
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Discovering energy
inefficiencies in
Docker through
tracing: A case study
with Redis
Enrique Barba Roque

Discovering energy
inefficiencies in
Docker through

tracing: A case study
with Redis

by

Enrique Barba Roque

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Tuesday June 25, 2024 at 15:30 AM.

Student number: 5849152
Project duration: November 6, 2023 – June 25, 2024
Thesis committee: Arie van Deursen, Thesis advisor

Luís Miranda da Cruz Supervisor
Thomas Durieux Supervisor
Sicco Verwer External examiner

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

A large thanks to Luis and Thomas, for making time every week for our meetings and supporting me
along the way. I’d also like to thank Diomidis Spinellis for his insight on our results, and Joseph P. De
Veaugh-Geiss and the KDE Eco community for giving me the chance to share my work with them.

Enrique Barba Roque
Delft, June 2024

i

Summary

Containerization with Docker has become the standard for the deployment of software in recent years
since it is a lightweight method to isolate applications. However, the selection of a Docker image
brings different dependencies, which can introduce energy inefficiencies that are often not documented.
Recent work performs a comparative study between different base images and finds certain patterns
in which some images tend to be less energy efficient for certain tasks. In this thesis, we propose
a methodology to find the reason behind observed energy inefficiencies in a Docker image by using
tracing to study how a workload makes use of the dependencies provided by the image. We apply
this methodology to test the energy efficiency of Redis when using different base images. This leads
to finding and raising awareness of energy inefficiencies in some functions from musl, the C standard
library implementation used by Alpine.

ii

Contents

Preface i

Summary ii

1 Introduction 1
1.1 Research questions . 2
1.2 Contributions . 2
1.3 Outline . 3

2 Background 4
2.1 Energy experiments and measurement . 4

2.1.1 Physical power meters . 4
2.1.2 Software profilers . 4

2.2 Operating systems and containerization . 5
2.2.1 Virtualization and containerization . 6

3 Related work 8
3.1 Energy optimization for Docker images . 8
3.2 Energy efficiency of programming languages and compilers 9
3.3 Energy efficiency in other software fields . 9

4 Study 11
4.1 Experimental setup . 11

4.1.1 Profiler selection . 11
4.1.2 Energy measurements . 12

4.2 RQ1. Comparison of C standard libraries through Redis 13
4.2.1 Redis configurations . 14
4.2.2 Data and Results . 15
4.2.3 Conclusions . 17

4.3 RQ2. Digging deeper with tracing . 17
4.3.1 Methodology . 17
4.3.2 Redis data and results . 21
4.3.3 Benchmarking memcpy . 23
4.3.4 Conclusions . 26

4.4 RQ3. Recreating Redis behavior . 26
4.4.1 Conclusions . 28

5 Discussion 30
5.1 Implications . 30
5.2 Threats to validity . 32

6 Conclusion 33
6.1 Future work . 33

References 35

A Tracing PostgreSQL execution 38

iii

List of Figures

2.1 Comparison of hypervisor and container architecture . 6

4.1 Energy consumption of Redis for the different configurations 15
4.2 CPU Power usage (W) against runtime of Redis for the different configurations 16
4.3 Output of uftrace report for Redis . 19
4.4 Example of a checkpoint line in Redis logs . 20
4.5 Histogram showing accumulated function runtime in each region between checkpoints . 22
4.6 Power usage of Redis for Ubuntu and Alpine, with the obtained checkpoints 22
4.7 Power usage of the memcpy benchmark with 12 GB . 23
4.8 Power usage against time of the memcpy benchmark from memory to memory 25
4.9 Power usage against of the memcpy benchmark from cached to memory 25
4.10 TCP server median power consumption for 1 and 2 clients against time 27
4.11 TCP server with memcpy median power usage for 2 clients 28

A.1 Energy consumption for PostgreSQL with different base images 38
A.2 Power usage of PostgreSQL in Alpine and Ubuntu . 39
A.3 Histogram showing accumulated function runtime in each region between checkpoints

for Postgres . 40

iv

List of Tables

4.1 Configurations for Redis energy experiments . 14
4.2 Average completion time and energy consumption for the different Redis configurations 15
4.3 Summary of libc function calls and runtimes for Redis 21
4.4 Average completion time and energy consumption for the memcpy benchmark with 12 GB 24
4.5 Average completion time and energy consumption for the memcpy benchmark from mem-

ory to memory . 24
4.6 Average completion time and energy consumption for the memcpy benchmark from cached

to memory . 26
4.7 Average completion time and energy consumption for the TCP benchmarks 27
4.8 Average completion time and energy consumption for the TCP benchmark with memcpy 28

A.1 Summary of libc function calls and runtimes for PostgreSQL 39

v

1
Introduction

In later years, the demand for computing power has grown, and data centers are increasing in number
and size. An increase in energy consumption accompanies this increase in demand. It is estimated that
by 2025 data centers will consume 20% of global electricity and account for 5.5% of global emissions
[3]. Because of these reasons, the field of Sustainable Software Engineering tries to raise awareness
about the energy consumption in software. Sustainable Software Engineering and the study of energy
efficiency in software have been relevant in the field of mobile and smartphone development [10], given
the need to optimize battery life in these devices, but the optimization of cloud deployments is still a
relatively new area of study.

Traditionally, performance optimization is believed to be a task exclusively for compilers. However,
some studies show that bloating and certain software engineering principles also affect energy con-
sumption [35, 1]. Modern software relies on a large number of libraries and dependencies, which are
built on top of other dependencies, with the objective of increasing abstraction and facilitating develop-
ment.

Each dependency introduces its own data structures, functions, and classes, and this complexity in-
creases the deeper we go on the dependency tree. This can introduce bloat and inefficiencies by
using functionalities that are too complex for the intended functionality. For example, using a complex
implementation of a Set that most of the time will contain just one or a very small amount of elements.

Due to the complexity of dependency trees of modern software, it is very difficult to locate and under-
stand where energy inefficiencies come from, and which libraries perform better or worse in this sense.
Therefore, developers often select their tools and libraries based on other, more immediate parameters,
like runtime or size. However, a library being better in these measurements does not necessarily mean
that it is more energy efficient.

In cloud environments, Docker is commonly used to deploy applications, since containerization pro-
vides a lightweight process to start and stop your software while providing robust isolation at a much
lower cost than virtual machines. Some papers [30, 25] compared the energy efficiency of Docker
containers against virtual machines, and showed that virtual machines incur in a much higher energy
consumption than Docker containers.

However, Docker containers still provide a number of libraries and binaries over which the applications
are run, and different versions of these dependencies might lead to different energy consumption. A
recent thesis [32] considers this, and performs a comparative study in which the energy consumption
of different workloads is compared when switching the base Docker image to build the dependencies.

One of the study’s main findings is that, for most of the workloads, Alpine tends to have a higher
energy consumption when compared to other base images. The main hypothesis for this observed
inefficiencies in Alpine is a performance difference in the Alpine implementation of the C standard library
(libc). Ubuntu and most other Linux-based operating systems use the GNU C Library implementation

1

1.1. Research questions 2

or glibc, while Alpine uses a custom implementation called musl, with the aim of reducing clutter and
bloat compared to the GNU implementation.

This thesis will delve more into finding out the reasons why Alpine is less energy efficient than other
images in certain workloads. Wewill research which are the differences in terms of libraries and binaries
between Alpine and other Linux distributions, focusing on the C standard library implementation and
its effects on energy consumption. For this, we will focus on one of the workloads from the previous
study (Redis) and find out which functions are used the most in different points of execution, especially
in the parts of the workload where the consumption difference is higher. To do this, we will define a
formal approach, providing amethodology that other researchers or developers can apply to investigate
energy inefficiencies and regressions in other workloads that use different libraries or technologies.

1.1. Research questions
This thesis will answer the following research questions to guide our research and design of energy
experiments and validate hypotheses.

RQ1. What is the difference between glibc and musl in terms of energy consumption?

The first step in our research will be to verify the hypothesis made by previous work and confirm if there
is an energy performance difference between different implementations of the C standard library. To
do this, we will try to replicate the results of the previous thesis and define additional experiments that
are oriented to verify the hypothesis.

RQ2. Can we use tracing to compare energy consumption differences in shared libraries?

Once we confirm the previous hypothesis, the main focus of this thesis is to explain the specific reasons
for the energy difference between libc implementations. The objective is to find the concrete function
or functions from libc that are the cause behind the observed difference in energy consumption. To do
this, we will define a formal methodology using tracing tools to record the functions that are being used
by the workload.

RQ3. Can we verify the origin of energy consumption differences by recreating the work-
load behavior closely?

Finally, to fully confirm the function that is causing the observed difference in energy consumption, we
will try to emulate the original workload as much as possible while using only functions that we know do
not have an impact on energy plus the function that introduces the impact. If we still observe a similar
difference in energy, we know that function is the most probable cause. To do this, we will study the
energy consumption of other functions, specifically those associated with the operating system kernel,
which should be shared by the Docker containers and therefore, not present a difference in energy
usage.

1.2. Contributions
The thesis provides the following contributions to the field of Sustainable Software Engineering.

Replication of previous work and verification of the proposed hypothesis about differences
in libc implementation

We replicate and extend the experiments done for Redis in previous work so we can verify the hypoth-
esis proposed, giving some insights into the energy performance of different libc implementations.

A methodology and pipeline to study energy regressions in software

1.3. Outline 3

We propose a methodology based on program tracing to detect the most used external functions of a
workload and measure their impact on total energy consumption. We provide a detailed description of
the steps to take, as well as a Jupyter Notebook for easier usage and replication of our results1.

Set of energy benchmarks for some libc functions

We provide the set of energy benchmarks we used to test and confirm the energy differences of memcpy
and other functions of the C standard library. They are provided as experiments in the docker-energy
framework for easier reproducibility.

1.3. Outline
The rest of this thesis is structured as follows: Chapter 2 gives some background into themost important
technologies for the Thesis. Chapter 3 presents an overview of literature related to this topic. Chapter 4
presents our case study with a timeline of our research into Redis energy consumption, and the results
obtained, and presents the methodology to successfully find energy inefficiencies in shared libraries
for a piece of software, as well as the requisites to do so. Chapter 5 discusses more in-depth the
implications derived from the results of the Redis investigation and the methodology proposed. Finally,
Chapter 6 presents some final conclusions and discusses possible future research on the topic.

1https://github.com/enriquebarba97/energy-hotspots

https://github.com/enriquebarba97/energy-hotspots

2
Background

This chapter presents an essential background to understand how we run and analyze our energy
experiments. We will explain how energy consumption is measured on a computer, and different tools
and alternatives to perform these measurements. We also explain the difference between different
virtualization technologies and how each of them isolates their workloads.

2.1. Energy experiments and measurement
The awareness of climate change and sustainability has been growing in later years [4], and with it,
multiple fields are trying to reduce their impact on carbon emissions. Among them, the field of software
has to be considered, given how it permeates across all of society. Given the digital nature of software, it
might not be obvious how this affects climate change. However, this software needs to run on machines
and servers, which require large amounts of energy [3], and the source of this energy plays a major
role in carbon emissions.

There are two main ways of measuring energy consumption: physical power meters and software
profilers. Each has different advantages and limitations, and we will compare multiple options in this
section.

2.1.1. Physical power meters
Physical power meters provide the most accurate measurements [6] and it has been used previously
in other studies [25]. They are connected between the power socket and the computer to test, which
can provide measures of instantaneous power usage through the device.

One device of this type is the Watts Up Pro1 which provides instantaneous measures of voltage and
current, which can be used to calculate power. Another device is the Raritan2 power distribution unit,
which computes the average of instant power over periods of time, which is known as active power in
alternating current systems [19].

This kind of measurement device is often difficult to set up and needs calibration for the machine that it
is going to be measured. Additionally, they only provide a power measurement for the whole machine,
without the ability to measure individual components. This can be misleading since idling components
still consume some power, and this would not represent the usage of the specific workload under study.

2.1.2. Software profilers
An alternative to physical power meters is to use software-based profilers. These tools can collect
data on energy usage directly from the CPU registers dedicated to collecting energy usage data for
other tools to use, like performance monitoring. These measurements are based on estimations, which
makes them less reliable than those obtained with physical meters. However, they can report individual

1https://www.powermeterstore.com/p1206/watts_up_pro.php
2https://www.raritan.com/eu/products/power/power-distribution/intelligent-rack-pdus

4

https://www.powermeterstore.com/p1206/watts_up_pro.php
https://www.raritan.com/eu/products/power/power-distribution/intelligent-rack-pdus

2.2. Operating systems and containerization 5

energy usages of components, likememory andCPU packages, or even consumption of individual CPU
cores.

