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Preface

This project consists in developing a fluid-structure interaction solver to resolve the flow field and defor-
mation of a spinnaker sail. The goal is to correctly capture the spinnaker’s ability to deform and propel the
sailboat. The need for this solver is motivated by the fact that estimating the sail thrust considering it rigid
and therefore using only CFD can lead to wrong thrust estimations. Thus, if the CFD solver is coupled with
a structural solver, that allows also the cloth deformation to be taken into account, the estimation becomes
more reliable. This goal has only been partially achieved so far, because of the high computational costs of
the operations and the complexity of the physics involved. For this reason this project, if completed correctly,
can take the science behind sailing a step further. Given the complexity of the problem, three main areas
need to be devloped: the fluid solver, the structure solver and the algorithm able to couple them. This docu-
ment will illustrate all the steps taken in order to reach the final goal, presenting the used tools and the line
of reasoning employed throughout the project.

Anna Ramolini
Delft, November 2018
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1
Introduction

The physics underlying sailing is characterized by complex phenomena that are only lately beginning to be
explored through numerical methods, since the computational power has only recently started to meet the
high computational costs required by these types of analyses. The main difficulty lays in the fact that the
flow regime is highly turbulent and, as it is well known, this type of flow is still not resolved fully in its whole
complexity, but can only be approximated through turbulence models that require heavy approximations.

While for upwind sails like the jib or the mainsail some prediction works through CFD have already been
performed (for example the work done by the Van Oossanen naval architects, [6], or Viola [21]), for downwind
sails such as spinnaker and gennaker more sophisticated techniques are needed [31], [39], [41]. This is due to
the fact that the flow in upwind sailing is mostly attached and the turbulence that can be present is limited to
the small scales in the boundary layer; therefore the flow can be modelled with inviscid models such as the
Vortex Lattice Method and potential flow codes, possibly with the help of a boundary layer correction for the
small scale turbulence, or also with RANS.

On the other hand, when sailing downwind the functioning of the sail changes completely, with the flow
detaching and largely separating, the presence of large scale turbulence and the propulsion being generated
through drag and not lift. For this case, the inviscid methods are not suitable, as it is well known that they
cannot resolve correctly large scale turbulence, detachment and separation. Some more elaborate techniques
are then needed to unveil the physics, such as RANS, LES or DES

Moreover, the added complexity to the problem of downwind sails lays also in the fact that the cloth is
made of a very light and deformable material, differently from the upwind sails. That results in big changes
of shape of the sail when sailing, depending on the wind intensity and direction and the trim settings. This
aspect has to be taken in account if a correct analysis is to be performed.

This project is aimed to resolve the flow around a spinnaker sailing downwind, and to find the techniques
that allow the thrust prediction to be accurate enough to be used in the sail design analysis, instead of the
costly experimental simulations. In order for this to happen, the first step is to capture correctly the nature of
the turbulence around the sail: the main interest is to accurately predict the separation and the wake, so that
the pressure distribution around the sail can be computed. In addition, some studies ([17],[15]) have shown
the necessity to use a structure solver together with the fluid solver, making this a fluid-structure interaction
problem, in order to have more realistic thrust predictions. In the next section this concept will be further
examined.

1.1. Motivation
For many years, sailing has been done "on the field" and the sail constructors were designing sails based on
the previous experiences on the water, without quantitative analyses. Now that the computational power
allows it, more and more computer studies are being performed ([31], [39],[6], [21]) in order to avoid exper-
imental testing with all the sail prototypes, using the preliminary testing to save materials and time. The
objective of these simulations is to quantify the pressure field around the sails, which can be used to calcu-
late the thrust the sail can yield. As it has been stated in the previous paragraph, some work on the upwind
sails has been already done, while for the downwind sails there is still a lot of work to be carried out to have

1



2 1. Introduction

precise information on the sail performance.

1.1.1. Physics of spinnaker flow
The spinnaker, or spi, is a large, light triangular sail that is positioned in front of the bow of the boat. Being it
the foremost sail, it is also called headsail. It can be used for running, which is merely going straight down-
wind, or broad reaching, that is going towards a point that has a wide angle with respect to the wind direction.
Typical sailing regimes are shown in figure 1.1. The setting of the sail will change depending on the regime,
being it more tightened to the side for the reaching regime or set free to fly in the front of the boat if running.
This sail is generally used with apparent wind angles in the range 90°-180°, where between 90° and 120° the
boat is reaching and between 120° and 180° the boat is running, indicatively. So while the other sails, main-
sail and jib, are used for all points of sail, the spinnaker is only usable in the last two configurations of figure
1.1. This sail can be considered as elective, as it is not always used especially outside of competitions, but it
can give major improvements to the boat speed if used, because of its huge dimensions and the consequent
thrust it can provide.

Figure 1.1: Points of sail, from [41]

The reason why this sail presents such different features from the other sails is that its functioning is
completely unlike. In particular when sailing downwind its propulsion relies almost completely on the drag
produced by the sail, and not the lift. For the spinnaker this is the only way to generate driving force, while for
example the mainsail can be used as a lift or drag device depending on the wind angle. Consider figure 1.1:
the first three images depict a situation in which the driving force is the lift generated by the mainsail and jib,
while in the last two the mainsail is using the drag that it generates to propel the boat.

As it has been said before, the spinnaker can only be used in the last two (occasionally three) points of
sailing of figure 1.1: this means that the air will arrive to the spi from the back of the boat, and the aerody-
namic forces generated will be the lift, directed perpendicularly to the flow and therefore to the side of the
boat, and the drag, parallel to the flow and directed in front of the boat. In this case, the drag will be the driv-
ing force. The lateral force, namely the lift, will constitute a heeling force that will tend to make the boat roll.
On the other hand, in a different situation without the spinnaker the lift generated by the mainsail and the
resistance of the keel will play a fundamental role in the propulsion of the boat. A schematic representation
of this process is shown in figure 1.2.

Being the spinnaker a drag device, it goes without saying that the estimation of the drag coefficient must
be as accurate as possible in order to have a correct estimate of the propulsion the sail can provide. Some on-
line tools for a fast estimation of the sail performance coefficients are available, for example the tool SailPow-
erCalc1, which is a fast Velocity Prediction Program that, given some sail data, can give an estimate of the
driving and heeling coefficients of the boat. In order to have an idea of the performance of this fast estimator,
some data has been taken from Viola ([22]) and filled in to test the online tool. In the paper, some data about
a model used in the wind tunnel for testing is given. Table 1.1 summarizes the input data and the resulting
values from the two cases.

1https://cdn2.hubspot.net/hub/209338/news/SailPowerCalc/SailPowerCalc.htm#SailPowerCalc

https://cdn2.hubspot.net/hub/209338/news/SailPowerCalc/SailPowerCalc.htm##SailPowerCalc
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Figure 1.2: Aerodynamic forces generated by a running spinnaker (left) and by mainsail in close reach (right)
2

Viola [22] SailPowerCalc

Mainsail Luff [m] 0.21 0.21

Mainsail Foot [m] 0.62 0.62

Mainsail Area [m2] 0.09 0.1

Spinnaker Area [m2] 2.4 2.4

Total Sail Area [m2] 2.49 2.5

Apparent Wind Speed [m/s] 3.5 3.5

Heel Angle [deg] 10 10

Driving force coeff. [-] 0.9 1.04

Table 1.1: Comparison of experimental data from [22] with estimated data from online tool SailPowerCalc

In table 1.1 the main differences are highlighted in bold: it can be observed that the final value of the
driving force coefficient estimated with the online tool has an error of approximately 15% with respect to the
experimental data. What can be observed is that the estimation of the total sail area is performed with an
error by the online tool: it computes a mainsail area of 0.1 m2, while for Viola [22] the mainsail area is given
to be 0.09 m2. This error can be influencing the final results. More inaccuracies can be attributed to the fact
that the online tool is based on a Velocity Prediction Program. That is an estimation tool based on empirical
observations only on particular sets of yachts and sails, so it can be inaccurate when considering a type of
sail that is not present in the VPP database. The goal of this analysis is to show that CFD is necessary to have
more accurate predictions of the sail performance data, and fast estimators like the one presented above are
not sufficient to have an accurate analysis.

Another important difference between the spinnaker and the other sails is the presence of transient phe-
nomena such as large separation and transition to turbulence in the flow, due to the position of the sail with
respect to the wind. This does not happen with the mainsail in beam reach regime for example, where the

2from https://sites.google.com/site/crisflopt/navegacao/sail-trim
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flow stays attached for most of the chord length (since the sail is aligned with the flow), the transition to tur-
bulence is limited to the boundary layer and the turbulent eddies remain confined to the small scale range.
Whereas the spinnaker in running regime is perpendicular to the flow, and therefore the turbulent eddies are
large and the separation is massive. The two different flow situations are schematically shown in figure 1.3.

Figure 1.3: Attached (left) and detached (right, from [2]) flows around mainsail and spinnaker, respectively

Therefore, while for the mainsail and jib in reaching regimes a potential flow code coupled with a bound-
ary layer correction can be suitable and yield relevant results, for the spi requires a more elaborate code. The
upwind and downwind turbulence has to be modelled correctly in order to have significant results. The per-
fect CFD tool for this application would be able to capture the flow around the mainsail with its wake and
separation point, and then would use this flow condition as a starting point to compute the flow around the
spinnaker, which will also have its wake and separation point. Figure 1.2 (left) shows the typical configuration
of mainsail and spinnaker: it can be noted that the wake of the mainsail only affects a small portion of the
spinnaker, so the air that will inflate the spinnaker would be mostly the free stream one. Anyhow, taking into
account the wake of the mainsail surely makes the simulation more significant and representative of reality.
The challenge is then to find a tool able to describe all these complex phenomena.

Once the functioning of this sail is explained, an important observation has to be made: as mentioned
before, this sail has a high ability to deform under the pressure loads of the flow due to its shape, material and
setting - it is free to move from two of the three points where it is attached to the boat, and therefore has much
more freedom than a mainsail or jib, which are fixed in two points. This means that it will assume various
shapes during its usage, depending on the wind speed and the sailing direction. and this is a crucial point
for CFD simulations - a body that can deform is harder to simulate than a rigid one. Therefore, maintaining
a constant geometry during the whole simulation, by assuming a rigid body, will not yield an accurate repre-
sentation of the reality.

Renzsch et al. [17] show that the flying shape computed with their Fluid-Structure Interaction software
and the moulded one given by the sail constructor not only are widely different, but also yield significantly
different values for the driving and heeling forces, given the same wind speed and angle. In their work, Ren-
zsch et al. developed a fluid-structure interaction solver able to capture the turbulence around the sail and its
deformed shape, using the RANS solver CFX for CFD and an in-house structural solver. The CFD solver uses
the k−ωmodel for turbulence and it is able to compute the separation point and wake behind the spinnaker.
This solver is then coupled with the structural solver, and the final flying shape is computed. This is shown
in figures 1.4 and 1.5, where the difference both in shapes and forces can be appreciated: in figure 1.5 the
light blue line is the result of a mere CFD analysis, while the dark blue comes from a Fluid-Structure inter-
action analysis. It can be noted that the trend of the forces is well described, but the values are still off. The
difference in the results between the rigid and flexible body simulation increases as the wind angle increases,
so it can be argued that the deformation of the sail has a higher influence on the results the more the yacht
is sailing away from the wind. For example, from figure 1.5 the highest error in the heeling force is for the
highest measured angle of attack, and the error with respect to the deformed shape is in the range of 60%. For
the driving force, the higher measured error is for the lowest angle and is in the range of 5%.

From this observation one can deduce the need for a more elaborate software that can not only compute
the pressure field around the sail, but also the deformation of the sail due to this pressure field, seeing the
big difference in results in the two cases. The need for a more accurate estimation is motivated by the fact
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Figure 1.4: Design shape (blue) and computed flying shape (green) from [17]

that in the design analysis process of the whole yacht, for example a wrong estimation of the heeling force
of one of the sails can lead to structural problems due to the under- or over-dimensioning of the structure.
Similarly, an error in the driving force estimation will lead to an over- or under-estimation of the propulsion
given by the sail, with the consequent over- or under-estimation of the dimensions of the sheets, wires and
load-bearing beams. This project will then address this topic and try to create a reliable tool able to solve this
problem.

Figure 1.5: Normalised driving and side forces using the deforming shape (dark blue) and the rigid design
shape (light blue), from [17]

The accuracy of the thrust estimation is necessary to the design analysis process, both for the constructor,
who can give more detailed information about its product to the customer, and most importantly for the cus-
tomer, who will use the sails and might have to dimension and rig the rest of the boat based on the provided
data. These types of coupled solvers already exist (for example the North Sails tool Flow/MemBrain and the
company K-Epsilon’s FSI solver3) but are not open source and therefore directly available. The aim of this
project is, therefore, to create a tool that can be used by everyone, even small sail constructors that might not
be able to afford the other available options.

1.2. Research Questions
The research questions that will be addressed in the thesis are:

3http://www.k-epsilon.com/fsi_products.html

http://www.k-epsilon.com/fsi_products.html
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1. What are the appropriate techniques to compute the correct pressure distribution around the spin-
naker sail through a CFD solver?

2. What techniques are able to capture the spinnaker’s flying shape by coupling the CFD solver with a
structural solver in an efficient manner?

3. With the results from the two previous points, can the driving and side forces generated by the spin-
naker be computed correctly and, possibly, optimized using various trim settings?

This project will then work towards the resolution of these problems, with the final goal of having a reliable
prediction of the spinnaker’s performance before testing it in reality. Ideally, in the future, this coupling tool
could be embedded in an automated design environment where changes to the shape of the sail will be pre-
dicted to maximize its performance. It is worth mentioning that the research questions need to be answered
in the presented order, as the answer of the first question is the starting point for the second and so on.

1.3. Structure of the Report
In the Theoretical Basis chapter the necessary information regarding the CFD, FEM and FSI techniques used
in the project will be reported, after being carefully selected through the literature.
Afterwards, the CFD Simulations chapter will explain all the preliminary work that has been done before the
simulations, together with the motivation for all the choices made for the setup, run and post processing.
Within this chapter the sections regarding the presentation of the solver, the 2D simulations and 3D simula-
tions can be found.
The chapter FEM Simulations will explain how the used FEM solver works, what equations it is based on and
what types of inputs and outputs it deals with. The solver will also be validated with some references cases of
which the analytic solution is known. Eventually, the obtained results for the test case at hand will be quali-
tatively validated with some real life data, due to the lack of reference data.
Following, the FSI Simulations chapter will present the core of this thesis project: how the coupling between
the fluid and structural solver has been done and what tools have been used to obtain a successful coupling.
In the Results chapter, the obtained results will be presented, commented and validated with data obtained
from the literature.
Lastly, in the Conclusions and Recommendations chapter the performed work will be analyzed and its validity
asserted, adding some comments that can be useful for future projects in this field.



2
Theoretical Basis

In this chapter, all the preliminary knowledge necessary for the completion of this project is presented. Differ-
ently from the literature study, where all the relevant available techniques were presented, here only the ones
actually used in the project will be reported in detail. In the literature study, the suitability of the available
techniques for this specific case was evaluated and the more likely to be successful choices were made.

2.1. Computational Fluid Dynamics
In this section, the most common numerical method for capturing the physics of sailing with a spinnaker
are explained. As it has been mentioned in the conclusions of chapter 1, the numerical method needed for
this application should be able to correctly predict unsteady phenomena such as the separation point on
the sail and the wake, and therefore it needs to have an accurate representation of turbulence. The goal is to
obtain the pressure distribution on the sail and consequently the driving and side forces generated by the sail.
Particular attention will be given to the RANS equations, underlining their the advantages and disadvantages
for this particular application.

2.1.1. RANS
First of all, it is worth mentioning the incompressible Navier Stokes Equations, which describe the fluid mo-
tion:

∂ui

∂xi
= 0, (2.1)

ρ
∂ui

∂t
+ρ ∂

∂x j
(ui u j ) =− ∂p

∂xi
+ ∂τi j

∂x j
, (2.2)

where u is the velocity, p is pressure, τ the shear stress and ρ the density. Equation 2.1 expresses the mass
continuity, while equation 2.2 is the momentum conservation equation. The Reynolds averaging procedure,
which results in the RANS equations, consists in decomposing the unknown velocity u in a mean component
ū and a fluctuating component u′:

u = ū +u′. (2.3)

The mean component is obtained by averaging in time:

ū(x) = lim
N→∞

1

N

N∑
i=0

u(x, ti ). (2.4)

The Reynolds Averaged Navier Stokes equations are obtained by substituting 2.3 into the incompressible
Navier Stokes equations and then averaging the result, which gives:

∂ūi

∂xi
= 0, (2.5)

ρ
∂ūi

∂t
+ρ ∂

∂x j
(ūi ū j ) =− ∂p̄

∂xi
+ ∂

∂x j
( ¯τi j −ρu′

i u′
j ), (2.6)

7
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where the term ρu′
i u′

j is known as the Reynolds Stress. Equation 2.6 is derived from the momentum equation,

where the fluctuating velocities u′
i caused by the turbulence have been averaged over time, so the equation

represents a time-averaged balance of momentum.

Equations 2.5 and 2.6 do not form a closed set, as there are more unknowns than equations. Additional
models have to be introduced to describe the Reynolds stress. Various expressions for this term have been
proposed, and some equations have been added in order to close the system. The expression of this term
can vary based on the choice of the turbulence model. In the literature, many turbulence models have been
applied to this specific case and their performance evaluated. Table 2.1 shows the turbulence model that
yielded the best results according to the authors.

Author Choice

Lasher and Sonnemeier [40] Realizable k-ε

Renzsch and Graf [17] Baseline k-ω

Renzsch and Graf [15] SST k-ω

Viola [39] No turbulence model

Lombardi et al. [25] SST k-ω

Wright et al. [43] SST k-ω

Table 2.1: Chosen turbulence models in literature

It can be argued that unanimity on the choice of the model has not been reached and that there is no perfect
turbulence model for this application. That is because different authors chose different models and some au-
thors even tried with various models ([39, 40, 17], only to conclude that all considered none is better than the
other. This makes the choice of the turbulence model complicated, however it seems like the most preferred
model is the SST k-ω, probably because of its accurate prediction of the separation point in adverse pressure
gradient, which is crucial in this application. For these reasons, this model was used in the current project
and its details are presented below, first giving an overview of the standard k-ε and k-ωmodel and then of the
SST k-ω model.

2.1.1.1. The standard k-εmodel

This model, developed by Launder and Spalding in 1972 [4], is based on the Bousinnesq eddy viscosity hy-
potesis, for which the Reynolds stress is related to the turbulent kinetic energy k, the mean flow strain rate
tensor si j and the turbulent viscosity νt by the relation:

−u′
i u′

j =−2

3
kδi j +2νt si j , (2.7)

where δi j is the Kronecker delta and si j is defined as

si j = 1

2

(∂ui

∂x j
+ ∂u j

∂xi

)
, (2.8)

and the turbulent kinetic energy is a function of the fluctuating velocity in all 3 directions:

k = 1

2

(
(u′)2 + (v ′)2 + (w ′)2

)
. (2.9)

In order to close the system, the quantities k and νt have to be defined as functions of the mean flow vari-
ables ūi and p̄. There are different definitions for these quantities found over the years, and one of the most
common ones is the standard k−ε. This ε represents the dissipation of turbulent kinetic energy per unit mass
and can be used to model νt through the following relation:

νt = cµ
k2

ε
. (2.10)
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Two more equations are required to calculate k and ε, and they are defined as follows:

Dk

Dt
= ∂

∂x j

[(
ν+ νt

σk

) ∂k

∂x j

]
+G −ε, (2.11)

Dε

Dt
= ∂

∂x j

[(
ν+ νt

σε

) ∂ε
∂x j

]
+C1ε

ε

k
G −C2ε

ε2

k
, (2.12)

where

σk = 1.00, σε = 1.30, C1ε = 1.44, C2ε = 1.92, cµ = 0.09, (2.13)

while G represents the generation rate of turbulent kinetic energy and is defined as:

G = νt

(∂ui

∂x j
+ ∂u j

∂xi

)∂ui

∂x j
. (2.14)

It has to be pointed out that this model has been developed for high Reynolds number flows, and thus not the
in the area immediately neighboring the sail, where viscous damping is dominant. In this areas wall functions
have to be used. Two main ones are available: the standard wall function based on the proposal of Launder
and Spalding [5] and a nonequilibrium wall function proposed by Kim and Choudhury [33]. The second one
is more suitable for this study since it deals better with separation, which is highly predominant in spinnaker
flow. The approximations introduced in this method (wall functions, estimate of production and dissipation
of ε...) are expected to impact the accuracy of the model significantly.

This turbulence model showed to have some disadvantages [24] when dealing with diffusion in adverse
pressure gradients, separation and reattachment, making it unsuitable for downwind sailing flows, but it has
been still widely used in industrial applications due to its stability.

2.1.1.2. The standard k-ωmodel

This model, introduced by Wilcox in 1988 [42] is also a two-equation model but instead of adding an equation
for ε it adds it for the specific dissipation rate ω, defined as ω= ε/k.

