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ABSTRACT
Deep Reinforcement Learning (DRL) has made remarkable progress
in autonomous vehicle decision-making and execution control to
improve traffic performance. This paper introduces a DRL-based
mechanism for cooperative lane changing in mixed traffic (CLCMT)
for connected and automated vehicles (CAVs). The uncertainty
of human-driven vehicles (HVs) and the microscopic interactions
between HVs and CAVs are explicitly modelled, and different leader-
follower compositions are considered in CLCMT, which provides a
high-fidelity DRL learning environment. A feedbackmodule is estab-
lished to enable interactions between the decision-making layer
and the manoeuvre control layer. Simulation results show that the
increase in CAV penetration leads to safer, more comfort, and eco-
friendly lane-changing behaviours. A CAV-CAV lane-changing sce-
nario can enhance safety by 24.5%–35.8%, improve comfort by
8%–9%, and reduce fuel consumptionandemissionsby5.2%–12.9%.
The proposed CLCMT promises advantages in the lateral decision-
making and motion control of CAVs.
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1. Introduction

The negative consequences of traffic, such as congestion, safety risks, and pollution, have
substantial economic and social impacts, which are coming under increased scrutiny. With
the aid of vehicle-to-everything (V2X) communication, connected and automated vehi-
cle (CAV) technologies offer a promising solution to solve these problems (Calvert and
van Arem 2020; A. Ji and Levinson 2020; Jin et al. 2023; Ren et al. 2017; Sun et al. 2023),
as contrary to Human-driven vehicles (HVs), CAV driving manoeuvres can be designed
and controlled for certain purposes (Dong et al. 2021). For instance, a proposed coopera-
tive decision-making for mixed traffic (CDMMT) mechanism at ramp-merging sections can
mitigate traffic conflicts, smooth acceleration/deceleration, and further increase through-
put (Sun, Huang, and Zhang 2020). Certainly, before the Society of Automotive Engineers
(SAE) level 4 or 5 automated vehicles become widespread, numerous challenges must be
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tackled such as reliable sensor perception, and motion planning. Efforts have been made
to investigate intelligentmachinery fault diagnosis (X. Li et al. 2022, 2023). Motion planning
is a persistent challenge due to the unpredictable behaviours of the surrounding vehicles
(sometimes mixed with both CAVs and HVs). Particularly in lane-changing behaviour, this
task becomesmore complex as both longitudinal and lateral behaviours need to be consid-
ered (A. Ji, Ramezani, and Levinson 2023a; Paul et al. 2021; Shi et al. 2019). This underscores
the need to design robust motion planning strategies for autonomous vehicles to handle
complex lane-changing scenarios.

One potential solution to this issue involves dividing motion planning into two distinct
layers: decision-making and manoeuvre execution (Mirchevska et al. 2018). The decision-
making layer is tasked with making high-level decisions, such as lane maintaining or
changing, while the manoeuvre execution layer follows the planning and execute detailed
movements (Sun, Huang, and Zhang 2020). Various methods, including game-theoretical
approaches (A. Ji, Ramezani, and Levinson 2023b; D. Li and Pan 2022; Yu, Tseng, and Lan-
gari 2018), analytic hierarchy processes (Deng and Feng 2019), multilane cellular automa-
ton models (Pan et al. 2021), and safety potential field theory (L. Li et al. 2020), have been
implemented to model the decision-making process of lane-changing. For instance, coop-
erative controllers have been thoughtfully designed to address the total cost associated
with merging manoeuvres (M. Wang et al. 2015). For manoeuvre execution, techniques
such as quantal response equilibrium (Arbis and Dixit 2019) and fifth-degree polynomial
curves (Shi et al. 2019) are commonly utilised. Some studies have also addressed lane-
changing as an optimal control problem and usedmodel predictive control (MPC) to tackle
it (Hou et al. 2023; J. Ji et al. 2016; Rasekhipour et al. 2016). While these methods serve as
a valuable theoretical foundation for addressing motion planning during lane-changing,
they may encounter certain challenges related to scalability and adaptability in complex
scenarios. These underscore the compelling need for alternative approaches to effectively
address the dynamic lane-changing.

Recently, deep reinforcement learning (DRL) has achieved prominent success in vari-
ous challenging areas, such as gaming and robotic control (Ha et al. 2023). The DRL agent
enhances its policy through direct interaction with the environment, making it ideal for
CAV motion planning where obtaining an accurate system model is difficult. Numerous
studies have demonstrated the potential of DRL-based models to carry out lane-changing
manoeuvres, following comfortable and safe-oriented trajectories (Lin, Li, and Jabari 2019;
Sunet al. 2024;G.Wanget al. 2021; Xuet al. 2020). Somestudieshave simplified theproblem
and enhanced learning efficiency by discretizing the control space. For instance, Double
Q-learning (DQN) has been used to learn vehicle speed control, considering three control
actions: acceleration, deceleration, and maintenance (J. Li et al. 2020). Similar techniques
have been employed in other studies, where the control space included lane-keeping and
lane-changing (Bouadi et al. 2022; Shi et al. 2019). The Asynchronous Actor-Critic (A3C)
method has been used to learn vehicle control policies, with a control action space com-
prising 32 discrete values (Jaritz et al. 2018). Although discretizing the action space boosts
learning efficiency, it compromises control accuracy. To address this problem, one study
used the Deep Deterministic Policy Gradient (DDPG) to describe lane-changing behaviour
with continuous action in a model-free dynamic driving environment (P. Wang, Li, and
Chan 2019). In a decision-making training and learning framework based on DRL, the aver-
age speed of lane-changing behaviour was improved by approximately 2.4%. To this end,
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DRL has shown advantages in handling lane-changing issues of a single CAV in a pure CAV
environment.

When it comes to mixed traffic, modelling lane-changing of CAVs becomes more com-
plex as HVs present in the surrounding traffic (Sun, Huang, and Zhang 2020). The behaviour
of HVs is highly stochastic, uncertain, and beyond direct control (Z.-C. Li, Huang, and
Lam 2012). They may exhibit unpredictable behaviours during CAV lane-changing, such as
adopting hostilemovements to obstruct lane-changing of CAVs. There is a need to develop
cooperative strategies for CAVs to handle HV uncertainty, reducing the risk of collisions.
Additionally, multi-CAV control strategy deserves attention as it allows several CAVs to col-
laborate in dealing with HV uncertainty. This can provide more opportunities to effectively
handle HV uncertainty, which helps to improve safety as well as traffic efficiency.

To bridge these research gaps, in this paper, a cooperative lane-changing inmixed traffic
(CLCMT) mechanism based on deep reinforcement learning (DRL) is developed to facilitate
optimal lane-changing strategies. Two DRL algorithms named Deep Deterministic Policy
Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient algorithm (TD3)
are employed to deal with lane-changing problems with continuous control. The novel
contributions of the paper include: (i) The establishment of a feedback module to facili-
tate integration between the decision-making layer and the manoeuvre control layer. The
utilities of all potential motion executions are pre-calculated, which guides the optimal
decision-making; (ii) The uncertainty of HVs and themicroscopic interactions between HVs
and CAVs are explicitly considered in CLCMT. This provides a high-fidelity environment to
facilitate DRL agent learning strategies that can deal with complex situations; (iii) Scenar-
ios encompassing various common lane-changing situations inmixed traffic are evaluated,
which enables a holistic analysis of lane-changing behaviour.

