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Abstract
Global synchromodal transportation involves the movement of container shipments between
inland terminals located in different continents using ships, barges, trains, trucks, or any com-
bination among them through integrated planning at a network level. One of the challenges
faced by global operators is thematching of accepted shipments with services in an integrated
global synchromodal transport network with dynamic and stochastic travel times. The travel
times of services are unknown and revealed dynamically during the execution of transport
plans, but the stochastic information of travel times are assumed available. Matching deci-
sions can be updated before shipments arrive at their destination terminals. The objective
of the problem is to maximize the total profits that are expressed in terms of a combina-
tion of revenues, travel costs, transfer costs, storage costs, delay costs, and carbon tax over
a given planning horizon. We propose a sequential decision process model to describe the
problem. In order to address the curse of dimensionality, we develop a reinforcement learn-
ing approach to learn the value of matching a shipment with a service through simulations.
Specifically, we adopt the Q-learning algorithm to update value function estimations and
use the ε-greedy strategy to balance exploitation and exploration. Online decisions are cre-
ated based on the estimated value functions. The performance of the reinforcement learning
approach is evaluated in comparison to a myopic approach that does not consider uncertain-
ties and a stochastic approach that sets chance constraints on feasible transshipment under a
rolling horizon framework.
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1 Introduction

With the increasing volumes of global trade and the trend towards time-sensitive shipments,
efficient global transportation becomes increasingly important in global supply chains (Yang
et al. 2018). Synchromodal transportation is the provision of efficient, effective, and sus-
tainable transport services thanks to the horizontal and vertical collaboration among players
(SteadieSeifi et al. 2014). However, implementing synchromodality in global transport is still
challenging from several aspects, including: the design of collaboration contracts and pricing
strategies that ensure fairness and attractiveness among players at the strategic level (Lee and
Song 2017); integrated service network design that determines service frequencies and time
schedules at the tactical level (Meng et al. 2014); and integrated transport plan that assigns
specific shipments with transport services under a dynamic and stochastic environment at the
operational level (SteadieSeifi et al. 2014). This paper investigates a global synchromodal
shipment matching problemwith dynamic and stochastic travel times at the operational level.

With the development of digitization in the logistics industry, increasingly online platforms
have appeared in freight transportation (Meng et al. 2019), such asUber Freight andQuicargo.
We consider a platform owned by a global operator that receives shipment requests from
shippers and receives service offers from carriers, as shown in Fig. 1. The global operator
could be a logistics service provider or an alliance formed by multiple carriers, such as
Maersk and COSCO Shipping lines. A shipment is defined as a batch of containers that must
be transported from its origin to its destination within a specific time window. For example,
shipment r1 consists of 30 containers which require to be transported from origin terminal 1
to destination terminal 5 with a release time of Jan 1, 9:00, and a lead time of 840 h. A service
is characterized by its mode, origin terminal, destination terminal, time schedule, and free
capacity. For example, ship service s1 with capacity 200 TEU (twenty-foot equivalent unit)
will depart from terminal 1 on Jan 2, 11:00, and arrive at terminal 5 with an estimated travel
time of 680 h. The platform aims to provide optimal acceptance and matching decisions for
all shipments involved in the global synchromodal transport network. A match between a
shipment and a service means that the shipment will be transported by the service from the
service’s origin to the service’s destination. The platform combines the matched services into
itineraries to provide integrated transport for global shipments. For instance, shipment r2 will
be transported by barge service s2 from origin terminal 2 to transshipment terminal 1 and by
ship service s1 from terminal 1 to destination terminal 5. The objective of the platform is to
maximize the total profits.

In this paper, thematching of shipmentswith services in an integrated global synchromodal
transport networkwith the aim tomaximize total profits is defined as the global synchromodal
shipment matching (GSSM) problem. The GSSM problem considers multiple shipments
with soft time windows, multimodal services with capacity limitations and time schedules.
Shipments with different origins and destinations can be consolidated into the same service;
the transshipment operations between different services are available for all shipments. From
the mathematical modeling perspective, the GSSM problem belongs to the category of multi-
commodity multimodal container routing problems (Sun et al. 2015). In the literature, Chang
(2008) considered the routing choices formultiple commodities in amultimodal network; Sun
and Lang (2015) investigated the transshipment operations between time scheduled services
(i.e., trains) and time flexible services (i.e., trucks); Guo et al. (2020a) considered carbon tax
charged by governmental institutions and delay costs paid to shippers in addition to travel
costs, transfer costs, and storage costs in the objective function. In these studies, travel times
are considered as static and deterministic information.
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Fig. 1 A global synchromodal matching platform

In practice, at the time of transport planning, travel time uncertainties are quite common
resulting fromweather conditions, traffic congestion, and infrastructure capacity uncertainties
(Demir et al. 2016). Due to travel time uncertainty and the utilization of multimodal services
in global transportation, the services assigned to shipments might become suboptimal or even
infeasible at transshipment terminals. Thanks to the development in data analytics, proba-
bility distributions of uncertainties are often available to transport systems (Gendreau et al.
2016). Stochastic approaches that incorporate stochastic information of travel times have
been well investigated in vehicle routing problems (Ehmke et al. 2015; Li et al. 2010). How-
ever, only a few studies investigated synchromodal shipment routing with stochastic travel
times. Specifically, Demir et al. (2016) developed a sample average approximation method to
generate robust transport plans for all shipments involved in an inland synchromodal trans-
portation network by considering possible delays and the probability of missing a service.
Hrušovský et al. (2016) proposed a hybrid approach that combines an optimization model
generating deterministic routes and a simulation model evaluating the feasibility of transport
plans under travel time uncertainties. Generally, the decisions made by stochastic approaches
are referred to as a-prior or non-adaptive decisions since decisions are not updated during
the transport processes (Ritzinger et al. 2015).

