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Abstract: Digital Twins (DT) play a key role in Industry 4.0 applications, and the technology is in
the process of being mature. Since its conceptualisation, it has been heavily contextualised and often
misinterpreted as being merely a virtual model. Thus, it is crucial to define it clearly and have a
deeper understanding of its architecture, workflow, and implementation scales. This paper reviews
the notion of a Digital Twin represented in the literature and analyses different kinds of descriptions,
including several definitions and architectural models. A new fit-for-all definition is proposed
which describes the underlying technology without being context-specific and also overcomes the
pitfalls of the existing generalised definitions. In addition, the existing three-dimensional and five-
dimensional models of the DT architecture and their characteristic features are analysed. A new
simplified two-branched model of DT is introduced, which retains a clear separation between the
real and virtual spaces and outlines the latter based on the two key modelling approaches. This
model is then extended for condition monitoring of electronic components and systems, and a hybrid
approach to Prognostics and Health Management (PHM) is further elaborated on. The proposed
framework, enabled by the two-branched Digital Twin model, combines the physics-of-degradation
and data-driven approaches and empowers the next generation of reliability assessment methods.
Finally, the benefits, challenges, and outlook of the proposed approach are also discussed.

Keywords: Digital Twin; Industry 4.0; microelectronics reliability; physics of degradation; material
modelling; multi-physics simulation; data-driven model; condition monitoring; hybrid PHM

1. Introduction

The Digital Twin is one of the key technologies in Industry 4.0, i.e., the fourth industrial
revolution. It plays a crucial role in transforming industry, and many major companies
already use Digital Twins for solving problems and improving efficiency [1,2]. The idea of
a Digital Twin (DT) is relatively new. It was conceptualised during the very beginning of
the 21st century and has gained traction mainly during the last decade [3]. The primary
reason behind it is the digitalisation of the industry, which has been accelerated by newly
emerging Information Technology (IT) and its infrastructure. It was also marked at the
peak of Gartner’s hype-cycle curve in 2018 with a total expected duration of 5–10 years to
reach the productivity plateau [4]. Thus, the concept of the Digital Twin is still not fully
mature and keeps evolving and becoming more elaborate.

The concept originally emerged in the aerospace industry and developed in the man-
ufacturing domain. It was further adopted by several other sectors such as healthcare,
telecommunication, construction, agriculture, energy, environment, etc. During its evolu-
tion, it has seen large fragmentation regarding its definitions and models. A Digital Twin
can be generally described as a continuously updated virtual representation of an object,
system, or process which replicates all phases in the lifecycle of its physical counterpart.
Although this underlying idea remains the same, many applications and publications
define it as too context-specific. Several definitions have been thoroughly analysed in this
paper to identify the pitfalls as well as the common thread among them. In addition, the
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good aspects and relevant keywords from these definitions have been highlighted, and a
new generalised and concise definition of a Digital Twin is formulated.

As a key technology in the ongoing Industry 4.0 (and the upcoming Industry 5.0), there
is a clear need for more clarity on the concept of a Digital Twin and to provide additional
descriptions in the form of an architectural model and its working principle. A Digital Twin
is also often misinterpreted as being the same as any model in the virtual space. However,
DT is actually much more than this, and a representation in the virtual space is just one
facet of it [5]. Thus, it is also critical to define clear boundaries and criteria to classify a
digital model of a system as its Digital Twin. This paper also addresses this by analysing
the three- and five-dimensional models for the generalised Digital Twin architecture and
commenting on their characteristic features. Moreover, a new simplified two-branched
model of DT is introduced that keeps the real and virtual spaces distinct and is designed
based on the two key modelling approaches: physics-based and data-driven modelling.

Alongside the DT technology, the evolution of electronics has also played an important
role in Industry 4.0. During the second decade of the 21st century, the number of electronic
devices used in various applications has seen tremendous growth. The ‘electronification’
of several industries over the last few decades has been accelerated by newly emerging
information technology, the incorporation of more and more electronic components (e.g.,
sensors) into conventional products and systems, and the integration of computer-aided and
software-based technologies into traditional industries. As an example, about 200 billion
ARM-based chips in total were shipped by the year 2021 [6]. Another important example
is the automotive domain. According to a 2019 report by Deloitte [7], electronic systems
in a modern car constitute about 35% of its total cost, and it is expected to have close to a
50% share by the year 2030. The embedded electronics are also responsible for assisting in
primary functions and mission-critical tasks of a system, such as a modern car or a machine
in the manufacturing/assembly line. Thus, the reliability of electronic components has
become ever so important.

The industries are expected to move from an ‘application-based’ to a ‘degradation-
based’ wave in reliability in the near future [8], which means the focus would transition
from a physics-of-failure to a physics-of-degradation approach to estimate a product’s service
lifetime. Thus, it is important for the reliability assessment to move from the current
qualification test-based methodology to a newer condition monitoring-based approach
that would enable product-level diagnostics and prognostics capabilities and individual
health management at scale. This can be achieved using a Digital Twin-based framework.
Thus, a comprehensive knowledge of the fundamentals of the Digital Twin technology
becomes crucial for the microelectronics domain. This paper, therefore, extends the newly
proposed two-branched DT model for the condition monitoring of electronic components
and systems. This model also facilitates a hybrid approach to the Prognostics and Health
Management (PHM) of microelectronics.

This article has been structured to achieve the following goals—to review the notion
of Digital Twins in the context of Industry 4.0, to comment on the existing definitions and
architecture models of DT, and to propose improved versions of those with a focus on micro-
electronics as a product for the latter. It is, thus, organised in three parts. Sections 2 and 3
describe and analyse the development and adoption of DT by different industries, includ-
ing the evolution of the underlying IT technologies. A review of different kinds of DT
definitions has also been presented. Through identifying the highlights and shortcomings
of the existing ones, a new updated definition has been proposed.

