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Abstract
The accuracy of a model obtained by multi-parameter full-waveform inversion can be

estimated by analysing the sensitivity of the data to perturbations of the model param-

eters in selected subsurface points. Each perturbation requires the computation of the

seismic response in the form of Born scattering data for a typically very large number of

shots, making the method time consuming. The computational cost can be significantly

reduced by placing sources of different types at the Born scatterer, the point where the

subsurface parameters are perturbed. Instead of modelling each shot separately, reci-

procity relations provide the wavefields from the shot positions to the scatter point in

terms of wavefields from the scatterer to the shot positions. In this way, the Born scat-

tering data from a single point in the isotropic elastic case for a marine acquisition with

pressure sources and receivers can be expressed in terms of the wavefields for force and

moment tensor sources located at the scatterer and only a small number of forward runs

are required. A two-dimensional example illustrates how the result can be used to deter-

mine the Hessian and local relative covariance matrix for the model parameters at the

scatterer at the cost of five forward simulations. In three dimensions, that would be nine.

K E Y W O R D S
computing aspects, elastics, full waveform, parameter estimation, seismics

INTRODUCTION

Proper characterization of the underground conditions includ-

ing uncertainty quantification is required in applications such

as seismic exploration, monitoring of existing hydrocarbon

reservoirs, storage of CO2 or H2 and using the subsurface for

reliable geothermal energy. The subsurface is described by a

set of model parameters that can be reconstructed by minimiz-

ing the misfit between the observed and the simulated data.

The accuracy of the reconstruction depends on the sensitivity

of the data to perturbations of the model parameters, com-

monly characterized by the second derivatives, or Hessian,

of the misfit function at the global minimum. The pseudo-
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inverse of the Hessian is proportional to the covariance matrix

of the model parameters in the maximum likelihood estimator

(Backus & Gilbert, 1970; Tarantola, 2005).

In seismic subsurface characterization, the number of

model parameters is very large, up to the order of a billion.

This number squared is the size of the Hessian, making it com-

putationally out of reach in terms of storage and compute time.

For smaller 2-D problems, however, its direct computation is

feasible on a dense grid (Pratt et al., 1998) or in isolated points

(Hak & Mulder, 2010; Plessix & Mulder, 2004, for instance).

Otherwise, approximations can be considered and there is

a large body of literature on this topic including the Lanc-

zos algorithm (Minkoff, 1996; Vasco et al., 2003), Kalman
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2 MULDER AND KUVSHINOV

filtering (Hoffmann et al., 2024; Thurin et al., 2017), low-

rank approximations (Riffaud et al., 2024; Zhu et al., 2016)

and Markov-chain Monte Carlo methods (Ely et al., 2018;

Fichtner & van Leeuwen, 2015; Martin et al., 2012). The

Hamiltonian Markov-chain Monte Carlo method (Betancourt,

2018; Duane et al., 1987) combines gradient-based minimiza-

tion with uncertainty characterization and can be used for 2-D

problems of modest size. Early applications to full-waveform

inversion include a real-data example (Revelo Obando, 2018)

and a synthetic one (Zhao & Sen, 2021). Fichtner and Zunino

(2019) present a variant. Variational inference (Biswas et al.,

2023; Izzatullah et al., 2023; Liu & Wang, 2016; Wang et al.,

2023; Zhang & Curtis, 2020) allows for probability distribu-

tions other than Gaussian. Machine learning will also provide

results (Rizzuti et al., 2020; Siahkoohi et al., 2023).

As already mentioned, instead of evaluating the full Hes-

sian, a low-rank approximation is often used. A singular

value decomposition, where only large eigenvalues of the

Hessian are taken into account, is suited for preconditioning

full-waveform inversion. Such an approach, however, is not

beneficial for uncertainty evaluation, which is controlled by

the small eigenvalues of the Hessian.

Alternatively, one can consider checkerboard perturbations

(Inoue et al., 1990; Lévêque et al., 1993), perturbations of geo-

logical units (Mulder & Kuvshinov, 2023) and simultaneous

perturbations on a sparse set of grid points (Chen & Xie, 2015;

Rickett, 2003). The calculations might be still time consuming

if one needs to model many shots.

While evaluating full-waveform inversion uncertainties

everywhere in the subsurface might be of interest, interpre-

tators find certain locations more important. Their focus is

primarily on rock properties at certain points at the reservoir

level, as these are key to understanding hydrocarbon accumu-

lations and identifying faults. Such points are typically sparse,

and their number is far smaller than the total number of grid

points. The most valuable insights come from considering tar-

geted perturbations of formation parameters at these specific

points, where the information is most relevant, which requires

only a subset of the full Hessian.

In this paper, we introduce a procedure to reduce the mod-

elling time in cases where the number of shots is much larger

than the number of perturbations under consideration. We

treat the points where the model parameters are perturbed as

Born scatterers. Instead of modelling actual shots, we simu-

late only a few shots with a number of different source types

placed at the positions of the scatterers. The actual Born data

are then reconstructed using reciprocity.

The reciprocity theorem is a common tool in seismic appli-

cations (De Hoop, 1966, 1988; Fokkema & van den Berg,

1993; Knopoff & Gangi, 1959). It states that a field at point

𝐴 due to a source at point 𝐵 is related to a field at point 𝐵 due

to a source at point 𝐴. Reciprocity can be of the convolution

or correlation type (Bojarski, 1983; Wapenaar & Fokkema,

1993; Wapenaar, 1996). Arntsen and Carcione (2000) derived

reciprocity relations for inhomogeneous, anisotropic, vis-

coelastic solids involving different types of sources. Ikelle and

Amundsen (2000) used reciprocity to model Born data in a

water–solid configuration.