The equations needed to determine k and ω are defined as follows:

∂

∂t
(ρk)+ ∂

∂x j
(ρu j k) = τi j

∂ui

∂x j
−β?ρk + ∂

∂x j

[
(µ+σ?µT )

∂k

∂x j

]
, (2.15)

∂

∂t
(ρω)+ ∂

∂x j
(ρu jω) = (γω/k)τi j

∂ui

∂x j
−βρω2 + ∂

∂x j

[
(µ+σµT )

∂ω

∂x j

]
, (2.16)

where t is time, xi position vector, ui velocity vector, ρ density, p pressure, µ molecular viscosity, and τi j

is the Reynolds stress tensor. µT is dependent on the quantities k and ω by the relation:

µT = γ? ρk

ω
. (2.17)

The many constants presented in the previous equations can be defined as follows:

β= 3/40, β? = 9/100, γ= 5/9, γ? = 1, σ= 1/2, σ? = 1/2. (2.18)

This method has some advantages when compared to the k-εmodel, the main one being that theω equation
can still be solved in the vicinity of the wall, if a finite value of ω is prescribed at the wall. This diminishes the
computation times, being there no need to use wall functions. Moreover, the equation forω can be integrated
accurately in the boundary layer, yielding a better approximation of the separation point, and the whole
method is less numerically stiff so it allows the use of larger time steps. The main shortcoming on the other
hand is that the needed value of ω at the wall is hard to predict, since its value is rarely known a priori.
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2.1.1.3. The Menter k-ω Shear Stress Transport model

Menter [26] in 1994 developed a new model, which blends the k-ε and the k-ω so that they can be used in
the areas where they give best results. As it has been said, the k-ω model is superior in the near-wall region,
while the k-ε works better in the freestream because of its insensivity to the freestream boundary conditions.
For this reason each model will be used where it works best: for the inner 50% of the boundary layer the k-ω
will be used, while for the rest the standard k-ε will be used. In order to have a smooth transition from one
model to the other some blending functions are introduced, the value of which is zero at the inner edge of a
turbulent boundary layer and one at the outer edge of the layer. The other modification the SST model brings
is that the eddy viscosity is changed in regions of adverse pressure gradient, so that the shear stress τ in a
boundary layer becomes proportional to the kinetic energy:

τ= ρa1k, (2.19)

where a1 is a constant. The closure equations of this method are, for k equation 2.15, and for ω:

∂

∂t
(ρω)+ ∂

∂x j
(ρu jω) = γ

νt
P −βρω2 + ∂

∂x j

[
(µ+σωµT )

∂ω

∂x j

]
+2(1−F1)

ρσω2

ω

∂k

∂x j

∂ω

∂x j
. (2.20)

The introduced variables have the following definitions:

P = τi j
∂ui

∂x j
, µT = ρa1k

max(a1ω,ΩF2)
, νT = µT

ρ
, F1 = t anh(ar g 4

1 ), ar g1 = mi n

[
max

( p
k

β?ωy

)
,

4ρσω2k

C Dkωy2

]
,

C Dkω = max

(
2ρσω2

1

ω

∂k

∂x j

∂ω

∂x j
,10−20

)
, F2 = t anh(ar g 2

2 ), ar g2 = max

(
2

p
k

β?ωy
,

500ν

y2ω

)
,

τi j =µT

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
− 2

3
ρkδi j

where y and Ω are the distance to the next surface and the absolute value of the vorticity, respectively. The
introduced constants are:

γ= 0.15, β= 0.075, σω = 0.5, σω2 = 0.856, β? = 0.09, a1 = 0.31.

The key of the model lays in the definition of µT : F2 is defined such that it is 1 in the boundary layer and 0
in free shear areas, therefore the quantity µT will have two different definitions when considering boundary
layer flow or free shear flow. More specifically, in the adverse pressure gradient BL the production of k is
larger than its dissipation, namely Ω> a1ω, so the defintion of µT guarantees that Eq. 2.19 is satisfied, while
the original formulation µT = ρk/u is used for the rest of the flow. This method combines the strengths of
the two methods and for this reason performs well when predicting the separation point in adverse pressure
gradient.
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2.2. Finite Element Analysis
In chapter 1 the structural properties of the spinnaker have been already summarized, and the main char-
acteristics are: the sail is very thin, presents large deformations and large displacements, has no bending
stiffness and therefore does not support compressional loads, only tensional. As it has been stated in the
literature study, many studies have been conducted on determining what finite element model was the most
suitable for the downwind sails.

The membrane formulation seems the one that has been adopted more often (see [17], [15], [16], [12]),
even though it has been reported in [15] that the membrane model is not enough to cover the physics in-
volved, since the sailcloth has a negligible bending stiffness and therefore negligible buckling strength, with
compressive loads causing the cloth to wrinkle. The membrane formulation has the same stiffness matrix
under compression as well as under tension. The necessity for an extra model able to overcome this lack
arose. For this reason an isotropic wrinkling model was added, which allowed to take into account the dif-
ferent behavior under different loads. However, the work that introduced this formulation, named Flexsail,
done by Renzsch et al., has still not been made available to the public. Other softwares (such as ARA from
k-Epsilon, [32], and RELAX by P. Heppel [36]) are available to the public and have been investigated with the
goal of using them in this project, but they both turned out to be very difficult to compile and to use for this
specific application.

For this reason, the Matlab code developed by Daniele Trimarchi in his Master Thesis ([35], [12]) has
been chosen, for many reasons: it is written in Matlab and therefore easy to use and debug, it is of quite
simple understanding for someone who does not have any FEM experience (like the author) and it is designed
specifically for sails.

This section describes the governing equations used in this code and the type of element that has been
implemented, referring for the theory to [12, 35, 23]. The chapter "FEM Simulations" will then describe what
techniques are used to find the solution.

2.2.1. Basics of Finite Elements Method
The principle behind the Finite Element method consists in subdividing the domain in small subdomains,
namely the elements, where the differential equations that describe the behavior of the material are left un-
altered. In this way the equations that describe the whole domain as a continuum are discretized and solved
only on certain points, namely the nodes, that are generally located at the sides of the elements. Once the
values at the nodes are known the variables can be defined inside the elements as well through some approx-
imating functions, also known as shape functions.

2.2.1.1. Governing equations

One of the most used principles for the development of the Finite Element Theory is the Principle of Virtual
Works, that says:
"The application of a virtual displacement to a system in equilibrium generates a system of forces (internal
and external) for which the work produced by the internal forces is equal to the work produced by the external
forces".

The work of a force is defined as the scalar product of the force with the displacement of the point of
application of the force, and this holds also for the virtual work:

dL = F ·d s, (2.21)

and therefore the principle of virtual works becomes:∫
V
εT ·σdV =

∫
V

uT
B · fB dV +

∫
S

uT
S · fS dS +∑

i
uT

i · fi , (2.22)

where ε is the deformation vector, σ the stress vector, fB the vector containing the volume forces, fS the
surface forces vector and fi the concentrated forces vector. uB represents the vector of the displacements
of the internal nodes, us of the surface nodes and ui of the nodes on which the concentrated forces are
applied. This principle is very powerful and helpful in determining the matricial relations necessary for the
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implementation of the FEM solver. With this in mind, it is possible to express equation 2.22 in discretized
form:

k∑
m=1

∫
Vm

εT
m ·σmdV =

k∑
m=1

∫
Vm

uT
Bm

· fBm dV +
k∑

m=1

∫
Sm

uT
Sm

· fSm dS +
n∑

i=1
uT

i · fi , (2.23)

where k is the number of elements and n the number of nodes on which concentrated forces are applied.
Now introducing some relations:

um = Hm ·u, (2.24)

where um is the displacement vector of the mth element, Hm an extrapolation matrix and u the global dis-
placement vector. Moreover

εm = Bm ·u, (2.25)

where εm is the deformation vector of the mth element and Bm the linear deformation-displacement matrix
defined as

Bm =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x

∂
∂y

∂
∂x 0


.

Moreover the stress-strain relation can be defined:

σm =Cm ·ε+σ0, (2.26)

where σm is the stress vector for the mth element, σ0 the initial stess vector and Cm the compliance matrix
defined as

Cm =



1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0

ν
1−ν

ν
1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν) 0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)


.

Then the principle of virtual works can be rewritten as[ k∑
m=1

∫
Vm

B T
m ·Cm ·BmdV

]
·u =

[{ k∑
m=1

∫
Vm

H T
Bm

· fBm dV

}
+

{ k∑
m=1

∫
Sm

H T
Sm

· fSm dS

}
+

{
fi

}
−

{ k∑
m=1

∫
Vm

B T
m ·σ0

mdV

}]
,

(2.27)
which can be expressed in compact form as:

[K] ·u = R, (2.28)

where K is the stiffness matrix and R is the force vector, defined as:

[K] =
k∑

m=1

∫
Vm

B T
m ·Cm ·BmdV , (2.29)

R =
k∑

m=1

∫
Vm

H T
Bm

· fBm dV +
k∑

m=1

∫
Sm

H T
Sm

· fSm dS + fi −
k∑

m=1

∫
Vm

B T
m ·σ0

mdV. (2.30)

In general the stiffness matrix K of an element represents the linear relationship between the applied forces
and the consequent displacements. The final goal is to obtain the global displacements, once the stiffness
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matrix is constructed in function of the geometry and the force vector is defined. This can be done by invert-
ing equation 2.28:

u = [K]−1 ·R. (2.31)

In order to construct the global stiffness matrix, it is necessary to sum up all the local stiffness matrices of
the single elements. Each entry of the matrix Ki j corresponds to the effect that a force applied to node j has
to the displacement of node i . If for a node more elements have effect on its displacements, the entries for
the local stiffness matrices will be summed on that node.

2.2.1.2. Shape Functions

With the previous paragraph, the equations to determine the nodal displacements have been outlined. The
next step consists in linking the nodal displacement with the field of displacement of the element, finally
arriving to obtain deformations and stresses within the element. This will have to be done using some analytic
equations that consider the element as a continuum, also known as shape functions.

There are various types of elements, and each one of them has a different stiffness matrix. In order to
define the stiffness matrix it is necessary to univocally define the field of displacement within the element.
For this reason, the shape functions are useful in two ways: they are necessary to build the stiffness matrix
and then to obtain stresses and deformations from the nodal displacements.

The choice for the shape functions Ni , that are usually polynomials, is crucial to obtain a solution that
is more or less close to the simulated reality. Each function represents the weight that each component of
nodal displacement has in determining the displacement of a generic node inside the element. The field of
displacement inside the element can be defined as:

u =
M∑

i=1
Ni (x, y, z) ·ui ; (2.32)

where ui is the displacement of the i th node and M the total number of nodes in the element. There are some
requirements for the shape functions, in order for them to correctly represent the nodal values:

• They have to yield a deformation equals to zero when the nodal displacement field corresponds to rigid
motion (for which the distance between any two given points remains constant in time),

• They have to yield a constant deformation when the nodal displacement field is compatible with said
condition,

• They have to yield deformations that are compatible with the interface between different elements,

• They have to guarantee that the displacement of a node on an edge of an element does not depend on
the displacements of the opposite node, namely assume value 1 for the considered node and zero for
all the other nodes of the element.

Many formulations for the shape functions are available, with the most famous one being the "hat function"
for the 1D case: it is 1 for the node it refers to and 0 for all the other ones, and has a linear connection within
neighboring nodes, as shown in figure 2.1.

Figure 2.1: Linear shape functions for the 1D case: the function ϕ2 is 1 for node 2 and zero everywhere else,
and so on.
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For a two dimensional triangular element, as shown in figure 2.2 the shape functions can be defined in
the following way, still complying with the requirements defined above:

Figure 2.2: Triangular two dimensional element

N1 = A1

A
, N2 = A2

A
, N3 = A3

A
, (2.33)

where Ai are the areas as defined in figure 2.2 and A is the total area of the element. The relation between the
shape functions and the Cartesian coordinates of a generalized point internal to the element is:

x = N1 · x1 +N2 · x2 +N3 · x3, (2.34)

y = N1 · y1 +N2 · y2 +N3 · y3, (2.35)

that results in 
1

x

y

=


1 1 1

x1 x2 x3

y2 y2 y3

 ·


N1

N2

N3

 , (2.36)

where the first line derives from the relation N1 + N2 + N3 = 1. From this expression it will be sufficient to
invert the system to obtain the shape functions as functions of the nodal and generalized coordinates:

N1

N2

N3

= 1

2A


x2 y3 −x3 y2 y2 − y3 x2 −x3

x3 y1 −x1 y3 y3 − y1 x3 −x1

x1 y2 −x2 y1 y1 − y2 x1 −x2

 ·


1

x

y

 , (2.37)

Once the shape functions are defined it is possible to obtain the displacement fields simply by multiplying
the shape functions by the known displacements.
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2.2.2. Membrane Element Formulation

Figure 2.3: Triangular membrane element, from [3]

Now a more detailed explanation of the chosen element will be presented, as reported by Tabarrok [3]. As
it has been said before, the membrane element is the one that has been used more extensively for this type
of application in the literature. The main resemblance of this element with respect to the real sail is its null
resistance to compression or bending. The basic element does not take into account the possibilities of wrin-
kling or buckling and that is something that can be added if one searches for a more precise representation
of the reality.
In figure 2.3 the element is reported in a global reference frame. Another local reference frame is defined on
the element plane. When expressing the displacements linearly over the element one can write:

u(x, y) =α1 +α2x +α3 y, v(x, y) =α4 +α5x +α6 y, w(x, y) =α7 +α8x +α9 y, (2.38)

where the coefficients α are not yet specified. They can be expressed as functions of the nodal displacements
um = [u1 v1 w1 u2 v2 w2 u3 v3 w3], as seen in equation 2.37. When doing so equation 2.38 be-
comes

u(x, y) = (a1 +b1x + c1 y)u1 + (a2 +b2x + c2 y)u2 + (a3 +b3x + c3 y)u3, (2.39)

v(x, y) = (a1 +b1x + c1 y)v1 + (a2 +b2x + c2 y)v2 + (a3 +b3x + c3 y)v3, (2.40)

w(x, y) = (a1 +b1x + c1 y)w1 + (a2 +b2x + c2 y)w2 + (a3 +b3x + c3 y)w3, (2.41)

where

a1 = x2 y3 −x3 y2

2A
, b1 = y2 − y3

2A
, c1 = x2 −x3

2A
, (2.42)

a2 = x3 y1 −x1 y3

2A
, b2 = y3 − y1

2A
, c2 = x3 −x1

2A
, (2.43)

a3 = x1 y2 −x2 y1

2A
, b3 = y1 − y2

2A
, c3 = x1 −x2

2A
, (2.44)

where A is the area of the triangle and also the determinant of the matrix defined in equation 2.37, and the
coordinates x, y and z are defined in figure 2.3.

The membrane element is then a triangular, bi-dimensional, non linear element unable to withstand any
bending or torsion. Then the applied load, normal to the surface, is only balanced by the stress tangent to
the membrane plane. When the load varies, the shape of the element will also vary to ensure the equilibrium.
Hence, big deformations and rotations can be expected within this element and therefore the assumption of
small deflection for the linear theory does not withstand. The nonlinear displacement-deformation relation
can then be expressed as:
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εx = ∂u

∂x
+ 1

2
·
[(
∂u

∂x

)2

+
(
∂v

∂x

)2

+
(
∂w

∂x

)2]
, (2.45)

εy = ∂v

∂y
+ 1

2
·
[(
∂u

∂y

)2

+
(
∂v

∂y

)2

+
(
∂w

∂y

)2]
, (2.46)

γx y = ∂u

∂x
+ ∂v

∂y
+

[
∂u

∂x

∂u

∂y
+ ∂v

∂x

∂v

∂y
+ ∂w

∂x

∂w

∂y

]
. (2.47)

Now, substituting equation 2.39, 2.40, 2.41 in equations 2.45, 2.46, 2.47 and writing in matricial form we
obtain:

ε= B0 ·u + 1

2
A ·θ; (2.48)

where

B0 =


b1 0 0 b2 0 0 b3 0 0

0 c1 0 0 c2 0 0 c3 0

c1 b1 0 c2 b2 0 c3 b3 0

 , A =


∂u
∂x

∂v
∂x

∂w
∂x 0 0 0

0 0 0 ∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂x

∂v
∂x

∂w
∂x

 ,

θ =
[
∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂x

∂v
∂x

∂w
∂x

]T
.

Moreover, θ =G ·u, where

G =



b1 0 0 b2 0 0 b3 0 0

0 b1 0 0 b2 0 0 b3 0

0 0 b1 0 0 b2 0 0 b3

c1 0 0 c2 0 0 c3 0 0

0 c1 0 0 c2 0 0 c3 0

0 0 c1 0 0 c2 0 0 c3


.

Therefore ε= B0 ·u + 1
2 Aθ ⇒ ε= B0 ·u + 1

2 A ·G ·u.
From this it can be stated that δε= (B0 + A ·G) ·δu. Now remembering equation 2.26:

σ=C ·ε+σ0 =C · (B0 ·u + 1

2
A ·G ·u)+σ0, (2.49)

it is possible to rephrase the principle of virtual works in the following way:∫
V e
δε ·σdV −δuT ·p = 0, (2.50)

substituting the expression for δε and dividing by δuT :∫
V e

(B0 + A ·G)T ·
[

C · (B0 ·u + 1

2
A ·G ·u)+σ0

]
dV −p = 0. (2.51)

Solving this equation iteratively will yield a residual, φi , instead of the zero on the right hand side:∫
V e

(B0 + Ai ·G)T ·
[

C · (B0 ·ui + 1

2
Ai ·G ·ui )+σ0

]
dV −p =φi . (2.52)

In the next iteration i +1 then,

φi+1 =φi + ∂φi

∂u
·∆ui = 0 ⇒ ∂φi

∂u
·∆ui =−φi . (2.53)



2.2. Finite Element Analysis 17

Noting that ui+1 = ui +∆ui an important observation can be made, namely that equation 2.53 is equivalent
to K i ·ui = f i . Then,

K i = ∂φi

∂u
=

∫
V e

(B0+Ai ·G)T · ∂
∂u

[
C ·(B0·ui+1

2
Ai ·G·ui )

]
dV +

∫
V e

∂

∂u
(B0+Ai ·G)T ·

[
C ·(B0·ui+1

2
Ai ·G·ui )+σ0

]
dV = K i

e+K i
g ,

(2.54)
and finally it is possible to recognize the two stiffness matrices that create the global one, namely the geomet-
ric stiffness Kg and the elastic stiffness Ke , defined as:

K i
e =

∫
V e

(B0 + Ai ·G)T ·C · (B0 + Ai ·G)dV =
∫

V e
B T

0 ·C ·B0dV +
∫

V e
(Ai ·G)T ·C · (Ai ·G)dV , (2.55)

K i
g =

∫
V e

GT · ∂(Ai )T

∂u
· [C · (B0 ·ui + 1

2
Ai ·θi )+σ0]dV =

∫
V e

GT · ∂(Ai )T

∂u
·σi dV =

∫
V e

GT ·M i ·GdV , (2.56)

where

M i =



σi
x 0 0 τi

x y 0 0

0 σi
x 0 0 τi

x y 0

0 0 σi
x 0 0 τi

x y

τi
x y 0 0 σi

y 0 0

0 τi
x y 0 0 σi

y 0

0 0 τi
x y 0 0 σi

y


.

It can be noted that the terms to be integrated are 6x6 matrices, because they are defined in the 2D plane of the
element, in order to see them in the global coordinate system they will have to be rotated and will become 9x9
matrices. Being the thickness of the element generally constant, the integral can then be expressed as Ael ∗ t ,
where t is the thickness. Now it is possible to linearize the expression for the elastic stiffness, eliminating the
mixed terms for ε, see equation 2.47, if the hypothesis of big displacements and small deformations is valid,
which in this case can be considered true. The linearization consists in eliminating the term depending on
the displacement, namely

∫
V e (Ai ·G)T ·C ·(Ai ·G)dV . In this way the elastic stiffness matrix, not being function

of the displacement, will be constant at each iteration and will not have to be updated, differently from the
geometric stiffness matrix that will change at every cycle.

Now, Li and Chan [23] have reformulated the matrices Ke and Kg in the global coordinate system, namely
in the three dimensions. The element is made of 3 nodes with 9 degrees of freedom. As seen in figure 2.5, the
global coordinate system is made by X1, X2 and X3, while the local coordinate system is bi-dimensional and
made by x and y.

Figure 2.4: Definition of membrane element

After reformulating the two stiffness matrices in the global coordinate system, differently for what was
done in the previous paragraph, the matrices have the form:

Ke =
∫

V
T T

G ·T T
N ·C ·TN ·TG dV = A · t ·T T

G ·T T
N ·C ·TN ·TG , (2.57)
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where A ·t is the element volume, C the compliance matrix, TN the rototranslation matrix from local to global
coordinate system and TG the global displacement-deformation matrix. They are defined as:

C = E

1−ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 , TN =Ψ−1·L−1
0d , L0d =


l023 0 0

0 l031 0

0 0 l013

 , Ψ=


cos2θ1 si n2θ1 si nθ1cosθ1

cos2θ2 si n2θ2 si nθ2cosθ2

cos2θ3 si n2θ3 si nθ3cosθ3

 ,

TG =


0 0 0 X21−X31

l023

X22−X32
l023

X33−X23
l023

X31−X21
l023

X32−X22
l023

X23−X33
l023

X11−X31
l031

X12−X32
l031

X13−X23
l031

0 0 0 X31−X11
l031

X32−X12
l031

X33−X13
l031

X11−X21
l012

X12−X22
l012

X13−X23
l012

X21−X11
l012

X22−X12
l012

X23−X13
l012

0 0 0

 ,

where l0 is the distance between the two vertices of the undeformed element specified by the subscript. More-
over,

Kg = A · t ·GT ·M ·G =


B12 +B31 −B12 −B31

−B12 B12 +B23 −B23

−B31 −B23 B23 +B31

 , Bi , j =
Pi j

Ii j
· [I3 −Di j ·DT

i j ],

Di j = 1

l0i j
[(X j 1 −Xi 1) · (X j 2 −Xi 2) · (X j 3 −Xi 3)]T ,

where Pi j is the stress on the edge between nodes i and j, I3 is the 3x3 eye matrix, and Di j is the rotation
matrix for the edge between nodes i and j.