Sections 4 and 5 describe the basic architecture of a Digital Twin-based system and
review a few existing and well-known workflow models. The limitations of those are
identified, and a new simplified model based on two key modelling approaches is proposed.
Finally, Sections 6 and 7 outline an implementation of Digital Twins for the PHM of
microelectronics by expanding the proposed two-branched model for this context. In
addition, a holistic approach for the hybrid PHM of electronic components and electronics-
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enabled systems is also highlighted with the help of the new DT model. Lastly, the key
advantages, challenges, and future roadmap are discussed.

2. Related Work—Development and Definition

The idea of a Digital Twin was first introduced by Dr Michael Grieves in 2003 in a
university course on product lifecycle management, while the term was used much later in
his 2011 book [9] and more elaborated on in his 2014 white paper [10]. The first mentions
of a Digital Twin can be found in the technology roadmap of the National Aeronautics
and Space Administration (NASA) in 2012 (draft in 2010) [11,12]. The 2012 publication by
Glaessgen and Stargel [13] lists the Digital Twin as a key technology and, thus, is also cited
by a plethora of recent publications as the origin of the Digital Twin concept. It was later
adopted by different industries, and thus, several contextualised adaptations of a Digital
Twin can be found in the literature.

Thus, the first two decades of the 21st century were the two key periods, respectively,
for the formulation and early adoption of the Digital Twin technology. Its roots, however,
go far further in the past. Digital Twins are enabled by the underlying foundational
technologies developed during the 3rd industrial revolution, also known as the Computer
Revolution, during the last 30 years of the 20th century. Therefore, in order to understand
the concept more comprehensively, it is important to have an overview of the technological
development and milestones, in the context of digitalisation, over the past 50 years.

2.1. Digitalisation Stages and Highlights

The evolution of digitalisation has gone through four progressive stages: digital enable-
ment, digitalisation assistance, digital control and link, and cyber-physical integration [3].
Table 1 summarises the highlights of these four stages. The first stage refers to the process
of converting paper documents into digital forms. In this phase, around the year 1950,
only the most essential information was digitalised for storage, processing, and transfer.
In the late 1970s, computers became small and inexpensive enough to be purchased by
individuals, when a large-scale integration made it possible to construct a sufficiently
powerful microprocessor on a single semiconductor chip [14].

Computers further evolved in the 1980s to have a graphical user interface (GUI). With
the extensive applications of computer-aided, i.e., CAX technologies (e.g., CAD, CAE, and
CAM), the paradigm of digitalisation shifted toward assisting engineers to work with
computers effectively. The digitalisation of entire businesses was possible in the 1990s
with the development of the internet and advanced control technologies [15]. With the
increasing spread of workstations and personal computers, the number of simulation users
grew rapidly and the simulation technology further evolved. Today, simulation is the basis
for design decisions, validation and testing, not only for components, but also for complete
systems in nearly all application fields [16].

Electronic components became more and more compact during the first decade of
the 21st century, which resulted in the evolution of consumer electronics such as com-
pact, lightweight laptops, smartphones, and later smart devices along with the services
associated with them, e.g., cloud storage. As a result, a new generation of information
technologies such as the Internet of Things (IoT), cloud computing, big data analytics, and
Artificial Intelligence (AI) emerged. They enabled the convergence of physical and virtual
worlds, which is also referred to as the cyber-physical integration [17], and, therefore,
digitalisation is now becoming one of the main drivers of innovation in all sectors [18].

The progress in the latter half of the digitalisation era dramatically improved the
capabilities of computers. As a result, simulation technology also evolved along with it.
The Digital Twin is the next wave in simulation technology [16,19]. In fact, it is rooted in
some existing technologies, such as 3D modelling, system simulation, digital prototyping
(including geometric, functional, and behavioural prototyping), etc. Thus, the Digital Twin
technology stands on the concrete foundations of the technologies developed during the
Computer Revolution or the Information Age.
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Table 1. The stages and highlights of the digitalisation era leading to the Digital Twin technology.

Stage Description Year Highlights

1. Digital Enablement 1950s → Paper documents to digital

1970s

→ Sufficiently powerful microprocessor on a
single semiconductor chip

→ Computers became small and inexpensive,
thus, purchased by individuals

2. Digitalisation Assistance 1980s
→ GUI, applications of CAX technologies

(CAD, CAE, CAM)

3. Digital Control and Link 1990s

→ Digitalisation of entire businesses
→ Development of the Internet and

advanced control technologies
→ Simulation technology further evolved

and users grew rapidly

4. Cyber-Physical Integration 2000s

→ Electronic components became more and
more compact

→ Consumer electronics: lightweight
laptops, smartphones

2010s

→ New generation of IT emerged: IoT, cloud
computing, big data analytics, AI

→ Enabled convergence of physical and
virtual worlds

2020s

→ Digital Twin is the next wave in
simulation technology

→ Rooted in existing technologies (3D
modelling, digital prototyping)

2.2. The Definition

The Digital Twin has been defined in the literature in a variety of ways. They range
from a very high-level abstract and simplistic definition to a highly contextualised and
rooted formulation. The 2012 publication by Glaessgen and Stargel [13] is cited by a
plethora of publications as the origin of the Digital Twin definition [3,16,20–22]. It describes
a Digital Twin as follows:

“an integrated multi-physics, multiscale, probabilistic simulation of an as-built vehicle or
system that uses the best available physical models, sensor updates, fleet history, etc., to
mirror the life of its corresponding flying twin”.