Our approach is similar to the latter, but we model water

as an elastic solid with zero shear-wave velocity and adopt

the second-order instead of a first-order form of the equa-

tions, leading to unified and simpler expressions. The required

reciprocity expressions are derived in Appendix A for an

arbitrary linear operator. When applied to the viscoelastic

case, the results are nearly the same as those of Arntsen and

Carcione (2000), correcting some sign problems and account-

ing for the symmetry of the strain and moment tensors. The

method enables the construction of a local subset of the Hes-

sian, describing the conditional uncertainty for the model

parameters at the selected set of subsurface points.

To test and illustrate the capabilities of the method, we con-

sider a 2-D marine example for the isotropic elastic case with

an explosive source and pressure data. Cost estimates for a

number of methods are included.

METHOD

Hessian and uncertainty

The least-squares misfit functional for observed data 𝐝obs,
modelled by an operator  (𝐦) with model parameters 𝐦, has

the form (𝐦) = 1
2‖ (𝐦) − 𝐝obs‖2. It has a minimum at the

model 𝐦0, hopefully, the global minimum. The uncertainty

can be characterized by all models that obey

(𝐦0 + 𝛿𝐦) ≤ 𝜀. (1)

The threshold 𝜀 at the right-hand side is an estimate of the

noise energy (Backus & Gilbert, 1970). In what follows, we

sidestep the issue of how to determine a suitable value for 𝜀

and only consider uncertainty in a relative sense. The Taylor

series expansion of the misfit functional around its minimum

is

 = 0 + 𝐠𝖳𝛿𝐦 + 1
2𝛿𝐦

𝖳𝐇 𝛿𝐦 +⋯ , (2)

with model perturbations 𝛿𝐦 = 𝐦 −𝐦0, gradient

𝐠 = ∇𝐦(𝐦0) and Hessian 𝐇. In ideal situations, but

not in practice, 0 = 0 and 𝐠 = 𝟎.

For an assumed Gaussian distribution, varia-

tions of the model parameters 𝛿𝐦 are distributed as

𝑝(𝛿𝐦) ∝ exp
[
−𝛿𝐦𝖳𝐇 𝛿𝐦∕(2𝜀)

]
(Tarantola, 2005). The

pseudo-inverse of the Hessian (see Ben-Israel & Greville,

2003) is the covariance matrix 𝐂 = 𝐇†. A conditional

distribution is obtained by considering a subset of the model

parameters, assuming the rest is known. The covariance

matrix for the conditional distribution is determined by the
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MULTI-PARAMETER UNCERTAINTY ESTIMATION 3

F I G U R E 1 The incoming field from a source to a scatterer (red

arrow) can be determined by reciprocity from fields propagating from

the scatterer to the source (blue arrow). The Born scattering data can be

synthesized by combining these fields with those from the scatterer to a

receiver (green arrow).

pseudo-inverse of the associated subset of the Hessian 𝐇.

Integrating over the model parameters outside the chosen

subset results in a marginal distribution. The corresponding

covariance matrix follows from the part of the full covariance

matrix 𝐂 that describes the subset.

The Hessian in the Gauss–Newton approximation equals

𝐇 = 𝐅𝖳𝐅, where 𝐅 = ∇𝐦 (𝐦0) contains the Fréchet deriva-

tives of the model operator. The Fréchet derivative ∇𝑚𝑗


with respect to a single model parameter 𝑚𝑗 can be found

by perturbing 𝑚𝑗 and determining the associated changes

of the modelled data. Cross-correlating Fréchet derivatives,

represented by Born scattering data, for each pair of model

parameters, provides the full Hessian (Pratt et al., 1998). An

alternative implementation is forward modelling followed by

migration for perturbations of model parameters.

Calculation of the full Hessian is not feasible for large sur-

veys. In this case, one can analyse uncertainty with respect

to a small subset of the model. Even such an analysis is time

consuming because, for each perturbation of a model param-

eter, one needs to simulate all the shots in the survey. The

computational cost is significantly reduced by considering the

perturbation as a Born scatterer and using reciprocity.

Figure 1 sketches the idea in two dimensions. A source

at (𝑥𝑠, 𝑧𝑠) generates the incoming field, indicated by the

red arrow, which is scattered at ( 𝑥, 𝑧) towards a receiver at

(𝑥𝑟, 𝑧𝑟), indicated by the green arrow. Reciprocity enables

the replacement of a field propagating from source to scat-

terer (red arrow) by another field propagating from scatterer

to source, indicated by the blue arrow.

In this way, one finds all the fields of a certain type incom-

ing from the sources to the scatterer and scattered towards

the receivers with one shot where a source is placed at the

scatter point. In the constant-density acoustic case, this can

be accomplished by a single shot. In the elastic case, several

shots with different source characteristics are required. The

fields propagating from the sources to the scatterer and from

the scatterer to the receivers are combined to find ∇𝑚𝑗
 for a

model perturbation 𝑚𝑗 .

The equations required to implement the method for a

viscoelastic medium are presented in the next section.

Calculation of scattered fields

We review the Born approximation of the system of elas-

tic wave equations, mainly to introduce our notation and

show where reciprocity is applied. The waves generated by

a force 𝐟 (𝐱, 𝑡) and propagating in the viscoelastic medium are

described by the equation

𝐮(𝐱, 𝑡) = 𝐟 (𝐱, 𝑡). (3)

Here, 𝐮 is the displacement, 𝑡 is time, 𝐱 is the spatial

coordinate and

(𝐮)𝑖 = 𝜌𝜕2
𝑡𝑡
𝑢𝑖 − 𝜕𝑥𝑗

(
𝜓𝑖𝑗𝑘𝑙 ⋆ 𝜀𝑘𝑙

)
, (4)

where 𝜌 is the density, 𝜓𝑖𝑗𝑘𝑙 is the viscoelasticity tensor, 𝜀𝑘𝑙 is

the strain tensor, the star ‘⋆’ denotes convolution in the time

domain and summation over repeated Latin indices is implied.