Now that the theoretical basis has been laid out, it is necessary to define the implementation of this theory
in a FEM solver. That will be done extensively in chapter 4, where the code will be presented together with
the running techniques, convergence criteria and solver setup.
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2.3. Fluid-Structure Interaction
Fluid-Structure Interaction is a vast field that deals with many subjects; its main goal is to describe situations
in which there are large modifications of the fluid domain due to structural motion. The complexity not only
lays in the fluid and structure domains themselves, which can present large non-linearities and therefore rep-
resent a big challenge to be solved correctly, but also in the coupling of the solvers and the transmission of
information across the two domains. One of the difficulties of FSI lays in the fact that being the phenomena
very different in the two domains the parameters to solve both problems are largely different: for example
the time step, the mesh size and the order of convergence can vary a lot between the two domains. For this
reason a method should be developed, able to take into account the differences without penalizing any of the
domains in order to have an accurate and fast as possible solution. The following sections will present how
these problems have been tackled and overcome. The main literature sources for this chapter are [7], [18] and
[19].

The two main approaches when dealing with a fluid-structure interaction problem are the monolithic
and the partitioned approach. The former one consists in developing a single solver to solve both domains,
and this always results in complex and hard to maintain codes that are build ad-hoc for a single application
(so not reusable). Moreover, being the problem approached in its entirety, the monolithic approach is much
more memory consuming and it requires compromises that slow down the solution process. For example,
consider that the fluid domain generally needs a finer mesh than the structure one: in this case the whole
structural problem would be over resolved, slowing down the process with negligible gains in accuracy. For
the application to spinnaker, for example in [37], [25] and [6], the meshes used for the two domains had dif-
ferent number of cells, namely the fluid mesh was finer than the structure one. However in the literature there
are some rare cases of a single mesh for both domains, for example the one in the work of Renzsch et al. [16].
The choice of using the same mesh for the two domains was motivated by the fact that being the sail cloth
a very flexible and deformable material it required a sufficiently fine mesh in order to capture its behavior.
This means that the difference in number of cells between the fluid and structure domain was not so big as
it would have been for an aeronautical application, where the material used would have had a much higher
stiffness and therefore would have required a coarser mesh.

The partitioned approach on the other hand consists in using two separate solvers for the fluid and struc-
ture domain, so that preexisting codes can be used and adapted for various applications. The two solvers
work independently but are coupled consistently so that the forces and displacements are transmitted cor-
rectly across the boundaries. The gain in accuracy obtained with the fact that the solvers are working individ-
ually is counterbalanced by the errors that can occur in the transfer of information, known as the partitioning
errors, for example in the reconciling the discordance in discretizations for the two solvers. Another draw-
back lays in the fact that the solvers are implicitly dependent on one another and therefore they can require
sub-iterations for each time step in order to obtain convergence, resulting in a slow process. Anyways the
partitioned approach has been the only one used so far in sailing applications ([37, 25, 6, 14, 16]), mainly
because it requires less expertise and has more flexibility.

2.3.1. Transmission of Information across the Boundary
One of the issues that make fluid structure interaction a delicate matter is the possibility of having non-
matching grids at the interface between the domains: it has been said before that usually the fluid domain
requires a finer grid than the structure one, and therefore a method for passing the information through the
boundary has to be identified. A typical non-matching mesh configuration is shown in figure 2.5.

There are two ways of approaching the problem: the consistent approach, for which a constant displace-
ment or pressure is recovered across the boundary, or the conservative approach, for which the change in
work across the boundary is conserved. In either approach, the conditions to be respected are:

u f = us and ps ns = p f n f , (2.58)

where the subscripts f and s are to indicate the fluid and structure domain, respectively, u is the displace-
ment vector, p is the pressure at the surface and n is the vector normal to the surface. When discretizing
equation 2.58 one obtains:

U f = Hs f Us and Ps = H f s P f , (2.59)
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Figure 2.5: Example of nonmatching grids, from [7]

where Hs f and H f s are transformation matrices and will be defined later. U and P are defined by the approx-
imations:

u(x) =
nu∑
i=1

N i (x)Ui , p(x)n(x) =
np∑
j=1

D j (x)P j , (2.60)

where nu,p is the number of unknowns at the interface for displacement and pressure, respectively, N (x)
a function depending on the spatial discretization used for displacement and D(x) a function depending
on the spatial discretization used for pressure. For the consistent approach, the condition that a constant
quantity remains unchanged after the transformation translates in the rowsum of H being equal to 1. For the
conservative approach on the other hand, the condition is the following:

δW f = δWs , (2.61)

where δW = FT U is the change in work and F = M T P. The matrices M f and Ms are defined as follows:

M i j
f =

∫
Γ f

D i
f N j

f d s, M i j
s =

∫
Γs

D i
s N j

f d s. (2.62)

With the definition of change in work, equation 2.61 becomes

FT
s Us = FT

f U f . (2.63)

Inserting equation 2.59 in equation 2.63 the following is obtained:

FT
s Us = FT

f Hs f Us , (2.64)

which simplifies to

Fs = H T
s f F f . (2.65)

Finally, inserting the definition of F in equation 2.65 the pressure condition is obtained:

Ps = [M f Hs f M−1
s ]T P f . (2.66)

Note that [M f Hs f M−1
s ]T = H f s , and, in this case, the rowsum of the transformation matrix is not necessarily

equal to 1.

Consequently, the transformation matrices have to be built: various methods to build them are available,
but here a short overview of the ones used in this project will be given.
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2.3.1.1. Nearest Neighbor Interpolation

This is the simplest and less accurate way of interpolating quantities across the boundary [30]. Given a point
xA in mesh A, a search algorithm finds the closest point to xA , xB , in mesh B and assigns the value of xA

to xB . The transformation matrix HAB is then a Boolean matrix, with only one non-null (and equal to 1)
element per row, thus respecting the consistent approach. However it can be shown that if the conservative
approach is used, the method is not consistent for pressure. According to de Boer et al. [8], the consistent
method should be preferred over the conservative one. Especially for this application the consistency of the
pressure is fundamental. Consider the matter at hand: the displacement in the coarser structure mesh has to
be transmitted to the finer fluid mesh. Using this method it could be the case that, for example, three fluid
cells are assigned the same displacement value coming from one structure cell. The neighboring fluid cells
would be assigned with the value of the neighboring structure cell and so on. In this way a discontinuity
in the transmitted displacement would be present, and being the material very flexible and not resistant
to compression some unwanted wrinkling could arise, as a result of the low accuracy of the interpolation
method.
For this reason, the nearest neighbor method was used in this project only when interpolating the pressure
resulting from the CFD simulation to the structure mesh: in that case the fluid mesh was much finer than the
structure one and there was no risk of incurring in the situation presented above.

2.3.1.2. Radial Basis Function Interpolation

This coupling method is based on the use of spline functions. More information about this method can be
found in [1, 28, 27]. The quantity to be transported across the boundary wi from A to B is approximated by a
sum of basis functions both at the interface of mesh A and mesh B :

wi (x) =
nA∑
j=1

γ jφ(||x −xA j ||)+q(x) i = A,B , w = {u, pn}, (2.67)

where xA j are the points on mesh A where the values are known, q an unknown polynomial, γ j some un-
known coefficients and φ a given radial basis function. In order to determine γ j and q the interpolation
condition is used:

wA(xA j ) = WA j , (2.68)

wherein WA is a vector containing the discrete values at the locations xA . Another requirement is added:

nA∑
j=1

γ j s(xA j ) = 0, (2.69)

for all polynomials s with a degree less than or equal to the one of q . The degree of q depends on the choice of
φ. If the degree of φ is less than or equal to 2 and φ is positive definite, then q can be a linear polynomial. For
the known quantity at the interface of A the two interpolation conditions 2.68,2.69 can be written in matrix
form as: WA

0

=
ΦA A Q A

QT
A 0

γ
β

 ,

with γ containing the coefficients γ j , β the coefficients of the linear polynomial q ,ΦA A an nA×nA matrix that
contains the evaluation of the basis function φAi A j =φ(||xAi −xA j ||) and Q A an nA ×4 vector with row j given
by [1 xA j y A j zA j ]. To obtain the unknown quantities at mesh B , equation 2.67 in the nodes of the interface of
B is written in matrix form as

WB =
[
ΦB A QB

]γ
β

 .

Combining the two matricial expression one obtains the final expression for the unknowns:

WB =
[
ΦB A QB

]ΦA A Q A

QT
A 0

−1 WA

0

 .
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The matrix product between the two matrices that multiply the vector [WA 0]T can be called H̃ , and the trans-
formation matrix HAB is constituted by the first nB rows and nA columns of matrix H̃ .

Many radial basis functions are available for this method. The RBF’s can be divided in two groups, namely
functions with compact support or functions with global support. An example of compact support function,
introduced by Beckert and Wendland ([1]), is:

φ(||x||) =
(
1− ||x||

r

)4

+

(
4
||x||

r
+1

)
, (2.70)

where the subscript + means that only positive values will be taken into account. The radius r defines the
support of the RBF. In case this value is chosen to be big the support is large and the approximation is more
correct, but more costly to resolve as a full matrix system has to be solved. On the other hand, if r is chosen to
be small the system is solved more rapidly but the interpolation is less accurate. A lower limit for the choice
of r is then the maximum distance of all centres with their nearest neighbours in both meshes.
This function was chosen and implemented for this project, and the RBF method was used to interpolate the
displacements from the structure to the fluid mesh, since it seemed the one that yielded the best results in
terms of transmitting the displacements from a coarser to a finer mesh without losing accuracy.



3
CFD Simulations

In this chapter all the work performed with CFD softwares will be presented. Given the nature of the inves-
tigated problem, much attention had to be paid to preprocessing and meshing, as they are crucial for the
correct resolution of the problem. The main difficulty of this problem is due to the fact that the spinnaker
sail works mainly as a drag device, as presented in chapter 1, therefore making it a more delicate matter than
if it worked as a lift device for example. A major difficulty lays in the fact that the sail has a really low thick-
ness compared to its extension, and that can create problems in the meshing step. Below, for each of these
problems, a strategy to overcome them is presented.

3.1. Presentation of the Softwares
The CFD simulations have been performed with two softwares, FINE™/Open and OpenFOAM 4.1, in order
to evaluate their performance for this type of CFD problem.

OpenFOAM (Open Field Manipulation and Operation) is an open source CFD software package contain-
ing a wide range of features to solve complex fluid flows involving turbulence, chemical reactions and heat
transfer. For turbulence in particular, solution methods for RANS, LES and DES are implemented. It con-
tains numerous applications and libraries, and it is nowadays extensively used in the scientific community.
For a detailed description, one should refer to the OpenFOAM web-site1 or the OpenFOAM-extend project
website2. Due to its high level syntax, solving equations in a fluid domain is made particularly easy with
OpenFOAM. Different solving strategies are available, depending on the type of flow, the main ones being:

• simpleFoam (Semi-Implicit-Method-Of-Pressure-Linked-Equations), a steady-state solver for incom-
pressible, turbulent flow,

• pisoFoam (Pressure-Implicit-Split-Operator), a transient solver for incompressible flow, where a lami-
nar, RANS or LES approach can be chosen. The calculations are bound by a maxiumum Courant num-
ber < 1,

• icoFoam, a transient solver for incompressible, laminar flow of Newtonian fluids,

• pimpleFoam, a large time-step transient solver for incompressible flow using the PIMPLE (merged
PISO-SIMPLE) algorithm.

OpenFOAM uses a Semi-projection scheme of the Semi Implicit Method for Pressure Linked Equations (SIM-
PLE) family. The basic idea of this approach is to split the unknowns describing the pressure and the velocity,
and to find opportune corrections for iteratively reaching the final solution.
OpenFOAM has its own meshing and post-processing tools: snappyHexMesh and ParaView, respectively. The
first one turned out to be not suitable for this application, given the complexity of the geometry, and therefore
it will not be described here. On the other hand, ParaView is a data analysis and visualization application, it
is independent of OpenFOAM but they are often used together. This tool also allows the manipulation of the

1www.openfoam.com
2http://www.extend-project.de/
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data and has the possibility to export the manipulated data for post-processing or future usages.

On the other hand, FINE™/Open is a commercial CFD tool developed by the software company NU-
MECA International. FINE™/Open is a powerful CFD Flow Integrated Environment dedicated to complex
internal and external flows. It has the capability of dealing with all types of flows and speeds: incompress-
ible, condensable and fully compressible, and low speeds to hypersonic regime are all allowed. It combines
completely unstructured hexahedral grids with an efficient preconditioned compressible solver with fast ag-
glomerated multigrid acceleration and adaptation techniques. FINE/Open allows users to freely develop and
exchange physical models in CFD: many types of flow conditions can be simulated, for example combus-
tion, heat transfer, radiation, cavitation, multiphase flow and many more physical processes. Moreover, the
solver uses one single unsteady RANS code for all types of fluids (incompressible, compressible etc.) and also
presents the possibility of speeding up convergence through the tool CPU-Booster. The solver is based on the
finite volume method to build the spatial discretisation of the transport equations.

This solver is coupled with two other important tools: HEXPRESS™and CFView™, the first being the
meshing tool and the second being the post-processing tool. HEXPRESS™is a powerful software able to
generate body-fitted full hexahedral unstructured meshes on complex arbitrary geometries. It allows the in-
sertion of special boundary layer cells and the adaptive refinement of the mesh. It has the advantage of being
very user friendly both in the meshing process and in the analysis of the mesh quality.
CFView on the other hand allows to display the results, manipulate and extract them following the user’s
requirements. It also has the capabilty of recording macros so that a certain routine can be applied automat-
ically to the results. Also this tool has a high user friendliness and serves a fast post-processing.

3.2. 2D Case
In this section the steps taken to run the 2D CFD simulations are presented. The 3D geometry of the yacht,
shown in figure 3.1, is the starting point from which the 2D sections of the sails will be extracted. The objec-
tive of this analysis is to compare the pressure coefficient distributions along five horizontal sections of the
spinnaker sail with the experimental validation data provided in [9]. In fact the 3D CAD model represents
the model scale (2.3 m high) model used in the wind tunnels by Viola et al. to measure the pressure on both
suction and pressure sides of the sail [9].

Figure 3.1: X (left), Y (center), Z (right) views of the CAD geometry

The pressure measurements in [9] have been collected at five horizontal sections, expressed as a fraction
of the sail mitre, namely the line equidistant from the leading and trailing edges of the sail. The analyzed
sections are the ones presented in table 3.1.

In order to obtain the horizontal sections, the CAD software CATIA [11] has been used. Being the sails
in the original geometry zero thickness, a 1 mm thickness has been added to the sail. This ensures that
the geometry describes a volume and not only a surface. The thicker sail section has been consequently
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Section Z coordinate [m]

1/8 0.35

1/4 0.64

1/2 1.22

3/4 1.8

7/8 2.09

Table 3.1: Z coordinates of the spinnaker horizontal sections

extruded in the z direction for the same reason; being the simulation two-dimensional all the quantities will
be constant along the z direction and the length of the extrusion is not relevant to the results.
The final requirement to obtain a geometry accepted by HEXPRESS™is to have the geometry as a Parasolid
solid body, and that option is not provided by CATIA so this step has been perfomed through ANSYS’s GAMBIT
mesher [13]. Once all these steps are performed, the analyzed geometry is the one shown in figure 3.2.

Figure 3.2: 2D section of mainsail and spinnaker at 1/8th of the mitre

3.2.1. Meshing
The meshing, done using HEXPRESS™starts with the definition of the computational domain. The domain is
18.7 m long and 6.2 m wide, as the wind tunnel used in [9]. The extension in the z direction has been assigned
to be of 1 m, but the mesh generation is done in two dimensions and therefore there will always be only 1 cell
in the z direction. HEXPRESS™recognizes that and does not consider the z direction when evaluating the
mesh quality, for example when computing expansion or aspect ratios.

The meshing starts with the definition of the initial mesh, dividing the whole domain in cells, without
considering the geometry in it yet. The number of cells is x and y directions is calculated so that the initial cell
size is of 0.2 m. Once this step is taken, the "Adapt to geometry" step starts, where the zones of refinement
are defined, taking into account the geometry and the physics of the problem. The main idea here is to refine
close to the sail surfaces, in order to capture the sail curvature, which is quite high, and moreover to have a
refined area behind the sails that will help to have a better glimpse of the wake development.

The surface refinement is done in the following way: consider that each sail has four surfaces, the two that
describe the sail curvature and the two that describe the sail thickness. Being the thickness really low in this
computation (1 mm), the cells on that side will have to be smaller than 1 mm in order to correctly capture the
geometry. For this reason, a target cell size of 0.0003 meters has been imposed, in order to have at least three
cells on the thin sides of the sail. On the other hand, the long side of the sail can use a coarser cells and still be
captured. Figure 3.3 shows how the mesh is much more refined getting closer to the sail trailing edge, while
getting away from it the cells start inflating until they reach the size of 0.002 m.
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Figure 3.3: Detail of the 2D mesh, with particular attention to the sail surface that describes its trailing edge

Moreover, the mesh has been refined downstream of the sails to capture the wake using a box refinement.

After the adaptation step, the snapping to geometry step is taken. It is an automatic process in which the
refined cells that intersect the geometry are split to accommodate the solid body and the ones on the inside
of the body are removed. In order for this step to be successful the mesh has to be fine enough to describe
the geometry, otherwise the snapping will fail. Indeed the value of 0.002 m for the cell size on the pressure
and suction side of the sail has been determined with a trial and error process based on the output of the
snapping process.

Once the snapping is completed the optimization is run, with the goal of regularizing the mesh and avoid-
ing very large or very small angles in the cells, trying to orthogonalize as much as possible the cells. The last
step is then the insertion of viscous layer cells, fundamental for the simulation of the boundary layer. The
number of layers is determined by the software automatically given the reference length, Reynolds number
and y+ value.

The final mesh has 96593 cells and a representation of it is shown in figure 3.4. The mesh quality is satis-
fying: all the requirements are met, except for the expansion ratio that is slightly above what is recommended
(7.554 instead of 5). The results of the mesh check are shown in table 3.2.
It is worth mentioning that the flow is coming from the right in all the figures reported in this report. As it can
be seen in figure 3.4 the positive x axis is pointing outside of the domain, therefore the freestream velocity will
always be negative. The setting of 55 degrees of angle of attack is obtained by rotating the model, so that the
freestream velocity can always be parallel to the x-axis.

Criterion Value Acceptable?

Number of negative cells 0 Yes

Number of concave cells 0 Yes

Number of twisted cells 0 Yes

Number of relaxed cells 0 Yes

Minimum skewness [deg] 36.132 Yes

Averaged skewness [deg] 85.949 Yes

Maximum expansion ratio 7.554 No

Maximum aspect ratio 5.231 Yes

Table 3.2: Results of the mesh check
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Figure 3.4: The final 2D mesh

3.2.2. Unsteady case - OpenFOAM
3.2.2.1. Running

The first 2D simulation is done in OpenFOAM using an unsteady scheme. The chosen solver is the PIMPLE
algorithm. The advantage of this solver is that it allows to have a Courant number larger than one, differently
from PISO that only allows Courant number to be as high as one. It also has the possibilty of setting the max-
imum Courant number and consequently adjust the time step during the simulation, giving the possibility of
having higher time steps than with PISO. The Courant number is an indicator of the stability of the simula-
tion, and it depends on the reference velocity U , the time step ∆t and the smallest cell size in the mesh ∆x,
through the relation:

Co = U∆t

∆x
. (3.1)

A Co< 1 ensures that the information from one cell can reach the next neighboring cell within one time step.
If it is larger, the information would skip some neighboring cells, causing numerical instabilities.

The solving algorithm works as follow, as explained in [20]: the steady state solution is searched within
one time step with under-relaxation (using SIMPLE algorithm, explained in subsection 3.2.3). Some outer
correction loops are used for pressure and momentum, that guarantee that the explicit parts of the equations
are converged. Once the steady solution is found, namely some tolerance condition is met, the time step can
advance, leaving the outer correction loop.

The simulation for this specific case has been run for 10 seconds of physical time, in order to make sure
that the solution could converge to a steady state, after the initial settling time. The turbulence model has
been chosen to be the k-ω SST for all the simulations in this work, for the reasons explained in the previous
chapter 2.1.1. The physical values of the basic flow properties for all the simulation in this are summarized in
table 3.3.

The boundary conditions are supposed to represent the wind tunnel and therefore the inlet will have a
prescribed velocity and zero gradient pressure, and the outlet will have a zero gradient velocity and the pres-
sure set to 0. Regarding the top and bottom parts of the domain, in this simulation they are set as "empty" for
all the quantities as it is a two dimensional simulation. The "empty" condition is an OpenFOAM boundary
condition used for 2D simulations to indicate a patch representing a direction that is not solved. A slip con-
dition is applied to the wall for both pressure and velocity. On the solid walls, velocity is set to zero with a no



28 3. CFD Simulations

Name Symbol Quantity

Velocity in x direction U 3.5 m/s

Reynolds number Re 230000

Density ρ 1.225 kg/m3

Kinematic viscosity ν 1.54e-05 m2/s

Dynamic viscosity µ 1.88e-05 N s/m2

Reference length L 1 m

Turbulent length scale l 0.01 m [9]

Turbulence intensity I 5% [9]

Table 3.3: Flow properties for the simulations

slip condition, while the zero gradient condition is applied to the pressure.