The information that the software profiler can report heavily depends on the interface provided by the
processor. The most common interface is Intel’s Running Average Power Limit or RAPL [18]. This
interface is used for measuring and limiting energy consumption for different power domains of the
computer [14]. Concretely, it can provide measurements for the following domains:

• Package (PKG): Energy consumption of the entire socket, including all cores, integrated graphics,
caches, and memory controller.

• Power Plane 0 (PP0): Energy consumption of all cores of the CPU.
• Power Plane 1 (PP1): Energy consumption of integrated GPU
• DRAM: Energy consumption of the RAM attached to the system
• PSys: Reports the power specifications of the entire system-on-chip.

There are several tools that use RAPL to measure the energy consumption of different processes in
Linux. The most common tool is the perf command [34], which is able to measure both computing
performance in the form of total runtime and CPU cycles, as well as the total energy consumption of an
application. Other options are PowerTOP3 or Powerstat4. These tools provide power usage statistics
after running a workload, including average, standard deviation, and minimum and maximum power
usage, in Watts. Total energy consumption must be computed afterward from these statistics.

The RAPL interface is an implementation made by Intel, and available only on Intel processors. How-
ever, AMD provides its own implementation of RAPL [27], and shares certain registers with the original
implementation. This means that the previously mentioned tools are partially compatible with AMD
processors. AMD’s implementation of this interface provides more fine-grained details, like being able
to report the energy consumption of individual cores of the CPU.

For this reason, we will use an AMD machine to run our energy experiments, and we will use the
software profiler toolEnergibridge [24] to make energymeasurements. Energibridge is a cross-platform
energy measurement tool, supporting multiple operating systems (Windows, Linux, and Mac OS) and
different CPU architectures like Intel, AMD, and Apple ARM. It does so seamlessly: you only need to
call the tool following the instructions, with no need for specific configurations depending on the platform
it is run.

Instead of relying on existing tools for each of the specific architectures, which would introduce over-
head, Energibridge uses low-level system calls to collect energy data directly from the platform tools,
the System Management Controller on Mac or the Model-specific registers on Intel and AMD. After
collection, it can write the data to an output CSV file.

2.2. Operating systems and containerization
An operating system is a system software that acts as an intermediary between the hardware of a
computer and the different applications that want to use that hardware, providing a unified interface to
access and manipulate these resources [29]. There are multiple components to an operating system.
For the purpose of our work, we will distinguish between kernel-level software and routines, (e.g. writing
to a file), and user-level functionality, like library functions.

The user-level functionality is software that can be used directly by the user to work with the system.
This includes, for example, the user interface, be it a command-line interface or a graphical user inter-
face. Part of this user-level functionality is the binaries for shared libraries, or other binaries that can
be used by developers to develop their own programs. One of these libraries is the C standard library,
which provides basic functionality for programming in C.

However, this user-level software cannot contain any explicit implementation to access the hardware
in the system directly. Accessing and directly handling hardware is the responsibility of the kernel, the
core of the operating system. The kernel contains code that provides access to the different hardware

3PowerTOP GitHub repository https://github.com/fenrus75/powertop retrieved on Jun 17, 2024
4Powerstat GitHub repository https://github.com/ColinIanKing/powerstat retrieved on Jun 17, 2024

https://github.com/fenrus75/powertop
https://github.com/ColinIanKing/powerstat

2.2. Operating systems and containerization 6

Figure 2.1: Comparison of hypervisor and container architecture

devices in the system, like hard drives, using their drivers. Access to these services is done through
an API of system calls.

To guarantee that the hardware is not tampered with by other code that is not part of the kernel, CPUs
have different privilege modes, which limits what code can be executed at each time. We will explain
this using a C program as an example. When a C program starts running, it is assigned a section
of memory and runs in a low privilege mode, where it can run operations that require no privileges,
like assigning variables or arithmetic computation. If at some point, the program wants to write into a
file, it calls the write function from the C standard library. This function does not contain any specific
implementation to directly manipulate the filesystem. Instead, it prepares the arguments and performs
a system call to the kernel. Then, the program is interrupted, the privilege mode is increased, and the
trusted code from the kernel takes over, performing the operation and returning the result to the program,
de-escalating privileges again. This way, when a program wants to do some sensitive operation with
the hardware, it has to go through the appropriate system call from the kernel, which provides trusted
and secure access.

2.2.1. Virtualization and containerization
In computers, virtualization is used to create an abstraction between hardware resources and software
processes. This way, software can be packaged with all its requirements and dependencies already
configured, and hardware resources like CPU cores or memory can be individually assigned to the
software.

There are two main approaches to virtualization: with virtual machines and a hypervisor or with contain-
ers. Figure 2.1 shows the architecture of both methods. In hypervisor-based virtualization, hardware
is abstracted by the hypervisor, which emulates virtual hardware devices and acts as an interface with
the physical devices [26].

A virtual machine contains a full software system, including the guest operating system kernel, filesys-
tem, and its binaries, besides the application to isolate. The guest OS treats the virtual hardware as
actual hardware, not knowing they are emulated devices. When the application wants to access a
hardware resource, it calls the guest kernel, which accesses the virtual hardware. This request actu-
ally arrives at the hypervisor, which maps the operation to the underlying physical hardware using the
host OS kernel.

2.2. Operating systems and containerization 7

This technology offers a large grade of isolation, given that the guest systems have no access to in-
formation about the machine they are hosted in. However, they are usually heavy, since a virtual
machine has to include a full operating system, and they have a large performance overhead due to
the additional layers of translation introduced by the hypervisor [28, 20].

A second technology that has grown in popularity over the last few years is containerization. Instead of
performing complete hardware emulation to achieve isolation, containers use technologies available in
the operating system kernel to isolate certain resources from one another. The most popular container
platform in Linux is the Docker engine. This technology uses a couple of Linux kernel functionalities to
manage the isolation and resource requests of containers to the kernel called namespaces and control
groups.

Namespaces are a way of limiting the visibility of processes and resources and their interaction with
other processes [17]. When a process is assigned a namespace, it can only interact with other pro-
cesses and resources that have the same namespace assigned. Namespaces can also have parent-
child hierarchical relations, so processes in a parent namespace can see resources in children’s names-
paces but not the other way around. The Docker engine uses namespaces to start processes and
containers, so they cannot interact with each other or with other critical parts of the host system.

Control groups, or cgroups are a kernel feature that can allocate specific amounts of hardware re-
sources like CPU utilization, network or disk usage, to different processes in the system. It can also
manage the contention of resources by scheduling access for the processes. With this feature, re-
sources can be distributed evenly between containers, and we can assign individual physical cores to
a container, which will help in energy experiments.

To package the necessary information to build a container, Docker uses images. These images are
read-only templates that contain the instructions to build and start a container [16], equivalent to a virtual
machine snapshot. Images are built and saved in a layered filesystem, following instructions from a
script-like file called Dockerfile. The building starts from a base image (e.g. ubuntu, which contains
the binaries and libraries of the Ubuntu distribution) and each instruction adds or modifies the specified
files in a new layer. This makes layers reusable, which can cache operations for future builds or be
reused in other images that follow some of the same instructions, which optimizes space usage.

When a container is started from an image, a writable layer is created, which contains the modifications
done by the container during runtime. This means that containers are often lighter than virtual machines
since multiple containers from the same image can reuse the read-only layers, and only need a writable
layer for each instance.

Because of these features, containers are actually very isolated processes and filesystems, rather than
virtual machines. This means that they do not need a fully-fledged guest operating system kernel, which
makes them even lighter. When a process in a container needs to make use of a hardware resource
through the kernel, the system call is done directly to the host kernel. This is an important detail for our
work. Since we are trying to locate which parts of a base image are responsible for the difference in
energy usage, we know that the kernel functions should not be part of the reason.

3
Related work

This chapter gives an overview of work in different fields related to this study. We look into several
studies that look into the optimization of Dockerfiles and Docker images, as well as studies that compare
Docker energy performance with other virtualization technologies and bare metal. We also look into the
energy performance of different programming languages and technologies, and the effect of compile-
time optimizations on energy performance.

3.1. Energy optimization for Docker images
There have been a number of studies that focus on optimizing Docker images and containers. One
way of optimizing Docker containers is by studying the impact of Dockerfiles and optimizing the building
process of the image. For this area, there have been multiple studies that try to improve the quality of
Dockerfiles to identify common pitfalls or Docker smells that tend to affect the performance of a Docker
container. Some tools use AST parsing of the Dockerfile to provide base image suggestions based
on the instructions used in the file through the use of neural networks [38] or to detect and warn the
developers about bad practices that appear in the Dockerfile [11]. Other studies propose techniques
and approaches to assess image quality, size, and build times, based on the evolutionary trajectory of
the artifacts [37] or Docker smells [23]. Although all of these studies bring important contributions to
their fields, none of them study Docker from an energy perspective.

There have been other studies that compare energy consumption for virtualization and containerization.
Researchers like Morabito et al. [19] perform an empirical comparison of different virtualization tech-
nologies where they compare KVM and Xen as hypervisor-based virtualization and Docker and LXC
as container-based technologies, measuring power usage through a physical meter. They find that, for
CPU-heavy workloads, power usage is similar for all technologies, while container-based technologies
show better performance for network tasks. However, this study is limited to comparing both tech-
nologies, without researching if different Docker configurations or base images could show different
performance.

Another comparison between virtualization technologies is provided by Tadesse et al. [30]. In this
paper, they only compare VirtualBox and Docker, and test both synthetic workloads and real-world
applications. Like in the previous paper, they find that CPU usage is similar for CPU-intensive tasks,
but they show that the hypervisor-based virtualization gets less job done in the same amount of time,
indicating that a large part of CPU usage is due to the translation layer introduced by the hypervisor,
decreasing the performance of the task. For memory and other I/O workloads, containers are again
more efficient than hypervisors. As with the previous paper, this work is limited to comparing hyper-
visors and containerization and does not delve into comparing the performance of different container
configurations.

Santos et al. [25] also performed benchmarks to compare Docker energy efficiency to bare-metal Linux.
For their study, they used realistic benchmarks with real-life applications like Redis, PostgreSQL, or
WordPress, and found that using containers introduces a small energy overhead compared to a bare-

8

3.2. Energy efficiency of programming languages and compilers 9

metal Linux server. However, they show that this energy overhead is generally negligible, and the
improved isolation granted by containers is a considerable advantage in improving development efforts.

In all cases, Docker shows better performance than virtual machines with respect to energy consump-
tion, as well as lower CPU usage across the board. However, all of these studies focus on comparing
bare metal, virtual machines, and Docker, and none of them look into how Docker energy performance
varies according to configuration and or base images.

The work by Tjiong et al. [32] is one of the first studies to look into how base image selection affects the
energy consumption of Docker containers for certain workloads. They perform multiple benchmarks
for different common workloads, like databases, web servers, and CPU-intensive tasks such as video
transcoding. They tested multiple popular base images like Ubuntu, Debian, and Alpine among others,
and provide a framework to run and create your own tests.

One of their main findings is that Alpine, known and commonly used for being the slim and light alter-
native to other images, tends to have a worse energy performance while showcasing similar runtimes
for the workloads in question. Some of the workloads that present this trend are Redis and Postgres.

However, this study is limited to reporting the results of the energy experiments, but it does not delve
into why this difference exists. The authors suggest that it might stem from a difference in the imple-
mentation of the C standard library, but there is no evidence of that. Alpine is a popular image because
it is smaller than other images and it is considered less bloated and more efficient. This work sheds
light on understanding the unexpected differences in energy efficiency and provides insightful observa-
tions that can be useful to operative system developers or developers who use Alpine and care about
energy efficiency.

3.2. Energy efficiency of programming languages and compilers
While this thesis uses Docker for its experiments, the energy inefficiencies observed can be the result of
the technologies and programming languages used inside the images. Therefore, we look into studies
that research the energy efficiency of different programming languages, as well as how compilers can
optimize time and/or energy usage and possible trade-offs when compiling.

Pereira et al. [22] perform a study to compare the energy efficiency of a large variety of programming
languages, using benchmarks for well-known and diverse programming problems, like computing digits
of π. They find that the most energy-efficient languages are compiled languages like C, C++, and
Rust, and the least energy-efficient are interpreted languages like Python or Lua. These results are
reasonable, given that an interpreter introduces an additional layer of complexity and latency.