The second equation (4) is obtained using the symmetry prop-

erty 𝜓𝑖𝑗𝑘𝑙 = 𝜓𝑗𝑖𝑘𝑙. The operator  is self-adjoint in the sense

that the condition ⟨𝐮′,𝐮⟩ = ⟨†𝐮′,𝐮
⟩

, where the angular

brackets are defined by Equation (A.2), is satisfied for † =
. We consider three types of point forces (delta functions in

space), with components

𝑓
(𝛼)
𝑖

(𝐱, 𝐱𝑠) = 𝛿𝑖𝛼𝛿(𝐱 − 𝐱𝑠),

𝑓
(𝛼𝛽)
𝑖

(𝐱, 𝐱𝑠) =
1
2

(
𝛿𝑖𝛼𝜕𝑥𝛽

+ 𝛿𝑖𝛽𝜕𝑥𝛼

)
𝛿(𝐱 − 𝐱𝑠),

𝑓
(0)
𝑖

(𝐱, 𝐱𝑠) =
∑
𝛼

𝑓
(𝛼𝛼)
𝑖

(𝐱, 𝐱𝑠) = 𝜕𝑥𝑖
𝛿(𝐱 − 𝐱𝑠). (5)

The related solutions of Equation (3) are labelled as

𝐮(𝛼)(𝐱, 𝐱𝑠), 𝐮(𝛼𝛽)(𝐱, 𝐱𝑠) and 𝐮(0)(𝐱, 𝐱𝑠). The associated vol-

umetric strain 𝜑(𝐱, 𝐱𝑠) and the strain tensor 𝜀𝑖𝑗(𝐱, 𝐱𝑠) are

labelled accordingly, using the superscripts (𝛼), (𝛼𝛽) or (0).

We differentiate Equation (3) in the case of 𝑓
(𝛼)
𝑖

with respect

to the components 𝛼 and 𝛽 of 𝐱𝑠. Taking into account that

𝜕𝑥𝑠,𝛽
𝛿(𝐱 − 𝐱𝑠) = −𝜕𝑥𝛽 𝛿(𝐱 − 𝐱𝑠) and that  does not depend on

𝐱𝑠 we conclude that

1
2

(
𝜕𝑥𝑠,𝛽

𝐮(𝛼) + 𝜕𝑥𝑠,𝛼
𝐮(𝛽)

)
= −𝐮(𝛼𝛽). (6)

Similar relations hold for 𝜑(𝛼) and 𝜀
(𝛼)
𝑖𝑗

.

In what follows, we analyse Equation (3) in the frequency

domain, so that all the variables that depend on time are

replaced by their frequency components. Let 𝐮 be the solution

of the equation

𝐮 = 𝐟 , (7)

for given force 𝐟 and distribution of parameters 𝜌(𝐱) and

𝜓𝑖𝑗𝑘𝑙(𝐱). If these parameters are perturbed by values 𝛿𝜌 and

𝛿𝜓𝑖𝑗𝑘𝑙, the corresponding solution deviates from 𝐮 by the

value 𝛿𝐮. In the Born approximation, 𝛿𝐮 is governed by the
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4 MULDER AND KUVSHINOV

equation

(𝛿𝐮)𝑖 = 𝜔2𝑢𝑖𝛿𝜌 + 𝜕𝑥𝑗

(
𝜀kl𝛿𝜓ijkl

)
. (8)

Here, we took into account that convolution in the time

domain reduces to multiplication in the frequency domain.

Since 𝐮(𝛼)(𝐱, 𝐱𝑠) is the Green function for Equation (3), the

solution of Equation (8), is (Beylkin & Burridge, 1990; Hud-

son & Heritage, 1981; Kazei & Alkhalifah, 2019; Shaw &

Sen, 2004; Snieder, 1986)

𝛿𝐮(𝐱) =∫ 𝐮(𝑖)(𝐱, 𝐱′)
{
𝜔2𝑢𝑖(𝐱′)𝛿𝜌(𝐱′)+

𝜕𝑥′
𝑗

[
𝜀𝑘𝑙(𝐱′)𝛿𝜓𝑖𝑗𝑘𝑙(𝐱′)

]}
d𝐱′.

(9)

We integrate the second term in Equation (9) by parts. Taking

into account that 𝜕𝑥′
𝑗
𝐮(𝑖)𝜓𝑖𝑗𝑘𝑙 =

1
2 (𝜕𝑥′𝑗𝐮

(𝑖) + 𝜕𝑥′
𝑖
𝐮(𝑗))𝜓𝑖𝑗𝑘𝑙, due

to the symmetry property of the viscoelasticity tensor 𝜓𝑖𝑗𝑘𝑙 =
𝜓𝑗𝑖𝑘𝑙, and using Equation (6), we obtain

𝛿𝐮(𝐱) = 𝜔2 ∫ 𝐮(𝑖)(𝐱, 𝐱′)𝑢𝑖(𝐱′)𝛿𝜌(𝐱′) d𝐱′

+ ∫ 𝐮(𝑖𝑗)(𝐱, 𝐱′)𝜀𝑘𝑙(𝐱′)𝛿𝜓𝑖𝑗𝑘𝑙(𝐱′) d𝐱′.
(10)

The primary fields 𝑢𝑖(𝐱′) and 𝜀𝑘𝑙(𝐱′) are found by solving

Equation (7) once the force 𝐟 is specified. We assume that 𝐟 is a

point force that follows the same structure as forces described

by Equations (5). In this case, one can use reciprocity relations

(A.10) or (A.11) from Appendix A to express them in terms

of fields generated by sources placed at 𝐱′, as illustrated in

Figure 1.