In addition to stochasticity, the travel times of services are revealed dynamically dur-
ing the execution of transport plans. Matching decisions can be updated before shipments
arrive at their destination terminals. Methods that create adaptive decisions by incorporat-
ing dynamic as well as stochastic information in decision-making processes have attracted
increasing interest in the literature (Ritzinger et al. 2015). With regards to dynamic and
stochastic synchromodal shipment routing, van Riessen et al. (2016) designed a decision
tree to instantaneously allocate incoming containers to inland services by analyzing the solu-
tion structure of an optimization model on historical data of transport demand. Rivera and
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Mes (2017) developed an approximate dynamic programming algorithm to assign the newly
arrived shipments to a barge or trucks by incorporating the probability distributions of future
shipments. Guo et al. (2021a) proposed a stochastic programming-based rolling horizon
approach to create online matches between newly received shipments and services in an
inland synchromodal transportation network by integrating sampled shipments appearing in
the near future. However, none of the above studies considered dynamic and stochastic travel
times.

In the literature, most similar to our work are the work of Yee et al. (2021), Guo et al.
(2020b), and Guo et al. (2021b). Yee et al. (2021) developed a Markov decision process
(MDP) model to determine the optimal modal choice for a single shipment in a multimodal
network based on real-time and stochastic information of travel times. As the MDP model
runs for a single shipment and uses a limited number of scenarios to represent stochastic
travel times, it is solved optimally by means of backtracking. In contrast, our work considers
multiple shipments that can be consolidated into the same service at transshipment terminals.
While some of the shipments arrive at intermediate terminals, other shipments might be in
transit. Therefore, we develop a sequential decision process (SDP) model to track the states
of multiple shipments and the assigned services. Since the positions of shipments at the next
stage are not only decided by the decisions made at the current stage but also the decisions
made in history, the SDP model developed in this paper does not have the Markov property.
On the other hand, we adopt continuous probability distributions to describe the stochasticity
of travel times which cause the infinite number of scenarios for each service. To be able to
address the curse of dimensionality, we develop a reinforcement learning approach (RLA)
to estimate the value functions.

Guo et al. (2020b) consider the same problem settings as our work. However, they devel-
oped a chance-constrained programming model to address travel time uncertainties in global
synchromodal transportation at each decision epoch of a rolling horizon framework. As an
extension of Guo et al. (2020b), Guo et al. (2021b) consider dynamic and stochastic travel
times as well as shipment requests in global synchromodal transportation. They developed
a hybrid stochastic approach to address travel time and shipment request uncertainties inte-
grally. Under both of the approaches, shipment routes are updated only when infeasible
transshipment happens. Besides, while their approaches are restricted to normal distributions
of travel times, the RLA developed in this paper can be applied to any distributions.

This paper contributes to the state of the art by developing the RLA to solve the shipment
routing problem in global synchromodal transportation with dynamic and stochastic travel
times. The RLA learns the value of matching a shipment with a service through simulations.
Online decisions are created based on the estimated value functions. To the best of our
knowledge, this is the first work that applies RLA in the synchromodal shipment routing
domain. The performance of the RLA is evaluated in comparison to the myopic approach
(MA) proposed by Guo et al. (2020a) that does not consider travel time uncertainties and
the stochastic approach (SA) proposed by Guo et al. (2020b) that sets chance constraints on
feasible transshipment under a rolling horizon framework. While MA and SA require online
computations when dynamic travel times are revealed, RLA determines the behavior policy
that maps a perceived state to a decision before the execution of transport plans. Thanks to the
developed methodology, the platform can adapt shipment matching decisions immediately
based on real-time travel time information to achieve better performance in total profits over
a given planning horizon.

The remainder of this paper is structured as follows. In Sect. 2, we provide a detailed
problem description, followed by a sequential decision process model in Sect. 3. In Sect. 4,
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we develop the reinforcement learning approach. In Sect. 5, we present the experimental
results. Finally, in Sect. 6, we provide concluding remarks and directions for future research.

2 Problem description

Let N be the set of terminals. Each terminal i ∈ N is characterized by its loading/unloading
cost lcmi , loading/unloading time ltmi with mode m ∈ M = {ship, barge, train, truck}, and
storage cost per container per hour cstoragei . We assume terminal operators provide unlimited
loading/unloading and storage capacity to the global operator.

Let R be the set of shipments. Each shipment r ∈ R is characterized by its origin terminal
or , destination terminal dr , container volume ur , release time Trelease

r (i.e., the time when the
shipment is available for transport process), lead time Tlead

r , freight rate pr , and delay cost

cdelayr . The due time of shipment r is Tdue
r = T

release
r + T

lead
r .

Let S be the set of services. Each service s ∈ S is characterized by its mode ms ∈ M ,
origin terminal os , destination terminal ds , time-dependent free capacityUt

s at decision epoch
t , estimated travel time ts , travel cost cs , and generation of carbon emissions es . We consider
ship, barge and train services as time scheduled services with scheduled departure time Ds

and scheduled arrival time As for s ∈ Sship ∪ Sbarge ∪ Strain. Each truck service consists of a
fleet of trucks that have flexible departure times.

Due to travel time uncertainty at the time of planning, the arrival times of services are also
uncertain. The probability distributions of travel and arrival times of services are assumed
available. Travel time uncertainty in global synchromodal transportation may lead to infeasi-
ble transshipment during the transport process in addition to the commonly studied outcome
of late or early delivery at destinations (Li et al. 2010; Rodrigues et al. 2019). An illustrative
example is shown in Fig. 2. A shipment is planned to be transported by a train service from its
origin terminal to port A, by a ship service from port A to port B, and by two barge services
from port B to its destination terminal according to fixed time schedules. The outcomes of
travel time uncertainty in global synchromodal transportation include late delivery at desti-
nation terminal under realization 1, which causes delayed costs; early delivery at destination
terminal under realization 2, which causes storage costs; and infeasible transshipment at port
B under realization 3, which requires re-planning from port B to destination terminal.

The actual travel and arrival times of services are assumed known immediately when
services arrive at their destination terminals. Once shipments arrive at a new terminal, the
platformneeds to decide on the next service thatmoves a shipment leaving its current terminal.
Shipments might be moved following their transportation plans, or they might be moved by
a new service with updated plans. An illustrative example of dynamic shipment routing in
global synchromodal transportation is shown in Fig. 3. At time 100, a shipment arrives at
inland terminal A with a truck service. Instead of following the transport plan that moves the
shipment from inland terminal A to port B, the platform selects a train service that moves the
shipment to inland terminal B. At time 120, the shipment arrives at inland terminal B. The
same decision process continues until all shipments arrive at their destination terminals.