The remainder of this paper is structured as follows. Section 2 describes the methodol-
ogy for the proposed CLCMT, encompassing problem description, algorithm preparation,
and DRL modelling. Section 3 presents experiments and numerical results, including the
training environment settings, results analysis and discussions. Section 4 summarises the
key findings of this study and proposes directions for future research.

2. Methodology

In this section, we first introduce the cooperative lane-changing problem in mixed traf-
fic (CLCMT). Then the DRL-based CLCMT mechanism is well-described, including MDP
formulation, basic theory of DRL algorithms, the architecture of CLCMT, and a feedback
module.

2.1. Problem description

Lane-change decision-making can be considered on strategic and tactical levels. Strategic
decisions are motivated by long-term objectives, such as travel efficiency or route plan-
ning, and initiating lane-changing behaviour. On the other hand, tactical decision-making
is employedwhen the target vehicle already intends to change lanes andmust knowwhen
and how to change (Shi et al. 2019). We focus on decision-making on a tactical level where
the target vehicle has already decided to change lanes, but should still decide which target
lane and gap to choose. This decision is important as it guides the target vehicle to execute



4 X. YAO ET AL.

Figure 1. The cooperative lane-changing problem in mixed traffic: an illustrative example.

a lane change. However, due to the uncertainty inmixed traffic flow, e.g. HV obstructs lane-
changing, this guidance may become inferior. Instead, if possible lane change execution
can be captured in advance and the lane change decision can be optimised based on this
information, potential failure of lane change can be reduced. Here comes our CLCMTmech-
anism. Specially, we design a feedback module to pre-calculate the utilities of potential
manoeuvre executionandguideoptimal decision-making. This subsectionbriefly describes
the problem that the CLCMT mechanism needs to solve, details of the mechanism will be
introduced in the following subsection.

In a typical three-lane highway scenario shown in Figure 1, the target vehicle (Vego who
has the intention to change lanes) in the middle lane can choose either the left lane or the
right to change. Vpre represents the leading vehicle in the current lane. The red and blue
vehicles are potential new leaders (Vlead) and followers (Vlag) in the target lane. Vsur repre-
sents leaders and followers of Vlead and Vlag. Vehicles coloured in yellow and red represent
CAVs, and those coloured in blue and grey denote HVs. CAVs have the capability to strictly
comply with the control strategy to accommodate the dynamic traffic environment, while
HVs do not. Surrounding vehicles (Vpre and Vsur) are considered as a part of the training
environment in the CLCMT mechanism. The fundamental task of the CLCMT is to learn a
strategy to select the appropriate target lane and gap and then execute the motion safely,
efficiently, comfortably, and environmentally friendly.

As illustrated in Figure 2, each lane-changingmanoeuvre involves three vehicles, vehicle
Vego in the current lane, the new leader Vlead and the new follower Vlag in the target lane.
In mixed traffic, there are four potential leader-follower combinations: CAV-CAV, CAV-HV,
HV-CAV, andHV-HV, referred as Case 1 – Case 4. Vego, Vlead , and Vlag are potential controlled
objects in CLCMT. Motions of CAVs follow the cooperativemanoeuvre control (CMC). If one

Figure 2. Compositions of leader-follower types.
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or both of Vlead and Vlag are HVs, they are given cooperativemanoeuvre control recommen-
dations (CMCR), such as suggested speed and acceleration. Assumed that theHV(s) of them
adopt the CMCR with a probability of p.

2.2. DRL-based CLCMTmechanism

2.2.1. MDP formulation
Lane-change manoeuvre control is formulated as a Markov Decision Process (MDP) in this
paper, which is defined by 5-tuple (S,A, P, R, λ). S represents the set of system states, A the
set of actions, P the state transition probability, R the reward function, and λ the discount
factor. Based on the principles of MDP, the state space, action space, and reward function
of the proposed DRL-based CLCMT are provided as follows.

State Space: The state of agents includes the position and speed of the target vehicle
O1(xego, yego, vxego, vyego), the leading vehicle l1(xlead , ylead , vlead) and the following vehicle
l2(xlag, ylag, vlag). Additionally, it includes the surrounding vehicles s1(xsur1, ysur1, vsur1) and
s2(xsur2, ysur2, vsur2), perceived as environmental data. The state space of DRL policy in the
four scenarios can be represented as:

s = (O1(xego, yego, vxego, vyego), l1(xlead , ylead , vlead), l2(xlag, ylag, vlag),

s1(xsur1, ysur1, vsur1), s2(xsur2, ysur2, vsur2)) ∈ S (1)

Action Space: The action space of each object refers to the available range of acceleration
anddeceleration that anobject canundertake. For Case 1, the actionsduring lane-changing
involve the actions of three vehicles, as shown below:

a1 = (aegox , aegoy , alead , alag) ∈ A1 (2)

Here, aegox , alead , alag represent the longitudinal acceleration of the target vehicle, new
leader, and new follower, while aegoy represents the lateral acceleration of the target vehi-
cle. Action space for Cases 2 to 4 can be expressed as in Equation (2) if the HV(s) comply
with CMCR. Otherwise, the control spaces are represented as follows:

a2 = (aegox , aegoy , alead) ∈ A2 (3)

a3 = (aegox , aegoy , alag) ∈ A3 (4)

a4 = (aegox, aegoy) ∈ A4 (5)

Reward Function: Precise control is crucial in driving, as any deviations can have serious
consequences. Learning driving behaviours without pre-existing knowledge can be diffi-
cult, which emphasises the significance of formulating rational reward functions. In this
study, we incorporate elements of safety, comfort, fuel consumption, and emissions into
the reward function.

The safety-related reward is given in Equation (6a). As the DRL agent’s actions are driven
by the pursuit of rewards at each step, the first component of Equation (6a) is designed
to encourage the DRL agent to keep moving forward by offering reasonable rewards. The
second component is designed to punish collision. When the agent fails to meet security
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conditions, i.e. dtar ≤ lveh, a large negative reward will be given. dtar represents the cur-
rent distance between Vlead and Vego, calculated by the positional difference between two
vehicles and a minimum distance d0, see Equation (6b).

Rs =

⎧⎪⎪⎨
⎪⎪⎩

α

I∑
i=1

�xego + β , otherwise

−c, dtar ≤ lveh

(6a)

dtar = xlead − xego + (vlead − vego)t + 1
2
(alead − aego)t

2 + d0 (6b)

here, �xego represents differences of xego between two timestamps, lveh stands for the
length of Vego; t is the time at which the lane-change manoeuvre occurs; α,β , κ , and c are
coefficients.

Smooth transitions during lane-changing can provide comfortable experience for CAV
users. As such, a comfort reward function Rc is designed to penalise abrupt jerks and
extensive yaws, as shown below.

ϕ = da
dt

(7a)

θ = arctan
vegoy(t)

vegox(t)
− arctan

vegoy(t − 1)

vegox(t − 1)
(7b)

Rc = −b1|ϕ| − b2|θ | (7c)

where ϕ stands for the acceleration/deceleration changing rate of controlled vehicle(s).
θ indicates the yaw changing rate, calculated by the differences between yaws of two
adjacent timestamps. b1 and b2 are coefficients.

