assume that all nodes has at least one corrupt neighbor, the
information that the adversaries can infer about an arbitrary
honest node i ∈ Vh is upper bounded by:

I(Si ;OADQSP,Vc)

≤ I(Si ; {S j −
∑

k∈N j,h

B j |k Z (0)
j |k } j∈Vh,1 , {Z

(0)
j |k − Z (0)

k| j } j,k∈Vh,1),

(39)

assuming σ 2
z →∞, the above becomes

I(Si ;OADQSP,Vc) ≤ I(Si ;
∑

j∈Vh,1

S j ). (40)

Assuming tmax → ∞, the information loss is also lower
bounded by:

I(Si ;OADQSP,Vc) ≥ I (Si ;
∑

j∈Vh,1

S j ). (41)

Proof: See Appendix I for proof of (39) and (40),
Appendix J for proof of (41). □

Overall, we conclude that when 1min = 0 the output
accuracy and individual privacy of the proposed ADQSP
protocol is given by(

eADQSP = 0; I(Si ;OADQSP,Vc) = I(Si ;
∑

j∈Vh,1

S j ).

)
(42)

which is identical to the performance of SMPC approach (28).

D. Proposed Approach Achieves Performances of (Relaxed)
DP Approaches by Setting 1min > 0

DP approach is the worst-case scenario where there are n−
1 corrupt nodes, i.e., Vc = V \ {i}, which implies Ni,h = ∅

and Gi = {i}. We have the following result
Theorem 3: (Information loss of the proposed approach

when Vc = V \ {i} and 1min > 0) The information loss is
given by

I(Si ;OADQSP,V\{i}) = I(Si ; {Si + ci,k N (t+1)
k|i }t≥0) (43)

where ci,k =
1+cdi

(1−θ)2cBi |k
.

Proof: See Appendix K. □
Note that in this case if 1min = 0, we have N (t)

k|i → 0 thus
the above I(Si ;OADQSP,V\{i}) = I(Si ; {Si + ci,k N (t+1)

k|i }t≥0) =

I(Si ; Si ) which is maximal, i.e., all the private information is
revealed.

Therefore, we should set 1min > 0 and the corresponding
quantization noise N (t+1)

k|i will help to guarantee privacy.
By inspecting the output accuracy (34) and individual
privacy (43) we can see that increasing 1min will result less
accurate output and more privacy guarantee as the quantization
noise n(t)

i | j s at convergence becomes larger. This complies to
the privacy-accuracy trade-off of DP discussed in Section V-
B. Overall, we conclude that by setting 1min > 0, the
proposed ADQSP gives privacy guarantees in the presence of
n− 1 corrupt nodes, analogous to DP. Its output accuracy and
individual privacy are given by(

eADQSP =
1
n

∑
i∈V

r2
i,min;

I(Si ;OADQSP,V\{i}) = I(Si ; {Si + ci,k N (t+1)
k|i }t≥0).

)
(44)

VII. NUMERICAL RESULTS

In this section, simulation results will be presented to
demonstrate the performance of the proposed approach and
its connections to both SMPC and DP.

A. Convergence Behavior of the Proposed Approach

To simulate a distributed network, we simulate a geometric
graph with n = 30 nodes in a room of size 1 × 1 × 1
meter and the coordinates of each node are randomly generated
from uniform distribution within the range of [0, 1]. Every two
nodes are neighbors if and only if their distance is within the

radius
√

2 log(n)
n , this guarantees that the generated graph will

be connected with a high probability [46]. Without loss of
generality, all private data {si }i∈V are randomly drawn from a
Gaussian distribution with unit variance and zero mean. The
constant c for controlling the convergence rate is set as 1. The
bitrate l is set as 2.

To demonstrate the flexibility and general applicability
of the proposed approach, in Fig. 1 and 2 we show
its convergence behavior under different parameter settings.
Each experiment is averaged over 104 times. The mutual
information is estimated using the npeet toolbox [47].