The objective of the global synchromodal matching platform is to maximize the total
profits by optimizing acceptance and matching decisions over a given planning horizon T .
The total profits are formed by a combination of revenues received from shippers, travel costs
paid to carriers, transfer costs and storage costs paid to terminal operators, delay costs paid
to shippers, and carbon tax charged by institutional authorities.

The notation used in this paper is shown in Table 1.
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Table 1 Notation

Sets

N Terminals

R Shipments

Rt Accepted shipments arrival at new terminals during time interval (t − 1, t]

M Modes, M = {ship, barge, train, truck}
S Services, S = Sship ∪ Sbarge ∪ Strain ∪ Struck

S+
i Services departing from terminal i , S+

i = S
+ship
i ∪ S

+barge
i ∪ S+train

i ∪ S+truck
i

S−
i Services arriving at terminal i , S−

i = S
−ship
i ∪ S

−barge
i ∪ S−train

i ∪ S−truck
i

S−t Services arriving at their destination terminals during time interval (t − 1, t]

Wt Exogenous information received during time interval (t − 1, t]

Ft State of the platform at stage t

Deterministic parameters

T Length of the planning horizon

or Origin terminal of shipment r ∈ R, or ∈ N

dr Destination terminal of shipment r ∈ R, dr ∈ N

ur Container volume of shipment r ∈ R

T
release
r Release time of shipment r ∈ R

T
due
r Due time of shipment r ∈ R

T
lead
r Lead time of shipment r ∈ R, Tlead

r = T
due
r − T

release
r

pr Freight rate of shipment r ∈ R

c
delay
r Delay cost of shipment r ∈ R per container per hour overdue

I tr Itinerary of request r ∈ R consists of matched services

φt
r Position of shipment r ∈ R at decision epoch t ∈ {0, 1, ..., T }
Arφtr

Arrival time of request r ∈ Rt at terminal φt
r

ms Mode of service s ∈ S,ms ∈ M

os Origin terminal of service s ∈ S, os ∈ N

ds Destination terminal of service s ∈ S, ds ∈ N

Ut
s Free capacity of service s ∈ S at decision epoch t ∈ {0, 1, ...T }

cs Travel cost of service s ∈ S per container

es Carbon emissions of service s ∈ S per container

Ds Scheduled departure time of service s ∈ S\Struck
As Scheduled arrival time of service s ∈ S\Struck
ts Estimated travel time of service s ∈ S

Ās Actual arrival time of service s ∈ S\Struck
Ārs Actual arrival time of service s ∈ Struck with shipment r ∈ R

t̄s Actual travel time of service s ∈ S

lcmi Loading/unloading cost per container at terminal i ∈ N with mode m ∈ M

ltmi Loading/unloading time at terminal i ∈ N with mode m ∈ M

c
storage
i Storage cost at terminal i per container per hour

cemission Activity-based carbon tax charged by institutional authorities

B A large number used for binary constraints
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Table 1 continued

Sets

Random variables

t̃s Travel time of service s ∈ S

Ãs Arrival time of service s ∈ S\Struck at destination terminal ds
Variables

yr Binary variable; 1 if shipment r ∈ R is accepted

xtrs Binary variable; 1 if shipment r ∈ Rt is matched with service s ∈ S, 0 otherwise

Drs Departure time of truck service s ∈ Struck with shipment r ∈ R

T̃
delay
r Delay of shipment r ∈ R at destination terminal dr ∈ N

3 Sequential decision process model

In this section, we formulate a sequential decision process (SDP) model to describe the
interaction between the global synchromodal matching platform and the transport network.
The flowchart of the SDP is shown in Fig. 4. There are seven fundamental elements in the
SDP model: decision epochs, exogenous information, states, decision variables, transition
functions, costs, and objective functions (Powell 2019). A brief summary of these elements
is as follows:

• Decision epochs We define t as the points in time at which decisions are made, referred
to as the decision epoch, t ∈ {0, 1, ..., T }. Therefore, the planning horizon is divided into
T consecutive time intervals.

Start

Ini�aliza�on: decision epoch t=0

Observe exogenous informa�on

Update the state of the pla�orm 
based on transi�on func�ons

Make decisions based on the 
objec�ve func�on

All shipments arrived at their des�na�on terminal?

Move to the next stage

Observe state of the pla�orm

End
Yes

No

Fig. 4 Flowchart of the sequential decision process model
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• Exogenous information The exogenous informationWt consists of all the new informa-
tion that first becomes known at decision epoch t . We define Ās as the actual arrival
time of service s ∈ S\Struck, and define Ārs as the actual arrival time of service
s ∈ Struck with shipment r ∈ R. We represent Wt = [

Ās
]
s∈S−t ∪ [

Ārs
]
s∈S−t , where

S−t = {s ∈ S|t − 1 < Ās/ Ārs ≤ t} is the set of services arriving their destination
terminals during time interval (t − 1, t].

• States The state Ft of the global synchromodal matching platform contains all the infor-
mation that is necessary and sufficient to model the platform at decision epoch t . We
distinguish between the initial state F0 and the dynamic state Ft for t > 0. The ini-
tial state contains all the deterministic sets and parameters {N , R, S, T }, and probability
distributions of random variables

[
t̃s

]
∀s∈S and

[
Ãs

]

∀s∈S\Struck . The dynamic state Ft con-

tains the information that is evolving over time, including the free capacityUt
s of service

s ∈ S, the itinerary I tr of shipment r ∈ R at decision epoch t , the position φt
r of shipment

r ∈ R at decision epoch t , the set of accepted shipments Rt arrived at new terminals
during time interval (t − 1, t], and the arrival time Arφt

r
of shipment r ∈ Rt at terminal

φt
r . We define φ0

r = or , Aror = T
release
r ,∀r ∈ R. The system is terminated when all the

shipments arrive at their destination terminals.
• Decision variables Let yr be the binary variable which is 1 if shipment r ∈ R is accepted,

0 otherwise. Let xtrs represent the match between shipment r ∈ R and service s ∈ S. At
decision epoch 0, the platform needs to decide on acceptance decision yr and matching
decision