Regarding the turbulent quantities, their values have been calculated in the following way:

νt =
√
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where νt is the turbulent viscosity, k the turbulent kinetic energy, ε the dissipation of turbulent kinetic energy,
ω the specific dissipation rate, Cµ is a constant of value 0.09, I the turbulence intensity and l the turbulent
length scale. The boundary conditions for the turbulence quantities are: k is fixed to the value specified above
at the inlet, a zerogradient condition is imposed at the outlet and a slip condition is applied to the side walls.
At the solid boundary, its value is also fixed as at the inlet. The turbulent viscosity is set to zero everywhere
except at the inlet, where the value mentioned above is assigned. This will allow the turbulence to gradually
develop in the domain. The value ω is set to be 21.433 everywhere, except for the side walls where the slip
condition is assigned. Using the k-ω SST turbulence model there is no need to specify boundary conditions
on ε.

Regarding the initial conditions, the internal field is initialized with velocity of 3.5 m/s in the x direction,

a the turbulent kinetic energy of 0.0459375 m2

s2 and a specific dissipation rate of 21.433 1
s . The turbulent vis-

cosity and pressure are set to 0 for the whole internal domain.

The control variables to take into consideration in this case are the time step value and the number of
time steps. The number of time steps will be computed based on the 10 seconds of simulation and the time
step value. The condition on the time step to respect to ensure stability is:

∆t ≤ ∆x

U
, (3.2)

which is equivalent to a Courant number smaller than 1, see equation 3.1. Being the smallest cell size ∆x =
0.0001 m and the velocity U = 3.5 m/s, the resulting maximum time step value allowed is 0.00002 s. After a
couple of trials the value of the time step that allowed the simulation to run was found to be 0.000001 s. That
implies that the number of timesteps would be 10 million. However the possibility of having an adjustable
time step with a maximum courant number of 2 allows the time step to grow bigger during the simulation,
making the number of time steps smaller.

3.2.2.2. Post-processing

In this paragraph the results of the unsteady simulation done with OpenFOAM are shown. The post pro-
cessing has been done through ParaView, which allows to manipulate and visualize the relevant data. The
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expectation would be that after a certain simulation time the quantities would converge to a steady state
condition, allowing to have a converged pressure distribution on the sail. Looking at the results, it seems like
this prediction has not been met. What is observed is a periodic behavior: the pressure distribution cannot
stabilize but keeps on varying periodically. This is due to the periodic vortex shedding that happens at the
leading edge of both spinnaker and mainsail. It can be observed that the vortex, represented by and area of
lower pressure (blue in the figures) forms at the leading edge and then moves downstream, leaving space for
a new vortex to create and to follow its path. This flow behavior is shown in figure 3.5, where the pressure field
is captured at various times in the simulation. As it has been said before, the flow is coming from the right in
all figures.

Looking at these figures some observations can be made: in figure 3.5a the simulation has just started
and the starting vortex can be seen at the trailing edge of both sails. Proceeding in time, in figure 3.5b it
can be observed how the starting vortex is shed downstream in the wake of the sails, while new areas of low
pressure are appearing at the leading edges: these will be the vortexes that will form periodically and will
be also shed in the wake. It can be observed that the vortex stays attached to the sail for a portion of the
chord length, and consequently it is shed and separates from the solid surface (figure 3.5d). However, the
formation of the vortex forces the flow to separate right away, as can be observed from the streamlines in
figures 3.5i and 3.5j. From these figures it can be observed that the streamlines on the suction side of the sail
cannot follow the curvature of the sail but detach and start forming circular patterns in correspondence of the
vortex. Observing figure 3.5e, it is clear that at some point of the simulation a bigger area of low pressure starts
to form. Advancing in time the vortex is convected downstream (figure 3.5f) and separates 1.5 seconds after
forming (figure 3.5g). After, this the small vortices start forming again, the situation depicted in figure 3.5b
starts over and the whole cycle repeats itself. This behavior is repeated periodically and there is no settling
to a pressure distribution on the sails constant in time. This is not in agreement with the reference data from
[9], where periodic vortex shedding is not present. The reason for this discrepancy is that the experiment is
done in three dimensions, where the vortex formation and convection in the flow is also a three dimensional
process. Trying to reproduce this 3D effect with a 2D simulation will not yield satisfying results, as the physics
of the problem can not be reproduced correctly, and a steady solution can not be found. However, a steady
simulation has been run with the hope of reaching a steady state solution of the two dimensional problem,
to at least be able to compare the results with the experimental data. For this specific case, since for each
time step there is a different pressure distribution, the only way to compare the data with the experimental
values is to average the pressure distribution over the period, namely from when the vortex is formed to when
it detaches from the sail. This will be done in the next paragraph.

3.2.2.3. Comparison with validation data

As previously explained, in this case it is not possible to directly compare the pressure distributions with the
experimental data without averaging the pressures over a period of vortex shedding. This means the time
from when the vortex is generated to when it detaches from the surface and is shed in the wake. Observing
the flow field, it has been verified that one period of formation and shedding has the duration of 1.5 seconds
for the big vortex described in the previous paragraph. For this reason the pressure distribution over the suc-
tion side of the spinnaker sail has been saved every 0.02 s from t=6 s to t=7.5 s, and then averaged, plotted as
a function of the curve length and compared to experimental data through a Matlab script.

The results of said operation are shown in figure 3.6, where the two distributions are compared in figure
3.6a and only the result of the simulation is shown in figure 3.6b. The plots are done for the lowest section of
the spinnaker, at 1/8th of the mitre. The pressure coefficient is computed in the following way:

Cp = p −pi n f

1
2ρU 2

, (3.3)

where pi n f is the freestream pressure and has been computed as the average of the pressure over the
inlet. The results support the idea expressed in the paragraph before, for which a 2D simulation cannot re-
produce three dimensional phenomena like the creation and shedding of a three dimensional vortex. For this
reason the results do not resemble each other. Figure 3.6b shows how the result of the simulation does not
even resemble the tendency of the validation data. From this figure we can notice a plateau of the pressure
starting around x/c = 0.6, which represents the complete detachment of the flow from the sail after that point.
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(a) t = 0.002 s (b) t = 0.06 s (c) t = 1 s

(d) t = 5 s (e) t = 6.66 s

(f) t = 7.09 s (g) t = 7.50 s (h) t = 8 s

(i) t = 6.66 s, with streamlines (j) t = 7.5 s, with streamlines

Figure 3.5: Pressure field around sails at different time steps, unsteady 2D simulation OpenFOAM
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(a) Simulation vs. Experiment (b) Simulation only

(c) Experiment only

Figure 3.6: Cp distributions - Section 1/8 - OpenFOAM 2D Unsteady Simulation

Figure 3.6c shows on the other hand how this phenomenon does not happen in reality: after an initial peak
the pressure drops but does not flatten: the flow is still attached to the sail.

This results are useful in the sense that now the strategy of the project needs to be changed: the initial
idea of having a two dimensional solver cannot be carried on if the CFD results are not satisfying, and the
need for 3D simulations is evident. One last try will be made with the steady 2D simulation, but seeing how
discouraging the results are so far it is almost certain that the 3D simulation will be needed.

3.2.3. Steady case - OpenFOAM
3.2.3.1. Running

This simulation in OpenFOAM is done using the SIMPLE algorithm. Its aim is to reach a steady state solution
so in the equations to solve the time derivatives are set to zero. The algorithm is iterative and it is based on
the following scheme:

• Guess a field for the pressure and calculate velocity components u∗ and v∗ (from previous iteration),

• The Navier Stokes equations are solved using the guessed pressure value. The unknowns are then only
u∗ and v∗,

• Being the velocity components calculated with the guessed pressure, there will be a residual for the
continuity equation. This residual is used to compute a correction for p, and for calculating a new
initial pressure guess,

• Repeat process until the pressure correction is smaller than a given tolerance.
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Since in the equations that are being solved in this algorithm the time derivatives are not present, the
algorithm is not consistent due to the missing term. For this reason the under-relaxation is fundamental for
stability, since without the relaxation it would be easy to have divergence due to some quantity divided by 0,
as explained in [20].

Regarding the simulation setup, the mesh used is the same as the one in the previous section, as it is
presented in section 3.2.1. The initial conditions and boundary conditions are also the same as the previous
simulation. The only modified parameter is the time stepping scheme, defined in the file fvSchemes: before
it was set to Euler while now it is set to steady state. The Euler scheme for the time derivative is a transient,
first order implicit method that expresses the time derivative of the velocity u at time i +1 as:

∂ui+1

∂t
= ui+1 −ui

∆t
, (3.4)

while for the steady state scheme
∂ui+1

∂t
= 0. (3.5)

This is the only difference between this simulation and the one presented previously. The absence of the
time derivative term allows the simulation to go much faster, and also it does not require the definition of
the time step ∆t , as the steady state simulation is not time dependent and the number of time steps actually
corresponds to the number of steady state iterations. In this simulation the number of iterations has been set
to 10000, in order to have the certainty that the simulation is converged. In the next section the results of this
simulation are presented.

3.2.3.2. Post-processing

Again for the analysis of the results the software Paraview has been used. Also for the steady state simulation,
it was not possible to reach a constant pressure distribution on the suction side of the sail. An oscillating
behavior is still visible, because also here the periodic vortex shedding is present. However looking at the
representation of the flow field some differences can be pointed out.

In figure 3.7 the flow field has been captured at the iteration numbers that correspond to one cycle of
vortex formation and shedding. More specifically, at iteration 77 the vortex starts to create at the leading edge
of the spinnaker, at iteration 83 it reaches its maxiumum intensity, and then it starts diminishing in intensity
again until it reaches its minimum, at iteration 88. First of all some evident differences with the flow situation
presented in figure 3.5 can be observed: here the flow separates immediately after the leading edge, while
in the other simulation it was possible to witness the vortex creation and its movement downstream while
it was still attached to the sail. What is happening in this case on the other hand is that the flow separates
right away, creating a recirculation zone close to the leading edge (the red color in figure 3.7d represents a
velocity opposite to the freestream). The interesting aspect is that this vortex that is created at the leading
edge does not travel along the spinnaker chord and then detach like in the previous case, but it stays in the
same position, increasing and lowering its intensity within a cycle. On the other hand, vortices are shed in
the wake from the trailing edge, as it can be seen in 3.7. The presence of the vortex downstream of the sail,
recognizable in the figures by the blue circle in the pressure figures and red circle in the velocity figures, affects
the pressure distribution on the sail, making it oscillate. For this reason also in this case it is not possible to
find a converged steady pressure distribution, but also here in order to compare with the validation data it
will be necessary to average over a period.

3.2.3.3. Comparison with validation data

Again here the results of this simulation have been plotted in terms of pressure coefficient in order to compare
with the reference data. As it could have been expected, there is no resemblance of the validation data. The
main reason is again because the formation of vortices behind a sail is a three dimensional phenomenon and
it cannot be correctly captured in a 2D simulation. Another factor that supports the fact that this simulation
is not meaningful is that the steady state cannot be reached: also here the values are oscillating periodically,
depending on the cycle of vortex formation. Again, in order to compare with the reference data some aver-
aging has been done, over a cycle described in figure 3.7, so over 11 iterations. Looking at the flow field the
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(a) Pressure field at iteration 77 (b) Horizontal velocity field at iteration 77

(c) Pressure field at iteration 83 (d) Horizontal velocity field at iteration 83

(e) Pressure field at iteration 88 (f) Horizontal velocity field at iteration 88

Figure 3.7: Pressure and horizontal velocity fields around sails at different iterations, steady 2D simulation
OpenFOAM
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same behavior can be observed periodically every 11 iterations.

(a) Simulation vs. Experiment (b) Simulation only

Figure 3.8: Cp distributions - Section 1/8 - OpenFOAM 2D Steady Simulation

The result is what is shown in figure 3.8: the results are still quite far off from the reference data, but we
can observe a similarity with figure 3.6b: the tendencies are similar, except for the fact that in the steady case
separation is reached earlier (around x/c=0.4). This tendency is meant to be interpreted in the following way:
as it can be seen from the flow field pictures, the flow is separated as soon as it encounters the sail. The
separation creates a recirculation zone, where the pressure is low. That is represented by the peak in the Cp
distribution. after that peak, the flow is completely separated (red area behind spinnaker, figure 3.7b). Let us
not forget that the plot in figure 3.8b is obtained by averaging over a period: therefore it is a sort of summary of
the three figures 3.7b,3.7d and 3.7f. As it is visible in figures 3.7b, 3.7f, there is a vortex of opposite sign coming
from the mainsail that also partially affects the pressure distribution on the spinnaker: its effect can be seen
between x/c=0.8 and 1, where the Cp rises because the flow is again in the direction of the freestream velocity.

In conclusion, also with this simulation the reference data could not be reproduced. Changing the solver
from unsteady to steady did make some changes to the final result, but the outcome is still not satisfying
since we get a solution that is not in agreement with the reference data: according to the experiment the
flow is attached through the whole chord length while here it separates almost right away, and the pressure
difference is much higher than in the experiment. The next step is to try once again this steady simulation
with another solver, FINE/OPEN, and assess if that solver is adequate for this test case.

3.2.4. Steady case - FINE/Open
3.2.4.1. Running

For this simulation the solver FINE/Open has been used. Its presentation is done in section 3.1. The simula-
tion setup is done much easier thanks to the user friendly graphical user interface of the software, that allows
to set the parameters visually. It also allows to visualize the geometry and mesh together with the project
parameters, all in one window.

The mesh used is the same as the one used in the two previous simulations. The initial and boundary
conditions are slightly different because the patches representing the bounding box of the domain are all
considered as external (meaning that the geometry is in the freestream, and the walls are not present), except
for the top and bottom patches that are set to "mirror", for which no boundary or initial condition needs
to be set. This is a better representation of the reality, but not of the wind tunnel experiment. Anyways the
boundary and initial conditions are the same for all external patches: there the horizontal velocity, pressure,
k and ε are prescribed, with the values summarized in subsection 3.2.2 and table 3.2. The initial condition is
the same for all patches and the internal domain. Being a steady simulation, it was not necessary to impose
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a time step value, but only a number of iterations and a convergence criterion. To begin with the number
of iterations was set to 1000 and the convergence criterion to -6. The convergence criterion corresponds to
the (negative) number of orders of magnitude the norm of the residuals must decrease before stopping the
calculation, as explained in [29]. The solution converged in about 1 hour of running on a single processor.

3.2.4.2. Post-processing

The data is post processed through CFView, a tool of NUMECA that allows an easy visualization of the ob-
tained results. The difference between this and the previous simulations is that here a single state is reached
and only one flow field is visible: that means the steady state solution has been reached.

Taking a look at the flow field the topology looks similar to the one presented in the steady OpenFOAM
simulation: the flow is separated right after the leading edge of the spinnaker and there is a big area of re-
circulation and negative velocity behind the sail. Looking at the pressure field in figure 3.10 it is possible to
recognize the low pressure area in correspondence of the leading edge, that helps to accelerate the flow that
is separated (blue area below spinnaker in figure 3.9), but also to create an area of recirculation close to the
spinnaker. When looking at the figures with the velocity field one must not forget that the freestream velocity
is negative in the x directions with a value of 3.5 m/s, therefore the positive velocity values will correspond to
the recirculation areas. It is quite obvious that also in this simulation separation was reached much earlier
than in the experiments, similarly to the two previous simulations. The difference in this simulation was that
at least a steady state was reached and the solution stabilized to one configuration, but already looking at the
flow field it is possible to state that the solution will not resemble the validation data.

Figure 3.9: Horizontal velocity field - Section 1/8 - FINE/Open 2D Steady Simulation

3.2.4.3. Comparison with validation data

The last step consists in analyzing the solution by comparing it with the experimental data given in [9]. From
CFview, it is possible to export the data to .txt files in order to be able to manipulate them in Matlab. A
script that reads the data, computes the coefficient of pressure following equation 3.3 and plots it against the
validation data has been implemented. The result is shown in figure 3.12.

In this figure the prediction about the early separation is evident: the Cp reaches a plateau around x/c=0.3
and stays constant with a value of 1 from there. That represents the separated area visible in figure 3.9 as the
green area downstream of the spinnaker. Also the initial suction peak is visible, represented by the blue dot
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Figure 3.10: Pressure field - Section 1/8 - FINE/Open 2D Steady Simulation

Figure 3.11: Velocity Magnitude field - Section 1/8 - FINE/Open 2D Steady Simulation

in figure 3.10. However it is possible to notice an improvement with respect to the OpenFOAM results: here
the range where the Cp lies is more similar to the one of the validation data, with a difference in amplitude
of the suction peak, that here is much higher than in reality. Given this result, it is possible to say that the
resemblance of the solution is more close to the experiments, but still not similar enough to be satisfied with
the results and proceed with the FSI coupling. Again the hope is that with a three dimensional simulation
the creation of the leading edge vortex will be better predicted, as well as its point of separation, in a way that
allows the FSI simulation to be meaningful.
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Figure 3.12: Cp distributions - Section 1/8 - FINE/Open 2D Steady Simulation

3.3. 3D Case
Given the discouraging results from the previous simulations, the need for a three dimensional flow analysis
became evident. The initial plan of having a 2D FSI solver can not be followed anymore, because only with a
3D simulation it is possible to obtain reasonable CFD results and therefore the whole solver will have to work
in 3D. This means much more complexity and longer simulation times, and less possibility of automatizing
(much more time than the thesis time would be required for that). For now the aim will be to have a working
solver: its high performance and short run times are secondary in the present work.

For the 3D case, the whole geometry presented in figure 3.1 is used. The configuration of the boat for
the simulation is at 10° heel (angle of the mast with respect to the vertical line, see figure 3.13b) and at 55°
AWA. The apparent wind angle is the angle obtained by subtracting the boat velocity vector to the true wind
velocity vector, as shown in figure 3.13a.

The aim is to represent the experiment presented in [9]: the 2.3 m high model is placed in a wind tunnel
(6.2 m wide, 3 m high and 18.7 m long) and a horizontal velocity of 3.5 m/s is imposed at the inlet. The model
is placed 5.6 meters downstream of the inlet so that there is a lot of space downstream for the investigation
of the wake. The computational domain, created in HEXPRESS, is shown in figure 3.14a. Similarly to the 2D
case, also here the inflow velocity is in the negative x direction, as shown in figure 3.14a. That means that
in all the plots the freestream velocity will be coming from the right side and the negative velocity is flowing
from right to left. As previously explained, the freestream flow is always parallel to the x axis and the model is
rotated to simulate the angle of attack of 55 degrees. The steps taken to create the mesh are presented below.

3.3.1. Meshing
This part of the project turned out to be more complicated than expected. While in the two dimensional mesh
the final cell count was of more or less 100000 cells, here it is reasonable to expect many more cells as it will
be necessary due to the additional dimension added. The main problem that arises when meshing in 3D is
the very low thickness of the sail: that would entail an excessive cell count to be resolved. Therefore, the first
approach employed is to impose the cell sizes as high as possible, in order to minimize the final cell count.
This cannot be done so easily though, since the snapping step is possible only if the cells are fine enough to
describe the geometry. While trying with this approach the minimum number of cells obtained was 14 mil-
lion. That is already a quite big number of cells, which would slow down the whole FSI cycle by a lot.

After some investigations, another solution was found. The sails can be represented and meshed as zero
thickness surfaces, eliminating the problem of meshing the thin side of the sail and saving many cells for the
final count. In this case two meshes have been created, a coarser one and a refined one obtained by doubling
the amount of cells, in order to be able to perform a mesh convergence study. The mesh setup is done in the
following way (for the coarser mesh):

1. The initial cell size is set to 0.2 m,
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(a) Apparent wind angle (AWA) (b) Heel angle

Figure 3.13: Definition of apparent wind angle and heel angle

(a) 3D Computational domain (b) Refinement box

Figure 3.14: 3D domain

2. Adapt to geometry:

(a) Curve refinement: target cell size set to 0.002 m for the curves describing the sails.

(b) Surface refinement: target cell size set to 0.02 m for all the solid surfaces (sail and hull).

(c) Box refinement: box enclosing the yacht and extending downstream (see figure 3.14b) with target
cell size 0.05.

3. Snap to geometry: in this step the cells intersecting the geometry are split and the ones insider the
geometry are removed from the mesh.

4. Optimization: the quality of the mesh is automatically improved, focusing especially on the cells or-
thogonality, that has to be as close as possible to 90°.

5. Viscous layers: a refinement to account for the viscous layers are inserted on the specified surfaces (in
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this case the two sails) and the first layer thickness and number of layers are computed by the software
given reference length, Reynolds number and y+ value.

It is worth to discuss a bit further the viscous layer refinement: it consists in layers of high aspect ratio
cells inserted tangentially to the wall in order to correctly resolve boundary layers. HEXPRESS has two ways
of creating the viscous layer: with fixed first layer thickness or variable first layer thickness. For this project
the first method has been chosen, because it is faster even though a little less flexible. Being the first layer
thickness fixed, it must be computed, and the software uses the following formula:

yw all = 6

(
Vr e f

ν

) 7
8
(

Lr e f

2

) 1
2

y+, (3.6)

where yw all is the first layer thickness, Vr e f is the reference velocity, ν the kinematic viscosity, Lr e f the refer-
ence length and y+ the parietal coordinate. This dimensionless value is an estimate of how fine the mesh is
with respect to the current CFD problem. When using a turbulence model for the close to the wall region, it
is advisable that this value is close to one: in that way there is the certainty of having a good representation of
the boundary layer. In this case, setting y+ to 1 was very restrictive and for this reason it has been set to 5.