In the example later on, we will consider explosive sources

at 𝐱𝑠 and volumetric-strain or ‘pressure’ data 𝜑 at 𝐱𝑟. To make

Equation (10) applicable to this case, we apply the operator

∇𝐱⋅ to 𝛿𝐮(𝐱), set 𝑢𝑖(𝐱′) = 𝑢
(0)
𝑖
(𝐱′, 𝐱𝑠), 𝜀𝑘𝑙(𝐱′) = 𝜀

(0)
𝑘𝑙
(𝐱′, 𝐱𝑠) and

use reciprocity relations (A.11). As a result, we get

𝛿𝜑(𝐱, 𝐱𝑠) = −𝜔2 ∫ 𝜑(𝑖)(𝐱, 𝐱′)𝜑(𝑖)(𝐱𝑠, 𝐱′) 𝛿𝜌(𝐱′) d𝐱′

+ ∫ 𝜑(𝑖𝑗)(𝐱, 𝐱′)𝜑(𝑘𝑙)(𝐱𝑠, 𝐱′) 𝛿𝜓𝑖𝑗𝑘𝑙(𝐱′) d𝐱′.
(11)

All the terms on the right-hand side of Equation (11) are

obtained from forward simulations with force and momen-

tum sources placed at points 𝐱′. For a single scattering

point in 𝑑 space dimensions, this requires 𝑑 + 1
2𝑑(𝑑 + 1) =

𝑑(𝑑 + 3)∕2 simulations, 5 in two dimensions and 9 in three

dimensions, followed by zero-lag data correlations. If the sim-

ulations for the wavefields are carried out with a wavelet, a

deconvolution is required in the correlation step. The compu-

tational cost can be substantially lower than that of separately

simulating all shots of a seismic survey. In the isotropic

case, 𝛿𝜓𝑖𝑗𝑘𝑙 = 𝛿𝜆 𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝜇
(
𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑘𝑗

)
, where 𝛿𝜆

and 𝛿𝜇 are perturbed Lamé parameters. The sum in the

second integral in Equation (11) in this case reduces to

𝛿𝜆𝜑(0)(𝐱, 𝐱′)𝜑(0)(𝐱𝑠, 𝐱′) + 2𝛿𝜇 𝜑(𝑖𝑗)(𝐱, 𝐱′)𝜑(𝑖𝑗)(𝐱𝑠, 𝐱′).
In the next section, we will present a 2-D marine exam-

ple for the isotropic elastic case. Appendix B summarizes the

algorithmic steps for this special case.

NUMERICAL EXAMPLE

To validate the method, we consider an earlier two-

dimensional isotropic elastic marine subsurface model (Mul-

der & Kuvshinov, 2023). The material properties were defined

by an index map, repeated here as Figure 2. The negative

values refer to four reservoirs, zero is used for seawater and

positive values for various layers with piecewise constant

elastic properties. Three Born scattering datasets were gen-

erated with a finite-difference code for a unit perturbation of

𝜈𝑘 (𝑘 = 1, 2, 3) at the scatter point 𝑥 = 3280 m, 𝑧 = 2460 m,

close to the centroid of the reservoir with index −1. From five

shots at the scatter point, 3×199 shots were synthesized with

𝑥𝑠 from −2.9 to 7.0 km at a 50-m spacing at depth 𝑧𝑠 = 10 m

and with receiver offsets from 𝑥𝑟 − 𝑥𝑠 = 100 to 6000 m with a

25-m spacing at a depth 𝑧𝑟 = 8 m. A direct Born computation

would require 3×199 shots at twice the cost or (1 + 3)×199
shots with a series approach.

Figures 3–5 display a comparison of Born data for one shot

at 𝑥𝑠 = 0 and 𝑧𝑠 = 10 m computed directly with the two cou-

pled systems, in panels (a), the difference between the Born

data synthesized for five different source types at the scatter

point and the directly computed data (b), and the shortest-

offset trace for each approach, with the directly computed

and synthesized Born data. There is a good agreement, bear-

ing in mind that reciprocity for the finite-difference solutions

only approximately holds. For this test, a grid spacing of 2

m was chosen for a 15-Hz Ricker wavelet, much finer than

commonly used.

Figure 6 shows the normalized covariance matrix in terms

of 𝛿 log 𝐼𝑝, 𝛿 log 𝑣𝑝 and 𝛿 log(𝑣𝑠∕𝑣𝑝), where 𝐼𝑝 = 𝜌𝑣𝑝, at the

selected scatterer obtained from the Hessian based on syn-

thesized Born data for all 199 shots. The finite-difference

computations were carried out on a grid with a 10-m spac-

ing in this case. In this example, the Hessian was scaled

by the model according to 𝛿𝐦𝖳𝐇 𝛿𝐦 = (𝛿 log𝐦)𝖳𝐇(𝛿 log𝐦),
leading to 𝐇 = diag(𝐦0)𝐇 diag(𝐦0), where diag(𝐦0) is a

diagonal matrix with the components of the vector 𝐦0 on

its diagonal.