For compiled languages, there has also been some research on optimizing energy consumption. In
general, the main focus for compilers during their development is on producing more time-efficient and
faster code. Although this generally leads to a more energy-efficient program, Zambreno et al. [36]
show that this is not always the case, especially for memory performance.

The paper by Pallister et al. [21] makes an exploratory study of different combinations of optimization
flags for the GCC compiler and their impact on the energy consumption of a program. The study is
limited to embedded software in ARM architectures. They find that, in most cases, compiler optimiza-
tions bring a better performance and energy efficiency, but some combinations of optimizations and
workloads increase energy usage without an improvement in runtime performance and conclude that
there is not a universally optimal set of optimization options. While these are relevant observations, the
study only focuses on optimizations introduced by the compiler itself. The software can depend on other
shared libraries which might introduce their own optimization (like the C standard library). The different
versions or implementations of these dependencies can introduce differences in energy performance.

3.3. Energy efficiency in other software fields
Although this thesis is focused on energy inefficiencies introduced by Docker, given the architecture of
container virtualization, it is possible that the energy inefficiencies are a product of the software included
with the container rather than the virtualization method itself. Because of this, we explore studies of
energy efficiency in other fields of Software Engineering.

3.3. Energy efficiency in other software fields 10

There has been some discussion and research into the inefficiencies introduced by the commonly used
design patterns of reusability and object-oriented programming. The work by Xu et al. [35] presents
some challenges in this area for the Java language. It shows how in certain cases when the data to store
has a simple structure, using Java collection objects like HashMap introduces unnecessary complexity
and performance issues due to the potentially unnecessary features and its dependencies on other
classes and routines.

The paper by Bhattacharya et al. [1] makes a similar point. Modern large-scale applications are built
over deeply-layered frameworks (e.g. a Javascript or Typescript framework) with modules designed
for a high degree of interoperability and flexibility. However, most systems only use a subset of these
functionalities, while the unused combinations can be an energy burden for the system. They present
several case studies where simple applications accidentally create temporary objects larger than nec-
essary or perform additional, unnecessary operations, which decreases performance and increases
energy consumption. In general, both this paper and the previous one agree that bloated software is a
problem that should be tackled, and the problem is aggravated by the diminishing returns from Moore’s
law [12].

A field where energy efficiency is important is in mobile software development, given the importance
of optimizing battery life. Dornauer et al. [10] present a survey on which of the different elements has
the greater impact on energy consumption for mobile devices. They also show how the main research
focus to improve energy efficiency in mobile devices has been the optimization of CPU cycles through
efficient scheduling, although hardware improvements for wireless communication were also relevant.

In this same field, Cruz et al. [8] study the effect of best practices for mobile software performance on
energy consumption. These guidelines are designed to improve the performance of applications, but
they were not proposed with energy performance in mind. The paper performs an experimental study
to find the energy impact of these guidelines and find that following these recommended practices leads
to an improvement in energy performance. Later, Cruz et al. expanded their research into a catalog of
energy patterns for mobile applications [7]. Here, they analyze which energy patterns are commonly
applied in Android and iOS applications by collecting commits in open-source applications and building
a catalog of the most effective energy patterns to apply to a mobile application.

4
Study

In the previous Chapters of this thesis, we show how different Docker base images can introduce energy
inefficiencies due to the shared libraries included in them. Despite having some previous literature that
uncovers these differences in performance, there are still no methods or tools to pinpoint the origin of
energy inefficiencies. The objective of this Chapter is to present a methodology that can help explain
some of the energy inefficiencies observed in previous work. We will apply this methodology to a case
study using Redis to prove its effectiveness and uncover the reason behind some performance losses
in Alpine and its C standard library.

The previous work by Tjiong et al. [32] does a good job of comparing the energy impact of different base
images in Docker, providing a framework to run energy experiments, and giving general guidelines, like
avoiding Alpine for certain workloads. The work also provides a hypothesis, suggesting that the main
culprit is the C standard library implementation.

However, the thesis does not confirm the hypothesis, it does not focus on explaining the reasons for this
behavior, and it does not provide techniques to locate the origin of the energy performance differences.
Being able to explain why some dependencies are performing worse than others is a fundamental first
step to fixing it and improving its performance. For example, in the case of Alpine, if we can explain and
report which part of the distribution is performing worse, we can give Alpine developers the opportunity
to fix it.

We start by replicating and expanding the Redis workload tested in previous work, to identify the poten-
tial root causes for the energy usage difference observed. We define a methodology to locate energy
performance differences in shared libraries, which we will apply to Redis, but can be applied to other
workloads. This process will be guided by our Research Questions:

RQ1 What is the difference between glibc and musl in terms of energy consumption?
RQ2 Can we use tracing to compare energy consumption differences in shared libraries?
RQ3 Can we verify the origin of energy consumption differences by recreating the workload behavior

closely?

4.1. Experimental setup
4.1.1. Profiler selection
In this study, we isolate the measurements of energy to account only for the impact of the workload
being tested. To do this, we use the software-based energy profiler EnergiBridge [24]. As we explained
in Section 2.1.2, these profilers are not as accurate as physical power meters, but they are easier to
use and provide accurate enough measurements of individual devices on the machine.

To isolate the measurements of the workload, we configure the energy profiler to measure the power
usage of individual CPU cores. This way, we can assign an individual physical core to the workload
and measure usage of this core, which limits the impact of other tasks on the core usage and energy

11

4.1. Experimental setup 12

consumption. Besides measuring total energy consumption over a period of time, we also need mea-
surements of energy in fixed intervals of time, so we can calculate other useful data like power usage
across the experiment.

For these reasons, we chose to use the profiler Energibridge provided by Sallou et al. [24]. The tool is
multiplatform (Intel, AMD, Mac ARM) and easy to set up, without needing complex permissions or con-
figurations that are platform-dependent. It makes energy measurements in fixed intervals by extracting
information such as total energy used from the Model-specific registers (MSR) in AMD, performing
minimal processing to affect energy measurements as little as possible.

4.1.2. Energy measurements
When performing energy experiments, there is a series of guidelines that must be followed to guar-
antee the quality of the results [5]. This is because, when measuring the energy consumption of a
specific workload, there are multiple factors that can introduce bias in the measurements, like package
temperature or operating system routines. Therefore, we need to follow certain steps to guarantee the
integrity of results

First, we must warm up the machine. This is done because there is a correlation between CPU tem-
perature and energy usage. A higher temperature increases the resistance of the internal components
of the CPU, which leads to a larger energy consumption. Without proper warmup, the first runs of a
workload will use a cooler CPU and will seem more energy-efficient than they truly are [5]. To achieve
this, we first run each of the images of the workload without measuring any energy usage. Afterward,
it is recommended to run a CPU-intensive task for at least 5 minutes. We do this using the Sysbench1
prime number test on every thread of the CPU for around 6 minutes. This guarantees that the later
measurements will not be affected by different CPU package temperatures.

The next step is to run the energy experiment properly. For this each of the Dockefiles is run 30 times in
a randomized order, with a short pause between them, and energy usage data is measured for each of
them. This way, the impact of possible variations introduced by unexpected variables, like services in
the system, can be reduced. The recommended number of 30 comes from the Central Limit Theorem
[5]. The accumulated data from the 30 runs should follow a normal distribution in which some runs
were slightly more favorable than others due to unaccounted factors but together represent the general
energy behavior of the workload.

The images are also run in a random order to avoid possible biases introduced by systematic and
uniform variations in the setup. For example, if an experiment runs through dusk, there will be a room
temperature decrease while the experiment is running, which will make the later runs more efficient
than the first runs. By running the images in a random order, the effect of these possible variations will
impact the different images equally.

Additionally, between each of the runs of an experiment, there is a short pause of 20 seconds. This
pause is long enough to guarantee that there are no residual measurements from the previous run that
leak to the next one, and it is also short enough to avoid the CPU cooling down and making the next
run seem more efficient.

To make the energy data collected as accurate as possible, we isolate the workload to a single CPU
physical core, and measure the energy used by that core. If the workload uses other containers (e.g.
to measure a Redis server we need a client), they are run on other physical cores, so they do not affect
the performance of the actual workload under test.

We use the docker-energy framework2 [32] to set up and orchestrate the experiments. This framework
uses Docker to set up and run the experiments, and it implements the previously mentioned guidelines
for accurate energy measurements. It provides the ability to define different configurations and distribu-
tions for our experiments by setting them up in a container, using different base images. Another option
would be to test distributions on native operating system installations. While this might provide more re-
alistic results, having to install and uninstall different operating systems and packages is a challenging
task, and difficult or costly to automate.

1https://wiki.gentoo.org/wiki/Sysbench
2https://github.com/btjiong/docker-energy retrieved on June 17 2024

https://wiki.gentoo.org/wiki/Sysbench
https://github.com/btjiong/docker-energy

4.2. RQ1. Comparison of C standard libraries through Redis 13

Besides the previous guidelines about how to run the experiment, we also need to configure the ma-
chine itself to reduce noise in the energy measurements. We turn off any unnecessary services from
the operating system and connect only the necessary hardware. This way, we minimize the impact of
other routines on energy usage.

The experiments are run in a machine equipped with an AMD Ryzen 9 7900X processor, 64 GB of
RAM, an MSI Geforce RTX 4090, and a 1000W power supply. The AMD CPU is selected because,
unlike Intel CPUs, it can report the energy usage of individual cores, rather than reporting only the
consumption of the whole CPU package. This CPU has an x86_64 architecture, and the machine runs
Ubuntu 22.04.3 as the operating system, with Linux kernel version 6.2.0. Version 24.0.5 of Docker
Engine is used for setting up and running the containers.

Additionally, the CPU frequency on the machine is fixed to 4700 MHz. When running experiments
without a fixed CPU frequency, workloads will run at different paces depending on the demands of the
processor, but using more or less energy. With a fixed CPU frequency, total runtime is more stable,
and energy measurements are easier to compare.

4.2. RQ1. Comparison of C standard libraries through Redis
As explained in Chapter 3, previous work [32] shows evidence that Alpine is unexpectedly less energy
efficient in some specific cases. Despite there being no concrete evidence, the main hypothesis we will
propose is that there is a performance difference between the C standard library implementations used
by Alpine and other Linux distributions. This hypothesis is sound, given that the experiments are run
in Docker. In Docker, containers provide packaged software and dependencies (in the form of libraries
and binaries). When containers need to access kernel functions, they rely on the host operating system
kernel.

This means that when switching base images based on Linux distributions such as Ubuntu or Alpine,
we are not switching the Linux kernel version to the one used by those distributions – we are only
switching the binaries included with them. One of these binaries, and the most fundamental for running
programs in a Linux system, is the C Standard Library or libc.

The API for libc is defined by the International Organization for Standardization, but different implemen-
tations of its functions exist. The most popular one is the GNU C library or glibc, which was created in
1987, and it is part of most Linux distributions, including Ubuntu. However, glibc has been criticized as
bloated and slow by several engineers, with Linus Torvalds among them3.

To face this problem, other alternative implementations of the C standard library started to appear.
One of them is musl4, started in 2011. According to its creators, musl is “lightweight, fast, simple,
free, and strives to be correct in the sense of standards-conformance and safety”. Because of these
characteristics, it is the implementation included with Alpine. As a downside, musl is known to have
some compatibility problems when running binaries compiled against glibc.

To answer RQ1 and verify the hypothesis that points out to the libc implementation, we will replicate
the energy experiments performed for Redis. We chose Redis5 as a focus for several reasons. First,
it is a popular in-memory database written in C, which can also serve as a cache or message broker
among other uses.

During previous energy experiments, Redis was one of the workloads that showed a significant energy
usage difference between Alpine and Ubuntu. According to Redis documentation, the only dependen-
cies needed to run Redis are a C compiler and a libc implementation. Given that the hypothesis we
want to verify is that the difference comes from libc implementations, this workload is a good fit. If we
compile under the same compiler version and configurations, the differences in performance observed
between Alpine and Ubuntu should come from the standard library.

3Mail archive for the glibc project mailing list http://ecos.sourceware.org/ml/libc-alpha/2002-01/msg00079.html re-
trieved on June 17 2024

4musl home page https://musl.libc.org/ retrieved on June 17 2024
5Redis home page https://redis.io/docs/latest/get-started/ retrieved on June 17 2024

http://ecos.sourceware.org/ml/libc-alpha/2002-01/msg00079.html
https://musl.libc.org/
https://redis.io/docs/latest/get-started/

4.2. RQ1. Comparison of C standard libraries through Redis 14

Table 4.1: Configurations for Redis energy experiments

Label Distro libc Redis version Allocator
ubuntupack Ubuntu glibc 6.0.16 jemalloc
ubuntu Ubuntu glibc 7.2.4 jemalloc
alpineglibc Alpine glibc 7.2.4 jemalloc
alpinejem Alpine musl 7.2.4 jemalloc
alpinemusl Alpine musl 7.2.4 musl allocator
alpinepack Alpine musl 7.0.15 musl allocator

4.2.1. Redis configurations
To verify the hypothesis, we replicate the Redis experiments from the previous work [32], and add some
additional scenarios that allow us to compare libc implementations.