1) First, we demonstrate that the proposed approach is
applicable to different types of distributed optimizers,
i.e., to different choices of θ ∈ [0, 1). We take θ =

0, 0.2, 0.5; note that θ = 0 corresponds to PDMM and
θ = 0.5 corresponds to ADMM. As can be seen from
Fig. 1 and 2, the convergence behavior is independent
of the choice of θ , and our approach can be applied to
different distributed optimizers.

2) In Fig. 1 we demonstrate the convergence behavior
of the optimization variable by varying the variance
of the initialized auxiliary variable, which controls the
achieved privacy level (see details below in Fig. 3).
Clearly, we can see that the convergence rate is
independent of the variance magnitude, as a higher
variance only incurs a higher initial error, thus a larger
offset.
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Fig. 1. Convergence of the optimization variable in terms of three different variances of the auxiliary variable, i.e., σz = 103, σz = 102 and σz = 101 given
three different distributed optimizers: (a) θ = 0 (PDMM), (b) θ = 0.2 and (c) θ = 0.5 (ADMM), wherein 1min = 0.

Fig. 2. Convergence of the optimization variable in terms of three different quantization parameter setting, i.e., 1min = 10−3, 1min = 10−2 and 1min = 10−1

given three different distributed optimizers: (a) θ = 0 (PDMM), (b) θ = 0.2 and (c) θ = 0.5 (ADMM), wherein σz = 103.

Fig. 3. Individual privacy: normalized mutual information (RHS of (39))
as a function of σz using the proposed approach; NMI of I(Si ;

∑
j∈Vh,1

S j )

using the existing SMPC approach.

3) In Fig. 2 we demonstrate the convergence behaviors by
varying the quantization cell-width 1min. We can see
that, as expected, the output accuracy is degraded by
increasing 1min (in Fig. 5 we will show the privacy
leakage becomes less by increasing 1min). Hence, the
trade-off between privacy and accuracy is controlled by
the parameter 1min.

B. Connection to Existing SMPC and DP Approaches
We now proceed to consolidate our claims that the proposed

approaches can reduce to both SMPC and DP by choosing
appropriate parameter settings.

1) SMPC: In Fig. 1 we show that by setting 1min = 0
the proposed approach is able to converge to accurate output
average result, similar to the results reported in SMPC

approach [14], [16]. As for individual privacy, we consider
the case where there are only two honest nodes in the
network and they are connected to each other. In Fig. 3
we show the achieved privacy level for one honest node
of the proposed approach, by taking the normalized mutual
information (NMI) on RHS of (39) as a function of the
variance σz . In addition, we also depict the achieved privacy
of the existing SMPC approach, i.e., the normalized mutual
information I(Si ;

∑
j∈Vh,1

S j ) in the redefined ideal world (8).
We see that by increasing the variance σz , the proposed
approach gets closer to the bound given in SMPC approach.
Hence, with Fig. 1 and 3, we validate the claim that the
proposed approach can achieve the same performances as
SMPC approach when 1min = 0.

2) DP: In order to demonstrate that the proposed approach
achieves similar privacy to a DP approach by setting 1min > 0,
we assume that the noise added in DP approach is uniformly
distributed over the range [−ur

2 , ur
2 ]. By inspecting Fig. 4 we

can see that by setting ur = 1min, the proposed approach
achieves similar output accuracy as the DP approach. Note
that by tuning parameters c the constant for controlling the
convergence rate and γ the decreasing rate of quantization
cell-width, it is possible to achieve a good combination
which even has a faster convergence rat compared to the
non-quantized case (see [40], [41] for more details). As for
individual privacy, let node i be the only honest node and
for simplicity we let c = di = 1 and θ = 0 such that
ci,k =

1+cdi
(1−θ)2cBi |k

= 1 in (43). In Fig. 5 we plot the NMI of

I(Si ; {Si+ci, j N
(t+1)
j |i } j∈Ni ) as a function of the iteration number

t using the proposed approach. For the DP type approach, the
NMI is given by I(Si ; Si + Ri ). From the figure we conclude
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Fig. 4. Output accuracy: MSE of the optimization variable in terms of
iteration numbers using the proposed approach and DP approach under two
different sets of parameter.

