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� Various causes for the capacity drop have been identified.

� Reaction times in macroscopic models have been insufficiently considered.

� A discrete approach for reaction time induced capacity drop is proposed.

� An experimental case demonstrates the validity of the approach.

� Further research on hybrid causation of capacity drop is recommended.
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The capacity drop forms a major reason why the prevention of congestion is targeted by

traffic management, as lower capacities are detrimental to traffic throughput. Various

reasons describing the dynamics behind the capacity have been described, however one of

these, reaction times, has had less explicit attention when modelling on a macroscopic

flow level. In this contribution, a method to include the effect of reaction times for the

capacity drop in heterogeneous traffic is proposed. The applied method further overcomes

difficulties in including reaction times in a discrete time model through relaxation of the

updating process in the discretization. This approach is novel for application in the

considered first order approach, which is practise ready, contrary to many other models

that propose similar approaches. The combination of the introduced method and the

model form a solid development and method to apply the capacity drop based on this

causation of the capacity drop. The results of the experiment case showed that the influ-

ence of traffic heterogeneity had a limited effect on the severity of the capacity drop, while

it did influence the time of congestion onset. The influence of the reaction time on traffic

showed greater capacity drop values for greater reaction time settings. The findings

showed the method effective and valid, while the model application is also practise ready.
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creativecommons.org/licenses/by-nc-nd/4.0/).
12.
S.C. Calvert), F.L.M.vanw
rn).

al Offices of Chang'an Un

g'an University. Publishin
se (http://creativecommo
ageningen-kessels-1@tudelft.nl (F.L.M. van Wageningen-Kessels),

iversity.

g services by Elsevier B.V. on behalf of Owner. This is an open
ns.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:s.c.calvert@tudelft.nl
mailto:F.L.M.vanwageningen-kessels-1@tudelft.nl
mailto:S.P.Hoogendoorn@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtte.2017.07.008&domain=pdf
www.sciencedirect.com/science/journal/20957564
https://doi.org/10.1016/j.jtte.2017.07.008
https://doi.org/10.1016/j.jtte.2017.07.008
https://doi.org/10.1016/j.jtte.2017.07.008
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Traffic Transp. Eng. (Engl. Ed.) 2018; 5 (2): 96e104 97
1. Introduction

Macroscopicmodelling has long been able to accuratelymodel

traffic flow and capture many traffic related phenomena.

However, the capacity drop phenomenon in traffic flow is an

important phenomenon that initially was not able to be

reproduced in early first order traffic models. And still today,

even with growing consensus on the causes of the capacity

drop, there remains no one accepted cause or modelling

method. This paper focuses on developing a yet limited

investigated idea in modelling the capacity drop, which is

caused, in part, by the reaction times of drivers to the move-

ment of their predecessors (Kesting and Treiber, 2008). The

idea that differences in acceleration and deceleration by

drivers can cause the capacity drop is well known, but has

not been widely investigated as a function of the reaction of

drivers in congestion. This approach is further considered

and developed in this paper and implemented in a state of

the art first order macroscopic model with consideration of

individual microscopic car following characteristics and

stochastics. The model is practise ready and the difficulty of

including stochastic reaction times in a discrete formulation

is addressed.

The capacity drop is defined as the difference between the

breakdown capacity and the discharge capacity on a section of

road and can be frequently observed after traffic breakdown

between observations in a critical under-saturated traffic state

and an over-saturated traffic state. The occurrence of the ca-

pacity drop was originally signalled by Hall and Agyemang-

Duah (1991) and Banks (1991) and was generally attributed to

the so called hysteresis effect (Banks, 1991; Hall and

Agyemang-Duah, 1991). The hysteresis effect occurs in part

due to differing driving behaviour as vehicles enter and exit

congested traffic states and is most commonly captured in

macroscopic models in second order formulations. In these

models, an additional equation is given that describes the

dynamics of vehicle flow. There have also been attempts to

include the capacity drop in first order model, such as by

Laval (2004). The drop in capacity after a breakdown event

is obviously detrimental to traffic flow and network

performance as it reduces the potential throughput of traffic.

For this reason, the prevention of the capacity drop or

reduction of its effects is often targeted as an important

method to improve traffic throughput within areas such as

traffic management. From empirical research, it has become

apparent that the capacity drop does not have a single

value, but can vary from almost non-existent to values up to

30%, while values ranging from 3% to 15% appear to be most

common (Zhang and Levinson, 2004). It has also been

demonstrated and argued that the capacity drop, just as

capacities themselves, do not hold to a static value, but are

also stochastic entities (Calvert et al., 2015b; Lorenz and

Elefteriadou, 2001).

Traditionally first order macroscopic models consider traffic

flowbasedonprinciples laid in theLWRmodel, first describedas

a compressible fluid (Richards, 1956; Whitham, 1955), which

allows general traffic flow features to be described. The LWR

model has long been applied due it is the eloquent description

andeasy implementation indescribingmacroscopic traffic flow.
Despite their popularity in traffic modelling, basic first order

models, do not capturemany of the detailed dynamics of traffic

flow, such as the interaction between vehicles in various traffic

states and therefore do not sufficiently describe phenomena

such as kinematic waves (Kerner, 1999) and the capacity

drop. This has previously been described in detail and led to

the development of second order models (Aw and Rascle,

2000; Daganzo, 1995; Lebacque et al., 2007). Second order

macroscopic models do allow the capacity drop to be

captured, however often at a cost, such as higher calculation

time, or with simplifications, such as presuming homogeneity

in traffic flow. Daganzo (1995), among others, described certain

flaws of second order models. Furthermore, the simplicity of

first order models offers a major advantage over second order

models, which has led to the proposal of many extensions for

first order models to help capture more traffic dynamics while

retaining much of their simplicity (Leclercq, 2007a).

In this contribution, an extension to a first order model is

proposed that allows the capacity drop phenomenon to be

modelled based on delays in driver reaction times in hetero-

geneous traffic. In heterogeneous traffic, the aggressiveness of

a driver is considered by a drivers' willingness or ability to

accelerate at different rates to maintain a headway, which is

described in the FOMSA model, a Lagrangian kinematic wave

model. In this contribution, we first give a description of the

dynamics that lead to the capacity drop and the ways that this

has been modelled. In Section 3, we describe the applied

model and give a description of the capacity drop inducing

components. In Section 4, a demonstration of the method is

given, with a discussion and the conclusions given in

Sections 5 and 6.
2. Capacity drop

2.1. Dynamics of the capacity drop

In traffic flow theory andmodelling there are few variables that

are as fundamental as road capacity. Road capacity is applied in

modelling for the likes of infrastructure planning and the

evaluation of traffic measures. Various interpretations of

capacity exist; traditionally the capacity of a road is defined as

“the maximum traffic flow on a section of road under fluent

traffic conditions”. In more recent decades, capacity is seen

increasingly in relation to the likelihood of a flow value being

achieved as “the maximum flow rate that can reasonably be

expected to traverse a uniform segment of road under prevail-

ing roadway, traffic and control conditions”, as defined in the

Highway Capacity Manual. It is well accepted that the capacity

of a road can be stochastic and Lorenz and Elefteriadou (2001)

define capacity as “the rate of flow along a uniform freeway

segment corresponding to the expected probability of

breakdown deemed acceptable under prevailing traffic and

roadway conditions in a specific direction”. These definitions

all relate to the breakdown capacity, often also referred to as

the free-flow capacity, which indicates the traffic flow in

under-saturated conditions. The discovery of a discharge

capacity for over-saturated traffic flow by Hall and Agyemang-

Duah (1991) and Banks (1991) and later consolidated by

empirical evidence by Cassidy and Bertini (1999) among

https://doi.org/10.1016/j.jtte.2017.07.008
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others, led to the term capacity drop coming into existence.

The term discharge refers to the maximum rate that traffic

can flow out of, or discharge, from an area with congested

over-saturated traffic. The capacity drop is considered as the

difference between the under-saturated capacity value and

the over-saturated discharge capacity value. At this point it

should be evident that the capacity drop can, and maybe

should, also be considered as a stochastic variable. If capacity,

either under-saturated or discharged, can be stochastic, then

the same must also hold for the difference between the two

(Calvert et al., 2015b; Cassidy and Bertini, 1999; Srivastava and

Geroliminis, 2013; Zhang and Levinson, 2004).

Throughout the start of the new millennium, researchers

have attempted to describe and give causes for the capacity

drop. Differences in acceleration rates between vehicles and a

limitation of acceleration (bounded acceleration) have been

widely considered as a possible cause (Coifman and Kim, 2011;

Hall and Agyemang-Duah, 1991; Leclercq et al., 2016), while

merging at low speeds with increased lane changing has also

been considered as a likely cause for many locations (Treiber

et al., 2006). General heterogeneity in traffic flow, especially

in saturated traffic states is another reason that can be found

from literature (Chen et al., 2014; Chung and Cassidy, 2004).

A lack of coherent and timely reaction of drivers to traffic

conditions has also been mentioned (Kesting and Treiber,

2008), in which drivers are slower to react to accelerating

vehicles leaving congestion resulting in a reduction in flow. It

is suggested that for most bottlenecks, the cause of the

capacity drop can be attributed to a number of various

mechanisms, which will vary depending on the type and

characteristics of the bottleneck. As there appear to be

multiple mechanisms, it is not easy to point specifically to

one definitive cause.

2.2. Previous work on capacity drop modelling

The complex dynamics that lead to the capacity drop form a

distinctive challenge to those aiming to model the phenome-

non. As these dynamics and exact interplay between various

possible causes of the capacity drop are yet unknown, it is

common formodels to represent the capacity drop through an

exogenous or generalised approach. In first order models,

adjustments to the fundamental diagram are an easy and

effective way to introduce capacity drop characteristics into

traffic flow, as the fundamental diagram directly relates to the

flow in both under- and over-saturated traffic states and

therefore the difference between these states. Early adaptions

of the fundamental diagram can be found in the use of the

inverse lambda fundamental diagram. Other shapes have

been proposed, such as various discontinuous and bivariate

fundamental diagrams. A number of approaches consider the

traffic behaviour in merges, such as at ramps and weaving

sections, and lane drops where there is a significant increase

in lane changes (Chung et al., 2007; Laval and Daganzo, 2006;

Leclercq et al., 2011). Within such approaches, the effect of

slowing and accelerating traffic can be represented. As traffic

re-accelerates after decelerating, it is known that this often

occurs at a slower rate than the deceleration. Bounded ac-

celeration was previously described (Calvert et al., 2015a;

Lebacque, 2003; Leclercq, 2007b) as an example how to
represent this. In the basic kinematic wave models, vehicles

may accelerate at an unrealistic speed, which is restricted by

bounding the maximum acceleration. The effect is especially

visible for acceleration of vehicles from low speeds such as out

of congestion. Further approaches make use of second order

descriptions of traffic flow that allows the influence of speed

dynamics in various traffic states to be described (Siebel et al.,

2009). In this paper, we describe the dynamics leading to the

capacity drop as a function of the reaction time of drivers.

This takes the premise of delayed or limited acceleration to

the level of the driver. It is not reasonable to presume that a

limitation of acceleration is only due to vehicle or comfort

constraints, rather that the inability of drivers to sufficiently

and timely react to traffic conditions, especially when

discharging from congestion. The influence of reaction times

of drivers was previously described by (Kesting and Treiber,

2008) in relation to traffic flow and is investigated as an

approach to describe the capacity drop in the following

sections of this paper.
3. Model description

3.1. FOMSA model

3.1.1. Lagrangian kinematic wave model as basis for FOMSA
The applied model in this contribution is the first order model

with stochastic advection (FOMSA), which is a Lagrangian

formulation of the kinematic wave model (LKWM), and in-

cludes a heterogeneous stochastic invariant component that

describes vehicle specific differences, such as desired head-

ways for different vehicles (Calvert et al., 2015c). The

kinematic wave model (KWM) finds its origins in the work

performed by Whitham (1955) and Richards (1956), and their

formulation of the so-called LWR model. In the KWM,

construction of the kinematic waves is achieved through use

of the fundamental relationship of traffic flow. The model

further relies on the conservation equation and initial

boundary conditions. In this contribution, the FOMSA model

is applied, which uses the Lagrangian coordinate system

that describes coordinates of particles in a flow explicitly as

a function of their speed. Jin et al. (2014) previously argued

that Lagrangian coordinates can be incorporated into

continuum traffic flow models by either establishing moving

boundary conditions for Euler formulations or through the

application of hydrodynamic flow. Leclercq et al. (2007)

showed that hydrodynamic flow is able to be derived using a

space function based on variational theory. More recently

Laval and Leclercq (2013) further applied the theory of

Hamilton-Jacobi to KWM in which the theory is applied to

three two-dimensional coordinate systems, which included

Eulerian and Lagrangian systems.

In traditional macroscopic modelling, Eulerian coordinates

are usually applied, which state that for a specific time and

location, a flow, such as traffic, will pass with certain char-

acteristics (Helbing and Treiber, 1999; van Wageningen-Kes-

sels et al., 2010). In this case, it is the flow which moves in

relation to the coordinate system. Lagrangian coordinates in

contrast are not fixed in space, but can transform with the

resulting flow. The time coordinates on the y-plain are set at

https://doi.org/10.1016/j.jtte.2017.07.008
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static intervals, while the flowing particles are explicitly

considered in individual consecutive cells and are assigned a

location depending on the speed of traffic flow. Therefore, the

coordinates follow the flow rather than the flow following the

coordinates. When describing the KWM in Lagrangian

coordinates, one still has the same underlying principles that

obey the conservation of vehicles and fundamental relations,

denoted as a functional of the traffic speed. The conservation

equation is given by

vtsþ vnv ¼ 0 (1)

where s denotes the mean space headway of vehicles in a

single cell, v denotes themean speed of vehicles, while n is the

vehicles number, which decreases in the driving direction.

The fundamental relation in Lagrangian coordinates makes

use of the speed v in relation to the density r, which is derived

from the mean headway spacing s ¼ 1/r. The fundamental

relation is given as

v ¼ VðsÞ (2)

where V is the shape of the fundamental diagram.

The use of Lagrangian coordinates has been proven to lead to

more accurate results as the error due to numerical diffusion is

much less than in the traditionally applied Eulerian coordinates

(Leclercq, 2007b; van Wageningen-Kessels et al., 2010). This can

be clearly seen from an example of the same flow depicted in

Fig. 1 for Eulerian (on the right) and Lagrangian (on the left). The

fundamental relation in Lagrangian coordinates makes use of

the speed v, in relation to the density r, derived from mean

space headway s ¼ 1/r. In Lagrangian coordinates, it is possible

to explicitly define the number of vehicles per time-space cell.

As the KWM is a macroscopic model, this can be any number

of aggregated vehicles.

3.1.2. Stochastic advection in FOMSA
The use of Lagrangian coordinates is a game changer in the

respect that the numerical scheme follows vehicles rather

than time, and allows specific characteristics of these vehicles

to propagate with the flow. Propagation of information with a

vehicle (group) is described as an advection invariant term.

Leclercq (2007b) introduced a generic invariant term which

allows numerous descriptive variables to be propagated with

traffic flow in a second order macroscopic model. In the

FOMSA, an invariant term is introduced as a first order

Lagrangian model, which retains the relative simplicity of

first order modelling approaches. The invariant can describe

an arbitrary characteristic of traffic flow and the drivers'
specific behaviour in this model, referred to here as the
Fig. 1 e Example of the sameflowdepicted in different systems. (a

Kessels et al., 2010).
vehicle specific invariant I. It is applied with a conservation

equation and in the fundamental relation

vtrIþ vxðrvIÞ ¼ 0 (3)

v ¼ Vðr; IÞ (4)

where the invariant, I, is the vehicle specific invariant, a term

that denotes a vehicle dependent adjustment factor that

directly influences the critical density, r, for each vehicle or

group of vehicles depending on the level of discretization.

rcrit ¼ Ircrit:0 (5)

rmax ¼ Irmax:0 (6)

where rcrit is the critical density, rcrit:0 is the deterministic

critical density, rmax is the jam density, and rmax:0 is the

deterministic jam density.

The values for I are sampled independently from a uniform

distribution, which bounds the extremity of possible values of

the invariant:

I � Uð½1� a; 1þ a�Þ
where I is a random number between 1� a and 1þ a, a is

the stochastic boundary parameter which indicates the

maximum extent of the stochastic influence. The vehicle

specific invariant, I, is assigned to each vehicle or platoon at

the entrance of a network. More detailed construction of the

invariant termhave been proposed in Calvert et al. (2015c), but

are omitted here, as they are not of relevance for the question

at hand.
3.2. Capacity drop modelling

The capacity drop is induced here through the application of

the reaction time (Tr) of drivers to downstream speed in-

creases in combination with heterogeneous traffic. As dis-

cussed previously, there are many possible causes for the

capacity drop. The reaction time of drivers in acceleration is

one such cause for the capacity drop (Kesting and Treiber,

2008) and the one that is modelled here. In the discrete

model, speeds v are updated at each discrete time step.

However, reaction times are generally much shorter than a

time step, usually in the vicinity of 1.0 s, and furthermore

are not consistent between drivers. The reaction time Tr, is

included as the delayed time required to induce a speed

altering action. To include the Tr within a time step Dt and

allow an update of the speed v and location x, an updated
) Lagrangian system. (b) Eulerian system (vanWageningen-

https://doi.org/10.1016/j.jtte.2017.07.008
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location of the following vehicle is calculated based on the

location of a vehicle without reaction time, x*. The principle

is shown in Fig. 2, in which the reactive influence of the car

following model is ignored for clarity, (nþ1)* denotes the

location of the following vehicle group (nþ1) if the reaction

time is not considered.

The new location x of a vehicle n, in a time-step t is

dependent on the speed of the vehicle as a consequence of the

space headway s to the predecessor n. As the space headway is

directly correlated to the density of traffic, s ¼ 1
r
, the speed

of vehicle n is calculated from the prevailing fundamental

relation. This is described by

vðnÞ
t ¼ V

�
sðnÞt�1; I

ðnÞ
�

(7)

xðnÞ
t ¼ xðnÞ

t�1 þ vðnÞ
t Dt (8)

where xðnÞ
t is the location of vehicle (group) n at t, vðnÞ

t is the

speed of vehicle (group) n at t, I(n) is the relative vehicle specific

invariant term of vehicle (group) n.

Eq. (7) includes the vehicle specific variant from the applied

FOMSA model. For the explanation of the inclusion of the

reaction time, this term is not required and is omitted for

ease of understanding, to give

vðnÞ
t ¼ V

�
sðnÞt�1

�
(9)

In the model, speeds are updated using the space headway

in Eq. (9). We define an uncorrected space headway without

reaction time as s*, and the corrected space headway with

reaction time as s. These are calculated from the difference

in locations, with x* of x respectively, of a vehicle n to its

predecessor nþ1.

s*ðnþ1Þ
t ¼ xðnÞ

t � x*ðnþ1Þ
t (10)

sðnþ1Þ
t ¼ xðnÞ

t � xðnþ1Þ
t (11)

whenwe consider the influence of the reaction time Tr for a

single vehicle n, the error made compared by not considering

the reaction time in terms of location xðnÞ
t � x*ðnÞ

t , and spacing

sðnÞt � s*ðnÞt , of vehicles is caused by the reaction time during

which a vehicle travelled at a higher speed too early in reac-

tion to the leading vehicle nþ1. The distance covered due to

this difference in indicated in Fig. 2 by the black arrow.
Fig. 2 e Method principle with modified vehicle location

and spacing.
Therefore, the correction is applied as the difference in

distance that vehicle n should of travelled, given by

xðnþ1Þ
t � x*ðnþ1Þ

t ¼ sðnþ1Þ
t � s*ðnþ1Þ

t ¼ Tr

Dn

�
vðnÞ
t�1 � vðnþ1Þ

t�1

�
(12)

where Dn is the vehicle group size.

The correction of the reaction time is only required when

the following vehicle has a speed higher than its predecessor.

For the case in which the speed of the leading vehicle is higher

than the follower, this is a different case, which is not relevant

for the capacity drop and for which the model presumes no

reaction time. Eq. (12) can be rewritten to give the corrected

space headway, which is applied for the following time step,

according to Eq. (7).

sðnþ1Þ
t ¼ s*ðnþ1Þ

t � Tr

Dn

�
vðnÞ
t�1 � vðnþ1Þ

t�1

�
vðnþ1Þ
t >vðnÞ

t (13)

where sðnþ1Þ
t is the space headway of vehicle group (nþ1) at t.

This process is repeated over all vehicleswithin a time step

and over all time steps to give the locations, speeds and

related traffic metrics of all vehicles in each time step

considering bounded traffic flow of the vehicle dynamics with

the inclusion of vehicles specific stochastics and reaction

times to vehicle speed differences. It should be noted that in a

continuous formulation, this would not be a major issue,

however the discrete formulation is much easier to apply and

is therefore very relevant for use in practise. Furthermore, it is

necessary to note that the calculations are performed for a set

vehicle group size. The values for the reaction time Tr corre-

spond to the aggregated reaction time of the vehicle group,

dependant on the vehicle group size.
4. Method demonstration

4.1. Case setup

The effect of Tr is shown on an arbitrary 10 km single bottle-

neck corridor with a capacity at a critical density of 25 veh/km

corresponding to a capacity flow of 2125 veh/h. The applied

fundamental diagram is triangular and has the jamdensity set

at 140 veh/h. The bottleneck has a capacity flow set at 70% of

the road capacity at a value of 1488 veh/h and is present on the

road between 6800 and 8800 m from the start of the corridor.

Traffic demand is gradually increased to a value of 2400 veh/h,

which is above the bottleneck capacity, and later decreased to

show the effect of congestion onset and dissipation and the

effect of the capacity drop. The applied time step of the model

is 3 s with a vehicle group size of 3 1
3 vehicles. The capacity

drop is measured using flows downstream of the bottleneck

with a 5 min moving average aggregation. Aggregation is

required for the heterogeneous cases to give a good repre-

sentative quantification of the overall traffic flow values and

avoid capturing outliers. Tr values of 0, 0.5, 1.0, and 1.5 s are

applied as test scenarios. Traffic heterogeneity is set at 0, 10%,

and 20% deviation for the vehicle specific invariant, I, for time

headways. The main goal of the case is to demonstrate

the ability of the proposed addition to model to capture the

capacity drop and to evaluate the sensitivity of the applied

parameters in the process.

https://doi.org/10.1016/j.jtte.2017.07.008
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Fig. 4 e Onset of congestion with density (veh/m)

(Lagrangian coordinates). (a) The reference case. (b) Case

with I ¼ 10%, Tr ¼ 1.0 s.
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4.2. Results

4.2.1. Congestion onset and propagation
Each scenario, a combination of a reaction time and traffic

heterogeneity, is compared against the reference scenario in

which vehicles have no reaction time and are in perfectly

homogeneous traffic. The trajectories of this reference sce-

nario are shown in the timeespace plot in Fig. 3(a). The plot

clearly shows the trajectories of traffic as it approaches the

bottleneck location and the triggering of congestion once

capacity is reached. The darker colours in the plot show a

higher density value, with black showing congestion.

Congestion builds up slowly, but rapidly disappears once the

traffic demand drops. In contrast, Fig. 3(b) shows the case

for a traffic heterogeneity of 10% and a driver reaction time

of 1.0 s with all other variables remaining identical to the

reference case. The plot shows that congestion occurs

sooner than in the reference case, builds up quicker and

lasts longer once the traffic demand is reduced. Also notice

that the heterogeneity of traffic can be seen from the figure,

by the varying darkness of the trajectory lines, which

indicate differences in the traffic density and therefore in

the following distance of vehicles, which was defined as part

of the level of aggressiveness between vehicles.

When we zoom in on the point of traffic breakdown and

the onset of congestion (Fig. 4), the differences between the

reference and the case with heterogeneity and reaction time

delay quickly become apparent. In the reference case

(Fig. 4(a)), it is clear that there is a longer period of time in

which traffic flow slightly at the bottleneck, before being

able to accelerate away from the bottleneck. Later in time,

the reduction in speed becomes such that the vehicles pass

the point of flow saturation and congestion sets in. Fig. 5(a)

shows this process in the fundamental diagram, in which

the reduction of speed in the under-saturated region is clear

leading up to the point of capacity. From the fundamental

diagram, the path back to under-saturated flow can also be
Fig. 3 e Trajectories. (a) The reference case. (b) Case with

I ¼ 10%, Tr ¼ 1.0 s.
easily observed, with congestion only present for a short

time. In Fig. 4(b), the onset of congestion for the 10%

heterogeneity and 1.0 s reaction time is shown. There, we

see that the time in which traffic starts to slow at the

bottleneck to the point at which congestion sets in is much

shorter. This is also clear from the fundamental diagram,

where a lower capacity level is achieved (Fig. 5(c)). The

presence of heterogeneity plays a major role in the quicker

onset of congestion as in the lower capacity value. The

effect of the different reaction times between the reference

and scenario cases is also visible. In Fig. 4(a), vehicles

accelerate at a much greater rate out of congestion,

therefore allowing following vehicles to do the same, which

reduces the severity of congestion and the rate that traffic

flow can recover. However, with reaction times (Fig. 4(b)),

the vehicles take longer to accelerate out of congestion and

therefore cause greater delays upstream.

Further observations from the fundamental diagrams can

be made in relation to the capacity drop. In the reference case

(Fig. 5(a)), there is no notable capacity drop. Traffic flow

quickly decreases and returns to under-saturated flow

conditions upon lowering of traffic demand. For the two

fundamental diagrams with reaction times of 0.5 and 1.0 s, a

clear increase in capacity drop can be observed with

increasing reaction time values. Again, once the inflow of

traffic is lowered, traffic starts to return to under-saturated

conditions, only this takes longer as more congestion has

accumulated and the operational capacity is lower. The

return to under-saturated conditions is not visible in

Fig. 5(c), as congestion lasted until the end of the simulation

time, however this is not important for the analysis, as the

capacity and discharge flow can already be observed.

4.2.2. Capacity drop
The capacity drop values for the considered Tr and heteroge-

neity values are shown in Table 1. To accommodate different
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Fig. 5 e Fundamental diagrams. (a) The reference case. (b) I ¼ 10%, Tr ¼ 0.5 s case. (c) I ¼ 10%, Tr ¼ 1.0 s case.
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definitions of the capacity drop and give insight into the

results, two different capacity drop values are given for each

scenario. The first is the capacity drop values given against

the highest flow pre-breakdown for each heterogeneity level.

For example, the reaction times for I ¼ 10% are all compared

to the highest flow value (which is the capacity) for the zero

reaction time case for I ¼ 10%. For the second capacity drop

definition, shown in brackets, a comparison is made

compared to the reference case with no heterogeneity or

reaction time. In this second approach, the capacity value

may be seen as a hypothetical maximum flow that can only

be achieved under perfect homogeneous traffic conditions,

but is rarely seen when traffic becomes heterogeneous. That

is also the reason why the values in brackets are higher, as

the comparison is against a higher breakdown capacity

value. The difference in breakdown capacity between the

scenarios is also visible from Fig. 5.

The results from Table 1 show that higher reaction times

give increasingly higher capacity drop values, as is expected,

and therefore demonstrate the ability of the proposed

method to capture the capacity drop. This trend is the case

for all applied levels of traffic heterogeneity. Increased
Table 1 e Capacity drop results per case e compared to
case capacity and compared to homogeneous maximum
capacity in brackets.

Traffic
heterogeneity I (%)

Capacity drop (%)

Tr ¼ 0 s Tr ¼ 0.5 s Tr ¼ 1.0 s Tr ¼ 1.5 s

0 0 9 (14) 23 (27) 40 (43)

10 0 9 (14) 24 (30) 41 (46)

20 0 6 (16) 24 (32) 41 (49)
heterogeneity in traffic flow does not show any substantial

increase in capacity drop compared to the capacity of the

same heterogeneity. An increase in heterogeneity leads to

lower capacities for higher levels of traffic heterogeneity.

Therefore, when the discharge capacity is compared to the

homogeneous case, then higher capacity drops are found for

higher levels of heterogeneity, as shown in the brackets in

Table 1.
5. Discussion

The results from the case demonstrate that the application

of reaction times to replicate the capacity drop succeeded

and the trends that were found are reasonable. The influ-

ence of traffic heterogeneity yielded a limited effect on the

capacity drop. Traffic heterogeneity did lead to an earlier

onset of congestion and therefore a lower breakdown ca-

pacity. The results also showed that a larger reaction time

led to higher capacity drops. The absolute values that were

found for the capacity drop can be seen on the high side,

however there is insufficient evidence to state what a

correct reaction time should be and therefore further

research may need to be performed to indicate if indeed a

reaction time for these driving actions is to be expected

nearer 0.5 s or 1.0 s. A reaction time of 1.5 s should not be

expected to be a realistic values, however was still used to

give insights into the effectiveness of the method in

extreme cases.

The causes and mechanisms behind the capacity drop

have shown in previous work not to be generic to one specific

causality and modelling approach. Lane changing, merging at

low speeds and heterogeneous lane behaviour have all been

mentioned and shown to contribute to some sort of capacity
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drop. In this work, we have demonstrated the ability to model

the capacity drop due to reaction time delays of drivers.

Ideally, research should aim to correctly identify each type of

capacity drop and apply an approach that can capture and

model each in a single framework. This research gives a

contribution to how that may be performed for reaction time

delays.

The demonstrated approach may be further improved

through improvements in the dynamics behind the applica-

tion of heterogeneity. At present, the approach is limited to a

single variable, but can andmaybe should be expanded with a

greater degree of behavioural aspects. This can be achieved in

part through further collaboration with human factors and

empirical research of microscopic driving behaviour. Further

improvements may be found in the analysis of reaction times

and delays of drivers for various tasks. This may allow the

construction of more complex reaction time distributions and

in turn allow more accurate modelling of the considered

phenomenon.
6. Conclusions

In this paper, a method is proposed to capture the capacity

drop in a first order model using driver reaction time in

heterogeneous traffic. The model is a Lagrangian formula-

tion of the kinematic wave model with vehicle specific

invariant to capture heterogeneity in traffic flow. The ca-

pacity drop phenomenon has been shown to have various

causes, which have been modelled by various researchers.

This paper is one of the first to model the capacity drop

based on explicit consideration of reaction time delays in

heterogeneous traffic in such a model. The applied method

overcomes difficulties in including reaction times in a

discrete time model through relaxation in the formulation

of the updating process in the discretization, correcting

discrete reaction time inaccuracies. The method was

demonstrated in a case study to successfully produce the

capacity drop phenomenon for different levels of hetero-

geneity and reaction times. This showed that traffic het-

erogeneity has a large influence on the time of traffic onset

and level of breakdown capacity, while the discharge ca-

pacity and therefore the capacity drop are largely affected

by the reaction time.
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