The workload used to test the energy usage of Redis is the redis-benchmark6 command provided by the
application itself. This benchmark simulates running a certain set of Redis commands done by N clients
to a total of M requests. The benchmark executes these M requests for each of the tested commands.
To execute these commands, Redis relies on some functions from the C standard library. We use a
client container that executes this benchmark against the server, which we configure according to our
scenarios and measure its energy usage.

To properly test if libc is the reason behind the observed energy differences, we need to freeze the rest
of the Redis configuration as much as possible. Therefore, we will define different Redis setups to test
the impact of different configurations on energy consumption.

The first setup we test is installing using the distribution’s respective package managers (apt install
redis in Ubuntu and apk add redis in Alpine) with the default configurations. Given the differences
in versions, this comparison does not guarantee that the difference in energy consumption observed
comes exclusively from libc. However, this is valuable for two reasons. First, this is a common in-
stallation method for most developers, so the difference in energy consumption observed is closer to
what we would expect in a real-world setup. Second, this is the method used by previous work to test
Redis energy consumption. It is possible that the energy differences they observed came from this
discrepancy in versions, rather than from libc, so we need to test this case more thoroughly.

To define the next scenarios, we download a fixed version of the Redis source code (7.2.4) and compile
it in the respective distributions keeping the same default configurations. These scenarios still present a
discrepancy in terms of dependencies. Redis includes a custom memory allocator with its source code
called jemalloc. With default configurations, this allocator is enabled by default in Ubuntu, but disabled
in Alpine. Since this allocator can also affect energy efficiency, we define two Alpine scenarios with it
enabled and disabled, to evaluate its impact on performance.

We define a final scenario to confirm the hypothesis that the C standard library implementation is the
main reason for the energy difference. In this scenario, we configure Alpine and add the glibc bina-
ries using a glibc binary package7 for compatibility, and run Redis compiled against glibc instead of
compiling it against musl. If we find a similar energy consumption between this version of Alpine and
Ubuntu, we can confirm that the libc implementation is the main cause for the difference, instead of
other included libraries or binaries.

Table 4.1 shows the different configurations that are tested. For each of our scenarios, we detail the
Redis version used, the libc implementation, and the memory allocator used by Redis. ubuntupack
and alpinepack are the versions installed through package managers, ubuntu and alpinemusl are the
fixed versions compiled with default configurations, alpinejem is the Alpine version with the improved
allocator, and alpineglibc is the Alpine version with the improved allocator using glibc.

4.2. RQ1. Comparison of C standard libraries through Redis 15

Figure 4.1: Energy consumption of Redis for the different configurations

Table 4.2: Average completion time and energy consumption for the different Redis configurations

Image Time (s) Energy (J)
ubuntupack 281.62 1441.42

ubuntu 295.27 1401.54
alpineglibc 284.16 1435.28
alpinejem 284.15 1521.59
alpinemusl 284.94 1541.85
alpinepack 286.53 1651.11

4.2.2. Data and Results
Figure 4.1 shows the violin plots for the total energy consumption of each image and Table 4.2 shows
average energy usage. A violin plot is similar to a box plot in the sense that it aggregates the 30
measurements done, showing mean and quartiles. However, instead of having a box shape, it takes
the form of the probability distribution of the data. We chose this because it lets us check easily if the
experiments are correct. If the shape is symmetrical in the shape of a Gauss bell, we see that the
results follow a normal distribution, as it should be for an energy experiment of this type.

The first thing we notice in this graph of Figure 4.1 is the energy difference between the packaged
versions of Redis in Ubuntu and Alpine. The Alpine version uses around 14.5% more energy than the
Ubuntu version while taking roughly the same time to complete. These are similar results to the one
obtained in [32], which validates their experiments.

When fixing and using the latest version of Redis (ubuntu and alpinemusl images) instead of default
package manager installations (ubuntupack and alpinepack), the energy gap gets smaller, but it is
still there. Average consumption improves slightly in Ubuntu between both versions (2.76% better)
and more considerably in Alpine (6.6% better). This might indicate that there were some performance
improvements in Redis between versions. However, there is still a significant gap between Alpine and
Ubuntu, with Alpine using around 10% more energy than Ubuntu. This indicates that the discrepancies
in Redis versions from the original experiment are not the only reason for the energy performance

6redis-benchmark documentation https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/
benchmarks/ retrieved on June 17 2024

7glibc package for Alpine by S. Gerrand https://github.com/sgerrand/alpine-pkg-glibc retrieved on June 17 2024

https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://github.com/sgerrand/alpine-pkg-glibc

4.2. RQ1. Comparison of C standard libraries through Redis 16

Figure 4.2: CPU Power usage (W) against runtime of Redis for the different configurations

difference observed.

We can also see how using the custom allocator (alpinejem), which was disabled in the Alpine pack-
aged installation, slightly improves energy usage with respect to the standard library allocator from
alpinemusl (∼ 1% better). However, there is still a significant performance difference of 8.6% between
alpinejem and ubuntu, meaning that this configuration difference is also not the main reason for the
energy performance difference.

Finally, we look at the energy consumption of Alpine with glibc (alpineglibc image). For this image,
results showcase a similar performance between alpineglibc and the Ubuntu images. Except for some
outliers, the image performs at around the same level as the old Ubuntu version, with an observed 0.4%
improvement, and slightly worse than the most recent Ubuntu, using 2.4% more energy. However, the
image performs considerably better than any of the Alpine images with musl.

We further inspect these differences by comparing the power consumption throughout the different
executions of the benchmark. Figure 4.2 shows the median CPU power usage for the 30 runs of each
image across time during the execution. In this image, we can see that power usage is similar in all
experiments for most of the Redis benchmarks, hovering at around 5W. However, after a certain point,
power usage goes up for all images (boxed region). However, this increase is not uniform, and it affects
musl images the most. If we compare power usage between ubuntu and alpinejem, images where all
configurations are equal except for libc, we obtain a difference of up to 1.17W in the larger gap (around
20.2% difference) This indicates that the main reason for the total energy difference is happening in this
part.

We further investigate this pattern and manually check the logs. We can observe that the operations
that are running at this point are LRANGE operations from Redis. The LRANGE command 8 is a
simple instruction that, given a key and a start and end indices, recovers the elements between those
two indices. In the benchmark run during the experiment, elements from the database have a default
size of 3 bytes, and the LRANGE instruction is tested for 4 different numbers of elements: 100, 300,
500, and 600 elements.

8LRANGE docs https://redis.io/docs/latest/commands/lrange retrieved on June 17 2024

https://redis.io/docs/latest/commands/lrange

4.3. RQ2. Digging deeper with tracing 17

The power usage graph actually shows step increases (blue arrows) that correspond to the increase in
the size of the responses from Redis. This correlation, and the fact that energy consumption is similar
for the rest of the benchmark, suggest that power consumption depends on workload size. The energy
demands of the functions behind the difference depend linearly either on argument size or the number
of calls.

4.2.3. Conclusions
With the data uncovered with these experiments, we can answer RQ1:

RQ1: What is the difference between glibc and musl regarding energy consumption?

With our experiments, we not only managed to replicate the results from [32] and confirm the difference
but with the additional scenarios we managed to confirm their proposed hypothesis: There is an actual
difference in energy performance that seems to be introduced by the implementation of the C standard
library. We can observe a difference of up to 8.6% in total energy consumption between musl and
glibc image, and a difference of up to 20.2% in instant power in certain parts of the benchmark. This
difference is lost when we modify Alpine to add glibc, which confirms that the cause is limited to the
standard library.

Answer to RQ1. There is a substantial difference in both power usage and total energy consump-
tion between Alpine and Ubuntu. We confirm that this difference has its origin in the different libc
implementations provided by the distributions by introducing glibc into the Alpine distribution. With
every other Redis configuration except for libc fixed, we observe a difference of 8.6% in total en-
ergy consumption and up to 20.2% in instant power usage.

4.3. RQ2. Digging deeper with tracing
Now that we have managed to confirm that there is a difference in performance between glibc and
musl, we want to find out the reason behind the difference. In this case, we want to find the specific
functions or features from libc that differ in implementation and performance.

To determine which functions are being used during the execution of the workload, we will use tracing.
In software engineering, tracing is a debugging technique used to monitor the execution of a program
by capturing and recording events like function calls [15]. We can use this technique to collect data of
the libc functions being called during the workload and synchronize this data with the power measure-
ments, finding which functions are more heavily used when the workload shows a larger power usage
difference between configurations.

We will use this tracing data to know which libc functions are being used at different points of the
benchmark. However, due to limitations on how the tracing technique works, and the size of the data
it generates, we need to be intelligent in the analysis.

For this, we will design a full methodology that wewill apply to Redis, but that can be generalized to other
software, so other researchers and developers can find and study energy hotspots. This methodology
will include instructions on how to run energy experiments, how to trace software, and automatically
identify relevant checkpoints of the execution (avoiding the manual check we had to do in Redis with
LRANGE). Finally, we can use this accumulated data to identify suspect functions that are used the
most during execution, so we can further study and benchmark them.

To support the application of this methodology, a Jupyter Notebook with useful code for each of the
steps is available in Github.9

4.3.1. Methodology
Energy tests
The first step to studying the performance of a workload and finding energy inefficiencies is to run energy
experiments and locate relevant differences as we did with Redis. For a workload, multiple Dockerfiles

9https://github.com/enriquebarba97/energy-hotspots retrieved on June 17 2024

https://github.com/enriquebarba97/energy-hotspots

4.3. RQ2. Digging deeper with tracing 18

should be created, with varying dependencies. In our example, we changed the base image, but other
dependencies can be changed. uftrace can trace calls to not only libc but to other shared libraries, as
well as calls to Python libraries. This means that some other dependencies, like library versions, can
be changed.

We adapt the existing docker-energy framework by Tjiong, B.10 to print timestamps to the logs that we
can use to synchronize energy data and tracing data. Our version of the framework is available on
GitHub11, which also includes the additional experiments ran during this study.

Tracing test
The next step is to execute a run of the workload while using tracing to record calls to shared libraries.
As we explained, tracing is a technique to capture and record certain points during the execution of a
program. In our case, we want to use it to record the calls made to libc functions, saving which functions
are called, how many times, and the runtimes for each of the calls. With this data, we can find which
are the most commonly used functions, or the functions that accumulate a longer runtime.

To apply this technique we use a tracing tool called uftrace12. Uftrace is a tool to trace and analyze the
execution of a C/C++ program. It can track both user space functions and calls to dynamically linked
shared libraries like libc. The tool reports each call to a function and the duration of said call. The
program under study normally needs to be compiled using specific options like instrumentation, but the
tool also provides the option of dynamically patching certain functions during runtime. This patching
approach works well for simple shared libraries like the standard library, but it has more problems when
trying to trace internal function calls of complex software.

We execute our workload once more while capturing tracing data with uftrace. Any base image can
work for this run since library APIs should be consistent across Linux distributions. A Docker container
with uftrace installed can be used for this. A Dockerfile that installs uftrace in Ubuntu is available with
the Jupyter Notebook. The tracing data from uftrace is saved into a directory that can be recovered
with volume binding or the docker cp command.13

To have timestamps with a consistent format in the tracing logs, you can use docker-energy also to run
this experiment, or run using docker-compose and the ts tool from moreutils. Detailed instructions and
commands are available in the Jupyter Notebook.

For uftrace to properly collect data, it is important that the workload shuts down gracefully. It must either
stop by itself when it finishes running (e.g. returning from main or using exit if it is a C program), or it
must shut down properly when receiving a SIGINT signal sent by Docker to shut down.

Another important recommendation is to reduce the size of the workload. The tracing data can get
very large fast, and become unmanageable in the following tests. We can reduce the size of tests e.g.
reduce the total number of requests to a server by some factor. If the previous energy tests revealed
an energy inefficiency, one can also try running only the test cases that occur during that part of the
workload.