[
x0rs

]
s∈S+

or
for shipment r ∈ R. At decision epoch t ∈ {1, ..., T }, the platform

needs to decide on the matching decision xt for accepted shipments Rt . Let Drs be the
variable that indicates the departure time of service s ∈ Struck with shipment r ∈ Rt . The
decisions are restricted by the time-spatial compatibility between shipments and services,
and free capacities of services at decision epoch t . The decision vectors xt consist of all
the decisions at decision epoch t as seen in (1), subject to constraints (2–5), which define
the feasible decision space.

xt = [
xtrs

]
∀r∈Rt ,s∈S+

φtr

(1)

subject to
∑

s∈S+
φtr

x trs = 1, ∀r ∈ Rt , (2)

∑

s∈S+
φtr

x trs = 0, ∀r ∈ Rt , ds ∈ {φ0
r , ..., φ

t
r }, (3)

∑

r∈Rt

x trsur ≤ Ut
s , ∀s ∈ S, (4)

Arφt
r
+ ltms

φt
r

≤ Ds + B(1 − xtrs), ∀r ∈ Rt , s ∈ S+
φt
r
\S+truck

φt
r

, (5)

Arφt
r
+ ltms

φt
r

≤ Drs + B(1 − xtrs), ∀r ∈ Rt , s ∈ S+truck
φt
r

. (6)

Constraints (2) ensure that a service will be selected to transport shipment r ∈ Rt

departing from its current terminal φt
r . Constraints (3) are designed to eliminate subtours.

Constraints (4) ensure that the total container volumes of shipments matched with service
s do not exceed its free capacity at decision epoch t . Constraints (5-6) ensure that the
arrival time of shipment r at terminal φt

r plus loading time must be earlier than the
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scheduled departure time of service s ∈ S+
φt
r
if shipment r will be transported by service

s leaving terminal φt
r . Here, B is a large number used for binary constraints.

• Transition function. Following state Ft , decisions
[
y, x0, ..., xt

]
, and exogenous infor-

mation Wt+1, the system transitions to a new state. We denote the transition function
by Ft+1 = f (Ft ,

[
y, x0, ..., xt

]
,Wt+1). The free capacity of service s ∈ S at stage

t + 1 is decided by the free capacity of service s at decision epoch t and the matching
decisions made for shipments Rt , as shown in (7). The itinerary of shipment r at stage
t + 1 is decided by the current itinerary and the matching decisions, as shown in (8).
The position of shipment r at stage t + 1 is decided by the arrival time of the matched
service s ∈ S−(t+1), as shown in (9–10). Set Rt+1 consists of the accepted shipments that
arrive at new terminals at stage t + 1, as shown in (11). Equations (12–13) represent that
the arrival time of shipment r ∈ Rt+1 at terminal φt+1

r equals the actual arrival time of
service s ∈ S−(t+1) plus unloading time if shipment r is transported by service s arriving
terminal φt+1

r .

Ut+1
s = Ut

s −
∑

r∈Rt

ur x
t
rs, ∀s ∈ S, (7)

I t+1
r = I tr ∪ s, ∀r ∈ Rt , s ∈ S+

φt
r
, xtrs = 1, (8)

φt+1
r = ds, ∀r ∈ R, s ∈ S−(t+1),

t∑

t ′=0

xt
′
rs = 1, (9)

φt+1
r = φt

r , ∀r ∈ R,

t∑

t ′=0

∑

s∈S−(t+1)

xt
′
rs = 0, (10)

Rt+1 = {r ∈ R|yr = 1, φt+1
r �= φt

r , φ
t+1
r �= dr }, (11)

Arφt+1
r

= Ās + ltms

φt+1
r

, ∀r ∈ Rt+1, s ∈ S−(t+1)\Struck,
t∑

t ′=0

xt
′
rs = 1, (12)

Arφt+1
r

= Ārs + ltms

φt+1
r

, ∀r ∈ Rt+1, s ∈ S−(t+1) ∩ Struck,
t∑

t ′=0

xt
′
rs = 1. (13)

• Costs Based on the state Ft , and the decision xt , the costs at decision epoch t can be
defined as a function of Ft and xt , as shown in (14).

C̃
t
(Ft , xt ) =

∑

r∈Rt

∑

s∈S+
φtr

x trsur
(
cs + lcms

os + lcms
ds

+ (
Ds − ltms

os − Aros

)
cstorageos

)

+
∑

r∈Rt

∑

s∈S+
φtr

x trsur c
emissiones +

∑

r∈Rt

∑

s∈S+
φtr

∩S−
dr

cdelayr T̃
delay
r ur ,

(14)

where

T̃
delay
r ≥ Ãs + ltms

ds
− T

due
r + B(xtrs − 1),∀r ∈ Rt , s ∈ S+

φt
r
, ds = dr . (15)

We use C̃
t
(Ft , xt ) to denote the costs which consist of travel costs, loading and unloading

costs, storage costs, carbon tax, and delay costs. Let T̃delay
r represent the delay in delivery

of shipment r ∈ Rt at its destination terminal dr , which is decided by the matching
decisions xt and the arrival time Ãs of matched service s ∈ S+

φt
r
, ds = dr .
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• Objective functions. The objective of the SDP model is to maximize the expected total
profits over the planning horizon given as follows:

max
y,xt

∑

r∈R

prur yr − EW1,...,WT |F0{
T∑

t=0

C̃
t
(Ft , xt )|F0} (16)

We refer to the objective function in (16) as the cumulative formulation. Using Bellman’s
principle of optimality, the optimal profits can be computed through a set of recursive
equations, as seen in (17–18).

V (F0) = max
y,x0

∑

r∈R

prur yr − E{C̃0
(F0, x0)} − EW1{V (F1|F0,

[
y, x0

]
,W1)}, (17)

V (Ft ) = min
xt

E{C̃t
(Ft , xt )} + EWt+1{V (Ft+1|Ft ,

[
y, x0, ..., xt

]
,Wt+1)}, ∀t > 0.

(18)

Here, V (Ft ) represents the value function of being in state Ft at decision epoch t in the
SDP model, which evaluates how good it is for the platform to be in a given state.

