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Automatic Test Smell Detection using Information
Retrieval Techniques

Fabio Palomba1, Andy Zaidman2, Andrea De Lucia3
1University of Zürich, Switzerland — 2Delft University of Technology, The Netherlands — 3University of Salerno, Italy

Abstract—Software testing is a key activity to control the reli-
ability of production code. Unfortunately, the effectiveness of test
cases can be threatened by the presence of faults. Recent work
showed that static indicators can be exploited to identify test-
related issues. In particular test smells, i.e., sub-optimal design
choices applied by developers when implementing test cases, have
been shown to be related to test case effectiveness. While some
approaches for the automatic detection of test smells have been
proposed so far, they generally suffer of poor performance: as a
consequence, current detectors cannot properly provide support
to developers when diagnosing the quality of test cases. In this
paper, we aim at making a step ahead toward the automated
detection of test smells by devising a novel textual-based detector,
coined TASTE (Textual AnalySis for Test smEll detection), with
the aim of evaluating the usefulness of textual analysis for
detecting three test smell types, General Fixture, Eager Test, and
Lack of Cohesion of Methods. We evaluate TASTE in an empirical
study that involves a manually-built dataset composed of 494 test
smell instances belonging to 12 software projects, comparing the
capabilities of our detector with those of two code metrics-based
techniques proposed by Van Rompaey et al. and Greiler et al.
Our results show that the structural-based detection applied by
existing approaches cannot identify most of the test smells in our
dataset, while TASTE is up to 44% more effective. Finally, we
find that textual and structural approaches can identify different
sets of test smells, thereby indicating complementarity.

Index Terms—Test smells; Empirical Studies; Mining Software
Repositories.

I. INTRODUCTION

During the evolution of software systems, developers con-

tinuously apply new changes with the aim of improving

existing features, developing new requirements, or fixing faults

experienced by users [1], [2], [3]. Since such changes are

often done while struggling with upcoming deadlines [4], [5]

or without caring too much of the quality of the applied

design choices [6], it becomes of paramount importance for

developers to check whether their commits might possibly

introduce new software faults [7], [8], [9], [10]. This check

is the goal of regression testing [11], that consists of (possibly

selectively) re-executing the test cases included in the test suite

associated with the production code. Past and recent research

showed that the results of regression testing are used by

developers to decide on whether to merge a pull request [12]

or to deploy the system [13], [14], [15].

Unfortunately, even test suites are sometimes affected by

faults that might preclude the effective testing of software

systems [16], [17]. For instance, a typical issue is flakiness

[13], which appears when a test case exhibits both a passing

and a failing result with the same code, being therefore

not deterministic [13]. Recent papers [18], [19] showed how

problems in test code might often be due to the presence of

specific design problems introduced by developers: these are

called test smells [20]. Similarly, Bell et al. [21] showed that

static analysis can be effectively exploited to identify problems

contained in test suites.

As a matter of fact, despite the findings achieved so far, soft-

ware developers still have low support for diagnosing issues

in test code [22], [23]. Indeed, on the one hand Automatic

Static Analysis Tools (ASATs) [24] are often not effective

in identifying issues in test cases [25]; on the other hand,

test smell detectors have been (i) reported to suffer of poor

performance [26] or (ii) tested in small-scale empirical studies

that threaten their generalizability [27], [28]. Thus, there is still

the need for automated approaches and/or empirical studies

that help developers when diagnosing the quality of test cases.

In this paper we aim at making a step toward diagnosing

the quality of test cases with automated tools. Specifically, fol-

lowing the several successful applications of textual analysis in

the context of code smell detection [29], [30], refactoring [31],

[32], [33], and improvement of the quality of automatically

generated test cases [34], we conjecture that this source of

information can also be successfully adopted for the detection

of test smells, possibly overcoming the poor performance

limitation of existing detectors [26], [27], [28].

To this aim, we devise a novel textual-based test smell

detector called TASTE (Textual AnalySis for Test smEll

detection), which uses Information Retrieval techniques [35]

for detecting three test smell types, i.e., General Fixture, Eager
Test, and Lack of Cohesion of Test Methods.

We employ TASTE in an empirical study aimed at assessing

its performance and complementarity with respect to two

existing approaches based on structural analysis such as those

proposed by Van Rompaey et al. [26] and Greiler et al. [27].

The study is conducted on a large-scale dataset involving

494 manually validated test smell instances belonging to 12

open-source software projects. The results of the study show

that TASTE has good performance in detecting all the three

test smells considered, reaching up to 85% in terms of F-

Measure. Moreover, our approach is up to 44% more effective

than the baselines, highlighting the high potential of textual

analysis for the task of test smell detection and also confirming

previous results on the low capabilities of code metrics-based

detectors. Finally, we discover some complementaries between

the two experimented approaches, i.e., textual and structural

information can capture different sets of correct test smell
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instances, meaning that their combination can be exploited to

improve the automatic identification of test smells.

Structure of the paper. Section II discusses the related

literature. Section III presents the novel textual-based approach

devised. Section IV reports the design of the empirical study,

while Section V discusses the achieved results. In Section VI

we discuss the threats that could affect the validity of our

empirical studies. Finally, Section VII concludes the paper and

highlights our future research agenda.

II. RELATED WORK

Traditionally, the research community mainly focused on

code smells [6], i.e., design issues arising in production

code. In this regard, several empirical investigations into the

nature of code smells, their evolution, and their relevance for

developers have been carried out [4], [30], [36], [37], [38],

[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49]; At

the same time, a number of approaches—relying on different

types of sources of information and methodologies—have been

proposed [50], [51], [52], [53], [54], [55], [56], [57], [58].

The investigations of test smells are more recent and started

with Beck [15], who initially highlighted the importance of

having well-designed test code. Following this seminal work,

van Deursen et al. [59], [60] defined a catalog of 11 test smells

together with refactoring operations aimed at removing them,

which was later extended by Meszaros [61].

Based on these catalog, Van Rompaey et al. [26] intro-

duced a code metric-based technique able to identify two test

smells, namely General Fixture and Eager Test. However, the

empirical evaluation of the approach—conducted on a single

software project—revealed a low accuracy of this approach

in the detection of both test smell types and showed the

limitations of using structural analysis for detecting test smells.

Later on, Greiler et al. [27], [28] reported the high dif-

fuseness of test smells affecting test fixtures. To deal with

such diffuseness, they also devised an automated tool named

TESTHOUND, able to identify instances of six test smell types,

i.e., General Fixture, Lack of Cohesion of Test Methods, Test
Maverick, Vague Header Setup, Dead Fields, and Obscure In-
Line Setup [27]. They evaluated the approach through semi-

structured interviews that revealed that TESTHOUND might

support developers when diagnosing the quality of test code,

especially when it is used to identify instances of General
Fixture and Lack of Cohesion of Test Methods.

As detailed later in the paper, we perform a complementary

evaluation of the approaches defined by Van Rompaey et
al. [26] and Greiler et al. [27]: while the aforementioned

approaches were evaluated on few systems or used semi-

structured interviews, our investigation involves a large dataset

with the aim of more extensively evaluating the performances

of their approaches. We also compare the performance of the

textual-based approach we propose in this paper with the the

one achieved by the approaches proposed by Van Rompaey et
al. [26] and Greiler et al. [27].

Other previous work is mainly related to the empirical

analysis of the diffusion and impact of test smells. For

instance, Tufano et al. [5] conducted an empirical study aimed

at measuring the perceived importance of test smells and their

lifespan during the software life cycle. They found that test

smells are usually introduced during the first commit involving

the affected test classes, but more importantly in 80% of the

cases they are never removed. Bavota et al. [19] found that

test smells are highly diffused and that their presence has a

strong negative impact on the maintainability of the affected

classes. These findings were later confirmed in the context

of automatically generated test code [62]. It is worth noting

that, in the context of their empirical investigation, Bavota et
al. [19] also defined a test smell detector for automatically

detecting instances of six test smell types. However, this

detector is only based on simple heuristics that have the goal

of overestimating the presence of test smells, in order to ease

the subsequent phase of manual validation aimed at removing

false positives. Given its characteristics, this tool cannot be

properly considered a real test smell detector and, for this

reason, we do not consider it in our study.

Spadini et al. [63] have investigated the relation of test

smells and the source code quality of production code, show-

ing that there is also a clear relationship between the two.

Finally, Palomba and Zaidman [18] discovered that the

presence of test smells can lead the test code to be non-

deterministic, and that refactoring represents a key flakiness-

fixing strategy. All these empirical studies motivate our work:

indeed, test smells can be considered a threat to the reliability

of software systems, and the definition of automated detection

approaches can support developers in monitoring the health

status of test cases.

III. TASTE: A TEXTUAL-BASED TEST SMELL DETECTOR

Textual analysis has been repeatedly reported as a useful

source of information for code smell detection [29], [30],

refactoring [31], [32], [33], and other software engineering

tasks such as the improvement of the quality of automatically

generated test cases [34]. For this reason, we believe that

this might represent a good source of information also for

the identification of test smells. We defined TASTE (Textual

AnalySis for Test smEll detection), a textual-based approach

that applies some heuristics to identify three test smell types

coming from the catalogs by van Deursen et al. [59] and

Greiler et al. [27], in particular:

1) General Fixture [59]. This smell arises when the setUp
fixture is too general and different tests only access part

of it. Van Deursen et al. [59] reported that this smell

makes the comprehension of the test class harder.

2) Eager Test [59]. This smell represents a test method that

exercises more methods of the object under test, thus

being not cohesive and harder to read and understand.

Furthermore, it makes tests more dependent on each other

and harder to maintain.

3) Lack of Cohesion of Test Methods [27]. This smell occurs

if test methods (excluding the setUp fixture) are grouped

together in one test class but they are not cohesive,

causing comprehensibility and maintainability issues.
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We focused on these particular three test smells because of

their diffuseness on both open and closed source systems and

their harmfulness for maintainability [28], [19]. Furthermore,

the choice was driven by the presence of automated test smell

detectors that can identify instances of these smells, i.e., the

approaches defined by Van Rompaey et al. [26] and Greiler

et al. [27], whose performance can be compared with the one

achieved by the devised detector. Finally, they have character-

istics that make the use of Information Retrieval techniques

possible, allowing us to properly evaluate the usefulness of

textual analysis for test smell detection. While other test smells

can be detected using the technique by Greiler et al. [27], i.e.,
Test Maverick, Vague Header Setup, Dead Fields, and Obscure
In-Line Setup, we excluded them from our analysis since they

are only partially relevant for developers [5], [27].

In the remaining of this section, we detail the general detec-

tion approach as well as the rules applied for the identification

of each target test smell.

A. General Detection Process

Essentially, TASTE adopts three main steps to identify

candidate test smell instances, i.e., (i) extraction of textual

components from test cases, (ii) text normalization, and (iii)

detection rule application.

Starting from the set of JUnit test classes composing the

software project under analysis, in the first step the approach

extracts the textual content characterizing each test class. More

specifically, source code identifiers and comments are taken as

basis for the identification of test smells. These identifiers and

comments are then normalized through the application of a

standard Information Retrieval (IR) process. In particular, four

steps are executed [64]: (i) composed identifiers are separated

using a camel case splitting, which splits words based on

underscores, capital letters and numerical digits; (ii) letters

of extracted words are reduced to lower case to reduce noise;

(iii) special characters, programming keywords and common

English stop words are removed; and (iv) words are stemmed

to their original roots by using the well-known Porter’s

stemmer [65]. Finally, the normalized words are weighted

using the term frequency - inverse document frequency (tf-
idf ) schema [64], which reduces the relevance of too generic

words that are contained in most source components.

The normalized textual content of each JUnit test class is

then individually analyzed and different heuristics are applied

to identify the three test smells considered. The actual detector

relies on an implementation of the Latent Semantic Indexing

(LSI) [66], that is an extension of the Vector Space Model

(VSM) [64] and models test classes as vectors of terms

occurring in a given software system. LSI relies on Singular

Value Decomposition (SVD) [67] to cluster code components

according to the co-occurrences among words and tests. Then,

the original vectors (test classes) are projected into a reduced

k space of concepts to limit the effect of textual noise. To set

the size of the reduced space (k) we employed the heuristic

proposed by Kuhn et al. [68], which provided good results

in many software engineering applications: In particular, k =

(m×n)0.2 where m denotes the vocabulary size and n denotes

the number of documents (test classes in our case). Finally,

the textual similarity among software components is measured

as the cosine of the angle between the corresponding vectors.

The similarity values are then combined in different ways,

according to the type of smell we are interested in, to obtain

a probability that a code component is actually smelly. The

following sections report the exact heuristics applied to detect

the target test smells.

B. General Fixture Detection

This test smell is characterized by the presence of a too gen-

eral setUp method [59]. We conjecture that JUnit test classes
affected by General Fixture present pairs of test methods hav-
ing zero textual similarity even if they use objects instantiated
in the setUp method. Let T = {tsetUp, ttearDown, t1, . . . , tn}
be the set of methods of the JUnit test class under analysis, we

say that a pair of test methods (ti, tj) is disjoint if the cosine

similarity between ti and tj is zero and they use portions

of the setUp method tsetUp. Therefore, we define the set

Disjoint Pairs as reported below:

Disjoint Pairs = {(ti, tj) : sim(ti, tj) = 0

∧ sim(ti, tsetUp) �= 0

∧ sim(tj , tsetUp) �= 0

∧ ti, tj ∈ T}
Starting from the definition above, we compute the prob-

ability of the JUnit test class T to be affected by a General
Fixture according to the following equation:

PGF (T ) =
| Disjoint Pairs |

| {(ti, tj) : ti, tj ∈ T} | (1)

where PGF measures the percentage of pairs (ti, tj) that are

disjoint.

C. Eager Test Detection

Since test methods affected by this smell check several

methods of the object to be tested, our conjecture is that they
are methods in which there is a low textual similarity among
the tested methods. For this reason, we first replace the test

method calls with the actual source code called by the test

method. This is done since a test method has generally few

lines of code and, thus, there are too few terms for setting up

a similarity technique. More formally, let t = {m1, . . .mn}
be the set of method calls performed by the JUnit test method

under analysis, where mi is the i-th method call in t. We

first modify the test method by replacing all its method

calls with the corresponding body of the called production

methods, i.e., the modified test method is t′ = {m′
1, . . .m

′
n}

where the method call mi is replaced by the corresponding

production code body m′
i. Starting from t′ we compute its

textual cohesion [69] as the average similarity between its

constituent methods m′
i as follows:
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TestMethodCohesion(t) = mean
i �=j

sim(m′
i,m

′
j) (2)

where n is the number of method calls in t, and sim(m′
i,m

′
j)

denotes the cosine similarity between two expanded method

calls m′
i and m′

j in t′. Starting from our definition of textual

cohesion of t, we compute the probability that t′ is affected

by Eager Test using the following formula:

PET (t) = 1− TestMethodCohesion(t) (3)

D. Lack of Cohesion of Test Methods Detection

This smell basically characterizes a JUnit class that is poorly

cohesive. For this reason, we conjecture that instances of this

smell can be textually identified by looking at classes having
a low textual similarity between the methods they contain.

Thus, let T = {tsetUp, ttearDown, t1, . . . , tn} be the methods

of the JUnit test class under analysis, we first compute the

class cohesion using the following formula:

TestClassCohesion(T ) = mean
i �=j

sim(mi,mj) (4)

where sim(mi,mj) denotes the cosine similarity between two

test methods mi and mj in T . It is important to note that we

exclude the setUp method during the evaluation of the test

class cohesion since the definition of the smell does not refer

to fixtures. Starting from the definition of textual cohesion of

T , we then compute the probability that T is affected by a Lack
of Cohesion of Test Methods using the following formula:

PLCTM (T ) = 1− TestClassCohesion(T ) (5)

E. