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Abstract
Accurately predicting runoff is crucial for managing water resources, preventing and miti-
gating floods, scheduling hydropower plant operations, and protecting the environment. 
The hydrological dynamic composite system that forms runoff is complex and random, and 
seemingly random behavior may be caused by nonlinear variables in a simple deterministic 
system, which poses a challenge to runoff prediction. In this paper, we construct paral-
lel and multi-timescale reservoirs from a chaotic theory perspective to simulate the sto-
chasticity of chaotic systems. We propose a multi-task-based "Decomposition-Integration-
Prediction" (Multi-SDIPC) model for runoff prediction. To validate our research results, 
we use the Catchment Attributes and Meteorology for Large-Sample Studies (CAMELS) 
dataset and compare our proposed model with 10 baseline models. The results show that 
our model has an average NSE metric of 0.83 and exhibits higher accuracy, better generali-
zation, and greater stability than the other models in multi-step forecasting. Based on our 
findings, we recommend wider application of the Multi-SDIPC model in different regions 
of the world for medium or long-term runoff prediction.
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1  Introduction

The changing global climate and the impact of human activities have led to changes in 
rainfall patterns, making it more difficult to make decisions on measures such as flood 
warnings, flood prevention and mitigation, and water resource allocation. Therefore, it 
is crucial to establish an accurate and reliable runoff prediction model. Currently, runoff 
prediction models can be categorized into physically driven models and machine learning 
models. Physically driven models that use equations constrained by boundary conditions 
to simulate the physical and interacting processes of hydrological systems require signifi-
cant a priori knowledge, leading to constraints on their application (Yaseen et al. 2019). 
Machine learning models based on statistics or deep learning can learn the complex rela-
tionship between variables only through a large amount of data (Gao et al. 2020; Adnan 
et al. 2021; Zhou et al. 2022; Malakoutian et al. 2022; Pérez-Alarcón et al. 2022). This type 
of model is often a black-box model, which needs to consider multiple aspects such as data 
quality, and feature engineering, and lacks physical interpretability in the face of the water 
imbalance problem. However, it is still widely used in the field of hydrology due to its high 
efficiency, low cost, and easy-to-implement advantages (Yin et al. 2022).

The formation of runoff is closely related to the spatial and temporal distribution of 
meteorological conditions, surface soil factors, and the operation of upstream water con-
servancy projects, forming a chaotic hydrological dynamics composite system with huge 
spatial and temporal variability, complex evolutionary laws, whose chaotic characteristics 
pose a great challenge to runoff prediction, and the traditional machine learning methods 
are unable to fulfill the prediction needs (Sivakumar 2000). Machine learning models that 
take chaos theory into account can effectively simulate chaotic patterns that may exist in 
real systems and have made some progress in solving hydrological problems on a global 
scale (Duan et  al. 2020; Giri and Devercelli 2023). For example, Yu-tong et  al. (2019) 
utilized chaotic wavelet neural networks for daily and monthly runoff flow prediction. Han 
et al. (2019) proposed an improved kernel recursive least squares algorithm for online pre-
diction of multivariate chaotic time series. However, the above methods fail to produce sat-
isfactory results in predicting chaotic hydrological time series and in distinguishing chaotic 
and random data, so reservoir computing (RC) was proposed and proved to be effective in 
predicting the trend of chaotic time series (Griffith et al. 2019; Vlachas et al. 2020). RC 
regarded a chaotic time series as a series of superpositions of random perturbations and 
deterministic trends, where the random perturbations obey a certain probability distribu-
tion, and the deterministic trends can be fitted with a linear regression model. It improves 
the prediction accuracy of chaotic time series by continuously updating and adjusting the 
parameters of the reservoir of random perturbations. Arcomano et al. (2020) applied RC 
to global atmospheric prediction models and demonstrated that parallel machine learning 
models based on RC can be applied to other geophysical hydrodynamic systems. Gupta 
et al. (2023) captured the nonlinearity of complex systems by adding radial basis functions 
(RBF) to the RC-based recurrent neural networks model to achieve model-free prediction 
of turbulent systems. Inspired by this, RC is introduced in this paper to predict chaotic 
runoff time series. However, most studies have focused on single-scale chaotic features, 
ignoring the existence of multi-scale chaotic features in hydrological time series. Only by 
studying as many features as possible on time scales can we truly understand the hydrocli-
matic and runoff processes.