The complexity of the SDP model lies in several aspects. First, at each decision epoch,
the costs caused by state Ft and decision xt are uncertain, which relies on the arrival time
of matched services. Therefore, the stage that costs C̃

t
(Ft , xt ) will be fully observed is also

uncertain. Second, the decisionsmade at stage t not only have influence on the costs generated
at the current stage C̃

t
(Ft , xt ) but also affect the future costs V (Ft+1). Third, the state Ft+1

of the platform at stage t + 1 depends not only on the decisions made at stage t but also on
the decisions made at previous stages {0, 1, ..., t − 1}.

4 Reinforcement learning approach

Although the probability distributions of the travel and arrival times of services are assumed
available, it is very difficult to obtain optimal solutions by solving the Bellman equations
(18) directly via dynamic programming algorithms, known as “the curse of dimensionality”
(Mes and Rivera 2017). Methods based on approximation strategies to solve SDP models
have attracted increasing interest in the literature (Powell 2019). These methods can be
divided into two groups: methods based on online decisions which focus on the computation
when a dynamic event occurs with respect to the current system state and the available
stochastic information, such as stochastic programming-based rolling horizon approaches
(Guo et al. 2021a); and methods based on preprocessed decisions which estimate the value
functions and determine the behavior policies before the execution of transport plans, such as
reinforcement learning approaches (Sutton and Barto 2018). A policy is defined as a mapping
from perceived states of the environment to decisions to be taken when in those states (Sutton
and Barto 2018). In this paper, we develop a reinforcement learning approach (RLA) to solve
the GSSM problem with dynamic and stochastic travel times.

The key idea of the RLA is to learn the value functions through simulations and to deter-
mine the policy that maps a state to a decision. However, estimating V (Ft ) in the SDP model
requires storing the information on travel time, arrival time, free capacity of all services, and
storing the information on the position and itinerary of all shipments in the value functions.
Besides, at each decision epoch, a mixed integer linear programming model needs to be
solved to obtain xt , which further increases the computational burden. To reduce memory
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and computation time requirements, we estimate the value function Q(r , s) for matching
shipment r ∈ R with service s ∈ S. The relationship between V (Ft ) and Q(r , s) can be
represented as:

V (Ft ) = min
xt

∑

r∈Rt

∑

s∈S+
φtr

Q(r , s). (19)

The first term in the value function Q(r , s) is the cost θ̃rs of moving shipment r from
terminal os to terminal ds via service s, and the second term is the value function from terminal
ds to other terminals, as shown in equations (20). If the destination terminal of service s is
the destination terminal of shipment r , then the value function Q(r , s) only includes the cost
θ̃rs , as shown in equations (22).

Q(r , s) = θ̃rs + min
q∈S+

ds

Q(r , q) ∀r ∈ R, s ∈ S, ds �= dr , (20)

where

θ̃rs =
(
cs + lcms

os + lcms
ds

+ (
Ds − ltms

os − Aros

)
cstorageos + cemissiones

)
ur , (21)

Q(r , s) = θ̃rs ∀r ∈ R, s ∈ S, ds = dr , (22)

where

θ̃rs =
(
cs + lcms

os + lcms
ds

+ (
Ds − ltms

os − Aros

)
cstorageos + cemissiones

)
ur

+ cdelayr T̃
delay
r ur .

(23)

Under a given strategy, the value function estimation Q(r , s) is updated once shipment r
arrives at terminal ds by using service s in a simulation. The typically used updating strategies
in reinforcement learning includeMonte Carlo learning (MC), on-policy temporal difference
learning (i.e., SARSA), and off-policy temporal difference learning (i.e., Q-learning) (Sutton
and Barto 2018). While MC learns from complete episodes, SARSA and Q-learning learn
from incomplete episodes by bootstrapping, namely, the value function is updated based on
the estimates of the values of successor states (Abdulhai and Kattan 2003). Compared with
SARSA in which the target policy and the behavior policy are the same, Q-learning learns
from the optimal policy while following a given behavior policy (Mao and Shen 2018). In
this paper, we adopt the Q-learning algorithm to update value function estimation Q(r , s)
for shipment r ∈ R and service s ∈ S, as follows:

Q(r , s) ← Q(r , s) + α

[
θ̄rs + max

q∈�rφr

Q(r , q) − Q(r , s)

]
if ds �= dr (24)

Q(r , s) ← Q(r , s) + α
[
θ̄rs − Q(r , s)

]
if ds = dr (25)

Here, α represents the step-size which controls the learning rate from simulations, 0 ≤
α ≤ 1; θ̄rs denotes the observed cost of traveling shipment r from os to ds by service s; �rφr
represents the set of feasible services for shipment r at terminal φr that satisfy time, spatial,
and capacity constraints (2–6); δ = [

θ̄rs + maxq∈�rφr
Q(r , q) − Q(r , s)

]
is the temporal

difference between random observations and the current value function estimations.
At each decision epoch of a simulation, the next service that moves a shipment from

the current terminal to the next terminal is selected based on a given behavior policy. The
important aspect of the RLA is the trade-off between exploitation and exploration (Sutton
and Barto 2018). The RLA has to exploit the services that minimize the total costs based on

123



Annals of Operations Research

the current value function estimations. However, due to travel time uncertainties, the RLA
has to explore new services that might be a better choice than the current best service. One of
the behavior policies that balance exploitation and exploration is the ε-greedy policy. Under
the ε-greedy policy, the RLA selects the best service based on the current value function
estimations with probability 1 − ε, and selects randomly with probability ε (Çimen and
Soysal 2017).

The RLA that estimates value functions for the GSSMproblemwith dynamic and stochas-
tic travel times is briefly presented in Algorithm 1. The algorithmmainly consists of five steps
at each simulation: sampling random variables; observing exogenous information; updating
value function estimations; selecting services; updating states.

• Sampling random variables At the beginning of each simulation, the actual travel and
arrival times of all the services are sampled from given probability distributions.

• Observing exogenous information At each decision epoch t ∈ {1, ..., T } of a simulation,
the actual travel times

[
t̄s

]
s∈S−t and actual arrival times

[
Ās

]
s∈S−t are observed. The

position of shipment r is updated if service s ∈ S−t was selected, i.e., xrs = 1; the
arrival time of shipment r at the new position is updated accordingly; the actual cost of
matching shipment r with service s is calculated based on Eqs. (21,23).

• Updating value function estimations Based on the observations, the value function esti-
mations are updated based on Eqs. (24–25) for shipments that arrive at a new terminal at
each decision epoch.