In total, 5 layers were inserted, and the first layer thickness was of 5.6e-4 m. The final cell count is of
5.5 million cells, that can be satisfying in the sense that it is fine enough to describe the geometry and the
physical processes but also not too fine, desirable for the reasons explained earlier. The quality of this mesh
is obviously much lower than the 2D one, because in order to satisfy all the criteria it would have been nec-
essary to have many more cells and again that is not desirable. Hence, some criteria fail the mesh check.
Specifically for the cell skewness (a measure of how close to ideal (i.e., equilateral or equiangular) a cell is),for
hexahedral meshes the suggested maximum is 0.85, while the obtained value is 0.92. Also the expansion ratio,
a measure of the size variation of two adjacent cell, maximum recommended 5, here is 24. Moreover, some
relaxed cells are still present after the optimization. However, while running the simulations it has been as-
sessed that these failed mesh checks do not influence the solution, namely, in correspondence of the "bad"
cells locations the solution is still smooth and does not present unwanted jumps or non physical values. An
attempt to further enhance the mesh quality has been done, by increasing the number of optimization loops,
but after a couple of trials the result did not change anymore, so this is the best combination between quality
and number of cells that could be found by the author. An overview of the mesh is reported in figure 3.15.
In figure 3.15a a cutting plane at z=1.5 m has been applied in order to see the internal part of the mesh: the
box refinement of figure 3.14b can be observed, as well as the initial mesh outside of it. Also the much finer
refinement of the sail can be seen. In figure 3.15b the meshed yacht is visible: note how the refinement is
higher close to the sail boundaries, while in the center the cells get larger.

(a) View of the mesh through cutting plane at z=1.5 m (b) Meshed yacht

Figure 3.15: Details of the 3D mesh (5.5 million cells)
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Regarding the finer mesh, it has been obtained simply by dividing the target cell sizes by a factor of 3p2, so
that the final cell size would be 2 times smaller than the one in the coarser mesh. The result of this operation
is a mesh with 9.8 million cells. The same output as the previous mesh was given when running the mesh
check, so the problems could not be eliminated by refining by a factor 2. The idea is that this finer mesh will
be used for the mesh independecy study but hopefully the coarser one will be used for the FSI.

3.3.2. OpenFOAM Simulation
3.3.2.1. Running

The simulations were run for both OpenFOAM and FINE/Open for both meshes, the fine and coarse one.
Again similar settings to the ones used for the 2D simulations are used for the OpenFOAM simulations: all
the parameters defined in section 3.2.2 are set to the same values. The only difference would be that the top
and bottom parts of the domain, set to "empty" for the 2D simulations, here are treated like the side walls,
and therefore their boundary condition is slip for k, ω, p and U , while it is set to calculated with value 0 for
νt . This boundary condition is not designed to be evaluated; it is assumed that the value is assigned (in this
case 0). The solver is SIMPLE, therefore steady state solver, given the results from the unsteady simulations
run for the 2D case. The hope here is that the solution converges to a steady state configuration and that the
pressure distribution on the 5 sections of the sail resemble more the experimental data. The simulation that
gave best results was run for 1000 steady iterations, and the run time was of 1 hour on 20 processors for the
5.5 million cells mesh, and of 5 hours on 20 processors for the 9.8 million cells mesh.

3.3.2.2. Post-processing

In order to assess what was the optimal number of steady iterations a convergence study has been performed
on the coarser mesh. The number of iterations investigated were 500, 1000 and 1500. The quantity investi-
gated for this study was the pressure distribution at the sections that will be also compared to the validation
data. Figure 3.16 shows the results of this study.

(a) Section 1/8 (b) Section 1/4 (c) Section 1/2

Figure 3.16: Steady iteration study for the 5 ml mesh

From these figures it can be argued that the 500 iteration pressure distribution is slightly off with respect
to the other quantities plotted in the graph. This suggests that 500 iterations are too little for this simula-
tion to converge. While looking at the distributions for 1000 and 1500 iterations however, we do not notice
much difference: especially for figures 3.16b and 3.16c the two pressure distributions are basically overlap-
ping. That means that convergence is reached and iterating further would not change the results anymore.
For this reason, the simulation with 1000 iterations can be considered the best one in terms of results and
convergence time. That being said, from now on only the results obtained with 1000 iteration will be shown
and taken into consideration.

A mesh independence study has been performed, this time investigating the Cp distribution as a function
of the level of refinement of the mesh. The simulations, run on the coarse and fine mesh with 1000 iterations,
yielded the results plotted in figure 3.17, together with the validation data. First, looking at the results for the
5.5 million mesh it can be argued that the solution is quite far from the validation data: the Cp amplitude is
lower for all sections. When refining the mesh one would expect that the solution would grow closer to the
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(a) Section 1/8 (b) Section 1/4 (c) Section 1/2

Figure 3.17: Mesh study

experimental one, as it would be more precise in describing the physics of the problem. In figure 3.17 it is
clear that this is not the case: the solution is very similar for the two meshes and refining the mesh does not
seem to help bringing the solution closer to the experimental one. Being the results very similar, it seems
reasonable to use the coarser mesh to have shorter simulation times in the rest of the project, without losing
accuracy in the results.

Now that the best combination of number of cells and number of iterations is found, the solution can be
analyzed more specifically for the chosen case. Figures 3.18, 3.19 and 3.20 show some processed images of
the flow field that can help understand the solution better.

Figure 3.18: Horizontal velocity field for the section 1/8

Focusing on figure 3.18, which depicts the horizontal velocity field at the 1/8 section, two very easy obser-
vations can be made: in the blue area the velocity is following the freestream and therefore the flow is moving
to the left, while the red area is the area of recirculation, where the flow goes against the freestream direction.
A big difference between this flow situation and the one depicted for the 2D case in figures 3.7 and 3.9 can be
noticed: here the flow stays attached for a longer portion of the chord length (until more or less half of the
chord length), while in the 2D case the separation occurred immediately. This result is reassuring, and it can
be expected that this solution will resemble more the validation data. Another difference with the 2D solution
is that here the range where the horizontal velocity lies is smaller, meaning that we do not reach such high
velocities as in figure 3.7, both in the negative and positive range. The velocity range here is more similar to
the one found with the 2D Fine/OPEN simulation (figure 3.9).

Regarding the pressure, figure 3.19 shows a completely different pressure distribution than the one ob-
tained in the 2D case: here there is no periodic vortex shedding. The solution stabilized to this constant
pressure distribution on the sail, and no vortices are formed behind the leading edge of the spinnaker, as it
was the case for the 2D simulations (see figures 3.5, 3.7 and 3.10). In figure 3.19 it can be seen that there is
an area of lower pressure behind the sails, having a minimum around 0.2 x/c, which can be recognized as



42 3. CFD Simulations

Figure 3.19: Pressure field for the section 1/8

Figure 3.20: Streamlines (Z view)

the suction peak. This suction peak accelerates the flow (blue area below spinnaker in figure 3.18), and then
the flow separates so the pressure is restored to a constant value for the rest of the chord length. The pres-
sure distribution will be compared with the experimental data and commented further in the next paragraph.

Lastly, the streamlines of the flow have been reported in figure 3.20, to give an idea of how the sails af-
fect the flow. The streamlines that are shown are obtained by visualizing the computational domain from
just above the mast (otherwise undisturbed streamlines would have been more evident in foreground). The
streamlines are colored by velocity magnitude, the red color corresponding to a higher velocity magnitude
and the blue to a lower one. The effect of the sails is evident: the flow, at first parallel to the walls, is de-
flected and accelerated by the sails. Some streamlines, after being deflected, continue their path in the new
direction. Others enter the recirculation area and are slowed down and their direction is inverted. An area
of high turbulence is created behind the spinnaker and also convected in the flow, visible as the streamlines
that follow a twisted pattern until the end of the domain.

3.3.2.3. Comparison with validation data

Eventually the obtained data can be compared with the validation data. The results of this operation are
shown in figure 3.21. It is worth mentioning that in the reference paper [9] also the results for a different ap-
parent wind angle were reported, namely 53°. The current simulation was done for 55°but both are reported
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(a) Section 1/8 (b) Section 1/4

(c) Section 1/2 (d) Section 3/4

(e) Section 7/8 (f) Zoom of the velocity magnitude at the 1/8 section

Figure 3.21: Cp distribution at various sections - compared to validation data

in these figures. Moreover, also the solution reported by Viola et al. [38] obtained by running a DES simula-
tion is reported.

The first remark that can be made observing the figures is that the computed solution does not coin-
cide with the experimental one. The Cp value is always lower than the experimental one for all sections.
While there is more resemblance to the reference with respect to the 2D solution, these results still can not
be considered satisfying. The main differences can be noticed in the suction peak and the separation point.
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Observing the first four subfigures of figure 3.21, it is clear how the amplitude of the peak is not the same as
the one suggested by the validation data, and also its location is not computed exactly.

Figure 3.22: Percentage error plot - Section 1/8

On the other hand, the two highest sections have the most variable pressure distributions and also the
reference data changes a lot when rotating the model by only two degrees: for example in figure 3.21e the
difference between the two experimental results is very large. This can be justified by the fact that in that area
the cloth is very short, being it the tip of the triangular sail, and therefore its shape is very variable and the
distribution can vary a lot when inputting a small difference in the intial conditions. This can be also verified
in real life: the top of the sails is always the area where the most flapping and least constant behavior can
be observed. Therefore, when analyzing the accuracy of the simulation data, it is safer to rely on the lower
sections.

A study on the error has been conducted for the OpenFOAM solution, with the intention of quantifying
the error. For each section the error has been calculated for each validation point in the following way:

er r% = C pexp −C psi m

max(C pexp )−mi n(C pexp )
×100, (3.7)

The root mean square of the error computed with formula 3.7 has been calculated for all sections in the points
corresponding to the ones reported in the reference. The root mean square of the error was of 23.2% for the
1/8 section, 28% for the section 1/4, 43% for the section 1/2, around 42% for the 3/4 section and finally 23%
for the highest section. All the errors are higher in the first portion of the chord length, due to the location of
the peak that can be slightly shifted and therefore yield a high error. The error distribution for section 1/4 has
been shown in figure 3.22, where the tendency to have the highest error at the beginning of the chord length
is clearly visible.

When observing the computed pressure distribution a behavior common to the first three sections can
be observed: separation is always reached earlier than in the validation data. The separation point is identi-
fied by the point after which the Cp reaches a plateau. Another common feature is that before reaching the
separation, all the computed pressure distributions present a small bump. This could be interpreted as the
point where the flow regime transitions to turbulent, and when that happens it cannot stay attached to the
profile and therefore separates. When looking closely at the velocity magnitude distribution, for example at
the section 1/8 (figure 3.21f), the little bump present in the Cp distribution can be observed. The dark blue
color represents a low velocity magnitude while the red one a higher velocity, and the white is in between the
two. When beginning the separation, an area of low velocity develops behind the sail (blue zone), while in
the little white bubble the velocity is a bit higher. That is in agreement with the pressure distribution, that
presents another small suction peak in correspondence of that point. Finally it can be interpreted in the fol-
lowing way: the pressure, after the suction peak, is rising again, but then it undergoes a sudden drop that
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allows the flow to slightly accelerate, transitioning to turbulence, and leading to separation.

In conclusions these results showed that the 3D simulation can definitely reproduce the experimental
data better than the 2D one, but the similarity is still quite low to be considered acceptable. For this reason
the simulation will be run also with the other CFD software, with the hope of getting more accurate results.

3.3.3. FINE/Open Simulation
3.3.3.1. Running

The steady 3D simulations were run on FINE/Open for three different cases: the 10 million mesh, the 5 mil-
lion mesh and then 5 million mesh with different boundary conditions. The first two simulations were run
to perform a convergence study for this solver as well, with the hope that the conclusions will be the same as
the ones drawn in the previous section. The last simulation has the boundary conditions similar to the ones
from the OpenFOAM simulations, while the first two consider all the bounding box patches as external. This
will be explained more in detail below.

For the first two simulations, the boundary and initial conditions are the same as the ones defined in
section 3.2.4, except for the fact that the top and bottom patches of the bounding box are treated as the
other patches (inlet, outlet and side walls). Exactly like before, the walls are considered "external": meaning
that all the freestream quantites are prescribed there and therefore the model yacht is modeled to be in the
freestream and not in the wind tunnel.

In the last simulation, on the other hand, at the inlet velocity Ux, k and ε are prescribed, while at the
outlet only the pressure p is prescribed. On the other external patches, namely the side walls and floor and
ceiling, all the quantities (Ux, p, k, ε) are prescribed.

For all simulations, 1000 steady iterations were performed (seen the results from the iteration study done
before), and the convergence criterion, defined in section 3.2.4 was -6. The run times were: a total time of 20
hours on one processor for the coarse mesh, while 4 hours on 20 processors for the fine mesh.

3.3.3.2. Post-processing

A mesh study has been conducted for this solver as well, in order to investigate the effect of the mesh reso-
lution on the final result. The results of this investigation is shown in figure 3.23. As it has been explained
before, for this type of investigation only the lower sections are shown because they are more explicative of
the behavior of the solver, while for the higher sections it has been shown (see previous result section) that
also the experimental data cannot be considered as the correct solution, given the high variability of the flow
conditions in that area of the sail.

(a) Section 1/8 (b) Section 1/4 (c) Section 1/2

Figure 3.23: Mesh study

Figure 3.23 clearly shows that a refinement in the mesh does not improve the solutions: for all sections it is
possible to observe that the solution for the coarse and fine mesh are overlapping. This result is encouraging
because it allows to run the simulations in the FSI cycle with the 5 million mesh, shortening the run times and
not losing accuracy. For this reason from now on only the 5 million solution will be shown and commented.
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Figure 3.24: Pressure field for the section 1/8

Figure 3.25: Horizontal velocity field for the section 1/8

In figures 3.24 and 3.25 the pressure and velocity fields at the section 1/8 are shown. The goal is to compare
these results with the ones obtained for the same section with OpenFOAM. While the pressure distribution
looks quite similar, with an area of lower pressure in the first half of the chord length and an area of pressure
recovery after that, some differences can be observed in the horizontal velocity contour plots: while in figure
3.18 it seemed like the flow passed smoothly from attached to separated and from an area of freestream ve-
locity to an area of recirculation, here it seems like the area of recirculation is influencing the flow accelerated
by the spinnaker. The flow at first follows the sail curvature and then, when it separates, it is forced to slow
down and to deflect by the area of backflow (the yellow area in figure 3.25). Another observation that can be
made is that in comparison with the OpenFOAM solution the point of separation here is reached later, as it
will also be analyzed later. On the other hand, one similarity with the OpenFOAM solution is the range where
Ux lies: they are very similar for this case, differently from what was found when comparing the 2D solutions.

The postprocessing tool CFView allowed to create images of the streamlines in the field. Figure 3.26 is a
view from above of the computational domain and it is comparable with figure 3.20. It is possible to recognize
a similar behavior: also here the streamlines are curved and accelerated by the presence of the sails, and also
in this figure it is possible to visualize the recirculation area, together with the are of high turbulence that is
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Figure 3.26: Streamlines (Z view)

Figure 3.27: Streamlines (Y view)

created behind the sail and convected in the flow. An interesting observation can be made when observing
figure 3.27: this figure exemplifies why the simulation in 3D was necessary. Consider the streamlines starting
in the lower section of the inlet in figure 3.27. At first they are parallel to the floor but then, when the sail is
encountered, they are deflected and moved up by the sail. In figure 3.26 it can be observed how the stream-
lines are deflected in the X and Y direction, but here in figure 3.27 it is clear how also in the Z direction there
will be a variation of position of the streamlines. This could have not been captured with a 2D simulation,
and now the fact that the 2D simulations were completely not accurate is explained.

3.3.3.3. Comparison with validation data

Now that the flow field has been examined it is necessary to compare the obtained results to the experimen-
tal data. In figure 3.28 the results for both the 5 million cells simulations are reported, plotted against the
experimental data for two angles of attack and the results from the DES simulation done by Viola et al. [38].
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(a) Section 1/8 (b) Section 1/4

(c) Section 1/2 (d) Section 3/4

(e) Section 7/8

Figure 3.28: Cp distribution at various sections - compared to validation data

The results seem quite satisfying: in figure 3.28 it is possible to notice a close agreement between the
computed and experimental data, especially for the lower sections. The simulation with the different bound-
ary conditions (inlet and outlet prescribed) seems to resemble the experimental data the most. Differently
from what was observed for the OpenFOAM simulations here it can be stated that the suction peak location
and amplitude is well represented by this simulation. Regarding the distribution at the 7/8 location, it can be
observed that the result of the simulations, as well as the results from DES resemble more the experimental
data for a slightly different AWA. This is reasonable if one thinks of the variables that are involved in the ex-
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(a) Section 1/8 (b) Section 1/4

(c) Section 1/2 (d) Section 3/4

(e) Section 7/8

Figure 3.29: Cp distribution at various sections - compared to OpenFOAM

periment in the tunnel: a small variation of the inclination of the model with respect to the freestream can
change a lot the output, and therefore it can be said that the experimental data might not be so reliable as
reference data for the simulations in this location. This is also justified by the fact that as stated before also
in real life sailing the top of sail is the first part to encounter wrinkling, flapping and instability due to short
chord length and variability of wind conditions of that area. However, seeing that the behavior for a slightly
lower angle of attack is well reproduced by the Fine/OPEN simulation is reassuring.
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A study on the error has been conducted for the solution that seemed to yield the best results: the one
with the inlet and outlet boundary conditions. For each section the error has been calculated for each vali-
dation point as done before. As it can be already seen in the pictures, the error is lower for the lower sections
and it increases as the z coordinate increases. The root mean square of the error computed with formula ??
has been calculated for all sections. The root mean square of the error was of 10% for the 1/8 section, 14%
for the section 1/4, 19% for the section 1/2, around 40% for the 3/4 section and finally really high (72%) for
the highest section. All the errors are higher in the first portion of the chord length, due to the location of the
peak that can be slightly shifted and therefore yield a high error. However visually it can be recognized from
figure 3.28 that the amplitude of the initial peak is approximated quite well, except for the highest sections.

One final analysis was conducted: the comparison of the results of the two solvers. The result of that
analysis is shown in figure 3.29, where the results of all the 5 million cells simulations are reported. First char-
acteristic that comes to the eye is that FINE/Open definitely performs better than OpenFOAM in reproducing
the experimental data. While the FINE/Open results are comparable both to experimental and DES data, the
OpenFOAM solution is way off both. In terms of separation location, OpenFOAM underpredicts it for all sec-
tions, while FINE/Open is able to predict it quite correctly. The only one section where OpenFOAM seems to
have done a better job is the highest one: the experimental data suggests a sudden separation almost right
after the leading edge, and OpenFOAM predicts separation right away as soon as the flow encounters the sail.
Morevoer, the wiggle in the Cp distribution that was present in all the OpenFOAM results except for the last
one, cannot be observed in the FINE/Open data, and neither in the experimental results. That suggests that
OpenFOAM is predicting something different. This result is quite surprising because the same simulation
settings have been used for both softwares, especially the second FINE/Open simulation was done to resem-
ble the OpenFOAM boundary conditions. The solver was steady state for both, the turbulence model was
k-ω SST for both and the turbulent quantites were initialized to the same values. The only explanation that
comes to mind can be that the two solvers work in different ways, maybe using different relaxation techniques
or different initial guesses, that lead to such different final solutions.

It can be concluded that for the FINE/Open simulations the one conducted with 5 million cells with BC’s
that impose different values at inlet and outlet was the most successful in reproducing the reference data,
and was the most efficient in terms of iterations and number of cells.

3.4. Conclusions
An investigation on the best CFD solver to reproduce the experimental data from [9] has been conducted. 2D
simulations were run on both OpenFOAM and FINE/Open, but they turned out to give poor results, show-
ing inability to reproduce the experimental data. The need for 3D simulations was then identified, and it
emerged that it was necessary to shift to this type of analysis given the physics of the problem, which can
only be correctly captured in 3D. Three dimensional simulations were then run investigating the effect on the
solution of the number of cells, number of steady iterations and boundary conditions. Aside from this, also
the performances of the two solvers were evaluated and the best combination between all these variables has
been found for this problem: the FINE/Open simulation, with 5 million cells, 1000 steady iterations and the
boundary conditions prescribed differently for inlet and outlet was the one that gave the most satisfactory
results in terms of accuracy and run time.

For all these reasons the results of the best simulation will be used in the rest of the FSI cycles and all the
other CFD simulations will be run with these settings. It can be said that the first of the research questions
reported in the Literature study has been answered and validated in this chapter:

What are the appropriate techniques to compute the correct pressure distribution around the spinnaker sail
through a CFD solver?

The answer has been found, discussed and motivated throughout all this chapter.



4
FEM Simulations

In this chapter the simulations run with the structure solver are presented. First, a presentation of the code is
given, with an overview of the flowchart. In order to assert its validity, a quantitative validation has been per-
formed on two simple cases of which the analytic solution is available. Being the results of this first analysis
satisfying, the solver is considered valid and the simulations on the spinnaker can be run.
Consequently the pre-processing steps are presented, then the running techniques (convergence, relaxation)
are shown and finally the results of the simulations are reported and their validity is assessed. For this part
validation data is not available, so only a qualitative analysis of the results is performed, comparing the results
with a real spinnaker flying shape.

4.1. Presentation of the solver
The structure solver, SailFEM, is a Matlab code developed by Daniele Trimarchi in his Master’s Thesis at the
Università di Genova [35]. Trimarchi extended his project in his PhD [34], comparing SailFEM also with other
finite element methods for the same application. Those other methods showed to be more accurate but they
will not be presented in this report.
The solver is based on a simple FEM solver developed at the Università di Genova that was able to resolve a
system of beams. Trimarchi modified that code in order to include the membrane elements that describe the
sail. The equations and theory on which this solver is based are all reported and explained in detail in section
2.2.1. The flowchart of the code, taken from [35], is shown in figure 4.1.