To avoid ignoring the trend, season, and residual in the prediction of the model, 
scholars proposed a hybrid model combining the runoff series decomposition method 
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with a single model. Zhou and Dong (2012) used the X-12-ARIMA decomposition 
method to forecast the monthly and quarterly series of China’s net crude oil imports for 
the past 16 years. However, this decomposition method is based on the assumption of 
the linear relationship, which cannot solve the complex chaotic nonlinear system prob-
lem well. Therefore, He et  al. (2022) integrated seasonal-trend decomposition using 
loess (STL) and machine learning methods for predicting rainfall time series one step 
ahead based on historical rainfall and other meteorological data. The STL method has 
stronger robustness and is not disturbed by the outliers in the data, which has better 
application prospects in runoff time series prediction (McKitrick and Christy 2019), so 
this paper constructs a multi-timescale reservoir to study chaotic runoff time series. At 
the same time, RC in chaotic runoff prediction tends to ignore the existence of trend 
changes, periodic variations, and noise interference problems within its sequence. To 
address this problem, some scholars have proposed hybrid models that combine runoff 
series decomposition methods with a single model to fully extract the useful informa-
tion hidden in the complex runoff series. Li et al. (2022) used variational modal decom-
position (VMD) coupled with Gray Wolf Optimizer-based LSTM to implement monthly 
runoff prediction. However, this decomposition method is sensitive to noise, so He et al. 
(2022) integrated the STL and machine learning methods for predicting rainfall time 
series one step ahead based on historical rainfall and other meteorological data. The 
STL method has stronger robustness and is not disturbed by the outliers in the data, 
which has better application prospects in runoff time series prediction.

Prediction models based on time series decomposition can affect runoff prediction 
model performance due to the choice of prediction framework. For example, He et  al. 
(2020) proposed a hybrid model VMD-GBRT based on VMD and gradient boosting 
regression (GBRT) and applied it to monthly runoff forecasting. This prediction frame-
work is collectively called the “Decomposition-Prediction-Reconstruction" (DPR) frame-
work, which can lead to degradation of the final runoff prediction performance due to the 
accumulation of prediction errors in each subseries. Subsequently, Xu et  al. (2021) pro-
posed a “Decomposition-Integration-Prediction" (DIP) framework, in which the decom-
posed subsequence of the original runoff sequence is input to multiple parallel neural net-
works, and then the output of each neural network is adaptively concatenated to obtain the 
prediction results. Although this prediction framework has an error correction function, the 
dependencies between high-dimensional complex chaotic features are difficult to extract 
effectively, which will lead to the degradation of the prediction performance of the model. 
Therefore, this paper proposes using convolutional neural networks with multiple convo-
lutional kernels to obtain the complex correlations between high-dimensional chaotic fea-
tures and ensure the diversity of extracted features (Ma et al. 2021).

Consider using knowledge from other hydrological time series to improve prediction 
and communicate high-dimensional chaotic information effectively. Multi-task learn-
ing is proposed to achieve shared information and knowledge transfer in the process of 
problem-solving to improve the overall performance of the target model. Zhang and Yang 
(2017) demonstrated that joint learning of multiple tasks leads to better performance 
empirically and theoretically than independent learning. This paper proposes a multi-task 
learning approach to improve runoff predictions. It uses a subtask reservoir to obtain high-
dimensional chaotic information and a convolutional neural network to extract and transfer 
knowledge for enhanced performance.

To address the challenges brought by the complexity and randomness of hydrologi-
cal dynamic composite systems to runoff prediction, and taking into account the multi-
scale characteristics of hydrological time series, this paper proposes a multi-task based 
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Multi-SDIPC model, which simulates the randomness of chaotic systems by constructing 
parallel and multi-time scale reservoirs. The main contributions are summarized as follows: 

1.	 Stochastic high-dimensional mapping of RC is used to simulate chaotic patterns to 
capture the nonlinear dynamic features in chaotic hydrological time series and convert 
them into predictable linear dynamic features, thereby predicting their future trends to 
improve the prediction model performance.

2.	 Extracting chaotic multi-timescale features by constructing sub-task multi-timescale 
reservoirs to enhance the original runoff series for useful knowledge transfer.