To obtain the local covariance matrix in an absolute sense,

without normalization, the data energy
1
2‖𝐝obs‖2 is required,

together with an estimate of the relative noise level in the

data to define 𝜀 in Equation (1). In our synthetic example,

that would require the forward simulation of the full seismic

dataset, at a much higher cost than synthesizing the Born data
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MULTI-PARAMETER UNCERTAINTY ESTIMATION 5

F I G U R E 2 An index map (a) defines the piecewise constant values per layer for an isotropic elastic model with (b) density, (c) P- and (d)

S-wave velocity. The negative indices correspond to four reservoirs.

F I G U R E 3 (a) Born data for a unit perturbation in one point of 𝜈1 = 𝜌 clipped at 25 amplitude. (b) Difference between synthesized Born data

and those of (a) at the same scale. (c) Comparison of the shortest-offset trace with Born scattering data (blue) and synthesized Born data based on

reciprocity (red, dashed).
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6 MULDER AND KUVSHINOV

F I G U R E 4 As Figure 3, but for a unit perturbation in one point of 𝜈2 = 𝜌𝑣2
𝑝
.

F I G U R E 5 As Figure 3, but for 𝜈3 = 𝜌𝑣2
𝑠
.

0.14 0.051 0.046

0.051 1 0.24

0.046 0.24 0.42

-1

-0.5

0

0.5

1

F I G U R E 6 Scaled covariance matrix.

via reciprocity. But if the reference model 𝐦0 is the result

of full-waveform inversion, this information should already

be available.

Specifically, we can consider a weighted norm ‖𝐝‖2𝐈,𝐖 =
1
2𝐝

𝖳𝐖𝖳𝐂−1
data𝐖𝐝, where 𝐖 involves weighting in, for

instance, time, frequency and offset and where 𝐂data is the

covariance matrix of the noise. The weighting matrix 𝐖 is

often used to steer the convergence away from local minima

and accelerate convergence while acting as a preconditioner.

It may change during subsequent sets of iterations. In the sim-

plest case of 𝐖 = 𝐈 and 𝐂data = 𝜎2data𝐈 with constant standard

deviation 𝜎data, we have ‖𝐝 − 𝐝obs‖2𝐈,𝐖 = 2∕𝜎2data and con-

dition (1) becomes
1
2 (𝛿 log𝐦)𝖳𝐇(𝛿 log𝐦) ≤ 𝜎2data for 𝐠 = 𝟎

and 0 = 0.

In this synthetic example, instead of choosing 𝜎2data, we

have scaled the result by the conditional covariance of the

𝛿 log 𝑣𝑝 perturbation at the scatter point mentioned above,

assuming all other parameters are given. Its square root

describes the uncertainty in this parameter, typically in the

order of 1–10%. Figure 7 displays conditional standard devi-

ations 𝜎𝑘 (𝑘 = 1, 2, 3), for the parameters 𝛿 log 𝐼𝑝, 𝛿 log 𝑣𝑝
and 𝛿 log(𝑣𝑠∕𝑣𝑝), respectively, in all the points of the reser-

voir with index −1. There is some variation across the region,

with, unsurprisingly, the shallower parts being more accu-

rate. In the conditional case, all parameters are assumed to

be given, except the one under consideration. The standard

deviations are determined by the reciprocal square root of the

main diagonal of the Hessian.

At the other extreme, the marginal distribution describes

the probability if all parameters are unknown. With our

localized approach, such estimates are out of reach and the

approach of Mulder and Kuvshinov (2023) may be more
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MULTI-PARAMETER UNCERTAINTY ESTIMATION 7

0.9
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1
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0.64

0.66

0.68

0.7

0.72

0.74

0.76

(a) (b) (c)

F I G U R E 7 Standard deviations for the conditional distribution, scaled to that of the P-wave velocity at one point, for the model parameters (a)

𝛿 log 𝐼𝑝, (b) 𝛿 log 𝑣𝑝 and (c) 𝛿 log(𝑣𝑠∕𝑣𝑝) in the reservoir with index −1.
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F I G U R E 8 As Figure 7, but assuming the three parameters in one point are unknown but given elsewhere.

suitable. Instead, Figure 8 displays the square roots of the

diagonal of the block-diagonal covariance matrix, obtained

by inverting the block diagonal of the Hessian, consisting

of 3 × 3 blocks. This assumes that all parameters in other

points are known, but not those in the point under consider-

ation. Compared to the conditional case, this should increase

the estimated standard deviations. The values at the reference

scatter point correspond to the square roots of the diagonal of

the matrix in Figure 6.

COST ESTIMATES

Table 1 compares the computational cost of four different

approaches to compute the wavefields for Born scattering.

The number of grid points in 𝑑 space dimensions is 𝑂(𝑛𝑑).
The cost of a single simulation with a finite-difference code

is 𝑂(𝑛𝑑+1) and is taken out as a common factor. The relative

cost of modelling is set to 1 and migration costs at least dou-

ble that amount, adding up to at least 3. The number of shots

is 𝑛shot , and the number of scatter points is 𝑛nscat . For 𝑛comp
model components, three in the isotopic case, this leads to

𝑛comp𝑛nscat model perturbations.

T A B L E 1 Relative cost of some methods.