Fig. 5. Individual privacy: NMI as a function of iteration numbers using the
proposed approach and DP approach under two different set of parameters.

TABLE I
ABBREVIATIONS

that as the iteration grows, I(Si ; {Si + ci, j N
(t+1)
j |i } j∈Ni ) of the

proposed approach can attach to the I(Si ; Si + Ri ) of DP type
approach, which substantiates our theoretical results.

VIII. CONCLUSION

In this paper, we proposed a novel privacy-preserving
distributed average consensus approach called ADQSP.
Through a comprehensive information-theoretical privacy
analysis, we demonstrate the flexibility and optimality of the
proposed approach. Though not directly derived from existing
cryptographic tools, it enjoys both the benefits of SMPC
and DP techniques and can achieve their performances by
controlling the quantization parameter. Experimental results
are presented to validate our theoretical analysis.

APPENDIX A
LIST OF ABBREVIATIONS

See Table I.

APPENDIX B
BROADCAST ALTERNATIVE OF ALGORITHM 1

Algorithm 3 Distributed Optimization for Average Consensus
(broadcast)
At each i ∈ V:

1) Initialize {z(0)
i | j = 0} j∈Ni ;

2) For t = 0, 1, . . . , tmax − 1 do
a) Compute x (t+1)

i using (10);
b) Broadcast x (t+1)

i to all j ∈ Ni ;
c) Compute ∀ j ∈ Ni : z

(t+1)
i | j , z(t+1)

j |i using (11);
3) Output x (tmax)

i

APPENDIX C
PROOF OF PROPOSITION 1

To explain the main idea we use the case that kh = 2,
i.e., the adversary disconnects the honest nodes into two
components denoted as a “left” component L and a “right”
component R. Let sL, sR and sVc be vectors consisting of
the inputs for the left component, the right component, and
the corrupt nodes, respectively.

Proof: Let F be the protocol outputting
∑n

i=1 si . The
view of the adversary is

OF,Vc = {sVc , rVc , mL, mR, f (sL, sVc , sR)}, (45)

where rVc is a vector containing the so-called randomness
from the corrupt nodes, mL is a vector containing all messages
received from nodes in L and similarly for mR in R.

The adversary can simulate a run of the protocol where it
takes the actions for the nodes in R. It means that it chooses
some inputs and randomness and follow the steps in F, where
it uses the messages mL when needed in F. If at some point
an entry in mR differs from the view it will abort the protocol
and start over. Since sR and rR is a valid choice (there might
of course be several others) the adversary will succeed at some
point meaning that it will find an s̃R and r̃R giving the exact
same view as in (45). Since the adversary uses the exact same
messages from the nodes in L as in the real execution of F
and the correct output is included in the view we must have
f (sL, sVc , sR) = f (sL, sVc , s̃R). Hence, the adversary can
determine ∑

i∈L
si = f (sL, sVc , sR)−

∑
i∈Vc

si −
∑
i∈R

s̃i

When the adversary knows
∑

i∈L si it can of course also
determine

∑
i∈R si =

∑n
i=1 si −

∑
i∈Vc

si −
∑

i∈L si . The above
proof can easily be generalized to the case where kh > 2 and
that in this case the adversary will learn all the sums of
the private data in each component. Hence, the proof is now
complete. □

APPENDIX D
PROOF OF PROPOSITION 2

Proof: The first equality holds since

(r i
i +

∑
j∈Ni

r j
i ) mod p = si . (46)
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For the last equality we consider two cases. First assume k =
i , then clearly I(Si ; {R

j
i } j∈N ′i \{k}

) = 0 since all the R j
i are

independent of Si . The last case considers k ̸= i , and in this
case we have that

I(Si ; {R
j
i } j∈N ′i \{k}

)
(a)
= I(Si ; {R

j
i } j∈Ni \{k}, Si − Rk

i )

(b)
= I(Si ; Si − Rk

i ),

where (a) uses (46) and the fact that I(X; Y, Z) =

I(X; f (Y, Z)) if f is a bijective function; (b) follows from
independence between {Si , Si − Rk

i } and {R j
i } j∈Ni \{k}. Due to

the fact that Rk
i is uniformly distributed in Zp, the random

variable Si − Rk
i is also uniformly distributed in Zp and hence

independent of Si which completes the proof of (25). □

APPENDIX E
NECESSARY RESULT FOR PROVING THEOREM 1

Lemma 2: Let X1, . . . Xn and R1, . . . Rn be independent
random variables satisfying ∀i : I(X i ; X i + Ri ) = 0. Then

∀i :I(X i ; X1 + R1, . . . , Xn + Rn,
n∑

j=1
R j ) = I (X i ;

n∑
j=1

X j ).

Proof: We first present the following equality:
1 1 · · · 1 1
0 1 · · · 1 1
...

. . .
. . .

...
...

0 · · · 0 1 1
0 · · · · · · 0 1




X1 + R1
X2 + R2

...

Xn + Rn
−
∑n

i=1 Ri

 =


∑n
i=1 X i∑n

i=2 X i−Ri
...

Xn −
∑n−1

i=1 Ri
−
∑n

i=1 Ri

 (47)

With the above result we have

I(X i ; X1 + R1, . . . , Xn + Rn,
n∑

j=1
R j )

= I(X i ;
n∑

j=1
X j ,

n∑
j=2

X j − R1, . . . , Xn −
n−1∑
j=1

R j ,
n∑

j=1
R j )

= I (X i ;
n∑

j=1
X j ).

where the first equality holds as the linear map in (47) is
bijective; by inspecting the linear map we can see that the
difference of the k’th and (k + 1)’th rows in RHS of (47) is
Xk + Rk , which is independent of all X i s and the k’th row
of (47), thus X i →

∑n
j=1 X j →

∑n
j=2 X j − R1 → . . . →

Xn −
∑n−1

j=1 Ri →
∑n

j=1 R j forms a Markov chain. Thus, the
second equality holds. □

APPENDIX F
PROOF OF THEOREM 1

Proof: We have that

I(Si ;OSMPC,Vc)

= I(Si ; {S j } j∈Vc ∪ {R
k
j , R j

k }( j,k)∈Ec ∪ {X
(1), X (2)

})

as from (27) all {X (t)
}t≥2 can be determined using

{X (1), X (2)
}. Furthermore, note that since we initialize z(0)

i | j =

0 and with the inputs from (26) we have that

x (1)
j =

s′j
1+ cd j

x (2)
j =

s′j + 2c(1− θ)
∑

k∈V j
x (1)

k

1+ cd j

from (10) and (11).
Thus, there is a bijection between {s′j } j∈V and x(1) and

furthermore, {s′j } j∈V is enough for computing x(2). In addition,
the corrupt {s′j } j∈Vc can be computed using {s j } j∈Vc and

{rk
j , r j

k }( j,k)∈Ec based on (26). Thus we have

I(Si ;OSMPC,Vc)

= I(Si ; {S j } j∈Vc , {R
k
j , R j

k }( j,k)∈Ec , {S
′

j } j∈Vh )

(a)
= I(Si ; {Rk

j , R j
k }( j,k)∈Ec , {S

′

j } j∈Vh )

(b)
= I(Si ; {Rk

j , R j
k }( j,k)∈Ec , {S j +

∑
k∈N j,h

R j
k − Rk

j } j∈Vh )

(c)
= I(Si ; {S j +

∑
k∈N j,h

R j
k − Rk

j } j∈Vh )

(d)
= I(Si ; {S j +

∑
k∈N j,h

R j
k − Rk

j } j∈Vh,1)

(e)
= I(Si ;

∑
j∈Vh,1

S j )

where (a) holds as the term {S j } j∈Vc is independent of all other
terms; (b) uses the fact that I(X; Y, Z) = I(X; f (Y, Z)) if f is
a bijective function, (c) holds as all terms in {Rk

j , R j
k }( j,k)∈Ec are

independent of {S j +
∑

k∈N j,h
R j

k − Rk
j } j∈Vh , and (d) follows

from the independence of the different components, and (e)
holds as (d) is a special case of Lemma 2 wherein

∑n
i=1 Ri =

0. □

APPENDIX G
PROOF OF PROPOSITION 3

Proof: The equality comes immediately as si can be
determined by {z(0)

i | j } j∈Ni and x (1)
i using (10). Now consider

the inequality. We have that

I(Si ; {Z
(0)
i | j } j∈Ni \{k}, X (1)

i )

(a)
= I(Si ; {Z

(0)
i | j } j∈Ni \{k}, Si−Bi |k Z (0)

i |k )

(b)
= I(Si ; Si − Z (0)

i |k )

= h(Si − Z (0)
i |k )− h(Z (0)

i |k )

(c)
= h(Si − Z (0)

i |k )−
1
2

log(2πeσ 2
z )

(d)
≤ log

(
1+

σ 2
s

σ 2
z

)
where (a) uses (10) and the fact that I(X; Y, Z) =

I(X; f (Y, Z)) if f is a bijective function. (b) follows as Z (0)
i | j is

independent of Si and Z (0)
i |k and assuming the constant Bi |k = 1

(for the case of Bi |k = −1 the proof is the same.). (c) holds as
the entropy of a normal distribution with variance σ 2 is given
by 1

2 log(2πeσ 2). (d) follows from the fact that the maximum
entropy of a distribution with fixed variance is given by the
normal distribution, thus we obtain the above upper bound.

When σ 2
z →∞, σ 2

s
σ 2

z
→ 0 we thus have

lim
σ2

z→∞
I(Si ; {Z

(0)
i | j } j∈Ni \{k}, X (1)

i ) = 0,

as mutual information is non-negative. □
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APPENDIX H
NECESSARY RESULTS FOR PROVING THEOREM 2

Lemma 3: Let X, R be independent random variables with
variance σ 2

x , σ 2
r <∞, we have

lim
σ 2

r→∞
I(X; X + R) = 0, (48)

i.e., X is asymptotically independent of X + R if σ 2
r →∞.

Proof: Let γ = 1/σr and define R′ = γ R. Hence, R′

has unit variance. Since mutual information is invariant under
scaling, we have I (X; X + R) = I

(
γ X; γ X + R′

)
. As a

consequence, we have

lim
σ 2

r→∞
I (X; X + R) = lim

γ→0
I
(
γ X; γ X + R′

)
= I

(
0; R′

)
= 0.

□

APPENDIX I
PROOF OF (39) AND (40) IN THEOREM 2

Proof: Consider the difference of two successive x-
updates (12):

x(t+1)
− x(t)

= −(I + cCT C)−1(CT 1z(t)).

Similarly, the difference of two successive z updates in (13)
is given by

1z(t+1)
= θ1z(t)

+ (1− θ)P1z(t)

+ 2c(1− θ)(PC(x(t+1)
− x(t))).

= θ1z(t)
+ (1− θ)P1z(t)

− 2c(1− θ)(I + cCT C)−1(PCCT 1z(t)). (49)

Hence, 1z(t+1) can be determined by 1z(t).
For an honest node i we have

I(Si ;OADQSP,Vc)

= I(Si ; {S j } j∈Vc , {Z
(0)
j |k }( j,k)∈Ec , {1Ẑ (t)

j |k }( j,k)∈E,t≥1)

(a)
≤ I(Si ; {S j } j∈Vc , {Z

(0)
j |k }( j,k)∈Ec , {1Z (t)

j |k }( j,k)∈E,t≥1)

(b)
= I(Si ; {S j } j∈Vc , {Z

(0)
j |k }( j,k)∈Ec , {1Z (1)

j |k }( j,k)∈E)

(c)
= I(Si ; {S j } j∈Vc , {Z

(0)
j |k }( j,k)∈Ec , X (1), {1Z (1)

j |k }( j,k)∈Eh )