• Selecting services For shipments arriving at a new terminal but not its destination terminal
(i.e., φr �= dr ), the next service that moves the shipment leaving the current terminal
needs to be selected. For shipment r ∈ Rt and service s ∈ S+

φr
, service s is a feasible

choice if: the arrival time of shipment r at terminal φr plus loading time is earlier than
the scheduled departure time of service s, the container volume of shipment r does not
exceed the free capacity of service s; and the destination terminal of service s hasn’t been
visited before, ds �= oq for q ∈ Ir . The next service q is determined based on a ε-greedy
policy: q ← argminq∈ �rφr

Q(r , q) with probability 1 − ε + ε
|�rφr | ; q ← other choice

from �rφr with probability ε
|�rφr | .

• Updating states. The itinerary of shipment r ∈ Rt and the free capacity of service
q ∈ S+

φr
are updated if service q is selected to move shipment r leaving terminal φr .

Using the estimated value functions, the global synchromodal matching platform selects
the greedy services that minimize the total costs in the online decision-making processes,
as shown in Algorithm 2. Different from the simulation process, at decision epoch 0, the
platform needs to decide on the acceptance decisions for all shipments. Shipment r is rejected
if revenue prur is lower than the estimated minimum total costs minq∈ �ror

Q(r , q). At each
decision epoch, the next service q that moves shipment r leaving its current terminal φr is
determined based on a greedy policy: q ← argminq∈�rφr

Q(r , q).

5 Numerical experiments

In this section, we evaluate the performance of the reinforcement learning approach (RLA) in
comparison to the myopic approach (MA) proposed by Guo et al. (2020a) and the stochastic
approach (SA) proposed by Guo et al. (2020b). While MA uses average travel times for
transport planning, SA sets chance constraints for feasible transshipment. Both MA and
SA use a heuristic algorithm to generate timely solutions at each decision epoch of a rolling
horizon framework. Matching decisions under MA and SA are updated only when shipments
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Algorithm 1 The RLA for estimating value functions.
1: Input. Terminals N ; shipments R; services S; planning horizon T ; simulation length L; probability of

random choices ε; step-size α;
2: Output. Value function estimations Q(r , s) for all shipments r ∈ R, services s ∈ S.
3: Initialization. Let Q(r , s) = 0 for r ∈ R, s ∈ S.
4: for Simulation counter l = 1 to Simulation Length L do
5: Reset simulation parameters. Set decision xrs = 0; set position of shipments φr = or ; set arrival time

of shipment r at origin terminal or as Aror = T
release
r ; reset free capacity Us of service s; set decision

space �ri = ∅ for shipment r at terminal i ∈ N ; set itinerary Ir = ∅ of shipment r ∈ R.
6: Sampling random variables. Sample arrival and travel times of services based on given probability

distributions.
7: for Shipment r ∈ R do
8: for Service s ∈ S+

or do
9: if Service s satisfies time, spatial, and capacity constraints (2-6) then
10: Update decision space �ror ← �ror ∪ s.

11: Selecting service. Select the next service q to travel for shipment r using a ε-greedy policy. Set
decision xrq = 1.

12: Updating states. Update itineraryIr ← Ir ∪ q; free capacity Uq ← Uq − ur .

13: for Decision epoch t = 1 to Planning horizon T do
14: Observing exogenous information. Observe actual arrival time Ās and actual travel time t̄s for

s ∈ S−t .
15: for Shipment r ∈ R do
16: for Service s ∈ S−t do
17: if Decision xrs = 1 then
18: Update shipment position φr ← ds ; update arrival time Ards ← Ās + ltms

ds
.

19: Calculate actual cost θ̄rs based on equations (21,23).
20: if φr = dr then
21: Updating value function estimations. Temporal difference δ = θ̄rs −Q(r , s); value function

Q(r , s) ← αδ + Q(r , s).
22: else
23: Update set of shipments need further decisions: Rt ← Rt ∪ r
24: if Shipments are not all at their destination terminals. then
25: for shipments r ∈ Rt do
26: for service s ∈ S+

φr
do

27: if Service s satisfies time, spatial, and capacity constraints (2-6) then
28: Update decision space �rφr ← �rφr ∪ s.

29: Updating value function estimations. Temporal difference δ = θ̄rs + maxq∈�rφr
Q(r , q) −

Q(r , s); value function Q(r , s) ← αδ + Q(r , s).
30: Selecting service. Select the next service q to travel for shipment r using a ε-greedy policy. Set

decision xrq = 1.
31: Updating states. Update itineraryIr ← Ir ∪ q; free capacity Uq ← Uq − ur .

32: else
33: Go to the next simulation.
34: Return the value functions Q(r , s) for shipment r ∈ R, service s ∈ S.

face infeasible transshipment during the transport processes. The approaches are implemented
in MATLAB and all experiments are performed on a computer with 2.50GHz Intel Core i5-
7200U CPU and 8 GB RAM. The optimization problems in MA and SA are solved with
CPLEX 12.6.3.

5.1 Experimental setup

We consider a global transport network that consists of eight terminals in Europe and four
terminals in Asia that are connected by Suez Canal Route (SCR), Northern Sea Route (NSR),
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Algorithm 2 Online decision making using the estimated value functions.
1: Input. Terminals N ; shipments R; services S; planning horizon T ; value function estimations Q(r , s).
2: Output. Acceptance decision yr and matching decision xrs for r ∈ R, s ∈ S.
3: Initialization. Set xrs = 0, φr = or , Aror = T

release
r , �ri = ∅, Ir = ∅.

4: for Shipment r ∈ R do
5: for Service s ∈ S+

or do
6: if Service s satisfies time, spatial, and capacity constraints (2-6) then
7: Update decision space �ror ← �ror ∪ s.

8: if pr ur < minq∈ �ror
Q(r , q) then

9: Reject shipment r , yr = 0.
10: else
11: Selecting service. Accept shipment r , yr = 1; select the next service q to travel using greedy policy:

q ← argminq∈�ror
Q(r , q). Set decision xrq = 1.

12: Updating states. Update itineraryIr ← Ir ∪ q; free capacity Uq ← Uq − ur .