Method Relative cost

Born data, direct computation 2𝑛shot𝑛comp𝑛
𝑑

or 𝑛shot (1 + 𝑛comp𝑛
𝑑 )

Modelling and migration for a sparse subset 3𝑛shot𝑛comp𝑛nscat

Born data for geological units or a sparse set 2𝑛shot𝑛comp𝑛nscat

or 𝑛shot (1 + 𝑛comp𝑛nscat )
Born data via reciprocity for a small subset 𝑛nscat𝑑(𝑑 + 3)∕2

A direct computation of the incoming and scattered field for

a unit perturbation of one model component at one grid point

yields the cost estimates for the first case in Table 1. The fac-

tor 2 accounts for the coupled systems (7) and (8). As already

mentioned, the cost can be lowered to 𝑛shot (1 + 𝑛comp𝑛
𝑑) by

using a Taylor-series approach, in which case the incoming

field is computed once for all perturbations. The resulting

data, however, tend to be noisier. The second case describes

modelling followed by migration for a sparse set of model

perturbations that are treated all at once, but separately for

each model component. The factor 3 accounts for the cost rel-

ative to just modelling. If the modelling data are computed

for the perturbed model and the migration is carried out in
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8 MULDER AND KUVSHINOV

the reference model, the Born data are fed at data errors into

the reverse-time part of the migration and are not explicitly

needed for the Hessian.

The third case refers to the use of geological units, con-

nected sets of several points that have the same relative

perturbation, each counted as a single scatterer (Mulder &

Kuvshinov, 2023). The same estimate is obtained if, instead,

a sparse set of 𝑛nscat points is considered. The cost is basically

the same as for the first case, but with a number of scatter-

ers 𝑛nscat much smaller than the number of grid points 𝑛𝑑 .

The last case refers to the method proposed here and has a

cost of the order 𝑛nscat [𝑑 + 1
2𝑑(𝑑 + 1)], equalling 5𝑛nscat in

two dimensions and 9𝑛nscat in three dimensions. Note that the

number of components does not appear. In this estimate, the

cost of synthesizing the data from the numerical wavefields

and that of the zero-lag data correlations needed to construct

the Hessian have been neglected. Since only scattering data

are involved and the interaction with model parameters else-

where is ignored, only relative uncertainties can be estimated,

unless all grid points are considered with 𝑛nscat = 𝑂(𝑛𝑑). The

last method will be the least costly if relative covariance matri-

ces have to be found in isolated points or on a dense but small

set of points in a target area.

CONCLUSIONS

The computational cost of uncertainty estimation based on

a Hessian obtained from Born scattering data can be sig-

nificantly reduced in target-oriented applications where the

model parameters of only a small number of subsurface

points are considered. Instead of simulating Born data for an

entire seismic survey, only those subsurface points have to

be taken as new source positions and all shot and receiver

positions of the survey as new receiver positions. For each

new source position, several shots with different source char-

acteristics have to be simulated for each force and moment

tensor component.

The approach is applicable to evaluate uncertainties asso-

ciated with perturbations of subsurface blocks whose dimen-

sions do not exceed a fraction of the characteristic wavelength.

We have described this approach for a viscoelastic medium

and tested it for the simpler 2-D isotropic elastic case. As

an illustration, the method was used to determine local esti-

mates of the covariance matrix, which quantifies the relative

uncertainties of the elastic model parameters. A cost compar-

ison to alternative methods shows which one is best suited to

different circumstances.
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APPENDIX A: RECIPROCITY IN A GENERAL
FORM
For completeness, we derive reciprocity relations for an arbi-

trary and operator  acting on functions 𝐮(𝐱, 𝑡) that depend

on the spatial coordinate 𝐱 and temporal coordinate 𝑡. Note

that we do not specify the form of the operator  and do not

assume that it is self-adjoint. Let 𝐮(𝐱, 𝑡) and 𝐮′(𝐱, 𝑡) satisfy the

equations

𝐮 = 𝐬, †𝐮′ = 𝐬′. (A.1)

Here, 𝐬 and 𝐬′ are source terms and † is the adjoint opera-

tor with the property ⟨𝐮′,𝐮⟩ = ⟨†𝐮′,𝐮
⟩

, where the angular

brackets denote the inner product in space combined with

convolution or correlation in time,

⟨𝐮, 𝐯⟩ = ∬ 𝐮(𝐱, 𝜏) ⋅ 𝐯(𝐱, 𝑡 ∓ 𝜏) d𝐱 d𝜏. (A.2)

The choice of the minus sign in Equation (A.2) ensures preser-

vation of causality (Aki & Richards, 2002) and leads to

reciprocity relations of the convolution type. Equations (A.1)

and (A.2) provide Betti’s theorem

⟨
𝐮, 𝐬′

⟩
=
⟨
𝐮′, 𝐬

⟩
. (A.3)

We have assumed that, in any finite volume, 𝐮 and 𝐯 are

zero outside a certain time interval and that they decay suf-

ficiently fast in space, so that the surface integrals vanish

as |𝐱| → ∞. Note that this assumption does not hold in, for

instance, the homogeneous case without attenuation, when the

amplitude decrease due to geometrical spreading is balanced

by the increase of the length or area of the boundary inte-

gral. Additional intrinsic or scattering attenuation (see, e.g.,

Snieder 2002) is required to have sufficient decay at infinity.

We consider sources located at a point 𝐱𝑠 with a temporal

amplitude or wavelet 𝑤(𝑡):

𝐬(𝐱, 𝑡) = 𝑤(𝑡) 𝐟 (𝐱), (A.4)

where 𝐟 (𝐱) is a singular function that vanishes for 𝐱 ≠ 𝐱𝑠.
Let 𝐮(𝐱, 𝑡; 𝐱𝑠, 𝑤𝑠) and 𝐮′(𝐱, 𝑡; 𝐱′

𝑠
, 𝑤′

𝑠
) be solutions of Equa-

tion (A.1) for two sources 𝐬 and 𝐬′ of type (A.4). We introduce

the operator 𝑋 with the property that the spatial dependence

𝐟 ′ of the source 𝐬′ is reconstructed by applying 𝑋 to 𝛿(𝐱 − 𝐱𝑠),
where 𝐱𝑠 is the position of the source 𝐬:

𝐟 ′(𝐱) = 𝑋𝛿(𝐱 − 𝐱𝑠). (A.5)

Using Equation (A.5), we can cast Equation (A.3) in the form

𝑋†𝐮(𝐱, 𝑡; 𝐱𝑠, 𝑤)|||𝐱=𝐱𝑠 ⋆ 𝑤′(𝑡) =
⟨
𝐮′, 𝐬

⟩
, (A.6)

where 𝑋† is the adjoint operator, ∫ 𝑓 (𝐱)[𝑋′𝑔(𝐱)]d𝐱 =
∫ [𝑋†𝑓 (𝐱)]𝑔(𝐱)d𝐱, and the star ⋆ denotes temporal convo-

lution or correlation, depending on the choice of sign in

Equation (A.2): 𝑓 (𝑡) ⋆ 𝑔(𝑡) = ∫ 𝑓 (𝜏)𝑔(𝑡 ∓ 𝜏) d𝜏.

We consider point forces 𝐟 of the form (5) and denote the

correspondent sources by 𝐬(𝛼), 𝐬(𝛼𝛽) and 𝐬(0). The solutions of

Equation (A.1) are labelled as in 𝐮(𝛼), 𝐮(𝛼𝛽) and 𝐮(𝛼𝛽𝛾). We use

the same labelling as above, although the solutions considered

here are different in that respect that they are generated by

time-dependent sources and are given in the time domain.

Equation (A.6) implies

𝑋†𝐮(𝛼)(𝐱, 𝑡; 𝐱𝑠, 𝑤)|||𝐱=𝐱𝑠 ⋆𝑤′(𝑡) = 𝑢′
𝛼
(𝐱𝑠, 𝑡; 𝐱′𝑠, 𝑤

′)⋆𝑤(𝑡),

(A.7a)

𝑋†𝐮(𝛼𝛽)(𝐱, 𝑡; 𝐱𝑠, 𝑤)|||𝐱=𝐱𝑠 ⋆𝑤′(𝑡) = −𝜀′
𝛼𝛽
(𝐱𝑠, 𝑡; 𝐱′𝑠, 𝑤

′)⋆𝑤(𝑡),

(A.7b)
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where 𝜀′
𝛼𝛽

= 1
2 (𝜕𝑥𝛽 𝑢

′
𝛼
+ 𝜕𝑥𝛼

𝑢′
𝛽
). The operators 𝑋(𝑖) and 𝑋(𝑖𝑗)

with the properties

𝑋(𝑖)𝑓 (𝐱) = 𝑓 (𝐱 + Δ𝐱)𝐞𝑖,

𝑋(𝑖𝑗)𝑓 (𝐱) = 1
2

(
𝐞𝑖𝜕𝑥𝑗 + 𝐞𝑗𝜕𝑥𝑖

)
𝑓 (𝐱 + Δ𝐱),

(A.8)

where 𝐞𝑖 is the 𝑖th coordinate vector and Δ𝐱 = 𝐱𝑠 − 𝐱′
𝑠
, satisfy

Equation (A.5) with 𝐬 = 𝐬′(𝑖) and 𝐬 = 𝐬′(𝑖𝑗) respectively. The

actions of adjoint operators on 𝐮(𝐱, 𝑡) are determined by the

relations

𝑋(𝑖)†𝐮(𝐱, 𝑡) = 𝑢𝑖(𝐱 − Δ𝐱, 𝑡),

𝑋(𝑖𝑗)†𝐮(𝐱, 𝑡) = −𝜀𝑖𝑗(𝐱 − Δ𝐱, 𝑡),
(A.9)

where 𝜀𝛼𝛽 = 1
2 (𝜕𝑥𝛽 𝑢𝛼 + 𝜕𝑥𝛼

𝑢𝛽). Considering Equa-

tions (A.7a) and (A.7b) for the cases where the field 𝐮′
is created by the sources 𝐬′ = 𝐬′(𝑖), and 𝐬′ = 𝐬′(𝑖𝑗), and using

Equation (A.9), we obtain

𝑢
(𝛼)
𝑖
(𝐱′

𝑠
, 𝑡; 𝐱𝑠, 𝑤) ⋆ 𝑤′(𝑡)= 𝑢′(𝑖)

𝛼
(𝐱𝑠, 𝑡; 𝐱′𝑠, 𝑤

′) ⋆ 𝑤(𝑡),

(A.10a)

𝑢
(𝛼𝛽)
𝑖

(𝐱′
𝑠
, 𝑡; 𝐱𝑠, 𝑤) ⋆ 𝑤′(𝑡)=−𝜀′(𝑖)

𝛼𝛽
(𝐱𝑠, 𝑡; 𝐱′𝑠, 𝑤

′) ⋆ 𝑤(𝑡),
(A.10b)

𝜀
(𝛼)
𝑖𝑗
(𝐱′

𝑠
, 𝑡; 𝐱𝑠, 𝑤) ⋆ 𝑤′(𝑡) = −𝑢′(𝑖𝑗)

𝛼
(𝐱𝑠, 𝑡; 𝐱′𝑠, 𝑤

′) ⋆ 𝑤(𝑡),
(A.10c)

𝜀
(𝛼𝛽)
𝑖𝑗

(𝐱′
𝑠
, 𝑡; 𝐱𝑠, 𝑤) ⋆ 𝑤′(𝑡) = 𝜀

′(𝑖𝑗)
𝛼𝛽

(𝐱𝑠, 𝑡; 𝐱′𝑠, 𝑤
′) ⋆ 𝑤(𝑡).

(A.10d)

The reciprocity relations for the source that creates a force

proportional to the gradient of the delta-function, 𝑠
(0)
𝑖

=
𝑤(𝑡) 𝜕𝑥𝑖𝛿(𝐱 − 𝐱𝑠), follow from Equations (A.10) by noticing

that 𝑠
(0)
𝑖

=
∑

𝛼,𝛽 𝐬(𝛼𝛽):

𝑢
(0)
𝑖
(𝐱′

𝑠
, 𝑡; 𝐱𝑠, 𝑤) ⋆ 𝑤′(𝑡) = −𝜑′(𝑖)(𝐱𝑠, 𝑡; 𝐱′𝑠, 𝑤

′) ⋆ 𝑤(𝑡),
(A.11a)

𝜀
(0)
𝑖𝑗
(𝐱′

𝑠
, 𝑡; 𝐱𝑠, 𝑤) ⋆ 𝑤′(𝑡) = 𝜑′(𝑖𝑗)(𝐱𝑠, 𝑡; 𝐱′𝑠, 𝑤

′) ⋆ 𝑤(𝑡),
(A.11b)

where 𝜑′ =
∑

𝛼 𝜀
′
𝛼𝛼

. Reciprocity relation (A.10b) can also

be obtained by substituting Equation (A.10a) into Equa-

tion (6). Equation (A.10c) is the same as (A.10b), where the

variables with primes and without primes are swapped. Equa-

tion (A.10d) follows from Equation (6) with the replacement

𝐮(𝛼) → 𝜀
(𝛼)
𝑖𝑗

and Equation (A.10c).

APPENDIX B: THE 2-D MARINE ISOTROPIC CASE
The algorithmic steps for the special case of an isotropic elas-

tic model in 2D with a pressure source and recorded pressure

data are summarized.

The source types are

𝐅𝑥 =
(
1
0

)
, 𝐅𝑧 =

(
0
1

)
, (B.1a)

𝐌𝑥𝑥 =
(
1 0
0 0

)
, 𝐌𝑧𝑧 =

(
0 0
0 1

)
, 𝐌𝑥𝑧 =

(
0 1
1 0

)
.

(B.1b)

The pressure 𝑝 = −𝜌𝑣2
𝑝
𝜑, with 𝜑 = ∇ ⋅ 𝐮 for displacements

𝐮. The data for the various sources are denoted by 𝜑(1) for

𝐅𝑥, 𝜑(2) for 𝐅𝑧, 𝜑(3) for 𝐌𝑥𝑥, 𝜑(4) for 𝐌𝑧𝑧 and 𝜑(5) for 𝐌𝑥𝑧.

The sources are located at 𝐱𝑝 and the data 𝜑(𝑘) are recorded at

𝐱𝑠 and 𝐱𝑟. To simplify the notation, we use the abbreviations

𝜑
(𝑘)
𝑟 = 𝜑(𝑘)(𝐱𝑟; 𝐱𝑝) and 𝜑

(𝑘)
𝑠 = 𝜑(𝑘)(𝐱𝑠; 𝐱𝑝).

In the frequency domain, let

𝑏1,𝑠,𝑟 = −𝜔2

𝑤

(
𝜑(1)
𝑟
𝜑(1)
𝑠

+ 𝜑(2)
𝑟
𝜑(2)
𝑠

)
, (B.2)

for 𝛿𝜌 = 𝛿(𝐱 − 𝐱𝑝). Here,𝑤 is the wavelet, used for the sources

at 𝐱𝑝. For 𝛿(𝜌𝑣2
𝑝
) = 𝛿(𝐱 − 𝐱𝑝), we define

𝑏2,𝑠,𝑟 =
1
𝑤

(
𝜑(3)
𝑟

+ 𝜑(4)
𝑟

) (
𝜑(3)
𝑠

+ 𝜑(4)
𝑠

)
, (B.3)

and for 𝛿(𝜌𝑣2
𝑠
) = 𝛿(𝐱 − 𝐱𝑝),

𝑏3 = 𝑏33 + 2(𝑏31 + 𝑏32 − 𝑏2), (B.4)

with

𝑏3𝑘,𝑠,𝑟 = 𝜑(𝑘+2)
𝑟

𝜑(𝑘+2)
𝑠

∕𝑤 for 𝑘 = 1, 2, 3. (B.5)

The data 𝑏𝑘,𝑠,𝑟 (𝑘 = 1, 2, 3) can then be multiplied by −𝜌𝑣2
𝑝

at

the receiver enumerated by 𝑟 = 𝑟(𝑠) to obtain the pressure.

The local Hessian 𝐇 is formed by correlating the

data: 𝐻𝑖𝑗 =
∑

𝑠

∑
𝑟(𝑠) Re

(
𝑏𝑖,𝑠,𝑟(𝑠)𝑏

∗
𝑗,𝑠,𝑟(𝑠)

)
, summed over all

receivers and shots, enumerated by 𝑟(𝑠) and 𝑠, respectively.

The asterisk denotes the complex conjugate. The trans-

formation from the model parameters 𝜌, 𝜌𝑣2
𝑝

and 𝜌𝑣2
𝑠

to

𝛿 log(𝐼𝑝), 𝛿 log(𝑣𝑝), 𝛿 log(𝑣𝑝∕𝑣𝑠) requires the evaluation of

�̄� = 𝐁T
1𝐁

T
0𝐇𝐁0𝐁1, with 𝐁0 = diag(𝜌, 𝜌𝑣2

𝑝
, 𝜌𝑣2

𝑠
) and

𝐁1 =
⎛⎜⎜⎝
1 −1 0
1 1 0
1 1 2

⎞⎟⎟⎠ . (B.6)

In three dimensions, the expressions are similar but there

are nine source types instead of five and, accordingly, the

summations involve more terms.
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