According to Nie and Li (2013), the fuel consumption F and emissions ECO can be calcu-
lated using Equations (8) and (9), respectively. The total fuel emission for a certain length of
the trip (lt) is shown in Equation (10). From the literature, ECO is found to be approximately
equal to three times F. Thus, the fuel consumption and emissions can be calculated using
4TF . For details on themodels as well as their coefficients and corresponding default values
please refer to Nie and Li (2013). Then the reward function for assessing fuel consumption
and emissions can be expressed as Equation (11). κ serves as amodifier or adjustment coef-
ficient. The optimal lane-changing strategy is trained by considering the fuel emissions of
all vehicles present in the scenarios.

F(v, a) = f

v
= φ

λ

(
3∑

i=0
αiv

i−1 + βa

)
(8)

ECO2(v, a) =
eCO2

v
= γ1F(v, a)+ γ0

v
(9)

TF = ltF(v1, 0)+ φaσ1 + φaσ2 + φ0σ3 (10)

Rf = −κTF (11)

The positional deviation reward is designed to effectively guide theDRL agent (Vego) to pro-
mote correct lane-changing directions and be alignment with the centreline of the target
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lane. Lane-changing finishing within 0.5m from the centreline of the target lane is con-
sidered an effective strategy. Before reaching this range, the DRL agent receives linearly
increasing rewards for continuous lateral movement in the correct direction, as described
in the second part of Equation (12). After achieving this effective range, the closer to the
centreline, the more rewards can be obtained. Thus, a U-shaped function (the right half of
theu-function) is designed toencourage theagent toexplore superior strategies, illustrated
in the first part of Equation (12). �, δ, ζ , and ω are constants, serving as tuning parameters.

Rl =
{

ω|�dlat|, otherwise

�(|�dlat| − θ)2 + ζ , |�dlat| ≤ 0.5
(12)

The overall reward,R, is the aggregate of all previously mentioned rewards, as depicted in
Equation (13). The determination of all coefficients within the reward is achieved through
refined sensitivity analysis during pre-training experiments. Note that we use a simple sum
to indicate that all types of rewards are taken into account, while their weights significantly
change in the iterative refinement process.

R = Rs +Rc +Rf +Rl (13)

2.2.2. DRL algorithms
The formulated MDP in CLCMT consists of continuous state and action spaces. This is dif-
ficult to solve by classical RL algorithms, such as Q learning, due to their poor scalability
features (Sutton and Barto 2018). By leveraging the generalisation and fitting capability of
DNNs, DRL algorithms have shown good performance when dealing with this challenge.

Deep Deterministic Policy Gradient (DDPG) is an advanced variant of the Deterministic
Policy Gradient (DPG)model, employed in continuous control tasks, including autonomous
vehicles (Liao et al. 2022). It introduces two components including:

Critic Q-function: Q(s, a | θQ), which evaluates state-action pairs and updates parameters
using Temporal Difference (TD) loss (Equation (14)). It emphasises long-term rewards and
stability during training.

Lk = 1
N

∑ (
yi − Q(si, ai | θQ)

)2
(14)

Actor policy function: μ(s | θμ), which translates states into actions and updates its parame-
ters via the policy gradient algorithm (Equation (15)).

∇θμJ ≈ 1
N

N∑
i=1

[
∇aQ(si,μ(si) | θQ)∇θμμ(si | θμ)

]
(15)

DDPG employs two additional target networks, i.e. Critic network Q′ and Actor net-
work μ′, to enhance training stability (Equations (16) and (17)). These networks gradually
update their parameters using the hyperparameter τ to improve learning stability (Nguyen,
Nguyen, and Nahavandi 2020). However, DDPG sometimes faces challenges, such as over-
estimation issues and sensitivity to hyperparameters (Fujimoto, Hoof, and Meger 2018;
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Zhou et al. 2021).

θQ
′ ← τθQ + (1− τ)θQ

′
(16)

θμ′ ← τθμ + (1− τ)θμ′ (17)

Toaddress the limitationsofDDPG, a cutting-edgealgorithmknownasTwin-DelayedDDPG
(TD3) is developed (Fujimoto, Hoof, and Meger 2018). The network structure of TD3 is
demonstrated in Figure 3. In TD3, two target critic networks compute two Q values, and
the smaller one replaces the Bellman equation as the TD target (Equation (18)).

yi = ri + γ min
j=1,2Q

′
j

(
s′, a′ | θQ′j

)
(18)

This approach provides unbiased Q value estimates for Actor-provided actions, effectively
mitigating overestimation. The Actor network updates less frequently than the Critic net-
work to reduce error accumulation (Zhou et al. 2021). Additionally, truncated normal dis-
tribution noise is introduced to the target action to balance bias and variance, preventing
overfitting (Equation (19)).

ã← μ′(s′ | θμ′)+ ε, ε ∼ clip(N(0, σ),−c, c), c > 0 (19)

2.2.3. Architecture of DRL-based CLCMT
Based on the MDP formulation and basic knowledge of DRL algorithms, the DRL-based
CLCMT mechanism is constructed and shown in Figure 4. The process can be outlined in

Figure 3. Network structure of TD3.
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Figure 4. Architecture DRL-based lane-changing mechanism: an example of TD3.

several steps. First, the current speed and desired speed of the target vehicle are acquired.
If the former is less than the latter by a threshold of ε, a request for lane-changing is
triggered. Next, the DRL agent receives traffic states from environment, including leader-
follower compositions aswell as their gaps in adjacent lanes. These states serve as potential
lane-changing scenarios. Then, detailed manoeuvre control actions behind each potential
scenario are executed. This is achieved by DRL-based policies to learn actions including
two-dimensional accelerations of Vego (and longitudinal acceleration of Vlead and Vlag if
they are controlled). Based on various lane-changing strategies learned by DRL algorithms,
the feedback module computes the utilities of each cooperative lane-changing strategy
under different scenarios. According to pre-calculated utilities (including safety, efficiency,
comfort, and ecology) and a personalised evaluation function, the feedback module rec-
ommends the optimal lane-changing strategy for the decision-making layer where the
lane-changing strategy is determined.

Specifically, the DRL agent learns the two-dimensional accelerations of the controlled
vehicles by DRL-based policies and executes actions and updates position and speed by
the following kinematic models:

x(ti+1) = x(ti)+ vx(ti)�t + 1
2
ax (�t)2 (20)

y(ti+1) = y(ti)+ vy(ti)�t + 1
2
ay (�t)2 (21)

vx(ti+1) = vx(ti)+ ax �t (22)

vy(ti+1) = vy(ti)+ ay �t (23)
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where x, y are the positions, vx and vy are longitudinal and lateral speed, respectively. ax
and ay are longitudinal and lateral acceleration, respectively. �t = ti+1 − ti, denotes the
time step.

Uncontrollable vehicles (HVs) follow the speed and position updating rules based on
the car-following model. The well-known Intelligent Driver Model (IDM) is regarded as
a complete and accident-free model that can provide plausible behaviours in almost all
single-lane traffic situations (Sun et al. 2021), which was adopted in the experiment; see
Equation (24):

a(ti+1) = a1

[
1−

(
v(ti)

v0

)δ
]
−

(
s∗(v(ti),�v)

s0

)2

(24)

s∗ (v(ti),�v) = s0 +max
(
0, v(ti+1) T + v(ti),�v

2
√
a1 b1

)
(25)

here a1 is the maximum acceleration/deceleration of the follower, δ is the acceleration
index, v0 is the desired speed and s0 is the minimum gap. s∗(v(ti),�v) means the desired
gap, which is a function of v(ti) and �v, as shown in Equation (25). T is the safety time gap
and b1 is the comfortable deceleration.