Analyze tracing data
The next step is to analyze the tracing data obtained from the workload. To do this, uftrace needs to
be installed in your development machine. A fork from the original tool is available on Github14. This
fork adds the option to print in nanoseconds without time units, which is necessary for later analysis.

A general summary of called functions and runtimes can be obtained with uftrace report. This will show
an aggregate of all function calls, with a total count of calls as well as the total runtime for the functions.
Figure 4.3 shows an example output of this command for the Redis benchmark.

This report will already provide a nice overview of which functions are running the most time, which can
make a good suspect functions list to check. However, your workload might not be uniform and perform

10docker-energy framework by Tjiong https://github.com/btjiong/docker-energy retrieved on Jun 17, 2024
11Adapted version of docker-energy https://github.com/enriquebarba97/docker-energy retrieved on June 17, 2024
12uftrace repository by N. Kim https://github.com/namhyung/uftrace retrieved on June 17 2024
13https://docs.docker.com/reference/cli/docker/container/cp/
14Adapted version of uftrace https://github.com/enriquebarba97/uftrace retrieved on June 17 2024

https://github.com/btjiong/docker-energy
https://github.com/enriquebarba97/docker-energy
https://github.com/namhyung/uftrace
https://docs.docker.com/reference/cli/docker/container/cp/
https://github.com/enriquebarba97/uftrace

4.3. RQ2. Digging deeper with tracing 19

Figure 4.3: Output of uftrace report for Redis

different operations at different points in time, showing different power usage and hotspot areas (like
we observe in Redis). In this case, we need some deeper analysis, like function runtime distribution
across time.

The command uftrace replay will show the sequence of function calls as they were captured during ex-
ecution. Additional fields can be shown, like call duration or elapsed time. The result of this command
with elapsed time and function duration fields is used for later analysis with Python. To get the appro-
priate time format for the timestamp, the fields rawElapsed and rawDuration should be used. More
information is available in the Jupyter Notebook.

With this replay log, further temporal analysis of the tracing can be applied. However, the tracing utility
introduces latency and larger energy requirements, making the benchmark take longer to complete.
This means that we cannot run energy experiments and the tracing tool together because we would
not get reliable energy data. We need to do a separate tracing run and relate the collected data with
the previous energy data. This is not straightforward. Function calls take slightly longer to complete
due to the latency, and, as suggested previously, the size of the benchmark should be reduced to avoid
huge data files. This means the time points of the tracing run are not equivalent to the time points in
the energy experiment, and we cannot directly associate a time region in the power measurement runs
with the equivalent tracing region.

To solve this, we define a log alignment method using the logs provided by the workload under study to
try to align logically equivalent points during execution. This means finding points during the execution
where, no matter how long it took to complete, the same logical operations have been executed in both
runs.

To relate the time points in energy data to time points in tracing data we find checkpoints in the logs. We
define a checkpoint as a relevant and unique or almost unique line in the logs that marks the beginning
or end of a section of the workload. In other words, checkpoints are progress marks for the benchmark.
An example of a checkpoint from Redis is shown in Figure 4.4. Redis marks the end of each tested
command with some statistics of the execution, preceded by a header that is unique in the logs.

We design a simple strategy to find checkpoints that assume no knowledge of the log structure, so we
can reuse this for different workloads. The strategy has two steps:

• Clean log lines by removing numbers and measurement expressions. We remove dates, times,
number of requests, etc. This way we don’t consider lines that report certain measurements
periodically as unique.

• We select as checkpoints lines that appear only once on the logs. Optionally, we can increase
this to lines that appear less than X times if the log does not have enough variety. We also discard
lines that are too close to the beginning and end of the file.

4.3. RQ2. Digging deeper with tracing 20

Figure 4.4: Example of a checkpoint line in Redis logs

Once we find a set of checkpoints in energy and tracing logs, we can intersect both and treat the time
regions between them as equivalent in terms of execution. It does not matter if the tracing run took
more or less time to finish compared to the energy measurement run, the distribution of calls is the
same in both. This way, we can aggregate the tracing data on this region, and show it together with
the energy data in the form of a histogram.

Benchmark suspect functions
Once a set of functions likely to explain the difference in energy consumption is defined, we can isolate
and individually test them with new benchmarks. Depending on the popularity of the library under
test, it is possible to find some benchmarks already available online. These benchmarks usually test
raw performance and runtime, but they can be used to measure energy. The benchmark should be
long enough to conform to standards in energy testing. It is also beneficial if the benchmark for these
individual functions replicates to an extent the way they are used in the original workload.

The benchmark can be run with docker-energy in the same way as the original workload, switching the
same base images/dependencies as in the first experiment. This way, isolated parts of the dependen-
cies are tested, helping to locate the parts where energy consumption is greater.

The energy and power usage plots can be plotted again. If the variations in energy consumption ob-
served are similar to the ones observed in the original workload, then we know that the function under
study is at least partially responsible for the original difference.

It is likely that the energy consumption difference is not exactly mirrored from the original experiment,
and it might be smaller. This is because the benchmark will only represent a fraction of the original
workload, and the original efficiency difference observed may come from the combination of several
smaller differences.

Once the function is confirmed to be behind the difference, the last thing would be to figure out why and
potentially fix it. The next steps here would potentially vary according to the library or technology in use.
This methodology provides a way of partially pruning the dependency tree in search of the potential
causes, without having to inspect all of the dependencies.

If we suspect that the function or functions found with this method are still high-level, and the actual
cause of the difference could still be in some of the lower-level libraries, we could repeat the process,
tracing the new benchmark and finding lower-level functions that could explain the inefficiencies.

Limitations to the methodology
The methodology presents some limitations due to the tools used and techniques applied. The first
limitation is the large size of the tracing data. The methodology gives recommendations to avoid the
tracing data becoming unmanageable, but if the workload depends on too many libraries, you could
end up with too large data files.

Another limitation is that to apply the normalization methods based on checkpoints in the logs, the
workload needs to have decently formatted logs, and there should be some variety in the features
tested or run during the workload.

4.3. RQ2. Digging deeper with tracing 21

Finally, the tool selected uftrace is limited to tracing C, C++, Rust, and Python programs. This means
that tracing analysis can only be done on programs of this kind. With other technologies, energy ex-
periments can be run. If the workload shows power usage differences only in certain regions (like the
Redis example), you could pinpoint the differences to a certain part of your source code just by looking
at the logs. Still, it would not be possible to pinpoint it to underlying libraries. This limitation could be
circumvented by using a different tool that supports other languages, and this methodology would still
be valid.

4.3.2. Redis data and results
We apply the previous methodology to our Redis benchmark. This workload is a good fit for this method-
ology, since we have a specific region of the benchmark that shows a higher energy difference, and
we want to figure out what functions are being called in that region of interest.

First, we execute the traced run to collect the data as defined in the methodology and obtain a first
summary of the whole benchmark. As explained before, we reduce the size of the workload to have
manageable data sizes. To do this, we reduce the number of requests that the benchmark does for
each of the commands, from 1 000 000 to 10 000.

Table 4.3 shows the summary of the trace, with the top 10 functions that accumulate the longest runtime
across the whole benchmark. We see that the most called function by a wide margin is memcpy. How-
ever, the software spends a similar time in the write and read functions, with a much lower number of
calls.

Table 4.3: Summary of libc function calls and runtimes for Redis

Function Runtime [ns] Calls Runtime [%] Call [%]

memcpy 6594371865 115270590 39.562145 92.637077
write 6100079082 500006 36.596694 0.401829
read 2204989695 501557 13.228572 0.403076

epoll_wait 701065124 99494 4.205956 0.079958
strchr 238221535 2340922 1.429182 1.881279

strcasecmp 221697527 1776711 1.330048 1.427852
gettimeofday 152283682 1201218 0.913608 0.965357

memcmp 150901874 1307754 0.905318 1.050975
clock_gettime 117885050 898262 0.707237 0.721887
localtime_r 45398704 99495 0.272364 0.079959

Next, we run the log alignment method to find checkpoints and be able to accurately plot a histogram
of function runtimes, so we can study the LRANGE portion of the benchmark with more detail. Figure
4.5 shows the result of applying this process to the Redis experiment, and Figure 4.6 shows the power
usage of Redis for the two relevant Ubuntu and Alpine images, with the same checkpoints included.
Now, we can easily look at them side by side to find differences in runtimes of the functions called,
despite the two runs taking different times to complete.

In the figure, we can see how, except for the first region, which comprises server startup, the run-
time distributions of the different functions look more or less uniform. However, when we get into the
LRANGE portion of the benchmark, we can see how the total runtime of the memcpy function starts to
go up drastically, compared to the other functions, taking up to 2 seconds of the total runtime of the
LRANGE.

The purpose of this function is to copy a certain number of bytes from one pointer to another pointer in
memory. Researching this function further, we figure out that the glibc implementation of the function
contains some assembly code that can be inlined in place of the function15 to improve efficiency, while
musl does not16. This difference in memcpy implementation between glibc and musl could explain the

15glibc memcpy implementation https://github.com/lattera/glibc/blob/master/string/memcpy.c retrieved on June 17
2024

16musl memcpy implementation https://github.com/esmil/musl/blob/master/src/string/memcpy.c retrieved on June 17
2024

https://github.com/lattera/glibc/blob/master/string/memcpy.c
https://github.com/esmil/musl/blob/master/src/string/memcpy.c

4.3. RQ2. Digging deeper with tracing 22

Figure 4.5: Histogram showing accumulated function runtime in each region between checkpoints

Figure 4.6: Power usage of Redis for Ubuntu and Alpine, with the obtained checkpoints

4.3. RQ2. Digging deeper with tracing 23

Figure 4.7: Power usage of the memcpy benchmark with 12 GB

difference in energy consumption, considering the prevalence of this function in the Redis workload.
Therefore, this is the first suspect function we will benchmark further.

By carefully studying Redis source code, we can see how Redis makes use of this function. When
recovering an element from some list from memory, Redis uses memcpy to move that element to a
memory buffer that is later sent to the client through TCP. Most of the functions tested in the benchmark
only recover one element. However, LRANGE has multiple tests that recover up to 600 elements,
which is done through an iterator that copies the elements to the buffer one by one. This means that a
single LRANGE request has up to 600 more memcpy calls than other commands from the benchmark,
increasing the usage of the function.

4.3.3. Benchmarking memcpy
To benchmark thememcpy function, we design and run several energy experiments. We do so, accord-
ing to source code review and consulting experts, glibc defines different processor-specific assembly
code for this function to handle certain edge cases in the most efficient way possible, based on what is
known about the usage of the function in compile time. Musl only provides a generic C implementation
to cover all cases.

Now that we have concluded that the difference in performance is introduced by libc, the base images
of these experiments will be limited to Ubuntu, Alpine, and Alpine with glibc. This will provide more
visual clarity in the results. The first experiment consists of a simple memcpy benchmark written in C,
adapted from an existing benchmark17. This benchmark allocates a random memory buffer of 12 GB
and performs the following operations:

• Copy all 12 GB to another point in memory with a single memcpy call
• Copy all 12 GB with multithreading, to measure multithreaded performance.
• Copy all 12 GB in small sequential batches using 220 calls to memcpy. This is more similar to the
behavior observed in Redis

Each of the operations is repeated 8 times to elongate the duration of the benchmark and be able to
take proper energy measurements. Before starting a repetition the buffers get allocated with malloc
and they are freed after each repetition.

Figure 4.7 shows the power usage of this experiment for Alpine and Ubuntu, and table 4.4 shows
average time and consumption. We can recognize each repetition of an operation by an energy spike
that is produced when freeing and allocating memory. We can appreciate a slight difference in power

17Memcpy benchmark by Rodorigo L. avaialable on Github: https://gist.github.com/lrodorigo/
280bd4db453210cee6e1610648d937a9 retrieved on 17 June, 2024

https://gist.github.com/lrodorigo/280bd4db453210cee6e1610648d937a9
https://gist.github.com/lrodorigo/280bd4db453210cee6e1610648d937a9

4.3. RQ2. Digging deeper with tracing 24

Table 4.4: Average completion time and energy consumption for the memcpy benchmark with 12 GB

Image Time (s) Energy (J)
alpine 145.39 783.48
ubuntu 158.38 795.13

alpineglibc 158.81 793.55

usage, with Alpine using slightly more power than Ubuntu, with a difference of around 0.5W or 9.5%
for most of the benchmark. At the final step of the benchmark, where we divide the memcpy into 220
sequential calls, energy usage for the glibc based images goes up a bit, while Alpine usage remains
the same.

Despite the difference in power usage, this behavior is not exactly the same as the one observed in
Redis. As observed in the table, the higher power usage in Alpine is translated into a faster runtime
and the Alpine image ends up taking slightly less overall energy to complete the task.

This previous experiment does not confirm that the reason for the energy consumption difference comes
from memcpy. However, as explained before, there is a multitude of memcpy edge cases to cover. Con-
cretely for Redis, as we explained before, it uses memcpy to move elements 1 by 1. If we study the
benchmark default configuration, we can see that the default data type and size used are strings of
size 3. This means that most of memcpy calls in Redis and LRANGE contain 4 bytes (3 bytes of data +
1 separator that is used in the format for the response).

This detail is important because of memory alignment. In 64-bit architecture, data in memory is required
to be 8-byte aligned [2]. This means that moving multiples of 8 bytes is usually less expensive than
moving less than 8 bytes since the latter requires additional instructions to guarantee proper alignment.
In our first experiment, we copied 12 GB (230 · 12) with a single call, divided into 8 multithreaded calls
(227 · 12 size for each) and in 220 calls (210 · 12 size). All of these calls are multiples of 8 bytes, so it is
easy to process while keeping alignment.

Hence, we design a new experiment to mimic Redis’ usage of the function. In this experiment, we
initialize a memory buffer destination of 3000 bytes and perform the memcpy operation with small sized
elements. For each of the sizes defined in the LRANGE benchmark (100, 300, 500 and 600), we copy
that number of elements of size 4 bytes, and repeat for a large number of times (40 000 000) to simulate
the high number of requests in Redis and to have a long enough benchmark so we can measure the
energy accurately.

The dummy element we use for this experiment is ”VKX,”, the same dummy data that Redis uses. We
provide this data to memcpy in two different ways: in one of the experiments we initialize a second buffer
of the same size source with the literal repeated over and over. Then, we call memcpy using two moving
pointers, one to destination and another to source. In the second experiment, we use a cached literal,
and copy it over and over until filling the requested number of elements, with a single moving pointer
to the destination buffer. While these two experiments might look functionally the same, they change
the information that is known on compile time, which might change the version of memcpy that is used
for glibc.

Table 4.5: Average completion time and energy consumption for the memcpy benchmark from memory to memory

Image Time (s) Energy (J)
alpine 95.05 1065.34
ubuntu 95.24 1075.88

alpineglibc 94.96 1075.36

Figure 4.8 shows power usage over time of the memory-to-memory memcpy experiment, and table 4.5
shows average runtimes and energy usage. In this experiment, we can appreciate a slightly different
behavior from the first experiment. We removed the repeating allocations and freeing of memory to
have a more uniform measurement of memcpy. In this benchmark, we observe how the power usage
of all images escalates to the approximately 11W. We can also see how, in this case, the glibc images

4.3. RQ2. Digging deeper with tracing 25

Figure 4.8: Power usage against time of the memcpy benchmark from memory to memory

are using more power than musl and, unlike the previous experiment, this is not translated to a shorter
runtime. Indeed, now all images take a similar time to complete, and the Alpine image uses 10J less to
complete the task. We can also appreciate small step-ups in power usage as the number of elements
to copy goes up. This is similar to the behavior observed in Redis.

Figure 4.9: Power usage against of the memcpy benchmark from cached to memory

Figure 4.9 shows the power usage of the cached experiment, and Table 4.6 compares the runtime
and total energy consumption of this experiment. For this benchmark, we obtain completely different
results from the previous two benchmarks. Here, musl is much more power hungry than glibc, with
a difference of around 1.1W or 15.8% difference, closer to the difference observed in Redis. What is
more, this difference does not translate into more performance, with Alpine taking almost 3X more time
to complete the task, resulting in a much higher total consumption.

These benchmarks show that the behavior of memcpy can vary wildly depending on what information is
available in compile time. We also notice how some of the benchmarks move in different power usage
ranges to Redis. This can be explained because Redis has network communication features. In this
benchmark, all memcpy calls are done without pause. However, in Redis, once the memcpy calls for a
request are finished, the response has to be sent through TCP, an I/O operation in which the CPU does
not have to be used as heavily.

4.4. RQ3. Recreating Redis behavior 26

Table 4.6: Average completion time and energy consumption for the memcpy benchmark from cached to memory

Image Time (s) Energy (J)
alpine 406.10 2977.45
ubuntu 155.37 972.76

alpineglibc 142.53 869.53

4.3.4. Conclusions
From the results of the benchmarks and tests performed for Redis, as well as the experiments used to
study the behavior of memcpy in different scenarios, we can answer our second research question.

RQ2: Can we use tracing to compare energy consumption differences in shared libraries?

By running the previous experiments, not only did we confirm that we can use tracing to locate the origin
of energy inefficiencies, but we also managed to actually locate some energy inefficiencies and differ-
ences between Alpine/musl and Ubuntu/glibc with respect to the energy performance of the memcpy
function. While it is known among the Linux and Alpine communities that there are performance differ-
ences for certainmusl functions, we conclude that there is a lack of awareness of the impact on energy
consumption that these differences can make.

Additionally, we propose a methodology to measure and identify energy inefficiencies in software and
trace the inefficiencies to the specific dependencies that are causing them with a log alignment method.
We also provide a pipeline to apply this methodology and properly analyze the data in the form of a
Jupyter Notebook, so that other researchers and developers can study their own workloads.

Answer to RQ2. We defined a methodology around tracing designed to locate and explain en-
ergy inefficiencies, and successfully applied it to Redis to narrow down the energy consumption
difference observed to the memcpy function. We benchmarked this function, finding that usage sce-
narios in which memory alignment has to be enforced expose performance differences between
musl and glibc.

4.4. RQ3. Recreating Redis behavior
Through different benchmarks, we confirm that, in some cases, the memcpy function shows a significant
difference in performance between musl and glibc, depending on the optimizations available and the
information known on compile time. However, our results do not reflect the energy behavior observed in
Redis, since we don’t observe similar gaps in energy usage. We want to obtain more concrete results
and recreate the Redis observed inefficiencies as much as we can. In this section, we improve our
benchmark, so that it reflects more closely the frequency in which Redis uses the memcpy function.

The first step is to confirm if there is some other function that might be affecting performance in some
way. In the tracing data we obtained for Redis, we observed that memcpy was the function with the most
runtime, and helped identify this function as a point of inefficiency in libc. However, as a close second,
we observe the function write. We want to investigate if this function introduces any difference in
energy consumption when using glibc or musl.

The write function is used to write a certain amount of bytes from amemory pointer into a file descriptor.
However, Redis is an in-memory database. These calls to the write function are not used to write into
the file system but to write responses back to the clients through TCP sockets, which are treated as
file descriptors on Linux. In a similar way, the third function with more runtime, read, is used to read
incoming data from a TCP socket. The next function in the list, epoll_wait serves to monitor the writing
and reading events taking place in file descriptors. In this case, it monitors the open TCP sockets to
see if there is incoming data. Therefore, these three functions represent the network usage of the
workload.

To test if this TCP communication creates a difference in power usage between glibc and musl, we
create a new energy experiment to test it. For this experiment, we build a basic TCP server in C that

4.4. RQ3. Recreating Redis behavior 27

Figure 4.10: TCP server median power consumption for 1 and 2 clients against time

simulates the network behavior of Redis during the benchmark. Concretely we simulate the LRANGE
part of the benchmark with the following behaviour:

1. A client sends an integer size as a request (e.g., “100”)
2. The server returns size*4 bytes (3 data bytes as the default Redis benchmark + 1 separator)

We also try to avoid using any libc function except for the strictly necessary for network communication,
so we do not accidentally introduce a performance difference through one of these functions that taints
the energy data. For this, we allocate and fill a memory buffer with dummy data at startup, and the
server will just send the content of this buffer.

Similarly to Redis, the server can accept multiple clients and monitors if their sockets are ready to read
or write using the epoll API provided by the kernel.

With this setup, we run a new energy benchmark with one and two simultaneous clients connecting to
the server. To emulate the Redis benchmark behavior, one million requests are made among all clients
for each of the sizes 100, 300, 500, and 600.

Table 4.7: Average completion time and energy consumption for the TCP benchmarks

Image 1 client 2 clients
Time (s) Energy (J) Time (s) Energy (J)

alpine 67.25 211.36 73.34 255.37
ubuntu 67.59 215.16 72.88 249.37

alpineglibc 68.08 221.02 74.90 261.47

Figure 4.10 shows the median power usage for the TCP server in Ubuntu, Alpine, and Alpine with glibc,
and Table 4.7 shows average total time and consumption. From these graphs, we can observe that
there is no significant difference in performance between the 3 images. There is a slight difference for
Alpine with glibc which tends to take slightly more time to complete, but its power usage is similar to
the other two images.

This behavior is expected if we consider the architecture of Docker containers. As explained in section
2.2, a Docker container only brings the filesystem and shared binaries from a distribution, but uses the
host kernel for any necessary system calls. In this case, the library calls write, read and epoll_wait,
as well as the calls to open and listen to TCP sockets, are system calls and do not contain any complex
or expensive logic. They are just wrappers whose only function is to place the necessary arguments
in their correspondent registers and call the kernel to perform the function for them. Therefore, unlike
with memcpy, all three images are actually using the same code.

We can derive a couple of conclusions from these results. First, when analyzing the functions used
by a workload in a Docker environment, we can ignore those that are known system calls, since they
should not change between scenarios, and cannot be the reason for the energy differences.

4.4. RQ3. Recreating Redis behavior 28

Figure 4.11: TCP server with memcpy median power usage for 2 clients

A second conclusion we can make is that, since system calls do not change between images, we can
create more complex and accurate benchmarks for other libc functions by using only that function and
known system calls. In this case, we will expand the TCP benchmark to create a new test scenario for
memcpy. Instead of returning the pre-initialized memory buffer to the client, we will call memcpy to fill the
buffer as Redis does, once to add each of the requested elements and send the result through TCP.

Table 4.8: Average completion time and energy consumption for the TCP benchmark with memcpy

Image Time (s) Energy (J)
alpine 91.34 352.64
ubuntu 89.83 312.18

alpineglibc 88.25 296.04

Figure 4.11 shows the median power usage of this experiment and Table 4.8 shows average times
and energy. Finally, we can see that in this benchmark, the behavior observed is similar to the power
usage and behavior from Redis. The alpine takes slightly longer to complete and uses around 12%
more energy than Ubuntu while using almost 1W or 13% more power.

4.4.1. Conclusions
From the results obtained for the benchmarks with TCP communications, we can answer our final
research question.

RQ3: Can we verify the origin of energy consumption differences by recreating the workload
behavior closely?

We ran a benchmark involving only the functions related to TCP communication. With this benchmark,
we verified that C library functions that perform system calls are not affected by base image selection.
This was to be expected, based on the Docker containers architecture, but we managed to confirm the
behavior experimentally.

This behavior allowed us to define a strategy to define more complex benchmarks. We can recreate
the behavior of a workload as closely as we can if we only use functions that are system calls, plus
the function we want to study. With this, we created a benchmark that combined memcpy with TCP
communication that emulated Redis behavior more closely. With this benchmark, we confirmed that
memcpy is the main cause for the energy inefficiency in Redis between Alpine and Ubuntu.

4.4. RQ3. Recreating Redis behavior 29

Answer to RQ3. We managed to exploit the behavior of system calls in Docker to create a more
accurate benchmark for memcpy when used in Redis, observing a difference of 12% in energy
usage, similar to the difference observed in Redis

5
Discussion

5.1. Implications
The results obtained in this case study indicate that there is a significant difference in energy perfor-
mance between glibc and musl. Concretely, we found that the memcpy function is one of the functions
that explains this difference in energy performance, which has a significant impact on Redis perfor-
mance when deployed in Alpine compared to Ubuntu.

As we explained, the glibc implementation of memcpy is generally better than the implementation from
musl because, according to consulted experts and community forums, glibc implements architecture-
specific assembly code to cover certain edge cases in a more performant way than with the generic
implementation. On the other hand, musl tries to avoid this to have a cleaner and less bloated code-
base.

Our results shed light on these inefficiencies for both Alpine maintainers and general developers. For
the first group, it is true that the difference in performance between both implementations is a known
fact among the C standard library and Linux development community. However, this performance is
measured with benchmarks that are limited to collecting raw performance data, such as total runtime
or data transfer speed. The consequences of these differences in implementation on energy usage
have never been measured, and they can be relevant for Alpine and musl maintainers to consider if it
can be worth adding more coverage of edge cases to improve energy performance.