(d)
= I(Si ; {S j } j∈Vc , {Z

(0)
j |k }( j,k)∈Ec , X (1), {Z (0)

j |k − Z (0)
k| j }( j,k)∈Eh )

(e)
= I(Si ; {S j −

∑
k∈N j,h

B j |k Z (0)
j |k } j∈Vh , {Z

(0)
j |k − Z (0)

k| j }( j,k)∈Eh )

( f )
= I(Si ; {S j −

∑
k∈N j,h

B j |k Z (0)
j |k } j∈Vh,1 , {Z

(0)
j |k − Z (0)

k| j } j,k∈Vh,1)

where (a) follows from the fact that 1ẑ(t)
j |k is a random

function of 1z(t)
j |k due to quantization, and hence we upper

bound the information leakage by replacing 1ẑ(t)
j |k by 1z(t)

j |k .
(b) uses the result of (49). Since each node has at least
one corrupt neighbor thus x(1) can be determined using
{z(0)

j |k }( j,k)∈Ec , {1z(1)
j |k }( j,k)∈E through (11). In addition, using x(1)

and {z(0)
j |k }( j,k)∈Ec one can further determine {z(1)

j |k }( j,k)∈Ec , thus

also {1z(1)
j |k }( j,k)∈Ec . Hence, (c) holds. Since 1z(1)

i | j = z(1)
i | j −z(0)

i | j ,
replace z(1)

i | j using (11) we thus have

1z(1)
i | j

1− θ
− 2cB j |i x

(1)
j = z(0)

j |i − z(0)
i | j . (50)

Hence, {z(0)
j |i − z(0)

i | j }(i, j)∈Eh and {x (1)
j } j∈Vh can determine

{1z(1)
i | j }(i, j)∈Eh , thus (d) holds. In addition, from (10) we have

(1+ cdi )x (1)
i +

∑
j∈Ni,c

Bi | j z
(0)
i | j = si −

∑
j∈Ni,h

Bi | j z
(0)
i | j ,

which again all term in the LHS is known to the
adversaries, and hence we obtain (e). For (e) we also
remove x (1)

j for corrupt j’s since they can be computed from
{S j } j∈Vc , {Z

(0)
j |k }( j,k)∈Ec and after removal of this {Z (0)

j |k }( j,k)∈Ec is
independent of the rest and can be removed. (f) follows by the
independence of the different components. Hence, the proof
of (39) is complete.

If σ 2
z → ∞, based on Lemma 3 we have i ∈

Vh,1 : limσ 2
z→∞

I(Si ; Si −
∑

k∈Ni,h
Bi |k Z (0)

i |k ) = 0, i.e.,
the private data Si is asymptotically independent of Si −∑

k∈Ni,h
Bi |k Z (0)

i |k . Thus, the independence condition required
in Lemma 2 is satisfied, the proof follows similarly, we thus
have,

I(Si ; {S j −
∑

k∈N j,h

B j |k Z (0)
j |k } j∈Vh,1 , {Z

(0)
j |k − Z (0)

k| j } j,k∈Vh,1)

= I(Si ;
∑

j∈Vh,1

S j ).

Hence, proof of (40) is complete. □

APPENDIX J
PROOF OF (41) IN THEOREM 2

Proof: We first derive some equalities which will be used
in the proof later. Since 1z(t+1)

j |i = z(t+1)
j |i − ẑ(t)

j |i = 1ẑ(t+1)
j |i −

n(t+1)
j |i , replace z(t+1)

j |i using (22) we thus have ∀t ≥ 1

1ẑ(t+1)
j |i − n(t+1)

j |i

1− θ
− 2cBi | j x

(t+1)
i = ẑ(t)

i | j − ẑ(t)
j |i . (51)

Thus, for the corrupt neighbor k ∈ Ni,c the above becomes

x (t+1)
i +

n(t+1)
k|i

2cBi |k(1− θ)
=
−ẑ(t)

i |k + ẑ(t)
k|i

2cBi |k
+

1ẑ(t+1)
k|i

2cBi |k(1− θ)
.