3.	 Extensive experiments with 10 baseline models on the CAMELS dataset.

2 � Related Work

2.1 � Seasonal‑Trend Decomposition Procedures Based on LOESS(STL)

The STL is a robust method that does not require mathematical modeling and is widely 
used to decompose time series with different features (Theodosiou 2011; Mohsin et  al. 
2021). It consists of an internal and external iterative loop process. As shown in Fig. 1, the 
inner loop implements updating the seasonal and trend components to make them smooth; 
the outer loop implements updating the robustness weights of the residual components. It is 
assumed that the trend component and the cycle component after the k-1th iteration in the 
inner loop are: T (k)

v
 , S(k)

v
 , initially T (k)

v
= 0 ; and the following parameters: n(p) is the number 

of samples in one cycle, and n(s), n(l), n(t) are LOESS smoothing parameters in Step2, 
Step3, Step6 respectively. The specific steps of the inner loop are presented as follows:

Step 1: Detrending. Subtract the trend component of the previous iteration by Yv − T (k)
v

.
Step 2: Cycle-subseries smoothing. Regress each subseries using LOESS of q = n(s) , 
d = 1 , with a delay of 1-time point before and after, and combine to obtain a time series 
C(k+1)
v

 of length (N + 2 × np).
Step 3: Low-pass filtering of smoothing cycle-subseries. The sequence of results C(k+1)

v
 

of Step 2 is done as a sliding average of n(p), n(p), 3 in turn, and then the sequence 
L(k+1)
v

 is obtained by regression with LOESS of q = n(l) , d = 1.
Step 4: Detrending of smoothed cycle-subseries. S(k+1)

v
= C(k+1)

v
− L(k+1)

v
.

Step 5: Deseasonalizing.Yv − S(k+1)
v

.
Step 6: Trend Smoothing. Regression of the resulting series of Step 5 using q = n(t) , 
d = 1 was performed to obtain the trend component T (k+1)

v
.

The iterations of the outer loop are used by the results of the iterations of the inner loop 
(trend Tv and seasonal Sv ) to calculate the robustness weights, while the residuals can be 
obtained by Rv = Yv − Tv − Sv . First definition,

Then, the robust weights for time point v are:

(1)h = 6 × median(||Rv
||)

(2)�v = B
(||Rv

||∕h
)
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where B is the square weight function:

After that, the inner loop is further iterated using robustness weights �v to reduce the effect 
of outliers on the regression. In this paper, the STL of the runoff time series is obtained:

where T , S,R ∈ ℝ
D denotes trend, seasonal, and residual, respectively.

(3)B(u) =

{
(1 − u2)2, 0 ≤ u < 1

0, u ≥ 1

(4)Y = STL(Y) = T + S + R

Fig. 1   Framework of Multi-SDIPC model
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2.2 � Reservoir Computing(RC)

The RC is an extension framework of the Recurrent Neural Network, which views cha-
otic time series as a superposition of a series of stochastic perturbations and determinis-
tic trends, and its prediction accuracy of chaotic time series is improved by continuously 
updating and adjusting the parameters of the reservoir of random perturbations (Jaeger 
2001). The RC consists of an input layer, a reservoir layer, and an output layer. The 
input weights and reservoir weights are randomly initialized and do not require train-
ing; and the reservoir weights are large sparse matrices with non-zero elements indicat-
ing the activated neurons in the reservoir, which have short-term memory. The output 
weights are then adjusted by solving a linear regression for training. The architecture of 
RC is expressed by the following equation:

where �(t) ∈ ℝ
D, �(t) ∈ ℝ

N and y(t) ∈ ℝ
L denote the input, reservoir, and output of the 

RC, respectively. �(t) denotes the input value at moment t of the time series, �in ∈ ℝ
N×D 

(N is the number of reservoir nodes, D is the input dimension) denotes the connection 
weight between the input layer and the reservoir, �(t) denotes the reservoir at moment t 
of the time series, �res ∈ ℝ

N×N denotes the connection weight of the reservoir itself, and 
�out ∈ ℝ

L×N (L denotes the output dimension) denotes the connection weight between the 
reservoir and the output layer. f (⋅) and f out(t) denote the activation functions on the reser-
voir and output layers.

3 � Main Research

3.1 � The Multi‑SDIPC Framework for Runoff Forecasting

The Multi-SDIPC framework is shown in Fig. 1 and designed as follows: 

1.	 The STL decomposition: Decomposition of chaotic runoff sequences using STL decomposition.
2.	 Parallel layer: A multi-input parallel reservoir layer is constructed to obtain the nonlinear 

dynamic features in each sub-series through high-dimensional mapping to obtain the 
correlation between multiple explanatory components and response variables.

3.	 Sub-task multiscale features: Constructing sub-task multi-timescale reservoirs to extract 
multi-timescale chaotic features for explanatory variables such as rainfall, surface water 
input, average daily temperature, and potential evapotranspiration to achieve more accu-
rate predictions to realize useful knowledge transfer.

4.	 Concatenate layer: Constructing a concatenated convolutional layer to extract complex 
feature dependencies in high-dimensional concatenated explanatory variables using 
a multi-kernel convolutional neural network, and finally outputting runoff prediction 
results through a maximum pooling layer and a fully connected layer.