2.2.4. The feedbackmechanism
As an important part of the proposed CLCMT mechanism, the feedback mechanism calcu-
lates utilities of rewards obtained from DRL model training. The time required to complete
the lane-changing process, measured by the number of time steps, is utilised to evaluate
the efficiency of lane-changing strategy (Ut). The crash rate, calculated as the proportion
of collisions among the total number of training episodes after convergence, serves as an
indicator of safety level (Us). The designed comfort reward Rc is employed to assess the
comfort level, denoted as Uc. Additionally, the rewardRf which is adopted to quantify fuel
consumption and emissions during the lane-changing process, serves as an evaluation of
the ecology utility (Ue).

Utilities of all potential lane-changing scenarios under a certain traffic state are calcu-
lated, serving as a data source for decision-making. An evaluation function is introduced
to facilitate optimal lane-changing strategy, see Equation (26). This function can be cus-
tomised to yield specific lane-changing strategies with two advantages. First, it allows for
personalised relationships among the four types of utilities, such as being linear or non-
linear. Second, it can be easily used to design user-oriented decision-making strategies
by adjusting the coefficients associated with different utilities. For instance, an increase in
the weight assigned to Us signifies a safety-centric strategy, while a larger coefficient for
Ue indicates an environmentally conscious approach. After such evaluation, the feedback
module recommends the user-oriented optimal lane-changing strategy to the decision-
making layer where the lane-changing direction and gap are determined. This decision
serves as a command to execute lane-changing in the manoeuvre control layer.

f = (Ut ,Us,Uc,Ue) (26)
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3. Experiments and numerical results

In this section, we first introduce experiment preparation, including training environmen-
tal settings, parameter tuning and model pre-training. Then the DRL models are trained in
various traffic scenarios. Based on the training results, discussions are conducted on the
effectiveness of the proposed CLCMT mechanism.

3.1. Experiment preparation

3.1.1. Training environmental settings
For the convenience of customisation to align precisely with research requirements and
flexibility to conduct experiments, we develop a gym-based learning platform using
Python, including various training environments and dynamic visualisation process 1.
According to different leader-follower compositions inmixed traffic, various lane-changing
scenarios were considered. As shown in Figure 5, a 300m road with two lanes was con-
structed. Each lane is 3.75m wide. The y-axis and x-axis represent the longitudinal and
lateral movements of driving, respectively. Each vehicle’s length is denoted by lveh and the
spacing (distance between the leader and the follower) is represented by L. The position of
each vehicle is illustrated by the (x, y) coordinates at time t. Assume that all vehicles, except
for the target vehicle, remain close to the centreline of their lanes.

The parameters for the training environment were set as follows: a time step of 0.1 s,
with the target vehicle’s initial coordinates set at (60, 1.875). The gap L in the initial traffic
state was chosen based on typical spacings found in highway traffic flow. Based on empir-
ical experiences, the original spacing Lori is set to 30m with the initial speed of the traffic
flow being 15m/s. Uncontrolled vehicles, i.e. HVs, update their state by following IDM car-
following model with corresponding parameters listed in Table 1. The probability p of a
human-driven vehicle (HV) being willing to cooperate was set to 0.5.

As for DRL algorithms, the detailed structure of Actor and Critic in TD3 is shown in
Figure 6, each comprising a series of fully connected layers with specific configurations.
Specifically, the Actor network has three layers with a state_dim of 16 and neurons of 256.
ReLU is used as an activation following the fully connected layer which is a linear function,
and a tanh activation function is applied to the output in the Actor network to ensure the

Figure 5. Lane-changing manoeuvre control scenarios.
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Table 1. Parameters of car-following model.

Name Description Unit Value

a0 Maximum acceleration/deceleration m/s2 3
v0 Desired speed m/s 20
s0 Minimum gap m 2
δ Acceleration index – 4
T Safety time gap s 1
b0 Comfortable deceleration m/s2 1.5

Figure 6. Detailed structure of Actor and Critic in TD3. (a) Detailed structure of Actor and (b) Detailed
structure of Critic.

actions are bound within the appropriate range. The Critic network, responsible for evalu-
ating the action-value pairs, follows a similar structure but incorporates action inputs in its
architecture, as typically required in actor-critic methods. For some hyperparameters, the
DRL models were trained with a batch size of 256, and the length of the burn-in period of
reply buffer was 25,000. The evaluation frequency was 5000 steps, meaning that we eval-
uated the DRL policy every 5000 steps. The reward discounted factor was 0.99 to balance
immediate and future rewards. Both the exploration noise and smoothing regularisation
noise were set to 0.5, aiming to improve robustness. The maximum timestamp was set
to be 3× 105 to guarantee convergence. To minimise the impact of perceptual informa-
tion errors and to improve the robustness of learning strategies, we also added some noise
when resetting the environment to the original states. The reset noises were uniformly dis-
tributed within the range of [0, 1], [0, 0.5], and [0, 2] for x, y and v, respectively. To avoid
unreasonable actions and facilitate optimal lane-changing strategies during the training
process, the action space of DRL was set as [−3, 3] for longitudinal direction and [−1, 1] for
lateral direction.

3.1.2. Pre-training and parameter tuning
The overall reward function represents a multi-objective optimisation problem, as it com-
bines four distinct objectives. In our CLCMT problem, these objectives correspond to
various aspects of driving behaviour, such as collision avoidance, forward progress, lane
change rewards, etc. Determination of weights for these different types of rewards is a crit-
ical aspect of fine-tuning DRL agents. We have approached this by considering the relative
importanceof eachobjective in achievingdesireddrivingbehaviours. Trial-and-error exper-
imentation and hyperparameter tuning were conducted to determine parameters, which
helps to ensure that the DRL agent optimally balances the proposed objectives, leading
to effective and safe cooperative lane-changing behaviour. Table 2 displays the ablation
studies on key parameters of reward functions. Note that the collision penalty c is criti-
cal for the convergence of DRL algorithm. Results show that the coefficients of comfort
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Table 2. Ablation studies on key parameters.

c b1 b2 ω Convergence Crash rate Trajectories

100,000 20 100 2000 Yes 2.40% (a)
50,000 20 100 2000 No 43.25% (b)
10,000 20 100 2000 No 89.67% (c)
100,000 10 50 2000 Yes 4.23% (d)
100,000 30 150 2000 Yes 5.01% (e)
100,000 20 100 1000 Yes 4.82% (f)
100,000 20 100 3000 Yes 3.94% (g)

and lane changes have little effect on the convergence of algorithms and the safety of
the learned strategies. However, as shown in Figure 7, these parameters affect the agent’s
exploration process and the final strategies. For example, if the comfort coefficients are too
large, the agent tends to extend the lane-changing process to ensure comfort, thus learn-
ing an inefficient strategy, see Figure 7(e). Conversely, a large lane-changing coefficient can
result in unreasonable lane-changing trajectories, as displayed in Figure 7(g). Among these
fine-tuning experiments,we found theoptimal combinationof parameterswith reasonable
trajectories and a small crash rate, as shown in Table 2 and Figure 7(a). Finally, the optimal
combination of parameters is found, which is shown in Table 3.

To further ensure the agent learned reasonable actions during training, the distribution
of average acceleration and velocity in each episode are shown in Figure 8. Note that the
acceleration is mostly distributed in (1.4, 2.6), with small numbers near 0, see Figure 8(a).
There are a few negative values, which may caused by failed attempts during training.
Velocity roughly performs as a normal distribution with a mean of 13 m/s, as shown in
Figure 8(b). Some examples of trajectories learned by theDRL agents are shown in Figure 9,
which illustrates that both the accelerations and velocities of the target vehicle display
reasonable actions.

The training of the four cases was conducted on a laptop equipped with an AMD R7-
5800H 3.2 GHz processor and NVIDIA 3060GPU. The pre-training process is illustrated in
Figure 10. The colour from blue to yellow represents the increase in training episodes. Note
that the target vehicle performs smooth lane-changing trajectories based on the proposed
DRL-based CLCMT mechanism. Although there were inappropriate lane-changing direc-
tion attempts at the beginning, these errors were corrected during the learning process.
After learning a correct lane-changing direction, it continued to optimise the trajectories,
such as seeking a shorter trajectory with less time or a more comfort strategy. Finally,
optimal lane-changing trajectories were explored, as the yellow lines show in Figure 10.
Figure 10(a,b) represent trajectories learned by TD3 and DDPG, respectively. Observed that
both the DRL algorithms explored good lane-changing trajectories at the end. Notably,
TD3 made fewer errors during the exploration, indicating its advantage in solving CLCMT
problem.

3.2. Results and discussions

Based on the aforementioned settings, the DRL model was trained in the established lane-
changing scenarios. In this subsection, we analyse these training results and discuss various
utilities calculated in the feedback module.
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Figure 7. Training exploration trajectories of target vehicle (An example of Case 1: CAV-CAV).
(a) c = 100,000, b1 = 20, b2 = 100,ω = 2000. (b) c = 50,000, b1 = 20, b2 = 100,ω = 2000.
(c) c = 10,000, b1 = 20, b2 = 100,ω = 2000. (d) c = 100,000, b1 = 10, b2 = 50,ω = 2000. (e)
c = 100,000, b1 = 30, b2 = 150,ω = 2000. (f ) c = 100,000, b1 = 20, b2 = 100,ω = 1000 and (g)
c = 100,000, b1 = 20, b2 = 100,ω = 3000.
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Table 3. Reward coefficients of RL.

Name Description Unit Value

c Collision penalty – −100, 000
α Coefficient of functionRs 1/m 960
β Coefficient of functionRs – 22
łveh The length of vehicle m 5
b1 Coefficient of jerk s3/m 20
b2 Coefficient of yaw – 100
κ Adjustment coefficient ofRf m/gram 800
� U-curve coefficient ofRl 1/m 2046
δ U-curve coefficient ofRl m 1
ζ U-curve coefficient ofRl – 692
ω U-curve coefficient ofRl 1/m 2000

Figure 8. Distribution of evaluated acceleration and velocity during training. (a) Acceleration and (b)
Velocity.

3.2.1. Training results of DRL-based lane-changing execution
In the field of DRL, the total reward accumulated during each episode and the convergence
time serve as important measures to evaluate the performance of the DRL policy. We pre-
set 5000 steps as an evaluation episode thus the total rewards are the average of each 5000
steps, which we refer to as the ‘average total reward’. A higher average total reward indi-
cates a better policy. Figure 11 illustrates the average total rewards obtained by TD3 and
DDPG under the traffic state Lori = 30. x and y axis in Figure 11(a,b) indicate rewards and
training steps of DRL algorithms. We observe that TD3 obtains larger average total rewards
with a smaller convergence time, consequently, TD3 is adopted as the DRL algorithm in
CLCMT to conduct the following experiments.

Specifically, in Figure 11(a), TD3 gained stable rewards at approximately 30,000 gen-
erations in Case 1. Through further exploration with fluctuated rewards, a lane-changing
strategy with higher total rewards was discovered at around 100,000 generations and con-
verged at this level. Case 2 also exhibited fast convergence, occurring at approximately
30,000 generations without additional explorations. After a longer exploration, the agent
eventually converged at a total reward that was comparable to Case 2. In contrast, agents
in Case 4 made more explorations and thus used the longest time to converge. However,
it finally failed to exhibit advantages over other strategies. Overall, Case 1 demonstrated
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Figure 9. Examples of acceleration and velocity during training. (a) Accelerations of target vehicle and
(b) Velocity of target vehicle.

Figure 10. Training exploration trajectories of the target vehicle (Example of Case 1: CAV-CAV). (a) Using
TD3 and (b) Using DDPG.

Figure 11. Average total rewards during training. (a) TD3 and (b) DDPG.

the highest total reward among the four cases, indicating that the cooperative behaviour
of more agents helps to explore better lane-changing strategies.

Figure 12 depicts the individual reward components of the TD3-based lane-changing
model for the four leader-follower cases. Cases 1–4 are represented by blue solid lines,
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Figure 12. Rewards of TD3-based lane-changing control. (a) Reward and penalty of safety. (b) Penalty
of jerk and yaw. (c) Penalty of fuel consumption and emissions and (d) Reward of lateral movement.

orange dashed lines, green dotted lines, and red dotted lines, respectively. Figure 12(a)
illustrates safety reward, in which the extremely low rewards indicate collisions. Observed
that Case 2–4 get more collisions than Case 1 in the learning process. This may be due to
more surrounding HVs which provide higher uncertainty. Comfort rewards are shown in
Figure 12(b). Note that Case 1 has the lowest jerk and yaw penalty among the four cases,
the other three cases obtain similar rewards towards comfort. Figure 12(c) illustrates the
reward of fuel consumption and emissions, in which Case 1 has the smallest penalty, while
Case 4 has the largest penalty. Additionally, the rewards for lateralmovement are displayed
in Figure 12(d). After some exploration, the agent successfully learns the lane-changing
strategies in each case, thus all cases have similar rewards after convergence.

3.2.2. Utilities of lane-changingmanoeuvres
After finishing the training process, the utilities of the four lane-changing cases are calcu-
lated in the feedback module. The results are shown in Table 4. Case 1 has a crash rate of
only 0.439%, while Case 4 exhibits a significantly higher crash rate of 6.927%. This indicates
that increasing the penetration of CAVs leads to safer, more comfortable, and eco-friendly
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Table 4. Utilities of lane-changing in various scenarios.

Leader-follower
compositions Efficiency (Ut/s) Safety (Us/%) Comfort (Uc) Ecology (Ue)

Case 1 (CAV-CAV) 3.587 0.439 −21.257 −248.967
Case 2 (CAV-HV) 3.342 5.902 −31.560 −316.802
Case 3 (HV-CAV) 3.056 4.878 −30.503 −324.692
Case 4 (HV-HV) 2.575 6.927 −31.626 −416.916

lane-changing behaviours. Specifically, Case 2 exhibits a higher crash rate than Case 3, indi-
cating that the new follower in the target lane plays amore important role compared to the
new leader vehicle. Higher CAVpenetration also shows advantages in comfort and ecology,
as more controlled vehicles can make wider adjustments of movements to cooperate with
each other aswell as with surroundingHVs. Meanwhile, this increased cooperation extends
the exploration process, thus needing a longer time compared to other cases. Evidence can
be found in Table 4, where Case 4 completes lane-changing with around 2.575 s, whereas
Case 1 has a longer time with 3.587 s. This indicates that when HVs are involved in the
leader-follower composition, the target vehicle tends to prioritise quicker lane-changing
at the expense of safety, comfort, and fuel efficiency.

3.2.3. Utilities of manoeuvre control under various initial conditions
To further explore the effectiveness of the DRL-based manoeuvre control strategy in the
four cases, we conduct further experiments with different original traffic states. Due to
space constraints, we present the results for twomore instances where the original leader-
follower gap (Lori) is varied as 20m and 40m. The results are illustrated in Figure 13. Each
boxplot denotes the upper quartile, lower quartile, and median of the total rewards. The
whiskers extend to the most extreme data points that are considered outliers, while any
outliers are indicated by hollow circles. The colours pink, blue, and green correspond to the
original gaps of 20m, 30m, and 40m, respectively.

As depicted in Figure 13(a1)–(a4), smaller original spacing results in a longer duration for
the target vehicle to execute the lane-changingmanoeuvre in each leader-follower combi-
nation. This smaller spacing also leads to higher crash rates, as shown in Figure 13(b1)–(b4).
Notably, this type of traffic state provides the most comfortable experience due to the
extended lane-changing time, as illustrated in Figure 13(c1)–(c4). In contrast, a leader-
follower composition with a larger original spacing, say 40m, offers a safer and more
efficient lane-changing strategy while compromising some comfort utility, as observed
from Figure 13(a1)–(a4), (b1)–(b4), and (c1)–(c4). As demonstrated in Figure 13(d1)–(d4),
fuel consumption and emissions are not unilaterally influenced by changes in the original
spacing. The most eco-friendly driving strategy is achieved when Lori = 30.

3.2.4. Decision-making based on the feedbackmechanism
To facilitate an effective comparison of the results in each case, we normalise the utility of
each indicator. The percentage difference in the normalised values (DPN) is then utilised to
evaluate the lane-changing utility. The results of normalised results for different cases are
illustrated in Table 5.

Notably, when considering the same original status, Case 1 exhibits DPN values of
24.5%–35.8% in safety, 8%–9% in comfort, and 5.2%–12.9% in ecology compared to the
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Figure 13. Utilities of lane-changing under various original states.

Table 5. Normalized utilities of different cases (e.g. Lori = 30).

Leader-follower
compositions Efficiency (Ut) Safety (Us) Comfort (Uc) Ecology (Ue)

Case 1 (CAV-CAV) 0.286 0.024 0.185 0.190
Case 2 (CAV-HV) 0.266 0.325 0.275 0.242
Case 3 (HV-CAV) 0.243 0.269 0.265 0.248
Case 4 (HV-HV) 0.205 0.382 0.275 0.319

other three cases. Increasing the penetration of HVs leads to decreased safety and comfort
for the target vehicle and increased fuel consumption and emissions during lane-changing.
If the four utilities follow a linear function with even weights, the feedback module favours
recommending the adjacent lane with a CAV-CAV composition, while the HV-HV compo-
sition is considered less favourable. Following different user-oriented evaluation function,
the feedback module recalculates the utilities and provides recommendations on person-
alised lane-changing strategies.
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4. Concluding remarks

This paper proposed a cooperative lane-changing in mixed traffic (CLCMT) mechanism
based on the TD3 method to facilitate optimal lane-changing strategies. A feedback
module was designed to enable interactions between the decision-making layer and
the manoeuvre control layer, in which the utilities of potential motion execution can
be pre-calculated to provide guidance for decision-making. The uncertainty in HV deci-
sions was considered in the mechanism. Various leader-follower compositions in mixed
traffic, including CAV-CAV, CAV-HV, HV-CAV, and HV-HV, were included, covering a wide
range of typical lane-changing scenarios. Training results show that the TD3-based CLCMT
approach enabled the target vehicle to learn smooth lane-changing trajectories with
enough safety. The evaluation regarding safety, efficiency, comfort, and ecology in the
feedback module contributed to recommending the optimal lane-changing strategy. The
findings of this research highlighted the advantages of the proposed CLCMT in terms of
lateral decision-making and motion control for CAVs. The key findings are summarised
below.

(i) With similar initial gap settings in traffic, increasing the penetration of CAVs results
in safer, more comfortable, and environmentally friendly lane-changing. Opting for
a CAV-CAV lane-changing strategy can enhance safety by 24.5%–35.8%, improve
comfort by 8%–9%, and reduce fuel consumption and emissions by 5.2%–12.9%
when compared to other lane-changing options.

(ii) Larger spacing between vehicles also leads to higher lane-changing utilities, align-
ing well with real-life experiences.

(iii) The most eco-friendly lane-changing manoeuvres are achieved when the initial
spacing between vehicles is 30m, indicating that the relationship between leader-
follower spacing and ecology utilities does not exhibit a monotonic pattern.

Though the proposed CLCMT strategy has provided valuable insights into deal-
ing with complex lane-changing scenarios, we acknowledge its limitations. The move-
ments of vehicles are controlled by longitudinal and lateral accelerations, leading to
a decoupling of horizontal and vertical driving behaviour. Note that the lateral move-
ment of a vehicle is influenced by various factors such as steering angle, tyre dynamics,
road conditions, and external forces, refined vehicle dynamics control should be con-
sidered to facilitate high-fidelity driving trajectories. Future research may involve this
enhancement in control precision to assist lane-changing vehicles in acquiring more
effective execution strategies. Moreover, exploring multi-agent actor-critic approaches
to consider cooperative-competitive driving behaviours of multiple vehicles also holds
promise (Parada et al. 2023). Additionally, heterogeneity of driving behaviour, such as
low- and high-compliance of HVs, can be considered to provide more realistic learn-
ing environments. This helps to learn strategies that can deal with more complex
situations.

Note

1. Example can be found by https://www.youtube.com/watch?v=gZIwcZZR1P0)

https://www.youtube.com/watch?v=gZIwcZZR1P0)


TRANSPORTMETRICA A: TRANSPORT SCIENCE 21

Acknowledgements

The authors confirm their contribution to the paper as follows: study conception and design: Xue
Yao, and Zhanbo Sun; data collection: Xue Yao, Zhao Chengdu; analysis and interpretation of results:
Xue Yao, Zhao Chengdu; draft manuscript preparation: Xue Yao, Zhanbo Sun, Simeon C. Calvert,
Zhao Chengdu, and Ang Ji. All authors reviewed the results and approved the final version of the
manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work is supported by the National Natural Science Foundation of China via grant 52072316 and
52302418, the Fundamental Research Funds for the Central Universities via grant 2682023CX047, and
the Postdoctoral International Exchange Program via grant YJ20220311.

ORCID

Ang ji http://orcid.org/0000-0002-7943-7461

References

Arbis,D., andV. V.Dixit. 2019. “GameTheoreticModel for LaneChanging: IncorporatingConflict Risks.”
Accident Analysis & Prevention 125:158–164. https://doi.org/10.1016/j.aap.2019.02.007.

Bouadi, M., B. Jia, R. Jiang, X. Li, and Z. Gao. 2022. “Optimizing Sensitivity Parameters of Automated
Driving Vehicles in An Open Heterogeneous Traffic Flow System.” Transportmetrica A: Transport
Science 18 (3): 762–806. https://doi.org/10.1080/23249935.2021.1896592.

Calvert, S., and B. vanArem. 2020. “AGenericMulti-level Framework forMicroscopic Traffic Simulation
with Automated Vehicles in Mixed Traffic.” Transportation Research Part C: Emerging Technologies
110:291–311. https://doi.org/10.1016/j.trc.2019.11.019.

Deng, J.-H., and H.-H. Feng. 2019. “A Multilane Cellular Automaton Multi-attribute Lane-changing
DecisionModel.” PhysicaA: StatisticalMechanicsand ItsApplications 529:121545. https://doi.org/10.
1016/j.physa.2019.121545.

Dong, C., H.Wang, Y. Li, X. Shi, D. Ni, andW.Wang. 2021. “Application ofMachine Learning Algorithms
in Lane-changingModel for Intelligent Vehicles Exiting to Off-ramp.” Transportmetrica A: Transport
Science 17 (1): 124–150. https://doi.org/10.1080/23249935.2020.1746861.

Fujimoto, S., H. Hoof, and D. Meger. 2018. “Addressing Function Approximation Error in Actor-Critic
Methods.” In International Conference onMachine Learning, 1587–1596. PMLR.

Ha, P., S. Chen, J. Dong, and S. Labi. 2023. “Leveraging Vehicle Connectivity and Autonomy for
Highway Bottleneck Congestion Mitigation Using Reinforcement Learning.” Transportmetrica A:
Transport Science 19 (1): 1–26. https://doi.org/10.1080/23249935.2023.2215338.

Hou, K., F. Zheng, X. Liu, and Z. Fan. 2023. “Cooperative Vehicle Platoon Control Considering
Longitudinal and Lane-changing Dynamics.” Transportmetrica A: Transport Science 20 (3): 1–29.
https://doi.org/10.1080/23249935.2023.2182143.

Jaritz, M., R. De Charette, M. Toromanoff, E. Perot, and F. Nashashibi. 2018. “End-to-End Race Driv-
ing with Deep Reinforcement Learning.” In 2018 IEEE International Conference on Robotics and
Automation (ICRA), 2070–2075. IEEE.

Ji, J., A. Khajepour, W. W. Melek, and Y. Huang. 2016. “Path Planning and Tracking for Vehicle Collision
Avoidance BasedonModel Predictive ControlwithMulticonstraints.” IEEETransactionsonVehicular
Technology 66 (2): 952–964. https://doi.org/10.1109/TVT.2016.2555853.

Ji, A., and D. Levinson. 2020. “A Review of Game Theory Models of Lane Changing.” Transportmetrica
A: Transport Science 16 (3): 1628–1647. https://doi.org/10.1080/23249935.2020.1770368.

http://orcid.org/0000-0002-7943-7461
https://doi.org/10.1016/j.aap.2019.02.007
https://doi.org/10.1080/23249935.2021.1896592
https://doi.org/10.1016/j.trc.2019.11.019
https://doi.org/10.1016/j.physa.2019.121545
https://doi.org/10.1080/23249935.2020.1746861
https://doi.org/10.1080/23249935.2023.2215338
https://doi.org/10.1080/23249935.2023.2182143
https://doi.org/10.1109/TVT.2016.2555853
https://doi.org/10.1080/23249935.2020.1770368


22 X. YAO ET AL.

Ji, A., M. Ramezani, and D. Levinson. 2023a. “Joint Modelling of Longitudinal and Lateral Dynamics in
Lane-changing Maneuvers.” Transportmetrica B: Transport Dynamics 11 (1): 996–1025.

Ji, A., M. Ramezani, and D. Levinson. 2023b. “Pricing Lane Changes.” Transportation Research Part C:
Emerging Technologies 149:104062. https://doi.org/10.1016/j.trc.2023.104062.

Jin, J., H. Huang, Y. Li, G. Zhang, Y. Dong, B. Zhou, and H. Xue. 2023. “Variable Speed Limit Modelling
to Improve Traffic Safety and Efficiency of Mixed Traffic Flow by a Two-stage Framework.” Trans-
portmetrica A: Transport Science 19 (1): 1–25. https://doi.org/10.1080/23249935.2023.2253476.

Li, L., J. Gan, K. Zhou, X. Qu, and B. Ran. 2020. “A Novel Lane-changing Model of Connected and Auto-
mated Vehicles: Using the Safety Potential Field Theory.” Physica A: Statistical Mechanics and Its
Applications 559:125039. https://doi.org/10.1016/j.physa.2020.125039.

Li, Z.-C., H.-J. Huang, and W. H. Lam. 2012. “Modelling Heterogeneous Drivers’ Responses to Route
Guidance and Parking Information Systems in Stochastic and Time-dependent Networks.” Trans-
portmetrica 8 (2): 105–129. https://doi.org/10.1080/18128600903568570.

Li, D., and H. Pan. 2022. “Two-lane Two-way Overtaking Decision Model with Driving Style Aware-
ness Based on a Game-theoretic Framework.” Transportmetrica A: Transport Science 19 (3): 1–26.
https://doi.org/10.1080/23249935.2022.2076755.

Li, X., Y. Xu, N. Li, B. Yang, and Y. Lei. 2022. “Remaining Useful Life Prediction with Partial Sensor Mal-
functions UsingDeepAdversarial Networks.” IEEE/CAA Journal of Automatica Sinica 10 (1): 121–134.
https://doi.org/10.1109/JAS.2022.105935.

Li, J., L. Yao, X. Xu, B. Cheng, and J. Ren. 2020. “Deep Reinforcement Learning for Pedestrian Col-
lision Avoidance and Human-machine Cooperative Driving.” Information Sciences 532:110–124.
https://doi.org/10.1016/j.ins.2020.03.105.

Li, X., S. Yu, Y. Lei, N. Li, and B. Yang. 2023. “Intelligent Machinery Fault Diagnosis with Event-Based
Camera.” IEEE Transactions on Industrial Informatics 20 (1): 380–389. https://doi.org/10.1109/TII.
2023.3262854.

Liao, Y., G. Yu, P. Chen, B. Zhou, and H. Li. 2022. “Modelling Personalised Car-following Behaviour: A
Memory-based Deep Reinforcement Learning Approach.” Transportmetrica A: Transport Science 20
(1): 1–29. https://doi.org/10.1080/23249935.2022.2035846.

Lin, D., L. Li, and S. E. Jabari. 2019. “Pay to Change Lanes: A Cooperative Lane-changing Strat-
egy for Connected/automated Driving.” Transportation Research Part C: Emerging Technologies
105:550–564. https://doi.org/10.1016/j.trc.2019.06.006.

Mirchevska, B., C. Pek, M. Werling, M. Althoff, and J. Boedecker. 2018. “High-Level Decision Mak-
ing for Safe and Reasonable Autonomous Lane Changing Using Reinforcement Learning.” In
2018 IEEE 21st International Conference on Intelligent Transportation Systems (ITSC), 2156–2162.
IEEE.

Nguyen, T. T., N. D. Nguyen, and S. Nahavandi. 2020. “Deep Reinforcement Learning for Multiagent
Systems: A Review of Challenges, Solutions, and Applications.” IEEE Transactions on Cybernetics 50
(9): 3826–3839. https://doi.org/10.1109/TCYB.6221036.

Nie, Y. M., and Q. Li. 2013. “An Eco-routing Model Considering Microscopic Vehicle Operating Con-
ditions.” Transportation Research Part B: Methodological 55: 154–170. https://doi.org/10.1016/j.trb.
2013.06.004.

Pan, T., W. H. Lam, A. Sumalee, and R. Zhong. 2021. “Multiclass Multilane Model for Free-
way Traffic Mixed with Connected Automated Vehicles and Regular Human-piloted Vehicles.”
Transportmetrica A: Transport Science 17 (1): 5–33. https://doi.org/10.1080/23249935.2019.157
3858.

Parada, L., E. Candela, L. Marques, and P. Angeloudis. 2023. “Safe and Efficient Manoeuvring for
EmergencyVehicles inAutonomous Traffic UsingMulti-agent Proximal PolicyOptimisation.” Trans-
portmetrica A: Transport Science 18 (1): 1–29. https://doi.org/10.1080/23249935.2023.2246586.

Paul, G., N. Raju, S. Arkatkar, and S. Easa. 2021. “Can Segregating Vehicles in Mixed-traffic Stream
Improve Safety and Throughput? Implications Using Simulation.” Transportmetrica A: Transport
Science 17 (4): 1002–1026. https://doi.org/10.1080/23249935.2020.1826595.

Rasekhipour, Y., A. Khajepour, S.-K. Chen, and B. Litkouhi. 2016. “A Potential Field-based Model Pre-
dictive Path-planning Controller for Autonomous Road Vehicles.” IEEE Transactions on Intelligent
Transportation Systems 18 (5): 1255–1267. https://doi.org/10.1109/TITS.2016.2604240.

https://doi.org/10.1016/j.trc.2023.104062
https://doi.org/10.1080/23249935.2023.2253476
https://doi.org/10.1016/j.physa.2020.125039
https://doi.org/10.1080/18128600903568570
https://doi.org/10.1080/23249935.2022.2076755
https://doi.org/10.1109/JAS.2022.105935
https://doi.org/10.1016/j.ins.2020.03.105
https://doi.org/10.1109/TII.2023.3262854
https://doi.org/10.1080/23249935.2022.2035846
https://doi.org/10.1016/j.trc.2019.06.006
https://doi.org/10.1109/TCYB.6221036
https://doi.org/10.1016/j.trb.2013.06.004
https://doi.org/10.1080/23249935.2019.1573858
https://doi.org/10.1080/23249935.2023.2246586
https://doi.org/10.1080/23249935.2020.1826595
https://doi.org/10.1109/TITS.2016.2604240


TRANSPORTMETRICA A: TRANSPORT SCIENCE 23

Ren, J., Y. Chen, L. Xin, J. Shi, and H. Mahama. 2017. “Detecting and Locating of Traffic Incidents in a
Road Segment Based on Lane-changing Characteristics.” Transportmetrica A: Transport Science 13
(10): 853–873. https://doi.org/10.1080/23249935.2017.1348400.

Shi, T., P. Wang, X. Cheng, C.-Y. Chan, and D. Huang. 2019. “Driving Decision and Control for
Automated Lane Change Behavior Based on Deep Reinforcement Learning.” In 2019 IEEE 22nd
International Conference on Intelligent Transportation Systems (ITSC), 2895–2900. IEEE.

Sun, Z., J. Huang, A. Ji, R. Zhao, and G. Zheng. “Cooperative Merging for Connected Automated
Vehicles in Mixed Traffic: A Multi-Agent Reinforcement Learning Approach.” Available at SSRN
4564695.

Sun, Z., T. Huang, and P. Zhang. 2020. “Cooperative Decision-making for Mixed Traffic: A
Ramp Merging Example.” Transportation Research Part C: Emerging Technologies 120:102764.
https://doi.org/10.1016/j.trc.2020.102764.

Sun, Z., R. Liu, H. Hu, D. Liu, and Z. Yan. 2023. “Cyberattacks on Connected Automated Vehicles: A Traf-
fic Impact Analysis.” IET Intelligent Transport Systems 17 (2): 295–311. https://doi.org/10.1049/itr2.
v17.2.

Sun, Z., X. Yao, Z. Qin, P. Zhang, and Z. Yang. 2021. “Modeling Car-following Heterogeneities by
Considering Leader–followerCompositions andDriving StyleDifferences.” TransportationResearch
Record 2675 (11): 851–864. https://doi.org/10.1177/03611981211020006.

Sutton, R. S., and A. G. Barto. 2018. Reinforcement Learning: An Introduction. Cambridge, MA:MIT press.
Wang, M., S. P. Hoogendoorn, W. Daamen, B. van Arem, and R. Happee. 2015. “Game Theoretic

Approach for Predictive Lane-changing and Car-following Control.” Transportation Research Part
C: Emerging Technologies 58:73–92. https://doi.org/10.1016/j.trc.2015.07.009.

Wang, G., J. Hu, Z. Li, and L. Li. 2021. “Harmonious Lane Changing Via Deep Reinforcement
Learning.” IEEE Transactions on Intelligent Transportation Systems 23 (5): 4642–4650. https://doi.
org/10.1109/TITS.2020.3047129.

Wang, P., H. Li, andC.-Y. Chan. 2019. “Continuous Control for Automated LaneChange Behavior Based
on Deep Deterministic Policy Gradient Algorithm.” In 2019 IEEE Intelligent Vehicles Symposium (IV),
1454–1460. IEEE.

Xu, H., Y. Zhang, C. G. Cassandras, L. Li, and S. Feng. 2020. “A Bi-level Cooperative Driving Strat-
egy Allowing Lane Changes.” Transportation Research Part C: Emerging Technologies 120:102773.
https://doi.org/10.1016/j.trc.2020.102773.

Yu, H., H. E. Tseng, and R. Langari. 2018. “A Human-like Game Theory-based Controller for
Automatic Lane Changing.” Transportation Research Part C: Emerging Technologies 88:140–158.
https://doi.org/10.1016/j.trc.2018.01.016.

Zhou, J., S. Xue, Y. Xue, Y. Liao, J. Liu, and W. Zhao. 2021. “A Novel Energy Management Strategy of
Hybrid Electric Vehicle Via An Improved Td3 Deep Reinforcement Learning.” Energy 224:120118.
https://doi.org/10.1016/j.energy.2021.120118.

https://doi.org/10.1080/23249935.2017.1348400
https://doi.org/10.1016/j.trc.2020.102764
https://doi.org/10.1049/itr2.v17.2
https://doi.org/10.1177/03611981211020006
https://doi.org/10.1016/j.trc.2015.07.009
https://doi.org/10.1109/TITS.2020.3047129
https://doi.org/10.1016/j.trc.2020.102773
https://doi.org/10.1016/j.trc.2018.01.016
https://doi.org/10.1016/j.energy.2021.120118

	1. Introduction
	2. Methodology
	2.1. Problem description
	2.2. DRL-based CLCMT mechanism
	2.2.1. MDP formulation
	2.2.2. DRL algorithms
	2.2.3. Architecture of DRL-based CLCMT
	2.2.4. The feedback mechanism


	3. Experiments and numerical results
	3.1. Experiment preparation
	3.1.1. Training environmental settings
	3.1.2. Pre-training and parameter tuning

	3.2. Results and discussions
	3.2.1. Training results of DRL-based lane-changing execution
	3.2.2. Utilities of lane-changing manoeuvres
	3.2.3. Utilities of manoeuvre control under various initial conditions
	3.2.4. Decision-making based on the feedback mechanism


	4. Concluding remarks
	Note
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