13: for Decision epoch t = 1 to Planning horizon T do
14: Observing exogenous information. Observe actual arrival time Ās and actual travel time t̄s for s ∈ S−t .
15: for Shipment r ∈ R and yr = 1 do
16: for Service s ∈ S−t do
17: if Decision xrs = 1 then
18: Update shipment position φr ← ds ; update arrival time Ards ← Ās + ltms

ds
.

19: Calculate actual cost θ̄rs based on equations (21,23).
20: if φr �= dr then
21: Update set of shipments need further decisions: Rt ← Rt ∪ r
22: if Shipments are not all at their destination terminals. then
23: for shipments r ∈ Rt do
24: for service s ∈ S+

φr
do

25: if Service s satisfies time, spatial, and capacity constraints (2-6) then
26: Update decision space �rφr ← �rφr ∪ s.

27: Selecting service. Select the next service q to travel for shipment r using greedy policy: q ←
argminq∈�rφr

Q(r , q). Set decision xrq = 1.
28: Updating states. Update itineraryIr ← Ir ∪ q; free capacity Uq ← Uq − ur .

29: else
30: Break.
31: Calculate the total profits:

T P =
∑

r∈R

pr ur yr −
∑

r∈R

∑

s∈S
θ̄rs xrs

and Eurasia Land Bridge (ELB), as shown in Fig. 5. Compared with SCR, NSR has a shorter
travel time but a higher travel cost caused by ice-breaking fees (Lin and Chang 2018). With
the implementation of IMO 2020 regulations, shipping liner companies are required to use
low-sulfur fuels on the sea, which in turn increases travel costs in SCR and NSR (Lian et al.
2020). As an alternative, ELB becomes more and more competitive thanks to its shortest
travel time.

Unless otherwise stated, the benchmark values of coefficients are set as follows: planning
horizon (unit: hours) T = 1400; loading cost (unit: e/TEU) lcshipi = 18, lcbargei = 18,

lctraini = 12, lctrucki = 12 for i ∈ N ; loading time (unit: hours) lt shipi = 12, ltbargei = 4,

lt traini = 2, lt trucki = 1 for i ∈ N ; storage cost (unit: e/TEU-h) cstoragei = 1 for i ∈ N ;
carbon tax (unit: e/kg) cemission = 0.07. The travel times of all the services follow normal
distributions: t̃s ∼ N (μs, σ

2
s ) for s ∈ S. The mean of travel timesμs = ts for s ∈ S, standard

deviation of travel times σs = 0.1ts for s ∈ S\Struck, σs = 0.5ts for s ∈ Struck. Besides, we
let 0.9ts be the fixed lower bound for travel times of service s ∈ S. Regarding SA, we set
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Fig. 5 The topology of a global synchromodal network

the confidence level to 0.7. In general, SA performs the best under this setting (Guo et al.
2020b). Regarding RLA, we set the simulation length L = 100000, probability of random
choices ε = 0.3, step-size α = 0.01.

Weuse I-n1-n2-n3 to represent an instancewith n1 terminals, n2 services, and n3 shipments
under the global transport network.

5.2 Case study

We use a small instance I-5-18-6 with 5 terminals, 18 services, and 6 shipments to do the
case study. The service data is presented in Table 2. The shipment data is shown in Table 3.
Compared with reefer shipments (1, 3, 5), dry shipments (2, 4, 6) have longer lead times,
lower freight rates, and lower delay costs.

5.2.1 Sensitivity analysis of problem parameters

The sensitivity analysis of problem parameters is investigated under a static and deterministic
environment, i.e., the realization of travel times equals the expected values.

To test the impact of the carbon tax coefficient cemission on costs, delays, emissions, and
shipment itineraries, we set the objective function to minimize total costs without rejections.
Table 4 shows that increasing the carbon tax coefficient, the total costs will be increased
but emissions will be reduced. It is interesting to note that, the delay in deliveries grows as
emission decreases. The reason is that, with a large value of carbon tax coefficient, shipments
will be assigned to ‘greener’ services with lower emissions but mostly longer travel times.
For example, reefer shipments 1, 3 will be switched from Eurasia Land Bridge (service 17)
to Northern Sea Route (service 16). Besides, we notice that with the increase of carbon tax
coefficient, shipments 1 and 6 will be switched from barge transportation (services 1, 2, 3,
4) to train transportation (services 5, 6) which generates lower emissions and travel costs but
higher storage costs at transshipment terminals.
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Fig. 6 Sensitivity analysis of simulation length L

To investigate the impact of delay costs on shipment itineraries, we varied its value from
0.0000% to 1.5000%*freight rate. Table 5 shows that the increase in delay cost coefficient
can reduce delay in deliveries and impact service choices. Shipments will be switched from
slower to faster services, which are more expensive. For example, reefer shipments 1, 3, 5
will be switched frommaritime transportation (service 15) to rail transportation (service 17);
dry shipment 2 will be switched from Suez Canal Route (service 15) to Northern Sea Route
(service 16). It is interesting to observe again that there is a clear trade-off between delays
and emissions.

5.2.2 Sensitivity analysis of algorithm parameters

To show the impact of simulation length on the value function estimations under RLA, we
varied its value from 1 to 100,000. Figure 6 shows that the larger the number of simulations,
the more accurate the estimation of value functions, however the higher the computation time
requirements. When L = 100, 000, the CPU required for the case study is 461 s.

To investigate the sensitivity of step-size α which controls the learning rate under RLA,
we varied its value from 0.001 to 0.1. Figure 7 shows that the larger the step-size, the faster
the convergence of value function estimations Q(1, 3). The reason is that when the step-size
is large, the platform learns fast from simulations. However, when the step-size is too large
(i.e., α = 0.1), value function estimation Q(1, 3) fluctuates.

To test the sensitivity of random probability ε which controls the exploration rate under
RLA, we varied its value from 0.1 to 0.9. Figure 8 shows that the smaller the value of ε, the
smaller the degree of exploration, however the faster the convergence. Further decreasing ε

from 0.3 to 0.1, the changes become quite small.