For any other developers that have to work with Docker, our results provide an insight into the true cost
that the base image can have. The memcpy and other performance differences are common knowledge
in the C community [33, 13], as well as other incompatibilities. Due to glibc’s popularity, most binaries in
package managers are dynamically compiled against this implementation. When using these binaries
in musl systems like Alpine, problems in performance might arise, as is the case for some Python
libraries [33]. However, we could not find any official documentation that properly informs about these
decisions or differences between C standard libraries. Considering how almost everything in a Linux
distribution has to go through libc at some point, this case study is a good example for developers to
understand how it can have an impact, even if they are not working directly with libc or even in C.

Based on the results observed in previous work [32], where workloads of a different nature to Redis
also show a significant energy performance difference between Alpine and Ubuntu, it is very likely that
the performance difference between libraries is not limited only to memcpy, but also to other functions.
Appendix A shows another case study with the PostgreSQL. We apply the methodology and find that
the most used function that is not a system call is memset. We did not create and perform benchmarks
for this function, but it is likely that its energy performance is worse in musl than in glibc.

In short, our study has unveiled significant energy inefficiencies in musl which we think should be
taken into account by the Alpine team. From the Alpine page: “Alpine Linux is an independent, non-
commercial, general purpose Linux distribution designed for power users who appreciate security, sim-

30

5.1. Implications 31

plicity and resource efficiency.”1 We believe that, as part of being resource efficient, the energy
efficiency of the distribution should also be taken into account. Considering that Alpine is mainly used
for Docker containers, and how the layered filesystem of Docker already optimizes storage, requir-
ing little extra resources for more containers, some image size could be sacrificed for better energy
performance.

Another contribution of this research is the methodology to find functions that are introducing energy
inefficiencies. We applied this methodology to the Redis case study, finding inefficiencies in memcpy, but
it can also be applied to other contexts. There are many tools and methods to debug and fix different
problems on software, but the strategies and tools to measure the energy efficiency of your software
are almost non-existent. This methodology aims to be the first step towards easing the research and
fixing of energy inefficiencies.

Developers can use this technique to study different dependency options for their applications. A de-
veloper can test energy performance in different base images or library versions and, based on which
functions are required and used the most by their software, select the dependencies that show better
performance. It can also be used to study the performance of their own libraries.

The technique is also valuable for Linux distribution maintainers, and especially to maintainers of well-
used Docker images. The methodology can serve to compare the performance among different ver-
sions of your image, and the effect of the low-level system libraries included with it.

The methodology can also serve to monitor and fix energy regressions between versions. An energy
regression is defined as a worsened energy performance between a newer version of a piece of soft-
ware and its older version. For example, while working on this thesis and contacting experts, someone
from Green Coding2 informed us about an energy regression between two versions of Alpine3, where
a CPU stress test performs 1% slower using 5% more energy. Our methodology could be applied to
this test to find out which functions are being used during the workload and potentially locate the origin
of the energy regression.

This thesis also provided energy benchmarks for memcpy and a TCP server. These benchmarks show
how classic benchmarks, usually oriented towards measuring runtime performance, can be adapted
and used to measure energy performance. However, when applying our methodology to research
and study specific functions used in a workload, the benchmarks might not properly represent the true
usage of the function.

For example, for memcpy, the benchmarks found online usually focus on measuring raw performance.
They make continuous use of the function for large amounts of data, which is the best way of measuring
raw performance and is strenuous for the CPU and memory. However, a complex application like Redis
will also use other functions and logic besides a single function, usually combined with I/O or network
operations, in which the CPU does not have high usage. This means that the energy measurements
taken for a benchmark of this type might be misleading, and not representative of the energy impact of
the function in a more complete workload.

To palliate this, we also show how, when working on energy benchmarks for Docker, the different bi-
naries provided by an image do not have an impact on the performance of system calls. This allows
for the build of a more ”mixed” benchmark for a function. We propose that a more accurate method
of measuring the energy impact of a function inside a workload is to create a suitable benchmark that
is comparable to the original workload. To do this without unknowingly impacting the energy usage
through other functions system calls can be used since they do not change between Docker contain-
ers. This gives an ample range of functionalities to recreate, like TCP communication. This kind of
benchmark should yield more accurate and truthful results about the energy inefficiencies of a particu-
lar function for a specific environment or workload type.

1https://alpinelinux.org/about/
2https://www.green-coding.io/
3https://github.com/alpinelinux/docker-alpine/issues/385

https://alpinelinux.org/about/
https://www.green-coding.io/
https://github.com/alpinelinux/docker-alpine/issues/385

5.2. Threats to validity 32

5.2. Threats to validity
There are several threats to the validity of the results and conclusions obtained from this thesis that need
to be addressed. First, all of these experiments have been conducted in a single machine with an AMD
x86_64 CPU. Given the low-level implementation of the libc functions, especially for the architecture-
specific assembly code that glibc contains, it is possible that the energy difference results obtained for
memcpy do not translate directly to other CPU architectures. Still, given the relevance of the x86_64
architecture in both personal and cloud computing, these still are strong results to consider.

One of the main contributions of this thesis is the methodology to analyze the function usage of a
workload and locate potential reasons for energy inefficiencies. We applied this methodology to our
case study of Redis, and successfully found the reason for the inefficiencies. However, we did not have
time to perform a proper validation process of the methodology. Ideally, we would test this methodology
with other workloads that show a difference in energy consumption and verify if we can also find the
inefficient functions in these workloads. Additionally, we only tested this for software written in C. While
defining our methodology, we say that it can work with C, C++, Rust, and Python programs, since these
are the technologies supported by uftrace. Given how the tracing tool has worked well for us in our
case study, we are confident that it can be generalizable to other workloads (limited to the previous
technologies). However, we cannot make this affirmation with total certainty without more validation.

Finally, the alignment of time between energy and tracing results relies heavily on the log quality and
variety of the workload under study. If the workload does not have a comprehensive breakdown of the
steps taking place during execution, our simple alignment method based on relevant lines will not be
able to find many normalization bins. While it is safe to assume a certain minimum for the quality of the
logs, some applications might not follow proper practices. For these cases, we added the possibility of
normalizing along the entire duration of the workload. Suppose the workload performs a single type of
logic, and the power usage difference observed is relatively constant. In that case, this method should
be good enough, as showcased in Appendix A with PostgreSQL. Despite this, a more complex method
to analyze and align the logs could be beneficial. Something similar to the work by Tan et al. [31] where
they analyze logs as state machines could work well for this method.

6
Conclusion

The Linux kernel and the C standard library specification were created more than 30 years ago. Since
then, different technologies and libraries have been built on top of it, with the objective of abstracting and
facilitating the development of new tools and programs. This combination of languages and libraries
adds unexpected interactions and inefficiencies, which are difficult to notice or test for due to their
complexity. Given the rapid growth of computing power over the years, these inefficiencies were not
considered significant.

However, computer efficiency is not scaling as fast anymore [12], and the demands for computing
power have increased significantly, with more and larger data centers being built each year. These
data centers demand a significant amount of energy [9], which means more energy costs and largely
contributes to pollution and carbon footprint. Due to these factors, the energy inefficiencies introduced
in different libraries and implementations that were not significant before have to be addressed.

This thesis provides a methodology that can be used as a first step to help developers and researchers
find energy hotspots and inefficiencies in their software and dependencies. The methodology helps
to effectively prune the libraries under study, and locate exactly which functions or sections of the
dependencies have a greater effect on the energy hotspots. This way, the amount of code that needs
to be investigated is narrowed down, making the task of answering inefficiencies easier.

We also proved the effectiveness of the technique by applying it to a case study with Redis and discov-
ered a significant energy inefficiency in Alpine and musl, which causes a higher energy consumption
for certain uses of the memcpy function, compared to the energy consumption in Ubuntu with glibc. This
difference is reflected as a difference of up to 20.2% of power usage in Redis, and a 13% difference in
a custom benchmark, without showing improvements in runtime.

Although the Linux and C communities are aware of performance differences between these two li-
braries, this is limited to the study of runtime performance. While working on this thesis, we reached
out and presented our work to a group of experts in a KDE community meetup 1, who found our con-
clusions relevant and agreed that there is little awareness on energy performance for the musl library.
While the difference in performance shown here might seem small, it becomes relevant when scaled
not to one, but to thousands of Redis instances running in one or multiple data centers.

6.1. Future work
This thesis leaves open several avenues for future work. In our case study, we find that the musl
implementation of memcpy displays some energy inefficiencies for certain usages of the function. How-
ever, we do not go into low-level code comparison between both libraries. To properly compare both
implementations of the function, future work could perform more benchmarks and micro-benchmarks,
and analyze the compiled assembly code. If the differences can be properly explained, it could make

1KDE meetup minutes https://invent.kde.org/teams/eco/opt-green/-/blob/master/community-meetups/
2024-06-12_community-meetup.txt retrieved on June 17, 2024

33

https://invent.kde.org/teams/eco/opt-green/-/blob/master/community-meetups/2024-06-12_community-meetup.txt
https://invent.kde.org/teams/eco/opt-green/-/blob/master/community-meetups/2024-06-12_community-meetup.txt

6.1. Future work 34

it easier to locate similar problems in other functions of the C Standard library, and potentially make
them easier to fix. Similarly, if certain patterns are found in both the assembly code from glibc and the
compiled code, they could be use to locate energy inefficiencies in these libraries without having to
perform benchmarks.

Another path for future work would be to apply our methodology to other workloads that show a differ-
ence in energy consumption. This would allow us to find more energy inefficiencies in other functions of
libc or other shared libraries. Additionally, it would also serve to validate the usefulness of the method-
ology proposed and find and correct shortcomings that may appear when applied to other workloads.

References

[1] Suparna Bhattacharya et al. “Software bloat and wasted joules: Is modularity a hurdle to green
software?” In: Computer 44.09 (2011), pp. 97–101.

[2] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Programmer’s Perspective.
3rd. Pearson, 2015. ISBN: 013409266X.

[3] Rajkumar Buyya, Shashikant Ilager, and Patricia Arroba. “Energy-efficiency and sustainability
in new generation cloud computing: A vision and directions for integrated management of data
centre resources and workloads”. In: Software: Practice and Experience 54.1 (2024), pp. 24–38.

[4] “Climate belief and issue salience: Comparing two dimensions of public opinion on climate change
in the eu”. In: Social Indicators Research 162.1 (2022), pp. 307–325. DOI: 10.1007/s11205-021-
02842-0.

[5] Luís Cruz. Green Software Engineering Done Right: a Scientific Guide to Set Up Energy Effi-
ciency Experiments. 2021. URL: http://luiscruz.github.io/2021/10/10/scientific-
guide.html (visited on 05/27/2024).

[6] Luís Cruz. Tools to Measure Software Energy Consumption from your Computer. 2021. URL:
https://luiscruz.github.io/2021/07/20/measuring-energy.html (visited on 05/27/2024).

[7] Luis Cruz andRui Abreu. “Catalog of Energy Patterns forMobile Applications”. In:CoRR abs/1901.03302
(2019). arXiv: 1901.03302. URL: http://arxiv.org/abs/1901.03302.

[8] Luis Cruz and Rui Abreu. “Performance-Based Guidelines for Energy Efficient Mobile Applica-
tions”. In: 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and
Systems (MOBILESoft). 2017, pp. 46–57. DOI: 10.1109/MOBILESoft.2017.19.

[9] Miyuru Dayarathna, Yonggang Wen, and Rui Fan. “Data center energy consumption modeling:
A survey”. In: IEEE Communications surveys & tutorials 18.1 (2015), pp. 732–794.

[10] Benedikt Dornauer and Michael Felderer. “Energy-saving strategies for mobile web apps and
their measurement: Results from a decade of research”. In: 2023 IEEE/ACM 10th International
Conference on Mobile Software Engineering and Systems (MOBILESoft). IEEE. 2023, pp. 75–
86.

[11] T. Durieux. “Empirical Study of the Docker Smells Impact on the Image Size”. In: 2024 IEEE/ACM
46th International Conference on Software Engineering (ICSE). Los Alamitos, CA, USA: IEEE
Computer Society, Apr. 2024, pp. 2568–2579.

[12] Lieven Eeckhout. “Is moore’s law slowing down? what’s next?” In: IEEE Micro 37.04 (2017),
pp. 4–5.

[13] Martin Heinz.Why I Will Never Use Alpine Linux Ever Again. 2023. URL: https://martinheinz.
dev/blog/92 (visited on 05/21/2024).

[14] Intel. Reading and Writing Model Specific Registers (MSRs) in Linux. 2024. URL: https://www.
intel.com/content/www/us/en/developer/articles/technical/software- security-
guidance/best-practices/reading-writing-msrs-in-linux.html (visited on 02/23/2024).