The first part of the code deals with the import of the geometry and is done through a function named
importa.m, whose work will be better detailed in the pre-processing section. Once the geometry is defined
and imported the boundary conditions are defined. As stated before, the membrane element is composed
of 3 nodes with 3 translational degrees of freedom each, resulting in a total of 9 DOF for each element. As
boundary conditions, it will be possible to block one or more directions of translation for each node. The
matrix D specifies which directions are clamped for which node. A typical form of the D matrix is:

D =



5 1

5 2

5 3

10 1

 .

This matrix specifies that node 5 is clamped in all three directions, while node 10 only in the x direction.
From this matrix it is then possible to identify the total number of free and bound degrees of freedom, which
will help determine of which nodes it will be necessary to compute the displacement.

Once the BC’s are defined, the pressure needs to be imported from the CFD solver. It will be read from a
file that has a pressure value for each node of the structure mesh. That file is obtained through an interpo-
lation routine that will be detailed in chapter 5. All the nodes are loaded with the pressure specified in that
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Figure 4.1: Flowchart of SailFEM, adapted from [35]

file. Now the pressure is defined the nodes as a distributed pressure (units N
mm2 ), while the structure solver

needs a nodal load in N , namely an integration is needed. For this reason, a routine named pr_ess.m finds
the normal for each node by averaging the normals of all the elements that share that node and applies the
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pressure in that direction. Consider the situation depicted in figure 4.2: in order to find the normal for point
P, all the normals of the neighboring elements are summed and divided by the number of adjacent elements,
obtaining an averaged normal.

# »nP = 1

ne

ne∑
i=1

#»ni , (4.1)

where ne is the total number of elements sharing point P and #»n are the normal vectors. Once the normal is

Figure 4.2: Normal of point P as average of adjacent normals

defined, the areas of the adjacent elements are computed, and with the hypothesis that the pressure is equally
distributed on the three nodes of the element the equivalent load on each node is defined as

fP = 1

3
PP

ne∑
i=1

Ai , (4.2)

where f is the load in N, P is the load in N
mm2 and Ai is the area of the i th element. Moreover, another routine

named Load_Rot.m is recomputing the node normal at each iteration, taking in account the deformations
computed at the previous iteration. This will also be a way of checking the convergence: namely if the nor-
mals stay the same in different iterations the structure has stopped deforming and an equilibrium condition
in the displacements has been reached.

Finished this step, the stiffness matrices have to be built. As specified in the previous chapter, the global
stiffness matrix is composed of two matrices: the elastic and geometric stiffness. Through the formulation of
Li and Chan [23], the elastic stiffness matrix has been linearized and is therefore constant at each iteration.
On the other hand the geometric stiffness matrix will depend on the stress generated on the edges by the
node displacement, and will therefore need to be recomputed at each iteration. Referring to section 2.2.2 for
a more detailed explanation, it is worth reminding how the two matrices are defined:

Ke = A · t ·T T
G ·T T

N ·C ·TN ·TG , Kg = A · t ·GT ·M ·G . (4.3)

The matrix TG is defined by the coordinates of the three nodes of the element with respect to the global
coordinate system:

TG =


0 0 0 X21−X31

l023

X22−X32
l023

X33−X23
l023

X31−X21
l023

X32−X22
l023

X23−X33
l023

X11−X31
l031

X12−X32
l031

X13−X23
l031

0 0 0 X31−X11
l031

X32−X12
l031

X33−X13
l031

X11−X21
l012

X12−X22
l012

X13−X23
l012

X21−X11
l012

X22−X12
l012

X23−X13
l012

0 0 0

 .

The matrix TN is the rotation matrix from the local to the global coordinate system and can be defined as:

TN =Ψ−1 ·L−1
0d =


l023 0 0

0 l031 0

0 0 l013


−1

·


cos2θ1 si n2θ1 si nθ1cosθ1

cos2θ2 si n2θ2 si nθ2cosθ2

cos2θ3 si n2θ3 si nθ3cosθ3

 .
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The geometric stiffness matrix is defined as:

Kg = A · t ·GT ·M ·G =


B12 +B31 −B12 −B31

−B12 B12 +B23 −B23

−B31 −B23 B23 +B31

 , Bi , j =
Pi j

Ii j
· [I3 −Di j ·DT

i j ],

Di j = 1

l0i j
[(X j 1 −Xi 1) · (X j 2 −Xi 2) · (X j 3 −Xi 3)]T ,

The definition of all the parameters introduced in these formulations can be found in subsection 2.2.2. The
calculations start with the definition of the element edges, before and after imposing the displacements com-
puted in the previous iterations (or guessed if it is the first iteration). When the nodes coordinates are known,
as well as the edge lengths (in the undeformed configuration), it is possible to compute the rotation matrix
Di j , defined above. Once the edge lengths after the deformations are known it will be possible to compute
the stress in the three element edges through the formulation:

σi = E ·εi = E · li − li 0

li 0
, (4.4)

where E is the Young Modulus. In order to avoid numerical instabilities it is necessary to impose that the
negative stresses are 0. This reflects behavior of membranes, that do not work under compression. In terms
of numerical analysis this stabilizes the computation, because it imposes that the only internal forces are the
ones generated by the deformation. Therefore, an if statement checks if the stresses are negative, and if yes
it sets them to zero.

The stiffness matrices will be assembled inside the global stiffness matrix through extraction matrices,
defined as following: their size is [3xNn], where 3 is the number of nodes per element and Nn the total number
of elements. They are zero everywhere except in the positions occupied by the element nodes, where it will
be one. This matrix will be the base for the Kronecker matrix, namely a matrix where instead of the ones there
will be a eye matrix with dimensions equals to the DOF of the node they refer to, 3 in this project. The matlab
formulation for these sorts of matrices is the following:

O=zeros ( 3 ,Nn) ;
O( 1 , e l ( e , 1 ) ) = 1 ;
O( 2 , e l ( e , 2 ) ) = 1 ;
O( 3 , e l ( e , 3 ) ) = 1 ;
O=kron (O, eye ( 3 ) ) ;

where e is the single element and el the connectivity matrix, containing information about the vertices of
each element. The matrix defined in this way will be used to assemble the global stiffness matrix:

KGLOB =
Ne∑
i=1

OT
i · (K i

E +K i
G ) ·Oi , (4.5)

where Ne is the total number of elements. In order to be able to solve a system of the type K u = f , it is
necessary to extract from KGLOB the information relative to the free nodes only. The matrix can in fact be
seen as:

KGLOB =
KLL KLV

KV L KV V

 ,

where KLL is the stiffness submatrix regarding the non bounded nodes, KLV and KV L describe the force, on
a bounded node, generated by the unit displacement of a non bounded node, and KV V respresents the
stiffness submatrix of the bounded nodes. In order to get KLL then it is necessary to impose that KLL =
KGLOB (g dl _L, g dl _L), where g dl _L is a vector whose values correspond to the degrees of freedom of the
structure. For example, if g dl _L = [1 5 24 55] the DOF of the structure will be:

node 1 : t r a n s l a t i o n x
node 2 : t r a n s l a t i o n y
node 8 : t r a n s l a t i o n z
node 19 : t r a n s l a t i o n x
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because indeed each node has 3 DOF. Therefore node 1 will have DOF 1, 2, 3, node 2 will have DOF 4, 5, 6 and
so on.

It is worth pointing out that KLL is made of two parts: KE only depends on the initial configuration x0,
namely on the undeformed coordinates, while KG depends also on the deformed coordinates xS , equivalent
to x0 +q , where q is the computed displacement,

KLL = KE (x0)+KG (x0 +q). (4.6)

4.2. Verification cases
Due to the lack of validation data for this specific case, the software has been tested for some simple test
cases for which the analytic solutions are available. In this way the solver’s ability to deal with some simple
yet relevant cases can be assessed.

4.2.1. Cylinder case
In this case a cylinder is subject to internal pressure and its circular sides are clamped, see figure 4.3.

Figure 4.3: Cylinder with triangulation and pressure forces

The quantities to take into account are:

R = 2.5mm P = 100
N

mm2 E = 1000
N

mm2 t = 1mm.

From the analytic solution the maximum radial displacement should be:

uR = P ·R2 · (1−ν2)

E · t
= 0.568mm, (4.7)

and in correspondence of that location the maximum tangential stress should be:

σθ = R ·P = 250
N

mm2 (4.8)

The solver yields a maximum displacement of 0.541 mm, resulting in an error of 4%. Regarding the stress, as
it can be observed in figure 4.4 the maximum is reached in correspondence of the maximum displacement,
and it is there 240 NN/mm2, also yielding an error of 4%. It can be argued that these results are satisfying and
the solver is validated for this case.
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(a) Displacement (b) Tangential stress

Figure 4.4: Results by SailFEM on the cylinder case

4.2.2. Sphere case
Now that the solver is validated for a general case, in this test case values of pressure and Young modulus will
resemble the ones used in the simulations of the spinnaker, in order to check if even in these pressure ranges
the results agree with the analytic solution. This case is a sphere, subject to internal pressure and clamped at
one single point (for the minimum value of z). The situation is depicted in figure 4.5.

Figure 4.5: Sphere with triangulation and pressure forces

The used values are then the following:

R = 5mm P = 4×10−5 N

mm2 E = 375
N

mm2 t = 0.3mm.

The value of pressure has been chosen to be similar to the values of ∆p applied to the spinnaker. The thick-
ness and Young modulus are the same as the spinnaker’s ones. For this case the analytic solutions are:

uR = P ·R2 · (1−ν)

2Et
= 3.111×10−6mm, σθ =σϕ = P ·R

2t
. (4.9)

The stress to be compared will then be the norm of the tangential and circumferential stresses, namely

σ=
√
σ2
θ
+σ2

φ
= 4.714×10−4 N

mm2 .

The results are reported in figure 4.6. SailFEM computes a radial displacement of 3.34×10−6 mm, resulting in
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(a) Displacement magnitude (b) Stress

Figure 4.6: Results by SailFEM on the sphere case

an error of 7%, which is satisfying. The solver can compute the displacement correctly even when the loads
are small. Regarding the stress, the error is also around 7%, being the mean computed stress 5.063×10−4

NN/mm2. It can be stated that the solver is validated also for a case with the same material properties as the
ones used for the spinnaker, even though in this case the error is slightly higher.

4.3. Pre-processing
The first aspect to deal with is the mesh creation. It is not advisable to use the mesh created for the flow
simulation, since it is way finer than needed and it would only slow down the simulation. In fact, the fluid
mesh has 120000 points only on the spinnaker, while for the structure solver a much coarser mesh can be
used without losing accuracy. For this reason a new mesh has been created, only on the spinnaker, with the
software Gmsh [10]. This software allows to create triangular surface meshes for the imported geometry and
the level of refinement can be easily specified. In order to assess how fine the structure mesh has to be, a mesh
study has been carried out on the spinnaker, using a constant pressure as external loading in order to have
the same exact starting conditions for all meshes (if the interpolated pressure had been used, the loading
could have been slightly different). From what has been observed in literature [12, 35, 17], it seems that it
is advisable to have a uniform structure mesh that is not very fine. That is because the membrane element
formulation requires that the thickness of the element is low with respect to its extension, namely, that the
aspect ratio is quite high. The aspect ratio is defined as

AR = L

t
,

where L is the largest distance between two corners of an element and t its thickness. Of course there is an
upper limit for this value, because the elements still have to be able to describe the geometry and its displace-
ments correctly. Therefore the mesh study will yield the upper and lower limit for this value. The value for the
thickness is the one found in literature typical of a spinnaker [17], 0.3 mm. With this value the mesh has been
refined and coarsened and the convergence has been studied in terms of maximum displacement. The result
of this analysis is shown in figure 4.7, where the value of the maximum displacement has been plotted as a
function of the number of cells. The different studied meshes contained 115, 268, 397, 580, 731, 1023, 2264,
3137 and 4587 nodes, respectively. From this image it can be argued that the displacement is overestimated
when using a very coarse mesh, while if the mesh is very fine the displacement is computed to be smaller than
in reality. There is an area where the displacement is close to constant, with a value of 17 mm and a variation
of ±4%, namely for the meshes with 580, 731, 1023 and 2264 nodes, corresponding to AR values between 146
and 294. That area is identifiable as the one between the two red lines in figure 4.7. It can be observed that
if the mesh is coarser than 580 nodes the maximum displacement is widely overestimated, while refining the
mesh makes the displacement tend to zero. Given the result of this mesh study the 580 nodes mesh has been
selected as the one to use in the simulations, in order to obtain correct results and minimize the CPU time.

Now, once the mesh is exported from Gmsh as an .stl file a script in Matlab reads it and creates a matrix
with all the node coordinates and another matrix with the connectivity information (its size is [ne ×3], where
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Figure 4.7: Mesh study on spinnaker with constant pressure=1.5×10−5

Figure 4.8: Technical names of parts of the spinnaker. The tack is the upwind bottom corner and the clew the
downwind bottom corner. 1

ne is the number of elements). The connectivity matrix has for each row, that represents the element, the
index of the vertices that create the element.
The structure solver however requires as a geometry file of type .raw, which consists of as many lines as the
number of elements, and for each line the x, y, z coordinates of the three vertices are reported. The format of
each line will then be

x1 y1 z1 x2 y2 z2 x3 y3 z3.

This format is easy to obtain with a Matlab script that uses the information of the triangulation to create the
file. Once this file is correctly created it will be read and rearranged by the function importa.m, where the file
is read and the nodes are rearranged so that there are no duplicate nodes. Moreover, the function returns an-
other matrix, nodel, that defines the elements insisting on every node, rearranged in lines. Once this process
is done the geometry is correctly defined.

1Adapted from http://www.sailberkeley.com/student-tips/spinnaker

 http://www.sailberkeley.com/student-tips/spinnaker
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Next is the definition of the boundary conditions. In section 4.1 the matrix D is defined. In order to decide
which nodes to apply the clamps to it is necessary to find the coordinates of the vertex nodes, and then with
an if statement it is possible to assign their values in the D matrix. The clamp has been imposed on the three
nodes that are at the three vertices of the sail, in order to represent the presence of the halyard at the head
and of the sheets at clew and tack (the two lower vertices). For a definitions of these technical terms see figure
4.8 The coordinates of the vertex points in millimeters are:

head =


−271.5

−444.7

2333

 , clew =


−494

−342.5

454.5

 , t ack =


627.6

−987.7

182.3

 .

For these vertex nodes all translations in x, y and z directions are clamped. Ideally it would be more accu-
rate to impose a different boundary condition on the clew and tack, but the implementation of the spinnaker
sheets would require a more complex procedure, either modifying the boundary conditions in a more elab-
orate way or even implementing the ropes as elements with different material properties, but that is beyond
the scope of this thesis.

The last things to define before being able to run the simulation are the material constants. With the help
of some literature and some sail designer friends it was possible to come up with the following values:

E = 375 N/mm2

ν = 0.3
t = 0.3 mm

where E is the Young modulus, whose value is taken from [35], ν the Poisson coefficient and t the sail thick-
ness. The thickness value is the one of the non-scaled boat, as suggested by Giovanni Sanfelice (North Sails
sail designer). The value of 0.3 for the Poisson coefficient is the one found online for nylon. Now all the quan-
tities necessary for a successful simulation are defined and it is possible to analyze the running techniques.

4.4. Running
Once the stiffness matrix is created following the procedure shown in section 4.1, the system to solve is

KLL ·qL = pL , (4.10)

where pL is the vector with the loads applied on the free nodes. The system can be solved with an itera-
tive method, such as the Newton-Rhapson algorithm, or with the backslash operator of Matlab. The second
choice has been preferred because it is less costly in terms of computational time. The formula to solve is
then

qL = K −1
LL pL . (4.11)

In order to avoid big instability problem a relaxation routine has been implemented, to damp the peaks and
enhance convergence. It is worth noticing that at the first iteration there is no information on the deformed
geometry, namely KG is very small; that is equivalent of saying that the system has a very low stiffness. As
a consequence, also the KLL matrix entries are very small and the computed displacements are very high.
Therefore, in the second iteration the matrix will have high entries since the deformations will be big. In or-
der to decrease this initial peak quickly a relaxation factor is necessary. Figure 4.9 shows the convergence plot
of the norm of the displacement with different damping values. From this figure it is possible to observe that
the oscillations are quite symmetric around the convergence value. Therefore the relaxation is imposed so
that the displacements at the ith iteration are forced to be an average between the computed displacements
at the ith iteration and the ones computed at the (i-1)th iteration. It is important to notice that the relaxation
routine starts working only after the 4th iteration.

Regarding the convergence criteria, there are two that need to be applied: one to stop the iterations on
the stiffness matrix (nonlinearity 1) and another one to stop the load rotations (nonlinearity 2). Regarding the
first criterion, the idea is to stop the iteration when the displacements computed at two consecutive iteration
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Figure 4.9: Convergence plot with different values of damping

are very similar. A measure of this similarity can be decided arbitrarily, and in this case the condition has
been defined as:

||qL(i )−qL(i −1)|| < |qL(i )|
1000

. (4.12)

That is equivalent to saying that the two consecutive displacements should not differ of more than 0.1%.

The second convergence criterion, that stops the iterations on the load rotation (outer loop), is concep-
tually different. At every iteration the deformed configuration is computed, and it satisfies the equilibrium
given the load. Once that is converged (nonlinearity 1), the load is rotated taking into consideration the new
geometry and the iteration on the K matrix starts again. When thinking about the equilibrium configuration,
it would be safe to say that the loads would not rotate anymore because the geometry is not varying anymore
and the solution is converged. Even though the concept behind this criterion is different, the condition will
be expressed in the same way, see equation 4.12.

The computation starts then with the undeformed geometry. Once convergence is reached, the loads are
rotated. The first displacement guess vector is updated with the new displacement that made the compu-
tation converge in the previous iteration. As a consequence of this, also the geometric stiffness part of the
KLL matrix is updated with the computed displacements. The loads are rotated again until also the second
convergence criterion is satisfied. The maximum number of iterations on the stiffness matrix is set to 100,
but usually the simulations converge after 15-17 iterations.

Once convergence is reached, the displacements are available, but it still necessary to use the shape func-
tions to obtain the deformations and stresses. That is done by a function called stress.m. The routine starts
with the definition of the length of the sides of the element as well as the amplitudes of their internal angles.
Then, using a bidimensional coordinate system on the element plane, the origin is placed on one of the nodes
and one of the axes is parallel to the element edge. The coordinate of the neighboring node in this coordinate
system will then be (L,0). The coordinates of the third node will then be obtained as functions of L and the
triangle angles. The situation is depicted in figure 4.10.

The relations will then be:

x0 · t anθ2 = (L3 −x0) · t anθ∗1 =−(L3 −x0) · t anθ1 ⇒ x0 = t anθ1 ·L3

t anθ1 − t anθ2
y0 = t anθ2 · x0. (4.13)

Now that the node coordinates are known in this coordinate system, in deformed and undeformed configu-
rations, immediately it is possible to obtain the nodal displacement vector:

a = [0 0 L3 −L03 0 x0de f −x0 y0de f − y0].
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Figure 4.10: Element in the local coordinate system, from [35]

Remembering then equation 4.14:

ε= B ae =
[

Bi B j Bk

]
ai

a j

ak

 , (4.14)

the deformation ε can be computed. In order to compute the stresses the deformation vector will have to be
multiplied by the compliance matrix C :

σ=


σx

σy

τx y

=C ·ε= E

1−ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 ·


εx

εy

γx y

 . (4.15)

By diagonalizing the matrix it is be possible to obtain the principal stresses components in the bidimensional
coordinate system. That is done with the following command lines:

epsilon1 =[ epsi ( 1 , 1 ) epsi ( 3 , 1 )
epsi ( 3 , 1 ) epsi ( 2 , 1 ) ] ;
sigma=E/(1−ni ^2)*C2* epsilon ;
[D]= eig ( sigma ) ;
sigma1=(D(1 ,1)^2+D( 2 , 1 ) ^ 2 ) ^ 0 . 5 ;

Once the stress on the element is known it should be possible to compute the stress in the nodes by averaging
over the neighboring elements (with the information given by matrix nodel). The code is not able to compute
the directions of the principal stresses.

4.5. Post-processing
Once the computation is finished and converged it is handy to be able to represent the results in order to
assess their validity. As said previously, there is no validation data for the deformations and therefore the
evaluation will have to be quantitative. In Matlab the best way to represent meshes made of triangular el-
ements is the command trimesh, for which the connectivity matrix, the three vectors of coordinates and
some scalar quantity to be represented are required. It will be then possible to represent displacement in x, y
and z direction, as well as the stress. For this case the biggest change in geometry happens in the y direction,
and therefore the y displacement will be plotted. The command quiver allows to represent the nodal loads
in form of vectors, so in the final plot there will be: the initial geometry, shown in black, with at each node a
small arrow representing the applied load, and the deformed geometry, colored following the magnitude of
the displacement. An example for this figure is shown in figure 4.11.