(52)

For the honest neighbor j ∈ Ni,h , using (19) the above (51)
becomes

x (t+1)
i +

n(t+1)
j |i

2cBi | j(1− θ)
+

z(0)
i | j − z(0)

j |i

2cBi | j

=
−
∑(t)

τ=1 1ẑ(τ )
i | j +

∑(t)
τ=1 1ẑ(τ )

j |i

2cBi | j
+

1ẑ(t+1)
j |i

2cBi | j(1− θ)
. (53)

Using (19), (21) can be written as

si −
∑

j∈Ni,h

Bi | j z
(0)
i | j − (1+ cdi )x (t+1)

i

=
∑

j∈Ni,h

Bi | j(
t∑

τ=1
1ẑ(τ )

i | j )+
∑

k∈Ni,c

Bi |k ẑ(t)
i |k , (54)
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Note that, all terms in the RHS of the above equations are
known by the adversary, i.e., included in OADQSP,Vc .

As a consequence, take the difference of the LHS
of (53) and (52) and scale up by 2c we have

n(t+1)
j |i

Bi | j(1− θ)
+

z(0)
i | j − z(0)

j |i

Bi | j
−

n(t+1)
k|i

Bi |k(1− θ)
(55)

In addition, first multiple (1+ cdi ) with the LHS of (52) and
add to LHS of (54) we have

si −
∑

j∈Ni,h

Bi | j z
(0)
i | j + ci,k N (t+1)

k|i , (56)

recall ci,k =
(1+cdi )

2cBi |k (1−θ)
.

With the above results we thus have

I(Si ;OADQSP,Vc)

(a)
= I

(
Si ; {S j } j∈Vc , {Z

(0)
j |k }( j,k)∈Ec , {1Ẑ (t)

j |k }( j,k)∈E,t≥1,

{
N (t+1)

j |i

Bi | j(1− θ)
+

Z (0)
i | j − Z (0)

j |i

Bi | j

−
N (t+1)

k|i

Bi |k(1− θ)
}i∈Vh , j∈Ni,h ,k∈Ni,c ,t≥0,

{Si −
∑

j∈Ni,h

Bi | j Z
(0)
i | j + ci,k N (t+1)

k|i }i∈Vh ,k∈Ni,c ,t≥0

)
(b)
≥ I

(
Si ; {

N (t+1)
j |i

Bi | j(1− θ)
+

Z (0)
i | j − Z (0)

j |i

Bi | j

−
N (t+1)

k|i

Bi |k(1− θ)
}i∈Vh,1, j∈Ni,h ,k∈Ni,c ,t≥0,

{Si −
∑

j∈Ni,h

Bi | j Z
(0)
i | j + ci,k N (t+1)

k|i }i∈Vh,1,k∈Ni,c ,t≥0

)
(c)
≥ I

(
Si ; {

∑
j∈Vh,1

S j −
∑

j,l∈Vh,1

Bi | j(N (t+1)
l| j − N (t+1)

j |l )

+
∑

j∈Vh,1,k∈N j,c

c j,k N (t+1)
k| j }t≥0

)
(d)
≥ I

(
Si ;

∑
j∈Vh,1

S j −
∑

j,l∈Vh,1

Bi | j(N (tmax)
l| j − N (tmax)

j |l )

+
∑

j∈Vh,1,k∈N j,c

c j,k N (tmax)
k| j

)
,

where (a) uses the fact that (55) and (56) can be computed
by the knowledge of the adversary. (b) holds by removing the
first three terms and consider only the honest component Vh,1.
(c) holds by making a linear combination of the terms in (b)
where the coefficients are 1

2|Ni,c|
for the first terms and 1

|Ni,c|
for the remaining terms. (d) holds because we consider only
the last iteration tmax.

Remark that if 1min = 0 then N (tmax)
i | j will converge almost

surely to 0 when tmax →∞. Hence in the limit we have

I(Si ;OADQSP,Vc) ≥ I(Si ;
∑

j∈Vh,1

S j ).