[15] Andrea Janes, Xiaozhou Li, and Valentina Lenarduzzi. “Open tracing tools: Overview and critical
comparison”. In: Journal of Systems and Software 204 (2023), p. 111793. ISSN: 0164-1212. DOI:
https://doi.org/10.1016/j.jss.2023.111793. URL: https://www.sciencedirect.com/
science/article/pii/S0164121223001887.

[16] Scott van Kalken. Docker overview. 2024. URL: https://docs.docker.com/get- started/
overview/ (visited on 06/05/2024).

[17] Scott van Kalken. What Are Namespaces and cgroups, and How Do They Work? 2021. URL:
https://blog.nginx.org/blog/what-are-namespaces-cgroups-how-do-they-work (visited
on 06/05/2024).

35

https://doi.org/10.1007/s11205-021-02842-0
https://doi.org/10.1007/s11205-021-02842-0
http://luiscruz.github.io/2021/10/10/scientific-guide.html
http://luiscruz.github.io/2021/10/10/scientific-guide.html
https://luiscruz.github.io/2021/07/20/measuring-energy.html
https://arxiv.org/abs/1901.03302
http://arxiv.org/abs/1901.03302
https://doi.org/10.1109/MOBILESoft.2017.19
https://martinheinz.dev/blog/92
https://martinheinz.dev/blog/92
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/reading-writing-msrs-in-linux.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/reading-writing-msrs-in-linux.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/reading-writing-msrs-in-linux.html
https://doi.org/https://doi.org/10.1016/j.jss.2023.111793
https://www.sciencedirect.com/science/article/pii/S0164121223001887
https://www.sciencedirect.com/science/article/pii/S0164121223001887
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://blog.nginx.org/blog/what-are-namespaces-cgroups-how-do-they-work

References 36

[18] Kashif Nizam Khan et al. “RAPL in Action: Experiences in Using RAPL for Power Measurements”.
In: ACM Trans. Model. Perform. Eval. Comput. Syst. 3.2 (Mar. 2018). ISSN: 2376-3639. DOI:
10.1145/3177754. URL: https://doi.org/10.1145/3177754.

[19] Roberto Morabito. “Power Consumption of Virtualization Technologies: An Empirical Investiga-
tion”. In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC).
2015, pp. 522–527. DOI: 10.1109/UCC.2015.93.

[20] Roberto Morabito, Jimmy Kjällman, and Miika Komu. “Hypervisors vs. Lightweight Virtualization:
A Performance Comparison”. In: 2015 IEEE International Conference on Cloud Engineering.
2015, pp. 386–393. DOI: 10.1109/IC2E.2015.74.

[21] James Pallister, Simon J Hollis, and Jeremy Bennett. “Identifying compiler options to minimize
energy consumption for embedded platforms”. In: The Computer Journal 58.1 (2015), pp. 95–
109.

[22] Rui Pereira et al. “Ranking programming languages by energy efficiency”. In: Science of Com-
puter Programming 205 (2021), p. 102609. ISSN: 0167-6423. DOI: https://doi.org/10.1016/
j.scico.2021.102609. URL: https://www.sciencedirect.com/science/article/pii/
S0167642321000022.

[23] Giovanni Rosa, Simone Scalabrino, and Rocco Oliveto. “Assessing and Improving the Quality of
Docker Artifacts”. In: 2022 IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME). 2022, pp. 592–596. DOI: 10.1109/ICSME55016.2022.00081.

[24] June Sallou, Luís Cruz, and Thomas Durieux. EnergiBridge: Empowering Software Sustainability
through Cross-Platform Energy Measurement. 2023. arXiv: 2312.13897 [cs.SE].

[25] Eddie Antonio Santos et al. “How does Docker affect energy consumption? Evaluating workloads
in and out of Docker containers”. In: Journal of Systems and Software 146 (2018), pp. 14–25.

[26] Mathijs Jeroen Scheepers. “Virtualization and Containerization of Application Infrastructure : A
Comparison”. In: 2014. URL: https://api.semanticscholar.org/CorpusID:18129086.

[27] Robert Schone et al. “Energy Efficiency Aspects of the AMD Zen 2 Architecture”. In: 2021 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, Sept. 2021. DOI: 10.1109/
cluster48925.2021.00087. URL: http://dx.doi.org/10.1109/Cluster48925.2021.00087.

[28] Prateek Sharma et al. “Containers and Virtual Machines at Scale: A Comparative Study”. In: Pro-
ceedings of the 17th International Middleware Conference. Middleware ’16. Trento, Italy: Associ-
ation for Computing Machinery, 2016. ISBN: 9781450343008. DOI: 10.1145/2988336.2988337.
URL: https://doi.org/10.1145/2988336.2988337.

[29] William Stallings. Operating Systems - Internals and Design Principles (7th ed.). Pitman, 2011,
pp. 1–788. ISBN: 978-0-273-75150-2.

[30] Senay Semu Tadesse, Carla Fabiana Chiasserini, and Francesco Malandrino. “Characterizing
the power cost of virtualization environments”. In: Transactions on Emerging Telecommunications
Technologies 29.8 (2018), e3462.

[31] Jiaqi Tan et al. “SALSA: Analyzing Logs as StAte Machines.” In: WASL 8 (2008), pp. 6–6.
[32] Bailey Tjiong. The impact of base image selection on the energy efficiency of containerized appli-

cations in Docker. Master’s thesis. Available at http://resolver.tudelft.nl/uuid:1166da2a-
a62d-4b53-baa3-08e6e107053b. Delft, NL, Dec. 2023.

[33] I. Turner-Trauring. Using Alpine can make Python Docker builds 50× slower. 2023. URL: https:
//pythonspeed.com/articles/alpine-docker-python (visited on 05/21/2024).

[34] Perf Wiki. perf: Linux profiling with performance counters. 2021. URL: https://perf.wiki.
kernel.org/index.php/Main_Page (visited on 05/27/2024).

[35] Guoqing Xu et al. “Software bloat analysis: finding, removing, and preventing performance prob-
lems in modern large-scale object-oriented applications”. In: Proceedings of the FSE/SDP Work-
shop on Future of Software Engineering Research. FoSER ’10. Santa Fe, New Mexico, USA: As-
sociation for Computing Machinery, 2010, pp. 421–426. ISBN: 9781450304276. DOI: 10.1145/
1882362.1882448. URL: https://doi.org/10.1145/1882362.1882448.

https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://doi.org/10.1109/UCC.2015.93
https://doi.org/10.1109/IC2E.2015.74
https://doi.org/https://doi.org/10.1016/j.scico.2021.102609
https://doi.org/https://doi.org/10.1016/j.scico.2021.102609
https://www.sciencedirect.com/science/article/pii/S0167642321000022
https://www.sciencedirect.com/science/article/pii/S0167642321000022
https://doi.org/10.1109/ICSME55016.2022.00081
https://arxiv.org/abs/2312.13897
https://api.semanticscholar.org/CorpusID:18129086
https://doi.org/10.1109/cluster48925.2021.00087
https://doi.org/10.1109/cluster48925.2021.00087
http://dx.doi.org/10.1109/Cluster48925.2021.00087
https://doi.org/10.1145/2988336.2988337
https://doi.org/10.1145/2988336.2988337
http://resolver.tudelft.nl/uuid:1166da2a-a62d-4b53-baa3-08e6e107053b
http://resolver.tudelft.nl/uuid:1166da2a-a62d-4b53-baa3-08e6e107053b
https://pythonspeed.com/articles/alpine-docker-python
https://pythonspeed.com/articles/alpine-docker-python
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1145/1882362.1882448
https://doi.org/10.1145/1882362.1882448
https://doi.org/10.1145/1882362.1882448

References 37

[36] Joseph Zambreno, Mahmut Taylan Kandemir, and Alok Choudhary. “Enhancing compiler tech-
niques for memory energy optimizations”. In: Embedded Software: Second International Con-
ference, EMSOFT 2002 Grenoble, France, October 7–9, 2002 Proceedings 2. Springer. 2002,
pp. 364–381.

[37] Yang Zhang et al. “An Insight Into the Impact of Dockerfile Evolutionary Trajectories on Qual-
ity and Latency”. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC). Vol. 01. 2018, pp. 138–143. DOI: 10.1109/COMPSAC.2018.00026.

[38] Yinyuan Zhang et al. “Recommending base image for docker containers based on deep configu-
ration comprehension”. In: 2022 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE. 2022, pp. 449–453.

https://doi.org/10.1109/COMPSAC.2018.00026

A
Tracing PostgreSQL execution

As another experiment to test the tracing capabilities of our methodology, we studied the energy con-
sumption and tracing of PostgreSQL. This workload is tested with the pgbench1 utility, and previous
work also showed a significant difference in energy consumption between Alpine and Ubuntu. Post-
greSQL is also written in C, but it has some extra dependencies compared to Redis, like OpenSSL for
encrypted communication 2. Our experimental method and tracing utility should still work.

Figure A.1: Energy consumption for PostgreSQL with different base images

Figure A.1 shows the total energy consumption for the PostgreSQL benchmark in Alpine and Ubuntu,
using the same PostgreSQL version. Figure A.2 shows the power usage of the benchmark across time.

From these, we can see that the pattern of this benchmark is different from Redis. The benchmark
and operations realized seem to be much more uniform than in the case of Redis. From consulting
the documentation we can verify that this is the case. With the default configuration, the benchmark
performs the given number of transactions, each involving a combination of five INSERT, SELECT, and
UPDATE.

1https://www.postgresql.org/docs/current/pgbench.html
2https://www.postgresql.org/docs/current/install-requirements.html

38

https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/docs/current/install-requirements.html

39

Figure A.2: Power usage of PostgreSQL in Alpine and Ubuntu

From the power usage, we can also see that Alpine uniformly uses slightly more power than Ubuntu,
and it also takes longer to complete, which means that this higher usage does not translate to faster
operation, which could end up saving energy.

Next, we perform a traced run with uftrace as we did with Redis. Table A.1 shows the summary of
calls for PostgreSQL. From here, we can see that the first function with most runtime is epoll_wait,
followed by send and recv which, according to POSIX documentation3, are aliases to write and read
for TCP sockets. Once again, we can see that TCP communication is a significant part of the workload.

The next step would be to perform log analysis to plot a histogram of function usage normalized by
time. However, the logs for this tool do not have a specially good format, and they do not indicate the
start and/or stop of functions properly, so applying the checkpoint method directly is not possible.

From benchmark code and documentation, we can see that the benchmark is divided into two parts,
3https://pubs.opengroup.org/onlinepubs/007904975/functions/recv.html

Function Runtime (ns) Calls Runtime % Call %
epoll_wait 11668930119 357797 27.965881 0.404581

send 6766784365 350356 16.217347 0.396167
recv 4675643546 1061822 11.205697 1.200661

memset 3655976982 39949235 8.761953 45.172796
pwrite 2019083997 180199 4.838958 0.203761

sem_wait 1860548575 56483 4.459010 0.063882
lseek 1804199688 493557 4.323964 0.558092
pread 1102366718 128930 2.641944 0.145788
strlen 1036313226 10088285 2.483639 11.407378

fdatasync 915658688 27699 2.194477 0.031321

Table A.1: Summary of libc function calls and runtimes for PostgreSQL

https://pubs.opengroup.org/onlinepubs/007904975/functions/recv.html

40

Figure A.3: Histogram showing accumulated function runtime in each region between checkpoints for Postgres

each of them uniform: database and tables initialization and the actual benchmark. We also see how
the power usage difference is uniform except for the initialization at the beginning. In this case, a simple
uniform division for the histogram would be enough to properly analyze the logs.

	Preface
	Summary
	Introduction
	Research questions
	Contributions
	Outline

	Background
	Energy experiments and measurement
	Physical power meters
	Software profilers

	Operating systems and containerization
	Virtualization and containerization

	Related work
	Energy optimization for Docker images
	Energy efficiency of programming languages and compilers
	Energy efficiency in other software fields

	Study
	Experimental setup
	Profiler selection
	Energy measurements

	RQ1. Comparison of C standard libraries through Redis
	Redis configurations
	Data and Results
	Conclusions

	RQ2. Digging deeper with tracing
	Methodology
	Redis data and results
	Benchmarking memcpy
	Conclusions

	RQ3. Recreating Redis behavior
	Conclusions

	Discussion
	Implications
	Threats to validity

	Conclusion
	Future work

	References
	Tracing PostgreSQL execution