Since it originated in the aerospace application, it includes the term ‘flying twin’ in the
definition. It is also the most commonly used ‘base’ definition, which is then adopted and
heavily contextualised for other applications. Other examples of contextual adaptations of
this definition can be found in the literature [23–25].

The Digital Twin was later adopted by many different industries, predominantly
by the manufacturing industry. As more and more research was dedicated towards this
technology [3], the number of relevant publications began to grow exponentially [22]. As a
result, various different definitions of Digital Twin appeared in the literature. The multi-
scale simulation capability facilitated by the structure of Digital Twin, which is discussed
later in detail in Sections 4 and 5, allows the visualisation of a product or process at different
levels of granularity. Hence, the definitions vary based on the context and the application.
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For example, the Digital Twin is defined in the context of production machines and related
procedures (installation, commissioning, training, and optimisation) in [26], while it is
defined for a manufacturing process in [27], as well as with reference to a service or business
in [28].

Various definitions of the Digital Twin published during 2012–2016, the period after
Industry 4.0 was defined, were analysed by Negri et al. [25] to retract it from the initial
conceptualisation in the aerospace field to the most recent interpretations in the smart
manufacturing domain. It is quite common to find definitions and models of DT in the
context of manufacturing, as it was the next predominant industry to adopt DT. One such
example of that is as follows: “a coupled model of the real machine that operates in the cloud
platform and simulates the health condition with an integrated knowledge from both data-driven
analytical algorithms as well as other available physical knowledge” [29]; and another one in the
Structural Engineering field is: “a high-fidelity structural model that incorporates fatigue damage
and presents a fairly complete digital counterpart of the actual structural system of interest” [30].
The former mentions a ‘machine’, while the latter mentions a ‘structural system’ and its
‘fatigue damage’. Both are good examples of a DT definition being too context-specific. In
order to understand the concept of the Digital Twin in a more comprehensive manner, it is
crucial to form a detailed yet precise definition of a Digital Twin. Table 2 lists some of the
more generalised definitions found in the literature. Important keywords that underline
the unique qualities of a Digital Twin are also highlighted.

Table 2. A list of more generalised definitions of a Digital Twin found in the literature.

Source Definition

[13] an integrated multiphysics, multiscale, probabilistic simulation of a complex product, which
functions to mirror the lifecycle of its corresponding physical twin.

[16]
a comprehensive physical and functional description of a component, product or system,
which includes more or less all information which could be useful in all the (current and
subsequent) lifecycle phases.

[18]
a collection of model-based simulations and data analytics, necessitated by requirements of
the modern competitive industrial environment at all stages of design and production, to
predict the outcome, optimize, correct and evaluate.

[20]
an integrated multiphysics, multiscale, probabilistic, and ultra-realistic simulation of
systems or products which can mirror the life of its corresponding twin using available
physical models, history data, and real-time data.

[23] a multiphysics and multiscale simulation model that mirrors the corresponding physical
twin, allowing the extension of the simulation to all life cycle phases of the system.

[24] an organic whole of a physical asset or entity as well as its digitized representation, which
mutually communicate, promote, and co-evolve through bidirectional interactions.

[26] an operational replica that can be used for testing, commissioning, and training.

[27]

a replication of real physical production system, that enables bidirectional control with the
physical process and is used for system optimization, monitoring, diagnostics and
prognostics using the integration of artificial intelligence, machine learning and software
analytics with a large volume of data from physical systems.

[28] a virtual equivalent of an actual physical product or service.

[31]
a comprehensive digital representation of an individual product that includes the properties,
condition, and behaviour of the real-life object through a set of realistic models and data,
which can simulate its actual behaviour in the deployed environment.

[32]

a technology enabling the replication of the development and manufacturing of a product or
production system over the course of its entire lifecycle, and to thereby predict behaviour,
optimize operational utilization and apply knowledge gained in the context of earlier design
and production efforts.

[33] a virtual representation of real-world entities and processes, synchronized at a specified
frequency and fidelity.

[34]

an instantiated model (numerical, analytical, hybrid) of a specific asset or device, which is
deployed (in the cloud or on an edge device) and connected to the physical device, where the
connection may be established through sensors installed at the device or other sources
collecting specific information, delivering a continuous data stream fed into the model or as
boundary condition or as reference value.



Electronics 2024, 13, 3255 6 of 21

After carefully reviewing these definitions (and their sources), a common thread can
be drawn to understand the underlying concept on a deeper level. Thus, an even more
generalised description can be formulated. This is addressed by the following definition:

Digital Twin is a continuously updated multi-physics, multiscale, probabilistic simulation
model of a physical entity (an object, a system, or a process) utilising big data, bilateral
connectivity, and advanced software analytics to provide product monitoring, diagnostics,
prognostics, and optimisation services.

The above definition also summarises the function of a Digital Twin and highlights its
nuances and the involved technology. Therefore, it is an example of a concise definition
that is also fit for all types of applications of the Digital Twin technology.

3. Related Work—Adoption in Industry

The Digital Twin has become a commonly used phrase in the context of products,
processes, businesses, and more. Originating in the aerospace industry, the concept evolved
in the manufacturing sector and was later embraced by many other industries such as
healthcare [35,36], telecommunication [37–39], fashion [40–42], consumer electronics [43,44],
construction [45], environment [46,47], agriculture [48], energy [49,50], privacy and cyber-
security services [51,52], internet-based services and advertisement [53,54], and several
other applications [55].

3.1. Industry 4.0 and Smart Manufacturing

The adoption of the Digital Twin by the manufacturing industry is linked with In-
dustry 4.0, which represents the digital transformation of manufacturing/production and
related industries and value creation processes [56]. This ongoing transformation of the
traditional manufacturing industry was first defined as Industry 4.0 at Hannover Messe,
Germany, in 2011 [57]. The introduction of next-generation information technologies, such
as the Internet of Things, has facilitated the evolution of traditional systems into cyber-
physical systems. IoT enables embedding electronics, software, sensors, and network
connectivity into devices, in order to allow the collection and exchange of data through
the internet [58]. Thus, cyber-physical systems get networked and can communicate with
each other, enabling new ways of production, value creation, and real-time optimisation,
and therefore, create the capabilities needed for smart factories [56]. Software and network
connectivity extend the functionality of mechatronic systems, allowing the traditional
mechatronic disciplines—mechanics, electric, and electronics—to be realised in a more
integrated way [16].

The evolution of IoT and cyber-physical systems, along with the development of
simulation technology, has enabled the implementation of the Digital Twin in the man-
ufacturing industry. A Digital Twin contains a physical entity as well as its digitised
representation of the manufacturing entities (machines, equipment, environment, and even
products). Both components mutually communicate, promote, and co-evolve with each
other through bidirectional interactions [24], which are facilitated by Industry 4.0. The
Digital Twin was first applied to Industry 4.0 by Siemens in 2016 [3]. Additionally, the
introduction of commercial software tools for the creation of a Digital Twin, such as Predix
(GE digital), Simcenter 3D (Siemens), Twin Builder (ANSYS), Digital Twin Application
Builder (COMSOL Multiphysics) demonstrates its importance for the industry as a whole.
In addition, integration of two or more software tools, such as Creo 3D (PTC) with ANSYS
Live Discovery and Maximo Manage (IBM) with Digital Twin Exchange (IBM), further
facilitates building DTs.

The review by Negri et al. [25] suggests that the scientific literature that describes the
contextualisation of the Digital Twin concept in the manufacturing domain is still in its
infancy. There is a need for future research on relevant industrial applications to investigate
and demonstrate the wide range of applications and benefits to realise the full potential of
Digital Twin. An article by Aheleroff et al. [59] describes a holistic reference architecture
model of DT for several other Industry 4.0 applications beyond the manufacturing domain.
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3.2. Health, Telecommunication, and Other Industries

Health 4.0, analogous to Industry 4.0, is a commonly used terminology in the health-
care industry. It refers to progressive virtualisation for enabling personalised and next-to-
real-time health and care solutions for patients, professionals, and formal and informal
carers [60]. Digital Twin technology holds the promise to deliver Health 4.0 [61]. In person-
alised healthcare, the Digital Twin can be defined as a life-long, rich data record of a person
combined with AI-powered models [62], which can provide proactive and preventive care
in real-time without being in close proximity [61]. For example, HeartModel—a clinical
application launched by Philips in 2015—can assess several cardiac functions and provide
insight into a possible heart failure [63]. A Digital Twin can provide assistance in deter-
mining the right therapy option for a specific patient, and can also be used to predict the
outcome of specific procedures. On a larger scale, if behavioural data and contextual social
factors are also integrated, Digital Twins can also help to better manage chronic diseases
and population health [62].

In telecommunication, the fifth generation standard for broadband cellular networks,
i.e., 5G, has been rolling out worldwide since 2019. A simulation-based approach is being
extensively used to evaluate network coverage in cities by visualising wave propagation
from several transmitter–receiver pairs located at different locations. An example presented
in [64] illustrates a Digital Twin of an entire city, which by its definition is continuously
updated over time to monitor changes in the city topology and, therefore, can provide sug-
gestions for modification and maintenance of networking equipment. In the construction
industry, Digital Twins can enable design and energy-performance optimisation, real-time
structural health monitoring, predictive and proactive maintenance, and efficient supply
chain management. This is enabled by a combination of 3D modelling (such as a building
information model) and data collection and analysis using an IoT sensor network [65,66].

DTs are great tools in environmental sciences to enable more data-driven investigations
to address challenges such as climate change, a loss of biodiversity, flooding, and water
and subsurface management, and can facilitate risk-based decision-making [67,68]. The
agriculture industry (Agriculture 4.0) benefits from the adoption of DT technology, which
can be applied to several of its subdomains, viz., farming, processing, consumption, and the
supply and value chain. It enables crop monitoring, resource optimisation and cultivation,
livestock management, soil quality management, and the identification of bottlenecks and
waste [69,70]. In the energy sector, DTs are applied to a variety of aspects such as energy
management, conservation systems, transmission (grids), storage, and consumption for
both traditional and renewable energy.

The fashion and retail industry has been adopting Digital Twin technology in two
ways. The first way is for creating personalised products such as smart textiles, shoes,
and wearables. The Digital Twin of a customer can be used for analysing personal style,
fit, and other parameters such as the financial capability to design as well as recommend
products. Similar to the healthcare industry, this approach can also be implemented for a
larger demography. The second approach is by using Digital Twin for products, such as
footwear and shoes, for monitoring their degradation over time and detecting different
ways of failure, and later to use this information for improving the design as well as the
fabrication process [71]. Internet-based advertisement businesses run by companies such
as Google, YouTube, and Meta (formerly Facebook), as well as online retail services such as
Amazon have been using a Digital Twin approach, which is also referred to as surveillance
capitalism, to create and maintain updated models of their users’ interests to provide
relevant advertisements and buying recommendations [72].

3.3. Reliability of Electronic Systems

The adoption of Digital Twin technology was enabled by the incorporation of more
and more electronics, such as sensors, into conventional products and systems, as well
as the integration of computer-aided and software-based technologies into traditional
industries. IoT-enabled smart-home products such as AI-powered smart speakers, smart
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coffee machines, smart thermostats, etc., are classic examples of this. Similarly, consumer
electronics such as computers, laptops, and smartphones consist mostly of electronic
components. Another good example is the automotive industry. According to a survey,
about 35% of the cost of a modern car constitutes the cost of electronics used in it. Moreover,
it is expected to have a 50% share by the year 2030 [7].

Therefore, the reliability of these products as a whole, as well as of their electronic
subsystems, has become highly critical. A Digital Twin enables the ability of system opti-
misation, monitoring, diagnostics, and prognostics using the integration of AI, machine
learning, and big data analytics. It can be used for predicting failures and estimating the
lifetime of electronic components, which then allows for scheduling preventive mainte-
nance. As an example, Apple Inc. announced a replacement program for display control
modules of certain iPhones manufactured between November 2019 and May 2020 fore-
seeing the display issue, where the displays are expected to stop responding to touch
due to the faulty display module [73,74]. Launching a preventive maintenance program
like this allows the company to save time and costs and avoid customer dissatisfaction as
well as unwanted lawsuits. This is facilitated by implementing Digital Twin technology,
which allows the continuous monitoring of the degradation of electronic components over
their entire lifespan. Thus, prognostics and health management are facilitated by a Digital
Twin-based implementation.

4. Methodology—Digital Twin Architecture

The industry-wide adoption of the Digital Twin technology makes it ever so crucial
to study its architecture, in order to understand its workflow and functions. Similar to
the definition of a Digital Twin, its architecture has also seen some transformations and
contextual adaptations, which are built on the same conceptual base.

4.1. Basic Structure

The basic structure of a Digital Twin system consists of a physical entity, its virtual
representation, and an active connection between the real and virtual space for information
flow. Figure 1 shows the baseline architecture of a Digital Twin system. The physical entity
can be any object, system, or process. It can also be implemented on different scales of an
ecosystem. For instance, a manufacturing facility can have DTs of the product, machines
and tools, processes, a control volume, or even the entire business. In the context of
microelectronic systems, a product-specific implementation is the most relevant one when
reliability and lifetime prediction are in focus.

Real
Space

Virtual
Space

In-situ monitoring 
and updating

Adaptive design, 
plan, decision and 
strategy feedback

Digital Twin

Figure 1. The basic architecture of a Digital Twin system, consisting of a physical entity, its virtual
representation, and an active connection between the real and virtual space for information flow.

The connectivity between the physical entity and its virtual representation is what
sets a Digital Twin system apart from just a nominal model. The connections facilitate
data exchange, which enables a continuous update of the model rather than it remaining



Electronics 2024, 13, 3255 9 of 21

static. Similarly, the results generated from the updated model can be used as feedback
for improving the physical product. Thus, bilateral connectivity is the key to building an
effective Digital Twin system.

4.2. Types of Connections

The continuous update of the digital model in a DT system is achieved by the informa-
tion exchange through its connection to the physical entity. These connections can have
different levels of complexity. They can be roughly categorised into three types: (i) weak,
(ii) cloud-based, and (iii) embedded connections. Each of these approaches is suitable for
different kinds of applications and use cases. Figure 2 illustrates the key differences in the
aforementioned three kinds of connections to a Digital Twin. A weak connection utilises a
unidirectional flow of information, i.e., from the product to its model. There is no closed
loop, and thus, the continuously updated model serves as a supporting tool and has limited
functionality. This configuration is sometimes referred to as a ‘Digital Shadow’ [75]. It can
mainly be used for virtual prototyping and product/process design.

Weak Connection Cloud Connection Embedded Connection

Complex Simulation Model

Data-driven
Compact ModelSimulation
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Figure 2. Three types of connections in a Digital Twin system, viz., weak, cloud-based, and embedded,
each of which differs in the direction of the information flow and the complexity of the models.

A cloud-based connection setup explicitly utilises a powerful computing infrastructure
external to (and in most cases, distant from) the physical entity. This connection allows
for the real-time monitoring of a product, data filtering, and transmission. A cloud-based
platform facilitates processing and producing large amounts of collected data. These data
can then be utilised for product or process improvement with closed-loop connectivity.
Another advantage of this is the capability to run bigger and more complex simulation
models on an external computational node. A caveat of this implementation is the higher
latency and energy consumption due to the involved data transmission. This, however,
depends on several parameters (such as the available connectivity speed, the service
provider of the computing infrastructure, and the overall scale), and thus, can be controlled
and mitigated.

An embedded connection moves the computation to the edge, which allows models to
run locally. It also incorporates real-time monitoring and data collection but processes the
data on an edge-computing infrastructure. This saves the cost and energy of transmitting
the data to an external server and, thus, is more efficient. In this way, integrated closed-loop
control and decision-making can be achieved. The shortcoming of this approach is the
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limited computational power available at the edge, e.g., a microcontroller unit. Therefore,
only simpler and computationally lighter (compact) models, such as response surfaces or
meta-models, can be utilised in this approach.

4.3. Implementation Scales

Digital Twins can be utilised at the different phases of a product’s lifecycle, from an
early design and prototyping phase to the later manufacturing, qualification, and in-use
phases. However, the implementation varies as the product progresses through these
phases. Grieves [76] suggests three different kinds of implementations: a Digital Twin
Prototype (DTP) in early design stages, a Digital Twin Instance (DTI) of a designed product
that is being manufactured, and a Digital Twin Aggregate (DTA) for products manufactured
and deployed. Note that the classifications DTP, DTI, and DTA would apply to the cases
where the physical entity is a product and is not restricted only to the manufacturing
domain. Figure 3 indicates the gradual transformation of these DT implementations
through different stages of the product lifecycle.

Digital Twin 
Prototype

Digital Twin 
Instance

Digital Twin 
Aggregate

Cloud-dominant Edge-dominantCloud + Edge

Figure 3. Different types of Digital Twins (viz., DTP, DTI, DTA) for a product, through its lifecycle
stages (arrow), and the corresponding suitable computational infrastructure for these implementations.

The DTP primarily utilises a physics-based approach and complex simulation models.
It can rely on a weak connection setup in the initial phases and move to a closed-loop cloud
infrastructure as the product moves from the concept to the manufacturing stage. The DTI
is utilised when the products are manufactured and undergo qualification tests. It uses
both physics-based and data-driven approaches yet heavily relies on the former. The DTA
is when the product is in the in-use phase. A data-driven approach and an embedded
connection with edge-computation are most suitable for this phase. Thus, the three types
of DT implementations also gradually progress from being primarily physics-based to
a predominantly data-driven approach. Both cloud-based (computationally expensive)
and edge-based (local processing) implementations can be combined to varying capacities
depending on the need of a specific application.

5. Evaluation—Digital Twin Models

The contextual interpretations of a Digital Twin in various fields reveal several interac-
tion models of its architecture. All of them essentially emerge from the basic architecture
shown in Figure 1. Notably, two main ‘generalised’ models (viz., a three- and a five-
dimensional model) are utilised as the baseline for various applications, and different
adoptions of both can be seen widely in the literature.

5.1. Three- and Five-Dimensional Models

Initially, a three-dimensional ‘information mirroring’ model of a Digital Twin was
published by Grieves in 2014 [10], which consists of a physical object, its model in the virtual
space, and the connection enabling data exchange. Later in 2018, Tao et al. [77] introduced
an updated five-dimensional version of that model. This version denotes four aspects
of a DT by ‘nodes’. It creates a separate node for ‘data’ and includes a new node called
‘services’. The ‘connections’ stay as an independent dimension connecting each node with
every other. Figure 4a,b show the three- and five-dimensional models, respectively. The
three-dimensional model is a bit too similar to the basic architecture (Figure 1). Numerous
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adaptations of this model in the literature often seem to add and define more components,
especially the ‘data’, within the primary three dimensions. Thus, the model itself comes
across as too generic and needs some modifications for clarity.

Data

Services

Digital 
Model

Physical 
Entity

ConnectionConnection

Hybrid 
Digital Twin

Physical 
Entity

Data-driven 
Approach 

Physics-based 
Modelling

R
ea

l S
pa
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Vi

rtu
al

 S
pa

ce

Digital 
Model

Physical 
Entity

Data

Information
Process

 (a)

 (b)

 (c)

Figure 4. The comparison of three different generalised models of the Digital Twin architecture:
(a) three-dimensional model by Grieves [10], (b) five-dimensional model by Tao et al. [77], (c) the
new two-branch model. The newly proposed ‘generalised two-branched model’ has a simplified
approach to structuring a Digital Twin system for PHM with a clear separation between the real and
virtual spaces. The two main modelling approaches (viz., physics-based and data-driven) form the
two branches of the digital models, which can be combined to a different capacity for hybrid PHM.
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The five-dimensional model adds some value to the architecture by defining ‘data’ as
a separate entity. In addition, the outputs that the digital models and data processing can
produce are collected together in the ‘services’ node. Moreover, every node can receive
an input and provide some feedback to every other node. This has been explained in
detail in the paper [78], where the five-dimensional model is greatly expanded on. The
shortcoming of this model is, however, the lack of a clear separation between the physical
and virtual spaces. The representation may indicate an equal weight to all four nodes.
In reality, that depends on the application. One of the nodes can be significantly bigger
(i.e., more important and/or resource-intensive) than the other. Another challenge it poses
is in expanding this representation for different phases in a product’s lifecycle. Thus,
we identified a need for a more simplified model that can address these challenges and
represent a DT architecture even more clearly.

5.2. Generalised Two-Branched Model

The two-branch model, indicated in Figure 4c, builds on the basic architecture while
adopting some of the elements from the aforementioned models. It has a simplified
approach to structuring a Digital Twin system, especially for product-specific PHM, with
a clear separation between the real and virtual spaces. The two branches of the digital
models are based on the two main modelling approaches: physics-based and data-driven
modelling. Either one of these two branches can be the digital model on its own, which can
provide ‘services’, and form a closed feedback-loop with the physical product. Furthermore,
the two modelling approaches can be combined to a varied capacity to obtain a hybrid
Digital Twin. This becomes more relevant when the DT implementation takes the forms
DTI and DTA (described in Section 4). The digital models can draw inputs from one or
more phases in the product lifecycle. Figure 5 elaborates on this with an expanded version
of the two-branched model. It is prepared by keeping a microelectronic system (product)
as the physical entity and its prognostics and health management as the purpose.

The digital space can utilise inputs from several lifecycle phases of the product. The
text in the ‘physical entity’ box indicates the features that the Digital Twin can extract
from its physical counterpart. A similar approach is utilised in the Reference Architecture
Model in Industry 4.0 (RAMI 4.0) for DT [59]. The key differentiation is that RAMI 4.0
includes different terms for the digital replica based on their level of integrity (i.e., the
connection type), while the two-branched model keeps a consistent naming scheme for
‘Digital Twin’ and classifies them based on the connection type (Figure 2). In the two-
branched model, the number of features and their combinations included in a digital model
can vary depending on their availability and the type of Digital Twin implementation (i.e.,
DTI, DTP, DTA). For instance, a physics-based Digital Twin can consider loading conditions
from the manufacturing stage or the in-use stage. Thus, the two-branched model provides
a generalised framework for preparing (product) Digital Twins of different complexities
and modelling approaches.

5.3. Product-Specific Monitoring Device

The rapid adoption of electronics across industries has led to a high demand for
mission-critical electronics. More electronics per product put forth the need for a fast
ramp-up of new electronic components, resulting in high-volume production in shorter
periods of time. Consequently, any issues that emerge from non-reliable electronics affect
the functionality of the product and can create serious business problems for OEMs in
different domains. Thus, PHM must be an integral part of the lifecycle management of
electronic products. The increasing importance of electronics and the disadvantage of
traditional reliability testing can be overcome by implementing PHM for product-specific
monitoring. It can serve as a product-level monitoring device (MonDev), which presents
itself as a key enabler for providing performance- and lifetime-on-demand.
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Figure 5. The expanded version of the ‘generalised two-branched’ Digital Twin model. In this
description, the physical entity is a product (e.g., a microelectronic system) and its PHM is the key
purpose. Along with the different phases within the product lifecycle, a select number of specific
inputs that the digital models can draw from different aspects of the product are also indicated.

New IoT options, combined with edge and/or cloud computing possibilities, can run
real-time analysis when reliability-specific parameters are measured and recorded at the
system level. Such system-level prognostics help avoid failures by detecting them before-
hand, thus reducing the residual risk [79]. It is important to note that the MonDev is not
necessarily only a physical device but is more of a conceptual term. It includes both physical
(dedicated hardware and sensors) and digital (data and software) components. It can take
any form of shape depending upon the application (e.g., automotive industry) and the
subdomain (e.g., perception, propulsion, connectivity). The project ArchitectECA2030 [80]
explains the implementation of an in-vehicle MonDev for an electric, connected and auto-
mated vehicle [81,82], which is able to indicate and measure the health status and possible
degradation of the functional electronics and electronic systems, enabling the predictive
diagnosis, maintenance, and re-configuration of embedded software.

A Digital Twin is one of the models/implementations of a MonDev. Digital Twin-based
health monitoring of microelectronic components and systems can be achieved by adopting
the architecture described in Figure 5. It requires developing both Physics-of-Degradation
(PoD) and data-driven models. An example of a PoD-based Digital Twin that models
the thermomechanical degradation of electronic packages due to the thermo-oxidative
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ageing of moulding compounds has been presented in the article [83]. Another example
of in situ monitoring has been investigated in the paper [84], which shows a specialised
degradation-monitoring sensor that can serve as an input to the data-driven models as well
as be used for the validation of physics-based simulation models. Moreover, the Reduced
Order Models (ROMs) are key in edge-computing (for an ‘embedded connection’ of a DT).
The integration of thermomechanical ROMs with full-order physics-based models has been
explored in the publication [85].

Such examples plug into the DT framework as various aspects of the virtual space
and form the building blocks for the two-branched architecture (Figure 5). The developed
models are then utilised for the fault detection, diagnosis, prognosis, and quantification of
Remaining Useful Life (RUL), based on the current state of component degradation. Thus,
a Digital Twin-based MonDev promises to be a key tool for the next-generation reliability
estimation and PHM of electronics.

6. Implementation—PHM Workflow

PHM is a relatively advanced methodology that allows the reliable assessment of
a system/component based on its individual working conditions. It leverages condition
monitoring, which allows for evaluating a system’s current state of health based on its
load history and keeping track of all its historical health statuses. Prognostics refers to
the prediction of the future state, performance, and RUL of a system based on its current
state of degradation. Health management is the process of making decisions and planning
actions on the basis of the evaluated state of component health. The prognosis can be of
a particular failure mode in a critical component, estimating the progression of a fault,
or even evaluating the RUL of the whole system, whereas the actions could be issuing
a warning, stopping a system function, or even scheduling maintenance (i.e., predictive
maintenance) or a component replacement.

The current state of degradation depends on the deviation from the nominal oper-
ating conditions. Two identical components subjected to different sets of working and
environmental conditions after a certain period of time will have different states of health.
PHM facilitates capturing that deviation individually for each system. Therefore, this
technique gives a major advantage over traditional reliability qualification tests. PHM can
be implemented based on a model-based, data-driven, or even a hybrid (fusion) approach.
Various publications focused on reviewing and summarising the PHM concept and its
implementations present different flowcharts [86–91], which are usually complex and/or
application-specific. Figure 6 indicates a rather simplified and generalised framework for
the PHM workflow.

The workflow of PHM begins with condition monitoring, which requires the collection
of relevant data using appropriate sensors for capturing environmental loads, operating
conditions, and additional measurements (e.g., current or voltage). Thus, the first three
steps in the PHM workflow are data sensing, acquisition, and preprocessing. The second
phase of the PHM framework is diagnostics. The collected data is processed to provide a
preliminary assessment of the component’s condition, such as the detection of an anomaly.
The state of component health is then evaluated, which requires physics-based validated
models for quantifying degradation and fault progression. In the last phase, prognostics
and decision-making come into the picture. A prognosis of the component’s performance
and an estimation of its RUL is made. Based on the prediction, decisive action is chosen,
such as scheduling maintenance for repair or replacement.
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Figure 6. The framework of the PHM workflow and its three main phases—condition monitoring,
diagnostics, and prognostics. The flowchart indicates the actions involved in each phase, and their
respective functional descriptions are listed as bullet points on the right side.

Building Blocks of Hybrid PHM

The physics-based models play a key role in the PHM workflow, as the later steps
in its framework depend on the health-state evaluation. The Physics of Failure (PoF) is a
preferred, but not the only, choice for physics-based models. It can be further enhanced
when used in conjunction with the PoD-based models. Some notable examples of PoD-
based models due to the thermal ageing of different materials and sub-components of
an electronic system are solder joints [92], moulding compounds [93], and printed circuit
boards [94]. A strong foundation of such validated models is a necessity for building a
health monitoring system for electronic components.

The input to the degradation models is the operating conditions experienced by
the electronic system. Ambient conditions such as temperature, moisture, vibrations,
shock, pressure, and acoustic levels can affect the component’s lifetime. Thus, relevant
environmental parameters should be continuously measured. In addition, some additional
embedded sensing devices or external measurements, such as electric current, changes in
electrical resistance, displacement, and strain, can give even more information about the
state of component degradation. Thus, the data-sensing needs should be considered in
the hardware design of the component; for example, specialised integrated sensors such
as a piezoresistive sensor [84,95,96] or measurement techniques such as the DC-resistance
measurement, RF-impedance measurement, the multivariate state estimation technique,
and the sequential probability ratio test [97–99].

A robust data processing pipeline needs to be in place to utilise the collected data
in data-driven approaches, e.g., lifetime prediction, failure classification, and anomaly
detection. The PoF models should identify relevant failure modes associated with the
electronic system of interest. The PoD models should be able to translate the loading
conditions into an effective aged health state of the component, including the changes in
the behaviour of its constituent materials. In addition, PoD should also reflect the effects of
all the manufacturing steps (semiconductor processing, die-bonding, electronic packaging,
moulding, solder reflow, component assembly, etc.) until the electronic system is ready
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to be used in the field. Lastly, the decision-making logic should consider the criticality
of the role of an electronic component in the function of the entire system, such as an
autonomous vehicle or a manufacturing line. The described PHM workflow utilises a
combination of physics-based and data-driven approaches and, thus, fits perfectly well
with the two-branched model of the Digital Twin.

7. Conclusions and Outlook

The Digital Twin is a key technology in Industry 4.0. It has evolved from its conceptu-
alisation in aerospace application to its adoption in manufacturing, automotive, healthcare,
and several other industries. The literature shows a big fragmentation in the definitions
and the models of a Digital Twin. This is largely due to the deep contextualisation of
DT and application-specific publications. This article addresses three main aspects of the
Digital Twin technology—the definition, the architecture, and the framework for (electronic)
product-specific DTs. Along with a detailed review of different kinds of DT definitions, a
generalised, information-rich, and yet, concise definition is presented.

Furthermore, the existing three-dimensional and five-dimensional models of the
DT architecture are analysed. To overcome their disadvantages, a new two-branched
model is proposed along with its expanded version for a product-specific monitoring
device. A simplified PHM workflow for electronics-enabled systems is outlined, and
its integration into the proposed two-branched DT model is described. Three different
categories of classifying Digital Twins are defined based on the (i) type of connection (viz.,
weak, cloud-based, embedded), (ii) computational infrastructure (viz., cloud and edge), and
(iii) modelling approaches (viz., physics-based, data-driven, and hybrid). A combination of
aspects within these categories gives three main scales of DT implementation in a product
lifecycle: DTP, DTI, and DTA.

A Digital Twin-based approach facilitates the next-generation reliability assessment
and PHM of microelectronics. At the same time, there are some important challenges to be
addressed. To enable DT implementation in different aspects of a complex ecosystem (e.g.,
a manufacturing facility), industry-wide standards need to be established and adopted; for
example, for the data exchange formats, interoperable IoT connectivity and cyber security.
Moreover, it is crucial to have more advanced, low-cost, and reliable sensors, and to have
different measurement techniques for in situ monitoring and integrate them into products
to make the system capable of self-monitoring.

The cloud-based digital models need to be multi-scale, multiphysics-based, and should
consider complex non-linear and ageing effects. On the other hand, more efficient compact
models (ROMs, meta-models, response surfaces, etc.) and AI-based techniques (unsuper-
vised learning, ML-based classification, etc.) need to be developed for edge-deployment
and local data processing. The key milestones in the context of failure criteria are the
definition of accurate failure-threshold levels and the know-how of multi-failure-mode
interactions. A push towards simulation-driven design and optimisation and a transi-
tion from a deterministic to a probabilistic/stochastic simulation methodology is crucial.
More robust collection, storage, filtering, and processing of big data and increased edge-
computing capabilities are also essential.

Thus, the overall roadmap for addressing the challenges associated with the Digital
Twin technology can be summarised in the following six points: (1) smart in situ sensing
and data transmission, (2) edge-computing capable hardware, (3) accurate compact/meta-
models integrated into products, (4) robust multi-scale multi-physics (non-linear, dynamic,
probabilistic) simulation models, (5) robust data-driven models, and (6) lifetime (i.e., RUL)
prediction on demand. Working towards these six goals would push forward the current
state-of-the-art of Digital Twins.

Finally, Digital Twins are also instrumental in realising the next phase of the industrial
revolution (Industry 5.0), which would be an extension of Industry 4.0 and focused on
human-centric development, sustainability, and resilience [100,101]. It has been identi-
fied by the European Commission as one of the six key technology pillars of Industry
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5.0 [102]. DTs enable health monitoring and the preventive maintenance of products and
systems, which can help extend their lifetime, taking a step towards a more sustainable
and circular economy.
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