Hence, the proof of (41) is complete. □

APPENDIX K
PROOF OF THEOREM 3

Proof: We first present the following equality result:
similar to (13), consider the difference of two successive z
updates in (22):

1ẑ(t+1)
j |i + n(t+1)

j |i − n(t)
j |i

= θ1ẑ(t)
j |i + (1− θ)1ẑ(t)

i | j −
2c(1− θ)Bi | j

1+ cdi

∑
k∈Ni

Bi |k1ẑ(t)
i |k .

(57)

Hence, 1ẑ(t+1)
j |i can be determined by the difference of

quantization noise over successive iterations n(t+1)
j |i − n(t)

j |i and
1ẑ(t)

j |i and 1ẑ(t)
i | j in the previous iteration.

As for 1ẑ(1)
j |i in the first iteration we have

1ẑ(1)
j |i

(a)
= z(1)

j |i − z(0)
j |i + n(1)

j |i

(b)
= (1− θ)(z(0)

i | j − z(0)
j |i )

+
1

ci, j
(si + ci, j n

(1)
j |i −

∑
k∈Ni

Bi |k z(0)
i |k ), (58)

where (a) uses (18) and (20); (b) replaces z(1)
j |i

using (10) and (11).
We start our proof similar to the proof in Appendix J.

However, since Vc = V \{i}, Vh = {i} and Ni,h = ∅ we do not
have any honest neighbors and hence we are not adding (55).
Thus the equality (a) in the proof of Appendix J becomes the
first equality below:

I(Si ;OADQSP,V\{i})

= I
(

Si ; {S j } j∈V\{i}, {Z
(0)
j |k , 1Ẑ (t)

j |k }( j,k)∈E,t≥1 ,

{Si + ci,k N (t+1)
k|i }k∈Ni ,t≥0

)
(a)
= I

(
Si ; {S j } j∈V\{i}, {Z

(0)
j |k , 1Ẑ (t)

j |k }( j,k)∈E,t≥1 ,

{N (t+1)
k|i − N (t)

k|i }k∈Ni ,t≥1, {Si + ci,k N (t+1)
k|i }k∈Ni ,t≥0

)
(b)
= I

(
Si ; {S j } j∈V\{i}, {Z

(0)
j |k , 1Ẑ (1)

j |k }( j,k)∈E ,

{N (t+1)
k|i − N (t)

k|i }k∈Ni ,t≥1, {Si + ci,k N (t+1)
k|i }k∈Ni ,t≥0

)
(c)
= I

(
Si ; {S j } j∈V\{i}, {Z

(0)
j |k }( j,k)∈E ,

{N (t+1)
k|i − N (t)

k|i }k∈Ni ,t≥1, {Si + ci,k N (t+1)
k|i }k∈Ni ,t≥0

)
(d)
= I

(
Si ; {N

(t+1)
k|i − N (t)

k|i }k∈Ni ,t≥1, {Si + ci,k N (t+1)
k|i }k∈Ni ,t≥1

)
(e)
= I

(
Si ; {Si + ci,k N (t+1)

k|i }k∈Ni ,t≥1

)
where (a) follows as {N (t+1)

k|i − N (t)
k|i }k∈Ni ,t≥1 can be

computed by taking the difference of the last term
over successive iterations. (b) holds as based on (57),
all {1Ẑ (t)

j |k }( j,k)∈E,t≥2 can be computed using {N (t+1)
k|i −

N (t)
k|i }k∈Ni ,t≥1 and {S j } j∈V\{i}, {Z

(0)
j |k , 1Ẑ (1)

j |k }( j,k)∈E,t≥1. (c) holds as
{1Ẑ (1)

j |k }( j,k)∈E can be computed using the other terms based
on (58). (d) holds as {S j } j∈V\{i}, {Z

(0)
j |k }( j,k)∈E are independent

of the rest two terms. (e) holds as {N (t+1)
k|i − N (t)

k|i }k∈Ni ,t≥1 can
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be determined by {Si + ci,k N (t+1)
k|i }k∈Ni ,t≥1. Hence, the proof is

complete. □
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