5.2.3 Comparison between MA, SA, and RLA under the case study

In this section, we compare the performance ofMA, SA, and RLA under the given case study
with dynamic and stochastic travel times. Table 6 presents the estimated value functions by
RLA before the execution of transport plans.
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At decision epoch t = 0, under RLA, the platform rejects shipments 3, 4, 5, 6 since their
revenues are lower than the estimated minimum total costs. For example, for shipment 3, the
revenue is 5*4500e, the feasible services at its origin terminal (i.e., Wuhan) include services
2 and 4, the estimated minimum total cost is Q(3, 4) = 30703 > 5 ∗ 4500, shipment 3 is
therefore rejected. The platform accepts profitable shipments 1 and 2, and selects the services
that move shipments 1 and 2 departing their origin terminals based on the estimated value
functions. Under MA and SA, an optimization model needs to be solved, and the platform
generates the transport plans for shipments moving from their origin to destination terminals.
Figure 9 shows the initial transport plans generated by MA, SA, and RLA at decision epoch
t = 0. Without the consideration of travel time uncertainties, MA almost accepts all the
shipments. In comparison, SA and RLA consider stochastic travel times by using chance
constraints and simulations, respectively.
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The realization of travel times designed in this case study is shown in Table 7. Under this
realization, services 1, 2, 5, 6, 15, and 17 are delayed.

The realization of shipment itineraries under MA, SA, and RLA is presented in Table 8.
UnderMA and SA, the transport plan for a shipment is updated once infeasible transshipment
happens. UnderMA, at decision epoch t = 350, shipments 4 and 6meet infeasible transship-
ment at Shanghai terminal between services 2 and 15 due to the delay of service 2. Transport
plans for shipments 4 and 6 are updated by solving an optimization model, service 18 is then
selected to move shipments 4 and 6 to their destination terminals. Under SA, at decision
epoch t = 750, shipment 1 faces infeasible transshipment at Duisburg terminal between
service 17 and service 10. Service 14 is selected to replace service 10 to move the shipment
to its destination terminal. Under RLA, the next service is selected once shipments arrive at
new terminals by using the estimated value functions of matching the shipments with feasible
services. Specifically, at decision epoch t = 187, shipment 1 arrives Chongqing terminal,
service 17 is selected to move the shipment to Duisburg terminal; at decision epoch t = 747,
shipment 1 arrives at Duisburg terminal, service 12 is selected to move the shipment to its
destination terminal. Compared with MA and SA, RLA generates the highest total profits
under the designed case.

5.3 Impact of travel time distributions

In this section, we aim to investigate the performance of RLA under scenarios with dif-
ferent types of travel time distributions. We consider 3 instances with different numbers of
shipments. Each instance is tested under 20 realizations of travel times sampled from three
types of distributions: normal distribution, gamma distribution, and lognormal distribution.
These distributions are selected from the most commonly used travel time distributions in
the literature (Chen and Fan 2020). For each service, we set the same means and variances
of travel times under different distributions to ensure the fairness for comparisons. To avoid
the generation of too small values, we set the same lower bounds for the realization of travel
times under all types of distributions. We use MA as the benchmark and use the gaps in
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Fig. 10 Performance of RLA under scenarios with different types of probability distributions
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Fig. 11 Probability distributions of normal, gamma, and lognormal

total profits between MA and RLA as the performance indicator. Figure 10 shows that on
average, RLA outperforms MA under all types of distributions. It is interesting to note that
RLA has the best performance on scenarios with Normal distributions. The reason might be
that under normal distributions, services might have more realizations with delays (as shown
in Fig. 11), and RLA performs better than MA when delay happens since RLA learns from
realizations to avoid infeasible transshipments caused by delays.

5.4 Comparison betweenMA, SA, and RLA under large instances

To compare the performance of MA, SA, and RLA not only in terms of solution quality but
also computation time, we designed 15 large instances with up to 12 terminals, 167 services,
and 200 shipments under the global synchromodal network. For each instance, we report the
average results over 20 realizations of travel times sampled from normal distributions. We
denote ‘CPU’ as the total computation time in seconds for each instance. Let ‘γ1’ be the gap
in total profits between MA and RLA, i.e., γ1 = Total profits(RLA)−Total profits(MA)

Total profits(MA)
. Let ‘γ2’ be

the gap between SA and RLA, i.e., γ2 = Total profits(RLA)−Total profits(SA)
Total profits(SA)

. Table 9 shows that
RLA has better performance than MA and SA in total profits and computation time under all
instances. On average, RLA has 11.37% improvement in total profits in comparison to MA
and has 3.16% improvement in comparison to SA. Besides, we note that the computation
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time of MA and SA increases dramatically with the increasing size of instances. In contrast,
all the instances can be solved by the RLA within one second.

6 Conclusions and future research

In this paper, we investigated a global synchromodal shipment matching problem with
dynamic and stochastic travel times. We formulated a sequential decision process (SDP)
model to describe the problem. Due to the curse of dimensionality, the SDP model is very
hard to be solved directly by classical dynamic programming algorithms. To address this, we
adopted one of the most basic and popular reinforcement learning approaches (RLA), i.e., the
Q-learning algorithm, to estimate the value functions of matching shipments with services.
During the transport process, the next service that moves a shipment departing from its cur-
rent position is selected based on the estimated value functions. We conducted experiments
to validate the performance of RLA in comparison to a myopic approach (MA) proposed by
Guo et al. (2020a) that does not consider travel time uncertainty and a stochastic approach
(SA) proposed by Guo et al. (2020b) that sets chance constraints on feasible transshipment
under a rolling horizon framework. The experimental results indicate that RLA performs
better than MA and SA in total profits and computation time in all instances. With the devel-
oped methodology, the global synchromodal matching platform can adapt shipment routes
immediately when real-time travel times are observed to maximize the total profits over a
given planning horizon.

This research can be extended in several promising directions. First, in this paper, we
only considered contractual shipment requests that are received before the planning horizon.
Future research can take into account dynamic and stochastic shipment requests that are
received from spot markets. Second, in this paper, we considered a centralized platform
that has full information and provides integrated decisions for global shipments. However,
in practice, a large number of entities are involved in global container transport and they
may not all be willing to give authority to a centralized platform. Instead, they would like to
share limited information andmake local decisions by themselves. Coordinationmechanisms
among them and incentives to stimulate cooperation are part of future research. Third, in this
paper, we assumed the routes of services are fixed. Future research might consider flexible
routes of shipments and services integrally in synchromodal transportation.
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