Figure 4.11 is obtained with the following commands:

quiver3 ( x , y , z , P1x , P1y , P1z , 1 , ’ LineWidth ’ ,2 , ’ color ’ , ’ g ’ )
hold on
trimesh ( el , x , y , z , ’ edgecolor ’ , ’ black ’ ) ;
alpha ( 0 ) %The undeformed mesh i s transparent
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(a) Suction side

(b) Pressure side

Figure 4.11: Results by SailFEM on the spinnaker

hold on
trimesh ( el , xs , ys , zs , vn , ’ FaceColor ’ , ’ interp ’ ) ;
% "vn" are the y displacement values , represented as a colormap
grid on
axis equal

It is not possible to directly validate this solution due to the lack of experimental data for this specific case.
Therefore the validation will have to be qualitative. First of all, intuitively when looking at the direction of the
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Figure 4.12: Cross section of the undeformed and deformed geometries

loads in figure 4.11a one would expect that the sail deforms towards the suction side. The presence of the
black undeformed mesh helps to see in what direction the deformation took place: in figure 4.11b it can be
observed that the deformation takes place in the negative y direction for most part of the sail. Obviously, the
presence of the clamps does not allow for the whole structure to move in the negative y direction: the points
close to the clew and tack vertices (the lower vertices) show displacement in the positive y direction. That can
be explained thinking that the material is not elastic and therefore cannot inflate completely towards the suc-
tion side as a balloon would do, but given the presence of the clamps at the vertices there is a higher tension
on the sides, that results in a deformation towards the pressure sides in these areas. This phenomenon can be
observed more closely in figure 4.12, where it is clear how for most part of the sail the deformation is towards
the suction side, but at one side it takes place in the opposite direction, given the presence of the clamps and
the material stiffness.
This result is meaningful and can be observed in reality, for example in the situation depicted in figure 4.13.
The red circle highlights the areas where the sail is deforming towards the pressure side, and the areas are the
ones close to the points where the sheets are attached. It can be seen that while the rest of the sail is inflated
and well taut, in those areas wrinkling arises, because the cloth tends to move towards the wind direction.
In the structural model the wrinkling is not modeled and will not arise, but the displacement in the opposite
direction is well captured.

4.6. Conclusions
In this chapter the FEM solver has been presented: the structure of the code and the equations it solves have
been reported. In order to confirm that the solver is working correctly some validation tests have been run,
on test cases for which the analytic solution is known. The validation was successful for all cases, having an
error of maximum 5% for the cylinder case and of 7% for the sphere case. The sphere case used the same
material properties as the ones used in the simulations on the spinnaker. Therefore, it can be expected to
have a similar range of inaccuracy for the spinnaker case. However, it can be stated that the solver is correctly
reproducing the analytic data and it is therefore verified.

Consequently, the strategies adopted to have the solver correctly working are presented: a mesh study has
been conducted and the optimal number of cells has been chosen. Once the setup of the solver is done the
simulation has been run to find the deformed shape of the spinnaker given the pressure load from CFD. No
validation data was available for this specific case and therefore a qualitative comparison has been done with
a real-life sail, see figure 4.13. The resemblance of the solution to the real life condition is very satisfactory.
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Figure 4.13: Deformation of a real spinnaker sail



5
FSI Simulations

In the previous chapters the simulations for the fluid and structure domains have been analyzed in depth
and their validity for this application has been asserted. The final step is to couple the two solvers, obtaining
a solution that takes into account the information given by both domains. There are many techniques to
perform this coupling and they have been extensively analyzed in the literature study, while the ones chosen
to be the best for this application have been presented in detail in chapter 2.3. In this chapter an explanation
of how the presented techniques were implemented will be reported, together with an evaluation of their
performance.

Figure 5.1: Fluid Structure Interaction loop

65
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5.1. FSI Loop
The fluid structure interaction loop is the one summarized in figure 5.1. It is worth mentioning that being a
steady simulation, there is no time dependence on the previous solutions within the FSI loop and hence thr
remeshing can be performed easily as no projection between meshes is necessary. The CFD solver converges
to a steady state solution and that is used as an input for the structure solver until an equilibrium on the sail
shape and pressure forces is reached.

The CAD geometry that has been used for the spinnaker is the one obtained through photogrammetry in
the wind tunnel by Viola et al. [9]. This represents then the shape of the sail when it is already inflated by the
wind, namely the flying shape. In order to have a significant analysis, it is necessary to have an initial shape
to start the iterations from, with the final goal of obtaining the flying shape that is given. The quantities in
play in this situation are then:

x0 = Initial shape, q = Displacement, x f = Flying shape, p f = Flying shape load.

For the flying shape, the following should hold:

KLL(x0, q) ·q = p f ⇒ [
KE (x0)+KG (x0 +q)

] ·q = p f . (5.1)

For this case then the unknowns are two: x0 and q . Equation 5.1 contains both unknowns and therefore
another relation is needed to solve the problem. That relation will then be:

x f = x0 +q. (5.2)

With equations 5.1 and 5.2 the system can be solved and the initial shape can be determined. It will however
not be possible to obtain it directly, for this reason an iterative process has been implemented in Matlab. The
script works in the following way:

1. Runs the structure solver on the flying shape with the pressure distribution p f obtained from CFD and
obtains a displacement,

2. Subtracts that displacement from the flying shape obtaining the first guess for the initial shape,

3. Reruns structure solver on the obtained initial shape, with the same pressure as point 1,

4. Add the displacement to the initial shape and obtain a new guess for the flying shape,

5. Computes maximum difference between obtained and given flying shape ε,

6. Defines a new guess for the initial shape:

xk+1
0 = xk

0 +0.5∗ε,

where 0.5 is a relaxation factor and k is the iteration number.

7. Restarts from point 3 with the new initial shape xk+1
o .

The whole process is repeated until a certain condition on the error is satisfied. In this case the minimum
possible error found was of 0.2 mm. That represents the maximum difference in coordinates between the
given flying shape and the one obtained with the script. Being the thickness of the spinnaker 0.3 mm, the
difference can be considered satisfying, since it is still lower than the minimum characteristic length of the
problem. Once the initial shape is obtained, it is possible to start the FSI loop as described below.

The loop starts with the generation of the mesh with HEXPRESS on the initial geometry. Then the CFD
simulation is run in FINE/Open and with the help of the postprocessor CFview the pressure distribution on
the spinnaker is obtained as a .txt file. This pressure will have to be interpolated to the structure mesh,
so before performing the interpolation it is necessary to create the structure mesh. That will be done using
Gmsh, as explained in chapter 4.3. Once the structure mesh is ready the interpolation of the pressure can be
performed. That is done in Matlab by a script that performs the nearest neighbor interpolation from the fine
fluid mesh to the coarse structure one. Once the pressure is defined on the structure nodes the FEM solver
can be run until convergence. The resulting displacement field is then interpolated again to the fluid domain,
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by a script that uses RBF functions to modify the fluid domain file. Then a convergence check is performed:
the monitored value is the maximum displacement obtained in the structure solver. At each iteration k the
following check is performed:

max(qk )−max(qk−1) < max(qk )

250
,

where maximum displacement is compared to the one obtained in the previous operation. In the next sec-
tions the interpolation operations will be analyzed and some intermediate results will be shown.

5.2. Interpolating pressure
The step of interpolating the pressure distribution from the fluid to the structure mesh is fundamental in
order to run the FEM solver with the information obtained from the CFD solver. First of all it is necessary to
obtain a file that contains the values of the pressure difference across the sail for every fluid mesh node. From
CFView it is possible to obtain separate files with the pressure defined at the nodes for the front and back of
the sail. Unfortunately the mesh points do not coincide and therefore another interpolation will have to be
done in order to perform the subtraction of the pressures. This will be done with a Matlab function named
griddata, that simply interpolates the pressure values from the pressure side to the suction side of the sail.
Now the file with the correct pressure to interpolate is ready and the transfer to the structure mesh can be
performed.

Figure 5.2: Delta pressure distribution on the fluid mesh

The (delta) pressure distribution is the one shown in figure 5.2: it is clear that the biggest pressure varia-
tions happen in the part of the sail close to its leading edge, where the suction peak is present. When inter-
polating it will be important to make sure that the pressure distribution is well captured, so that the pressure
imposed on the structure can be as similar as possible as the one computed with CFD.

The theory behind the nearest neighbor interpolation has already been presented in chapter 2.3, so it will
not be repeated here. The script that has been written in Matlab reads the two files with the lists of nodes, and
then starts a loop over all the structure nodes. For each node it computes the distance with all the fluid nodes
and then finds the minimum distance. In correspondence of the index of the closest node a 1 will be put in
the H matrix, and all the rest of the row corresponding to the structure node will be 0. Doing so the matrix H
is created: this sparse matrix has size ns×n f , where ns is the number of structure points and n f the number
of fluid points. For each row then, corresponding to a structure point, there will be only one nonzero entry
corresponding to the closest fluid node to that structure node. When this matrix is built the pressure can be
easily interpolated by performing the operation

ps = H ·p f .
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The resulting pressure distribution on the structure mesh is the one shown in figure 5.3. There are some
differences that can be observed visually: the biggest difference is observed at the sail’s free sides, there the
pressure in the structure is zero while in the fluid it is not. This error is due to the fact that there are some
very small cells at the sides of the spinnaker in the fluid mesh in which the pressure is the same in the back
and front of the sail, due to the stagnation point, resulting in a zero ∆p. They cannot be seen in figure 5.2,
because their size is really low, but a zoom of the same figure is reported in figure 5.4. In the figure 5.4 it is
possible to visualize these elements at the side of the sail as the darker line on the side of the sail. These cells
where the pressure is zero or very low are the ones that result to be closer to the structure elements laying
on the spinnaker’s free sides, and for this reason the behavior observed in figure 5.3 shows, for which in all
free sides there is zero pressure. This error could be minimized by refining the structure mesh on the free
sides, but it would still not eliminate the error. Another strategy would be to change interpolation method,
for example a radial basis function (RBF) interpolation, that would make sure to take into consideration also
other neighboring cells. These strategies have not been adopted because the structure solver works well only
with a uniform mesh and because the RBF interpolation was too computationally costly (the fluid mesh has
120000 points and for RBF a full 120000x120000 matrix would have had to be constructed). Therefore, it is
possible that some dissimilarities will be found in the final solution due to this interpolation error.

Figure 5.3: Delta pressure distribution on the structure mesh at the first iteration

Another analysis has been conducted to assure that the interpolation has been performed correctly: the
total force on the sail has been computed for both meshes and the results compared. In order to compute the
force the following operations have been performed on both meshes:

• For each element, the pressure in the center of the element is computed by averaging the pressures of
the 3 nodes that compose the element,

• For each element, the area of the element is computed using Heron’s formula, where a, b and c are the
element edges lengths, previously computed from the node coordinates:

S = a +b + c

2
⇒ Ar ea =

√
S(S −a)(S −b)(S − c),

• For each element the force is computed by multiplying the pressure by the area.

Once the forces in all the elements are defined it is possible to add them all to find the total force. The result-
ing total force for the fluid is 46.6 N, while for the structure 43.02 N, resulting in a relative error of 7%, which
can lead to some dissimilarities in the final result. The new interpolated distribution of pressure can then be
used as an input for the structure solver.
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Figure 5.4: Zoom of figure 5.2 on the spinnaker leading edge

5.3. Interpolating Displacement
The interpolation of the displacement is a slightly more delicate matter because in this case the passage is
from the coarse structure mesh to the fine fluid mesh. For this reason, an approach of the nearest neighbor
type would lower very much the accuracy of the process, since it would assign the same value of displace-
ment to more adjacent fluid cells, resulting in a step like behavior in the displacement distribution. In order
to avoid this phenomenon the Radial Basis Function approach has been used, a method that guarantees a
more gradual interpolation of the displacement, considering for each node the influence of many cells, each
one with its appropriate weight. The theory of the radial basis function technique for interpolation has been
already reported in chapter 2.3, so here attention will only be given to the implementation of the method.

The problem to solve is then the following: the nodal displacements have been obtained by the struc-
ture solver on the structure mesh, and they have to be transferred to the fluid mesh with a minimum loss of
accuracy. The implementation of the RBF method would be quite simple to implement in Matlab in matrix
form, as explained in chapter 2.3, but unfortunately here it was not possible because the number of points
on which the distances have to be computed to create the matrixΦB A was too big and the software ran out of
memory. An alternative strategy was then required, for which the creation of such a big matrix would not be
necessary.

The idea behind this alternative method is based on applying the RBF interpolation point by point, with-
out using the matrix formulation presented in chapter 2.3. That is done working directly on the file describing
the fluid domain. Said file contains information about the topological vertices, the curves and the surfaces
of the domain. The idea is to modify only the part of this file that is relative to the spinnaker, applying the
RBF interpolation to the points in the file and modifying them with the found result. The rest of the file can
remain untouched. Information regarding the spinnaker is present in the part regarding the curves and the
surfaces. The first step is to identify exactly what lines describe the spinnaker and what do not. That has been
achieved by manually checking the file and comparing the coordinates with the graphical representation of
the domain in HEXPRESS. A set of lines that were relevant was then obtained.

The RBF script then works like this: first of all the matrix ΦA A is created, which only depends on the
structure mesh coordinates. With that the matrix M can be created, defined as

M =
ΦA A Q A

QT
A 0

 .

Consequently the coefficients β and γ can be computed, by inverting the matrix M and multiplying by the
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known displacement values on the structure nodes. Once these coefficients are known it will be possible to
modify each set of coordinates with a simple expression (reported below) and without matrix operations. In
appendix A a detailed explanation on how the parts relative to the spinnaker have been found in the domain
file is reported. Knowing the number of lines it has to ignore and the ones it has to modify, the code applies
two different operations depending on the line number it is dealing with: if the line is not relative to the
spinnaker it simply reads the line and copies it as it is to a new file, while if the line is relative to the spinnaker
it applies the RBF interpolation to the coordinates reported in that line and then writes the new coordinates
to the new domain file. The lines of code describing this operation are the following:

a= f g e t l ( f i d ) ;
b=str2num ( a ) ;
ind=b ( 1 ) ; X=b ( 2 ) ; Y=b ( 3 ) ; Z=b ( 4 ) ;
coords = [X Y Z ] ;
r =1;
qx = 0 ; qy = 0 ; qz = 0 ;
for i =1: ns

i f (1−norm( coords−coords_s ( i , : ) ) / r )>0
phi=(1−norm( coords−coords_s ( i , : ) ) / r ) ^ 4 * ( 4 * (norm( coords−coords_s ( i , : ) ) ) / r + 1 ) ;

else
phi =0;

end
qx = qx + Gammax( i ) * phi ;
qy = qy + Gammay( i ) * phi ;
qz = qz + Gammaz( i ) * phi ;

end
qx = qx + Bx ( 1 ) + Bx ( 2 ) *X + Bx ( 3 ) * Y + Bx ( 4 ) * Z ;
qy = qy + By ( 1 ) + By ( 2 ) *X + By ( 3 ) * Y + By ( 4 ) * Z ;
qz = qz + Bz ( 1 ) + Bz ( 2 ) *X + Bz ( 3 ) * Y + Bz ( 4 ) * Z ;

X1=X+qx ;
Y1=Y+qy ;
Z1=Z+qz ;

f p r i n t f ( f2 , ’%d %.13 f %.13 f %.13 f \n ’ , ind , X1 , Y1 , Z1 ) ;

The value of the compact radius has been chosen to be 1 m, being the sail roughly 2.5 m high and 2 m long.

The script works successfully and is also relatively fast. The result is a new domain file with the modified
coordinates, that if imported in HEXPRESS describes a spinnaker geometry that is deformed following the
results from the structure solver. In figure 5.5b the deformed and undeformed domains have been superim-
posed in HEXPRESS to show the differences. The blue line represents the deformed spinnaker shape while
the red one the undeformed one. It is worth noting that also the hull and mainsail are superimposed in this
figure, but being them the same the differences can not be noted.

In order to assess if the interpolation went right another image has been created, representing the de-
formed structure mesh together with the deformed fluid one. The result is reported in figure 5.5a, where the
red lines represent the structure while the black ones represent the fluid mesh. The chosen view allows to
check if the displacement of internal points has been represented correctly, as well as the one of the points
laying on the spinnaker edges. Being the two meshes completely overlapping it is safe to say that the inter-
polation went well. The author could not think of other ways of assessing the validity of the interpolation for
the displacements.

5.4. Conclusions
In this chapter the scripts that perform the transmission of information across non-matching boundaries
have been presented. For the interpolation of the pressure from the fluid to the structure mesh the nearest
neighbor interpolation has been used, while the radial basis function has been chosen to interpolate the dis-
placements. The nearest neighbor interpolation is very fast but not so accurate, in fact the difference in total
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(a) Deformed structure (red) and fluid (black)
meshes, before and after RBF interpolation

(b) Undeformed (red) and deformed (blue) sail
representation in HEXPRESS

Figure 5.5: Two visual ways of checking the success of the RBF method

force on the sail between the fluid and the structure is of approximately 7%. That is due to the fact that the
fluid mesh is very refined at the sail free sides while the structure mesh is coarse everywhere. For that reason
in areas where there are big changes of pressure (near the leading edge) some structure cells can acquire in-
correct pressure values. This error will be taken into account when assessing the final results.
The transmission of the displacement from the structure to the fluid mesh is done through the RBF interpola-
tion directly on the coordinates of the fluid domain file. The lines of the domain file regarding the spinnaker
are recognized and the interpolation is applied to each point reported in the file. The script is not as fast as the
nearest neighbor one but it gives satisfactory results in terms of accuracy of the displacement. It is expected
that possible errors will depend on the interpolation of the pressure and not of the displacements.





6
Results

In this chapter the results of the Fluid structure interaction cycle will be shown for two testcases: the first
one uses the geometry given by Viola [9], of which the flying shape is available and the initial shape has been
computed with the algorithm presented in section 5.1. The second one is done using the initial shape of the
spinnaker provided by Daniele Trimarchi and used in his thesis [35]. For this testcase the flying shape is not
available and therefore only qualitative conclusions will be drawn.

6.1. Viola Testcase
The results will be shown in terms of displacement of the sail with respect to the initial shape. Then, the
obtained flying shape will be compared with the reference one, showing differences in terms of coordinates
in a contour plot. The last check will consist in comparing the CFD pressure distributions on the reference
and computed flying shape.
First of all, the maximum displacement over the FSI iterations has been reported. This plot has been used

Figure 6.1: Maximum displacement over FSI iterations

to monitor the convergence iteration by iteration: the maximum displacement has been plotted for each
iteration and the result is shown in figure 6.1. The criterion used to stop the iteration was the following:

max(qi )−max(qi−1) < max(qi )

250
,

where q is the displacement at the iteration i or i − 1. That is equivalent to saying that the two consecu-
tive displacements should not differ of more than 2.5%. Convergence following this criterion was reached
after 15 iterations. No relaxation techniques were used in the FSI cycle since it seemed like the maximum
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displacement was already converging at the first iterations. The value of maximum displacement to which
the iterations converged is 27.9 mm, while for the reference testcase the value is 28.26 mm, resulting in a
difference of 0.36 mm, that corresponds to an error of 1%. This value can be considered widely satisfying,
especially when thinking that the imposed sail thickness is of 0.3 mm: the error is of the same magnitude
of the sail thickness, and that can be considered as an upper limit for the obtained error. Moreover, when
comparing the global displacements with respect to the initial shapes with the formula

qGLOB =
√

q2
x +q2

y +q2
z , (6.1)

for the reference case a value of 309 mm is obtained, while for the computed case the global displacement is
of 300 mm, resulting in a relative error of 2%, which can also be considered more than satisfying.

Figure 6.2: Initial shape and computed flying shape

The next figure 6.2 shows the initial and final shapes of the spinnaker. The red sail represents the flying
shape and the green one the initial shape. The differences are quite evident: it is possible to notice that the
flying shape is moving in its center towards its suction side, while in the points close to the corners it is de-
formed towards the pressure side due to the presence of the clamps, as it has been already shown in section
4.5. Figure 6.3 shows the displacements in the sail in the x, y and z direction. As it has been observed already
in chapter 4, the main displacement takes place in the negative y direction, namely the direction towards
which the sail inflates. In the figures 6.3 it is possible to observe how inflating the sail towards the suction
side results also in a displacement in the z direction, bringing the nodes in the upper part of the sail higher
and the ones in the lower part lower. Considering the displacement in x direction, it is possible to observe
that the maximum values appear in the areas close to the bottom corners of the sail, where the presence of
the clamps and the material stiffness forces the sail to deform towards the pressure side, resulting also in a
movement of the sail in its longitudinal direction. Being them sucked towards the central part of the sail, it is
possible to observe a more or less symmetrical behavior on both corners being the displacement negative on
the tack side (upwind point) and positive on the clew side (downwind point).

Now, the computed flying shape is compared with the flying shape given by Viola et al. [9]. In order to
make this comparison, first of all the two shapes have been plotted in the same graph and visually they look
like they are overlapping, see figure 6.4. In the figure only the edge of the cells are plotted in order to be able
to visualize the points where there might be some differences, but from this plot it seems very much like the
edges are overlapping in the whole geometry. It might not be very clear from figure 6.4, but when interactively
rotating the figure it is possible to see that the color of the edge is interchangeable between red and green,
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(a) Displacement in x

(b) Displacement in y

(c) Displacement in z

Figure 6.3: Displacement contour plots in the three directions
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Figure 6.4: Reference (green) and computed (red) shapes of the spinnaker

depending on the chosen view angle.

But evaluating this difference only visually is not enough, and therefore another plot is reported, for which
the maximum difference between the y coordinate of the reference and the computed flying shape is plotted
at each iteration. The result is shown in figure 6.5. In order for the two shapes to be identical the plotted value
should tend to zero, while it is observed that here it stabilizes to a value around 2.8 mm. That means that the
converged shape is not exactly the same as the reference one but the maximum differences are of more or
less 3 mm, which represents an error of 0.2% on the coordinate value.

Another check that can be performed is the comparison of the total force generated by the reference
and computed shape. By integrating the pressure value on each element the total force obtained on the
computed flying shape is of 46.6 N, while for the computed one it is slightly lower, namely 42.6 N, resulting in
an error of 8%. It can be argued that the simulation converged to a equilibrium shape that is slightly different
from the reference one, and consequently it provides a different force. In the next paragraph a more detailed
comparison between the two shapes is reported, together with a possible explanation of the differences.

When wanting to quantify the differences between the two shapes, the following operation is made: the
difference between the x, y and z coordinates of the two shapes is computed and plotted on the sail, in order
to assess which ones are the areas where the error is larger. The resulting plots are shown in figure 6.6. Look-
ing at these figures, first of all it is clear that most of the error is created in the y direction, the one where the
biggest displacements take place. For the z error it is possible to see that the error is zero in most part of the
sail, however there are some critical points where the error is not zero that can be seen in all three figures:
the area close to the bottom left corner and the area in the center of the bottom edge. These are most critical
areas indeed because two phenomena are happening simultaneously: the sail is being inflated in its center
part and also being brought back upwind close to the corner points, due to the presence of the corner points
modeled as clamps, as it has been explained previously. Those areas are where the biggest error is present
and also where the highest displacement happens, see figures 6.3a and 6.3b. Another possible explanation
for the fact that the error is higher in the areas close to the sail’s free sides can be found by looking at the
interpolated pressure difference distribution on the structure mesh, shown in figure 5.3. It is clear that close
to the free edges the pressure difference is often zero, therefore there is no force applied on the free sides el-
ement. That can result in an unpredictable behavior, as a small variation in displacement of the neighboring
cells can result in a different behavior in the unloaded cells at each iteration. It is worth mentioning that the
fact that the forcing is zero on these elements does not correctly represent reality, in fact the pressure is not
zero on the fluid mesh (see fig. 5.2). The error is due to the interpolation process, as it has been extensively
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Figure 6.5: Convergence plot, yf is the reference and ys the computed coordinate

explained in section 5.2.

Another comparison is done by plotting the displacement at the 5 horizontal sections for both reference
and computed sail shape and evaluating their differences, as shown in figure 6.7. Being the y direction the
one where the highest errors were recorded (see fig. 6.6) it will be the only one plotted in the following fig-
ures. The plots for the displacements in x and y are shown in appendix B. In order to obtain the displacement
distributions at certain sections a script that identifies the coordinates close to the wanted sections has been
implemented. This script creates a straight line at the height of the wanted z coordinate and then uses nearest
neighbor interpolation in order to identify which points of the sail to consider. This is done for 5 horizontal
sections and the result is shown in figure 6.7. What is evident from these figures is that the computed flying
shape has an offset with respect to the reference one but follows the tendencies in the displacement very well.
The fact that the converged shape is not the same as the reference one has already been established, and with
these plots it is confirmed. The extra information obtainable from these plots is that the obtained shape fol-
lows very well the behavior of the reference shape, and the errors observed in figure 6.6 represent an offset
and not a change in behavior. Moreover, there is agreement between the figures 6.7 and 6.6: in 6.7 it can be
seen how the central section is the one where the error is lowest, and the two lines are basically overlapping.
The central area is in fact the one where the error in the coordinates results zero in figure 6.6. The lower and
upper areas however show some differences in coordinates and therefore a difference in the displacement
distribution can be expected. The positive aspect is that the difference in displacement is never higher than
1.62 mm, resulting in a maximum error of 4%, for the section 1/8. It can be concluded that even though the
converged shape is not the same as the reference one, it is very similar and shows the same types of behaviors.

The last check to be performed in order to assess the validity of the solution is to compare the pressure dis-
tributions on the two flying shapes. The result of that operation is shown in figure 6.8. This figures confirms
the statements obtained in the rest of the chapter: the converged shape is not the same as the flying shape, in
fact there are differences in the pressure distributions. Once again, the biggest differences are observed at the
lower and higher sections, where the differences in the geometries are. It seems that as a general tendency
the computed shape reports a lower pressure in all sections, also explaining the underestimation of the total
force mentioned before. Just like the displacement distribution, it can be observed that the tendencies are the
same, and the error lays in the offset. The explanation for this offset can lay in the fact that the FSI problem
has multiple solutions, and the obtained one is one of them, as valid as the reference one.
The reason why the cycle converges to a different solution can be attributed to the fact that when interpolat-
ing the displacement from the structure to the fluid mesh some information is lost: in fact, the structure mesh
has 580 points while the fluid domain file contains approximately 100000 points. It might be that when the
displacement is interpolated the obtained shape is not exactly the same as the one computed by the struc-
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(a) Difference in x

(b) Difference in y

(c) Difference in z

Figure 6.6: Difference in coordinates between reference and obtained flying shapes
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(a) Section 1/8 (b) Section 1/4

(c) Section 1/2 (d) Section 3/4

(e) Section 7/8

Figure 6.7: Computed and reference y displacement at 5 horizontal sections

ture solver, and that yields a difference in the CFD results that are then used a starting point for another FEM
simulation. In this way the error propagates and creates a solution that differs from the reference one. How-
ever, it is possible to conclude that the solver is working correctly and can reproduce a given testcase with an
overall error of around 8%, which could be considered acceptable given the complexity of the project.
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(a) Section 1/8 (b) Section 1/4

(c) Section 1/2 (d) Section 3/4

(e) Section 7/8

Figure 6.8: Computed and reference pressure distribution at 5 horizontal sections

6.2. Trimarchi Testcase
The second testcase is based on Daniele Trimarchi’s masters thesis [35]. Trimarchi used a spinnaker design
shape created by using a portion of a sphere, see figure 6.9. This shape does not resemble the one of the
inflated spinnaker. The relevance of this testcase is that indeed here only the design shape is known, so it can
be expected to find some big differences between initial and flying shape. That could not be observed in the
previous testcase, for which only the final shape was available. The design shape is 6 m high and 3.75 m wide.



6.2. Trimarchi Testcase 81

Figure 6.9: Spinnaker design shape

In Trimarchi’s work, he applied to the spinnaker a constant pressure equivalent to the aerodynamic load
of 15 knots of wind, corresponding to a wind velocity of 7.71 m/s. The goal of this work is to show the differ-
ences in flying shape when applying a constant pressure or an interpolated FSI pressure. First of all, a CFD
simulation has been run on the design shape and the equivalent constant pressure has been computed by
dividing the total force acting on the spinnaker by the total area. The total force is obtained by summing
the contribution of each cell, obtained by multiplying the element area by the pressure value. The obtained
values are:

Ftot = 2143N , Atot = 30m, p = 2143N

30m
= 71.43Pa = 7.143×10−5 N

mm2 . (6.2)

The constant value in N
mm2 is then used as constant loading on SailFEM. A difference can already be observed

with Trimarchi’s work, for which the constant pressure equivalent to a wind velocity of 15 knots is 3×10−4 N
mm2 .

The author can not explain this difference of 1 order of magnitude, and suspects that Trimarchi might have
had some typing error because a pressure in the order 10−5 is correct in this case. Anyways, the obtained
pressure value is applied in SailFEM and a first flying shape is obtained.

The other strategy is then to interpolate the pressure information obtained in CFD using the scripts de-
scribed before, applying then a non-constant pressure on the sail and running the structure solver. The in-
terpolated pressure on the structure mesh looks like the one reported in figure 6.10. Similarly to the other
testcase, also here the areas of zero pressure are present at the sides of the sail: their presence is due to the
nearest neighbor interpolation routine for which the values at the boundary of the fluid mesh are assigned to
the structure elements that are much coarser, resulting in an inaccuracy.

The FEM simulations are then run using this interpolated pressure difference as a non constant loading.
Consequently, the obtained displacement is transmitted through RBF interpolation acting on the fluid do-
main file, with the same technique as the one described in section 5.3. The FSI iterations are then run until
convergence, using the same convergence criterion as the Viola testcase, reported here for clarity:

max(qi )−max(qi−1) < max(qi )

250
,

where q is the computed displacement at the ith iteration. Convergence is reached at the 14th iteration. Fig-
ure 6.11 shows the two shapes obtained with the two different approaches: the constant pressure, figure 6.11a
and 6.11b, and the FSI pressure, figure 6.11c and 6.11d.
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Figure 6.10: Interpolated delta pressure load on the structure mesh

First of all, it is worth mentioning that the obtained results cannot be compared to the ones obtained by
Trimarchi [35], because of the difference in applied pressure load, as explained before. The main difference
that can be observed between the two shapes in figure 6.11 is that the spi with constant pressure deforms
more on its free sides, both on the bottom and the side edges. That is because on those elements the same
pressure is applied as the rest of the sail, while in the FSI case the side elements do not get any forcing, see
figure 6.10. Another figure that compares the outline of the two obtained shapes is reported 6.12: from this
figure it is even more clear how the sides of the spinnaker are more deformed for the constant pressure case
(blue line). The FSI case (red line) on the other hand shows a less regular shape, with the part next to the
corners wearing thin and then inflating more in the center and then wearing thin again next to the sail head.
When wanting to assess which one of the two deformed shapes more represents the reality, one can compare

to the situation depicted in figure 6.13, where a real-life symmetrical spinnaker is depicted. When looking
at the side edge of the spinnaker in figure 6.13, it seems like the shape resembles more the one obtained
imposing the FSI pressure, in fact the sail does not have a regular, circular shape like in the constant pressure
case, but more a wave-like shape, like the red line reported in figure 6.12. This suggests that indeed an FSI
investigation will yield more relevant results than an investigation with a constant pressure.
The last figure reported 6.14 compares the design shape and the flying shape obtained with FSI. In this case

the differences are more noticeable than in the Viola testcase, due to the higher velocity and pressure load.
From this image it can be argued that indeed the two shapes are widely different and that is something to
take into consideration in the design process. Regarding the generated total forces, for the design shape the
generated force is equal to 2143 N, while for the flying shape the force is 1981 N, resulting in a difference of 7%.
This is representative of how using an FSI cycle results in a more accurate prediction of the force provided by
the sail, thanks to the more accurate prediction of the deformed shape. The difference of 7% has to be taken
in consideration when designing the sail and the rigging. In fact, the flying shape provides less thrust than
the initial shape, and therefore using the estimation of the force from the initial shape would result in an
over-dimensioning of the rigging and mast, for example.

6.3. Conclusions
Two test cases have been presented in this chapter. The first case was done using the geometry from Viola [9],
which corresponded to the flying shape obtained in the wind tunnel. An iterative routine was implemented
to obtain an initial shape to start the FSI simulations from. The results were very satisfying as a very similar
shape to the reference one was obtained from the FSI iterations, with maximum differences in coordinates of
approximately 2.5 mm. The result can be considered quite good given the complexity of the problem.

The second testcase, taken from Trimarchi [35], only provided the initial shape of the sail. For this case
then it was not possible to evaluate quantitatively the solution, but the results have been compared qualita-
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(a) Constant pressure, X view (b) Constant pressure, global view

(c) FSI pressure, X view (d) FSI pressure, global view

Figure 6.11: Computed displacement for the constant pressure case (6.11a,6.11b) and FSI pressure case
(6.11c,6.11d)

tively to a real life spinnaker sail and the results were reassuring. An investigation has been performed on how
the results change when using a constant pressure load or an interpolated pressure distribution. The analysis
shows that using a pressure obtained with FSI yields more reliable results.

In conclusion, it can be argued that the solver gives reasonable results for both test cases and if it could
replicate test cases of which both initial and flying shapes are known. Unfortunately it was not possible to find
such test cases to use and compare in this work, since the field of sail simulations is not very well explored
yet.
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Figure 6.12: Solution with constant pressure (blue) and FSI pressure (red)

Figure 6.13: Real-life symmetrical spinnaker
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Figure 6.14: Initial shape (green) and flying shape (red)





7
Conclusions

In this thesis work, a fluid structure interaction solver has been implemented and validated. The interme-
diate steps to be taken consist in the CFD simulations, the FEM simulations and the coupling of the two
solvers. The CFD simulations have been run with two solvers, FINE/Open and OpenFOAM, and the results
compared to the experimental data obtained by Viola et al. [9]. The results were reassuring for the FINE/Open
simulations, a good agreement with the experimental data was found. For the OpenFOAM simulations the
differences were quite big and therefore the FINE/Open results have been used in the rest of the project.

Next, the FEM solver developed by Daniele Trimarchi [35] has been validated against some cases for which
the analytical solution was available, namely the cylinder and sphere case, see section 4.2. These cases were
chosen because no reference data was available for the sail testcase. However, the deformation of the sail
has been qualitatively compared with some real life sailing condition and the main tendencies were well cap-
tured.

Consequently the interpolation techniques have been implemented and their validity asserted: the near-
est neighbor interpolation has been used to transfer the pressure obtained with the CFD solver to the struc-
ture mesh, and the RBF method has been used to interpolate the displacements of the structure nodes to the
fluid domain file. In the nearest neighbor interpolation an error of around 8% arose due to the coarseness of
the structure grid, while the RBF was not quantitatively estimated but showed to work really well.

Finally, the result of the FSI simulation has been compared to the flying shape obtained by Viola et al. [9]
and a small offset has been observed between the two shapes. However, the tendencies, displacement and
pressure distributions are well reproduced, always with an error lower than 8%. Considering this work as a
basis for a more elaborate and accurate project this is a quite satisfying starting point.

The aim of the project was not only to be able to reproduce some reference data but also to provide a
tool for the sailmakers that allows to get an estimate of the sail thrust under certain wind conditions, in order
to help with the sail design process. This objective has not been fully reached, since the solver is not totally
automatized and has quite long run times, however with some more work put into it it can result in a very
useful and powerful tool.

In conclusion, it is worth mentioning the research questions proposed in the literature study, and their
answers, if they were found.

1. Question: What are the appropriate techniques to compute the correct pressure distribution around the
spinnaker sail through a CFD solver?
Answer: In order to obtain a pressure distribution that resembles the reference data, steady RANS sim-
ulations have been run with the k-ω turbulence model, using BC’s that resemble the wind tunnel ex-
periment. The simulations were three dimensional and used 5 million cells and 1000 steady iterations.

2. Question: What techniques are able to capture the spinnaker’s flying shape by coupling the CFD solver
with a structural solver in an efficient manner?
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Answer: The FSI cycle implemented in this thesis uses the nearest neighbor interpolation to transfer
the pressure data from the fluid grid to the structure one. The displacement on the structure grid is
then transferred to the fluid mesh through radial basis function interpolation. No relaxation scheme
has been used because the simulation converged quite quickly.

3. Question: With the results from the two previous points, can the force generated by the spinnaker be
computed correctly and, possibly, optimized using various trim settings?
Answer: The force generated by the sail has been computed by integrating the pressure information
on the mesh, and it has been observed that the force produced by the flying shape is different than
the one of the design shape. That proves the point that this type of analysis is necessary for a correct
prediction of the forces in play, also thinking of the dimensioning of the other components of the yacht.
The employment of this solver for optimization studies has not been performed but it can be a good
starting point for another master thesis.



8
Recommendations

The obtained solver mainly has four weak points:

1. It is not fully automatized, still requires user action from iteration to iteration,

2. Its run times are quite long, namely 12 hours for FSI iteration on 6 cores,

3. The interpolation of the pressure to the structure mesh is not completely accurate and can lead to some
error,

4. In the structure solver, the sheets are currently modeled only as clamps. In reality, they can be trimmed
and their length can be shortened or extended. If that was modeled it would allow to simulate many
more conditions.

These flaws can be fixed with some work and that could be the starting point for another thesis project. The
steps to improve the solver have not been implemented not for lack of ability but for lack of time. However
the ideas on how to solve the problems have been though of:

1. Automatizing the whole process by using HEXPRESS and FINE/Open in batch mode, and using one
single script for the interpolations and FEM simulations. If using Matlab (like it was the case in this
project) some Python script that runs the CFD software would have to be written in Matlab and run in
Python.

2. Shortening the run times of the CFD simulation by imposing a stopping criterion for the testcase,
maybe defined experimentally (see Appendix C).

3. Change interpolation technique for the pressure or use a more refined structure mesh in order to lower
the interpolation error (also this could depend on the testcase and the pressure distribution).

4. The sheets can be modeled differently: either adding new elements with different properties in the
structure or modifying the imposable boundary conditions, for example imposing that a certain point
can only lie in a volume defined by a sphere of radius L, length of the sheet from its attachment point.
The sphere would represent all the possible positions of the sheet, and therefore of the sail vertex.

If these steps were to be taken the solver would improve its performance and accuracy significantly. Once the
solver is improved it can be used in the sail design process, maybe trying different geometries under same
conditions and estimating which is the best one, or simulating various trim settings for the same geometry in
order to find the optimal trim.
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Appendix

A.1. Structure of .dom file
This part is taken from the NUMECA documentation [29]. The domain file describes the computational do-
main for the simulation and it is made of two parts:

• The topology part describes the vertices of the model and defines a closed volume in which the domain
lies.

• The geometry part defines the actual geomety of the model. Each model surface is described by a
triangulation, each curve by a list of points connected by segments and the corners are defined by a
single point.

The first three lines of the file are header lines which specify the software version, date of creation and the
number of blocks the domain in composed of. In this case the domain is made by a single block. Next, some
parameters for the triangulations are set, then the list of seed points is reported. After that a list of topological
vertices is reported, which are the corners of the computational domain as explained earlier. In the next line
starts the definition of the curves. Each curve is defined by a list of points and a list of segments connected to
these points, and the expression in the domain file is:

curve_id_1 (starting from 0)
number_of_points
point_1 x y z
point_2 x y z
point_3 x y z
...
number_of_segments
segment_1 point_id_O point_id_D
segment_2 point_id_O point_id_D
segment_3 point_id_O point_id_D
...

After the description of all the curves the definition of the surfaces is reported. Similarly to the curve, each
surface is defined by a set of points and a list of triangles connected to these points:

surface_id_1 (starting from 0)
number_of_points 1 (1 is not used but must be present)
point_1 x y z
point_2 x y z
point_3 x y z
...
number_of_triangles
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triangle_1 3 point_id_0 point_id_1 point_id_2
triangle_2 3 point_id_0 point_id_1 point_id_2
triangle_3 3 point_id_0 point_id_1 point_id_2
...
surface_id_2

After these lines the topological edges are defined. For each topological edge, the IDs of the topological
vertices used as extremities are given. For a cyclic topological edge, these IDs are (-1, -1). The type of the
curve is specified, 1 for a convex edge, 2 for a concave edge. In addition, the curve ID defining the topological
edge is given, it usually equals to the topological edge ID. This part will not need to be modified and therefore
no details on the way the lines are written will be given.

A.2. Recognizing the useful lines
From the structure of the domain file described above, it can be argued that the lines to modify will be the
ones regarding the topological edges, the curves and the surfaces. The strategy adopted to find out if the
points in the file are relative to the spinnaker or not is based on taking the coordinate from the file and in-
putting it in the HEXPRESS GUI, where the point can be visualized in the domain. Only the points that lie on
the spinnaker will be considered for the interpolation. Obviously this operation is not done for all the curves
and surfaces but a preliminary selection is done. For example, in the HEXPRESS GUI it is possible to visualize
the curve numbers: that showed that the spinnaker curve was curve zero, so a check has been performed with
the technique described above to verify that the numbering was coinciding between the domain file and the
GUI. It turned out that they were, for the curve but not for the surfaces. The spinnaker curve has then been
identified and the lines describing it have been noted (lines 353 to 1448).
Regarding the topological vertices, after checking the position of the points in the domain it resulted that no
points were lying on the spinnaker. This can be explained with the fact that being the spinnaker a zero thick-
ness surface it does not really describe a volume in the domain and therefore the corners are not treated as
topological vertices.
Regarding the surfaces, from the GUI the two surfaces describing the spinnaker were face.1085_duplicate
and face.1085. These two names were not present in the domain file and therefore a check has been per-
formed on one point for each surface present in the file until the two surfaces describing the spinnaker have
been found, namely surface 11 and 13. The relevant lines were 17208-37973 and 82623-103388, respectively.
With this information the RBF script can then skip the lines that do not lie in the relevant ranges and apply
the interpolation to the lines describing the spinnaker geometry.



B
Appendix

In this appendix the computed and reference displacements in the x and z direction for the Viola testcase are
shown, in order to extend what was presented in chapter 6, figure 6.7.
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(a) Section 1/8 (b) Section 1/4

(c) Section 1/2 (d) Section 3/4

(e) Section 7/8

Figure B.1: Computed and reference x displacement at 5 horizontal sections
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(a) Section 1/8 (b) Section 1/4

(c) Section 1/2 (d) Section 3/4

(e) Section 7/8

Figure B.2: Computed and reference z displacement at 5 horizontal sections
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Appendix

This appendix clarifies what is expressed in point 2 of the recommendations. The goal is to shorten the run
times of the CFD simulations by determining experimentally when to stop the simulation, monitoring the
residuals and the convergence of lift and drag for example.
Figures C.1 and C.2 show the typical convergence plots obtained in the CFD simulations for the Viola testcase.
The same tendencies were observed for all FSI iterations, so only one iteration is reported here.

Figure C.1: Density residuals

From the density residuals plot it is clear that their values stabilize around a value of -1.9 after the 1000th

iteration, meaning that adding more iterations will not make them decrease. From the lift convergence his-
tory however, it is possible to recognize that the value for the lift completely stabilizes only after the 1200th

iteration. A zoom of figure C.2 is reported in figure C.3, where this tendency can be observed more clearly.

It is possible to argue that seeing these results one could stop the simulation at the 1200th iteration, maybe
at the 1250th for safety, in order to reduce the simulation time. In fact the number of iteration on the fine grid
for the case reported in figure C.2 was of 1000, while here it could be of 650, reducing the time by approxi-
mately 30%.

This strategy can be used in other simulations as well, but it is necessary to first run some simulations
with the high number of iterations, in order to determine the tendency and if the same behavior is present in
all the FSI iterations. It can however help to reduce run times quite significantly.

97



98 C. Appendix

Figure C.2: Lift convergence history

Figure C.3: Zoom of figure C.2
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