(5)�(t) = f
(
�res�(t − 1) +�in�(t)

)

(6)�(t) = f out
(
�out�(t)

)
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3.2 � Sub‑Task Multiscale Feature

There are multi-timescale structures in time series, Ma et al. (2021) designed an RC-based 
method to capture the multi-timescale structures in time data. By combining the use of 
multi-task learning ideas, this paper extracts implicit multi-timescale feature information 
from hydrological time series features to achieve information sharing between tasks and 
rational utilization, so that the overall prediction can achieve better results. In this paper, a 
reservoir is used to extract multi-timescale explanatory variables, as shown in the Sub-Task 
Multi-scale Feature in Fig. 1. A multi-timescale reservoir consisting of M independent res-
ervoir connections is used, where each reservoir consists of N nodes, and each reservoir 
captures long-term dependent features by jumping connected. The dependency of different 
reservoirs is capable of extracting different timescale features.

Given a D-dimensional hydrological time series input:

where � ∈ ℝ
D×T,u(t) ∈ ℝ

D , T denotes the length of the time series; then the state update 
equation for the i-th reservoir of the reservoir pool with di period at time t is expressed as:

where x(0) denotes the initial state, �in
i
∈ ℝ

N×D(i = 1,… ,M) denotes the input weight 
matrix corresponding to the reservoir with a period; di denotes the period in the reser-
voir, reservoirs with different periods can obtain time dependence at different time scales, 
the larger the period, the wider the range of time dependence; �res

i
∈ ℝ

N×N(i = 1,… ,M) 
denotes the matrix of state feedback weights corresponding to the reservoir with period di ; 
f (⋅) denotes the activation function in the reservoir (usually tanh(⋅) ). Collecting all the res-
ervoir states of the i-th reservoir in time order constitutes the matrix �i:

Then, all reservoir states are expressed as:

3.3 � Main‑Task Predictor

This section describes the main task of runoff prediction, which consists of a parallel input 
layer, a concatenate layer, and a high-dimensional convolutional learning block, the frame-
work of which is shown in Fig. 2.

(7)� = (u(1),… , u(t),… , u(T))T

(8)xi(t) =

{
f
(
�res

i
x(0) +�in

i
u(t)

)
, if t − di ≤ 0

f
(
�res

i
xi
(
t − di

)
+�in

i
u(t)

)
, if t − di > 0

(9)

�i = F(U) = F
�
(u(1),… , u(t),… , u(T))T

�

=
�
xi(1),… , xi(t),… xi(T)

�T

=

⎛⎜⎜⎜⎜⎜⎝

x1
i
(1) ⋯ xn

i
(1) ⋯ xN

i
(1)

⋮ ⋱ ⋮ ⋱ ⋮

x1
i
(t) ⋯ xn

i
(t) ⋯ xN

i
(t)

⋮ ⋱ ⋮ ⋱ ⋮

x1
i
(T) ⋯ xn

i
(T) ⋯ xN

i
(T)

⎞⎟⎟⎟⎟⎟⎠T×N

(10)� =
{
�i

}M

i=1



	 H. Zuo et al.

1 3

3.3.1 � Parallel Layer

The runoff time series Y is decomposed by STL to obtain three explanatory components: trend 
T, seasonal S, and residual R. To improve the accuracy of the prediction model, it is necessary to 
extract the chaotic characteristics of the corresponding explanatory components, so three parallel 
reservoir networks are established in the parallel input layer. The decomposed three explanatory 
components are simultaneously passed through the parallel reservoir to obtain the outputs �T , �S , 
�R . Since the influence of each explanatory component on the response variable is not identical, 
Pearson coefficients are introduced to give weights to each component so that the model learns 
more useful knowledge and finally obtains the weighted explanatory components.

The three explanatory components �T , �S and �R are respectively calculated with the runoff 
response variable Y to calculate Pearson coefficients and their absolute values are used as adjust-
ment weights for the three components. The absolute value �j is calculated as shown below:

Fig. 2   Main-task predictor

where Cov
(
�j, Y

)
 denotes the covariance operator between the different explanatory vec-

tors and the response vector; Var(�j) denotes the variance operator of the different explana-
tory vectors, and Var(Y) denotes the variance operator of the response vector.

The final weighted explanatory component is obtained as follows:

(11)�j =

��������

Cov
�
�j, Y

�
�

Var
�
�j
�
⋅
√
Var(Y)

��������
j = T , S,R

3.3.2 � Concatenate Layer

The previous section describes the extraction of chaotic multi-timescale explanatory variables 
� using a multi-timescale reservoir. For knowledge transfer, � is concatenated in the main 
task prediction. The chaotic multi-timescale explanatory variables � generated during the 
subtask and the weighted explanatory component �M+1 are concatenated to obtain the high-
dimensional concatenated explanatory variables � , i.e.,� = [� ∶ �M+1] . The concatenated 
explanatory variables are specified in the following equation:

(12)�M+1 = �T ⋅ �T + �S ⋅ �S + �R ⋅ �R

(13)
�t∶t+l−1
i

= �i(t)⊕ �i(t + 1)⊕⋯⊕ �i(t + l − 1)

i = 1,… ,M + 1

where ⊕ denotes the linkage operator, i denotes the presence of i concatenated explana-
tory variables, �t∶t+l−1

i
∈ ℝ

l×N denotes the sequence fragment from time t to time t + l − 1 

(14)� =
{
�t∶t+l−1
i

}T−l+1

t=1
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in the i-th concatenated explanatory variable, � denotes the sequence of all concatenated 
explanatory components from time 1 to time t + l − 1 , and T is the length of the time series.

3.3.3 � Conv Learning Block

To obtain multi-scale temporal dynamic dependencies in high-dimensional aggregated 
explanatory variables, a convolutional learning module with multiple convolutional kernels is 
constructed in this paper (Cui et al. 2016; Ma et al. 2021). The convolutional learning block 
consists of a convolutional layer, a maximum pooling layer, and a fully connected layer (as 
shown in Fig. 2). The convolutional layer uses multiple convolutional kernels of different sizes 
to extract deeper multiscale features for each concatenated interpretation component; the max-
imum pooling layer preserves the invariance of multiscale features and removes redundant 
information. Figure 3 shows the multi-kernel convolution operation.

After obtaining the concatenated explanatory variables � in the concatenate layer, it enters 
the multi-kernel convolution module to obtain the dependencies among the explanatory vari-
ables. The output of the convolution layer with explanatory variables passing through convo-
lution kernels of different sizes is:

Fig. 3   Multi-kernel convolu-
tional operations

where wl,k

i
∈ ℝ

l×N(i = 1,… ,M + 1, l = l1,… , lJ , k = 1,… ,K) , J and K denote the scale 
type of the convolution kernel and the number of convolution kernels of the correspond-
ing scale, respectively, wl,k

i
 denotes the use of the k-th convolution kernel of size l at the ith 

concatenated explanatory variable, f (⋅) and bl,k
i

 denote the activation function and the cor-
responding bias, cl,k

i
(t) ∈ ℝ denotes the result obtained by convolving the i-th concatenated 

explanatory variable at time t using the convolution kernel wl,k

i
 . Then, the result of the full 

convolution of the i-th concatenated explanatory variable is denoted as:

(15)c
l,k

i
(t) = f

(
w
l,k

i
× �t∶t+1−1

i
+ b

l,k

i

)

At the end of the convolution process, the corresponding result is obtained by entering 
the maximum pooling layer expressed as:

(16)�
l,k

i
=
(
c
l,k

i
(1),… , c

l,k

i
(t),… , c

l,k

i
(T − l + 1)

)T

(17)p
l,k

i
= argmax c

l,k

i
(t)

t∈[1,T+l−1]
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(18)�i = (p
l1,1

i
,… , p

l1,K

i
,… , p

lj ,1

i
,… , p

li,K

i
)T

Algorithm 1   Multi-SDIPC

After the maximum pooling phase, a fully connected layer is used to fuse the features on 
all time scales to obtain the final prediction results expressed as:

(19)� = �1 ⊕⋯⊕ �i ⊕⋯⊕ �M ⊕ �M+1

where �fus and �fus denote the weight matrix and bias corresponding to the fully connected 
layer, and f (⋅) denote the activation function.

3.4 � Procedure of the Multi‑SDIPC Model

In summary, the pseudo-code of the Multi-SDIPC algorithm proposed in this paper is as follows:

(20)Yp = f
(
�fus� + �fus

)
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4 � Case Study

4.1 � CAMELS Dataset

This paper uses the CAMELS dataset (Addor et al. 2017), which provides hydrometeoro-
logical forcing data for 671 small and medium-sized basins in the contiguous United States, 
divided into 18 hydrologic units spanning the entire continental United States and covering 
a wide range of hydroclimatic conditions. The CAMELS dataset contains basin summary 
on a daily time scale from October 1, 1980, to December 31, 2014, meteorological forcing 
data, and observed runoff values. The daily meteorological data consists of Daymet data, 
Maurer data, and NLDAS data (Maurer et al. 2002; Cosgrove et al. 2003; Thornton et al. 
2022). This dataset’s diverse catchment characteristics make it ideal for large sample and 
hydrological studies. Daymet data enables researchers to model ecosystem processes in 
regions lacking meteorological data (Thornton et al. 2022). Daymet data has a high spatial 
resolution (1 km grid, while the other two datasets have a spatial resolution of 12 km grid), 
so the Daymet dataset was chosen for this study, in which the first 70% is the training set 
and the second 30% is the testing set.

This study selects four hydrologic, including 241 catchments. The specific reasons 
are as follows: first, these four hydrologic units, including the New England region in the 
northeast (hydrologic unit 01), the Arkansas-White-Red region in the center (hydrologic 
unit 11), the South Atlantic-Gulf region (hydrologic unit 03), and the Pacific Northwest 
region (hydrologic unit 17), span a wide range of locations across the United States, with 
relatively broad geographic distribution, widely varying watershed attributes, and dif-
ferent topographic and soil conditions (Yin et al. 2022). Secondly, to conserve available 
resources, these 241 catchment areas allow for better control of computational costs than 
all 671 catchment areas.

4.2 � Methodology Assessment Metrics

To evaluate the predictive runoff model performance, this paper uses three evaluation met-
rics Nash-Sutcliffe efficiency factor (NSE), mean absolute error (MAE), percentage bias 
(PBIAS), top 20 % peak flow bias (FHV) to measure the performance effectiveness of dif-
ferent models, which are described as follows:

(21)NSE = 1 −

n∑
i

�
yi − ŷi

�2

n∑
i

�
yi − ȳ

�2

(22)MAE =
1

n

n∑
i=1

||yi − ŷi
||
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where yi denotes the ith runoff observation, ŷ denotes the average of all runoff observa-
tions, ŷi denotes the ith runoff prediction, n denotes the total number of samples in the 
runoff series, QOh denotes runoff observation, QSh denotes runoff prediction, h = 1,2,.... H 
is the index of the flow with exceedance probability below 0.02.

4.3 � Data Preprocessing

Before training the model, the input data were first standardized, and then the explanatory var-
iables with correlation coefficients greater than 0.1 with the response variables were selected 
as inputs to the model, and their correlation coefficients heatmaps are shown in Fig. 4.

(23)PBIAS =

n∑
i=1

ŷi −
n∑
i=1

yi

n∑
i=1

yi

× 100%

(24)FHV =

∑H

h=1

�
QSh − QOh

�
∑H

h=1
QOh

× 100%

Fig. 4   Heatmap of relevant 
variables
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4.4 � Input Time Step Selection

The choice of input time step is crucial for the predictive performance of a model. In 
this paper, we design experiments on the prediction accuracy corresponding to the 
Multi-SDIPC model at different time steps (15-day, 20-day, 25-day, 30-day). From 
Fig.  5 comparing the scatter density plots of different time steps, it can be seen that: 
the density distribution of the time step of 15-day is smoother and more uniform, the 
data distribution is more centralized, and the prediction effect is the best, so this paper 
chooses 15-day as the input time step.

Fig. 5   Predictive performance for different time-steps
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4.5 � Experimental Results and Discussion

This paper focuses on short-term runoff prediction by selecting 15 past runoff sequence 
lengths as inputs to predict runoff values at the next moment. To evaluate the prediction 
performance of the Multi-SDIPC model proposed in this paper, eight other models were 
selected for comparison: LSTM (Tian et al. 2023), CLSTM(consists of a convolutional 
neural network and LSTM), ESN, ConvMESN (Change the ConvMESN classification 
model to the regression model for comparison) (Ma et al. 2021), TLSTM (Kratzert et al. 
2018), LSTM-STS (Xiang et al. 2020), LSTM-SS (Yin et al. 2022), VMD-GRU-SFS (Xu 
et al. 2021), Multi-SDPR, and Multi-SDIP. To better analyze the experimental results of 
the models, we first list four RQs to guide the experimental process as follows:

RQ1: Does the proposed Multi-SDIPC model obtain the best performance among all 
the compared methods?
RQ2: Does the hybrid model have better prediction performance than the single model?
RQ3: Does the use of multi-task learning improve the model prediction performance?
RQ4: Does the DIP framework improve the error accumulation problem?

To verify the prediction performance of the model in different hydrological regions, the 
Multi-SDIPC model was experimented with other baseline models on 241 catchments,  
as shown in Table 1. The bolded numbers in the table represent the optimal results, and 
the rest of the tables are the same. Figure 6 represents the NSE, MAE, PBIAS, and FHV 
metrics of the proposed model in this paper compared to other baseline models, it can 
be seen that the model outperforms in all metrics comparisons, which indicates that the 
model has excellent predictive ability and good overall generalization ability in the face 
of large regional differences and different hydrological conditions, and thus can answer 
RQ1. The models are divided into single and hybrid models according to whether they 
include time series decomposition methods, and the first seven models (LSTM, CLSTM, 
ESN, ConvMESN, TLSTM, LSTM-STS, LSTM-SS) in Table  1 are regarded as single 
models, and the last four models (VMD-GRU-SFS, Multi-SDPR, Multi-SDIP, Multi-
SDIPC) are regarded as hybrid models. From the experimental results, it can be reflected 
that the single models of LSTM, ESN, ConvMESN, CLSTM, and TLSTM showed poor 
generalization (NSE <0.7) when predicting the 241 catchments, the LSTM-SS signifi-
cantly improves the single model modeling accuracy due to the model’s ability to reduce 
prediction noise and errors, similar to physical models. The four hybrid models, the 
VMD-GRU-SFS, Multi-SDPR, Multi-SDIP, and Multi-SDIPC, have better overall pre-
diction performance than a single model. The decomposition-based prediction model is 
better than a single model in extracting useful information and identifying trends accu-
rately from complex hydrological series, resulting in higher prediction accuracy, robust-
ness, and generalization. It can effectively answer RQ2 to prove that the hybrid model 
has a greater improvement in the model prediction performance. To answer RQ4, this 
paper compares the DPR and DIP frameworks for runoff prediction. Results show that 
DPR has a large deviation due to error accumulation, while DIP effectively reduces the 
cumulative impact of errors. This is consistent with other studies (Xu et al. 2021); The 
model extracts dynamic dependencies of high-dimensional variables using multiple con-
volutional kernels, which is supported by other studies (Ma et al. 2021).

The models are divided into regional models and individual models according to the size 
of the prediction data set, corresponding to Tables 1 and 2 respectively. As the prediction 



A Multi‑Task Learning Based Runoff Forecasting Model for…

1 3

range expands, the prediction accuracy of regional models is significantly lower than that of 
individual models. Moreover, the prediction accuracy of a single model for multiple stations 
is lower than that of a single station, which indicates that the single model may lack the gen-
eralization ability of the model due to ignoring the chaotic characteristics of the hydrologi-
cal time series itself and the temporal and spatial dependence of the characteristics; Hybrid 
models have better accuracy in predicting a single site or multiple regions. This suggests that 
the hybrid model with better prediction performance and some generalization performance 
is more suitable for the prediction of runoff in a wide range of areas, which strengthens the 
answer to RQ2, this is consistent with other studies (He et al. 2020).

The experimental results for the single-individual model and the hybrid-individual 
model at site 13011500 are plotted and displayed in Figs. 7 and 8. Figure 7 shows the 
baseline model, which is unable to accurately predict future runoff trends. The scatter-
plot of observed versus predicted runoff is more dispersed than that of the Multi-SDIPC 
model. On the other hand, the fit chart of the Multi-SDIPC model in Fig. 8 better cap-
tures the future trend direction of runoff sequences. Its scatter clustering map is closer 
to the ideal line than the other two models. The Multi-SDIPC model outperforms both 
the Multi-SDPR and the Multi-SDIP models, which may not effectively capture high 

Fig. 6   Comparison of NSE, MAE, PBIAS and FHV metrics for regional models
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flow in the runoff process. The Multi-SDPR model accumulates prediction errors over 
time, resulting in scattered cluster plots dispersed around the ideal fit line. On the other 
hand, the Multi-SDIPC model has a more stable overall prediction and a certain track-
ing ability for future trends of runoff, but it has a certain prediction error for extreme 

Fig. 7   Fitted plots and scatter plots of experimental results of single-individual model
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events. Figure 9 shows that the Multi-SDIPC model performs better and exhibits more 
stable performance when predicting runoff for a single catchment.

To investigate the effect of multi-task learning on the performance of the predic-
tion model, the following ablation experiments are designed for the Multi-SDIPC model 
to answer RQ3. To make the experimental conditions include the hydrological proper-
ties of different hydrological units and thus reflect the generalization characteristics of 
the model, one catchment area was selected from each of the four hydrological units 
of the data set: site 01013500, site 02312200, site 07071500 and site 13083000 for the 

Fig. 8   Fitted plots and scatter plots of experimental results of hybrid-individual model

Table 2   Comparison of the Multi-SDIPC model with 10 baseline models for predicted outcome metrics at 
site 13011500

Model NSE MAE PBIAS FHV

Single-individual model LSTM 0.673 0.617 5.14% -23.3%
CLSTM 0.743 0.873 3.55% -22.6%
ESN 0.686 0.876 4.93% -16.5%
ConvMESN 0.766 0.714 5.50% -18.5%
TLSTM 0.709 0.537 4.66% 15.8%
LSTM-STS 0.751 0.684 3.67% -20.6%
LSTM-SS 0.802 0.499 2.50% -16.3%

Hybrid-individual model VMD-GRU-SFS 0.789 0.555 3.17% -12.4%
Multi-SDPR 0.737 0.681 3.02% -25.1%
Multi-SDIP 0.806 0.490 2.99% -18.2%
Multi-SDIPC 0.882 0.358 0.15% -11.3%
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ablation experiments, the Fig. 10 represents the STL decomposition of the runoff data 
for each of the four sites.

•	 w/o Main: The Multi-SDIPC model without STL runoff series decomposition, using 
multi-timescale auxiliary explanatory variables for prediction.

•	 w/o Sub: The Multi-SDIPC model has no sub-task multi-timescale extractor and uses the 
explanatory variable components of the STL runoff series decomposition for prediction.

The results of the ablation experiments presented in Table 3 highlight the superior per-
formance of the Multi-SDIPC model in all metrics. This suggests that multi-task learn-
ing can effectively transfer knowledge and significantly improve the model’s predic-
tion performance. On the other hand, the w/o Main model displayed poor performance 
across all metrics, indicating the importance of time series decomposition in extracting 
complex information from runoff series. The w/o Sub model showed moderate perfor-
mance across all indicators, but the metrics were lower than those of the Multi-SDIPC 
model. This suggests that sub-task learning is useful in acquiring chaotic information 
from complex runoff sequences, which can improve the model’s predictive ability.

As can be seen from Table 1, the Multi-SDIPC model proposed in this paper exhibits 
better performance than other baseline models under the 1-day ahead runoff prediction 
condition. It is advisable to conduct the runoff prediction experiment 7 days in advance 
as an extension experiment to test the performance of the model for long-term future 
runoff prediction.

The results of the model for predicting runoff 7 days in advance are shown in Table 4. 
As time and prediction steps increase, indicators fluctuate less and the Multi SDIPC 
model remains stable with good generalization ability.

Fig. 9   Comparison of NSE, MAE, PBIAS and FHV metrics for individual models

Table 3   Multi-task ablation experiments

Model Mean of NSE Mean of MAE Mean of PBIAS Mean of FHV

w/o Main 0.816 0.314 5.69% -13.1%
w/o Sub 0.819 0.256 3.34% -16.3%
Multi-SDIPC 0.910 0.314 1.28% -10.6%
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5 � Conclusion

In this paper, the Multi-SDIPC model is proposed to address the chaotic and multi-scale 
characteristics of hydrological dynamic composite systems. The RC is utilized to simu-
late the potential chaotic patterns in the hydrological system. Additionally, a sub-task 
multi-timescale reservoir is constructed to extract the multi-scale chaotic features of the 
auxiliary explanatory variables. The study’s key findings are as follows: 

1.	 Compared to other models, the Multi-SDIPC model achieves better accuracy and gener-
alization by effectively capturing both chaotic and multi-scale features of hydrological 
time series.

Fig. 10   The STL decomposes runoff time series

Table 4   Multi-SDIPC model predicts results 7 days in advance at site 13313000

Length / 
Metrics

1-day-
ahead

2-day-
ahead

3-day-
ahead

4-day-
ahead

5-day-
ahead

6-day-
ahead

7-day-ahead

NSE 0.923 0.901 0.887 0.876 0.853 0.833 0.804
MAE 0.303 0.346 0.348 0.452 0.431 0.451 0.492
PBIAS 0.53% 0.92% 1.68% 1.10% 1.51% 2.38% 2.87%
FHV -9.03% -12.8% -14.8% -17.6% -23.4% -21.1% -18.5%
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2.	 Compared to the single model, the hybrid model has better predictive performance and 
stability, demonstrating that the hybrid model can improve runoff predictions.

3.	 Through a series of multi-task ablation experiments, it has been demonstrated that multi-
task learning contributes to improving the accuracy of model predictions. Additionally, 
experiments performed on 7-day runoff prediction have revealed that the Multi-SDIPC 
model exhibits high overall prediction accuracy with minimal fluctuations. This makes 
it a suitable choice for medium to long-term predictions.

As with many studies, this paper has its limitations. The Multi-SDIPC model proposed 
in this study did not provide a significant improvement in predicting extreme runoff events. 
Therefore, further research is needed to explore ways to enhance the accuracy of predicting 
extreme runoff events.
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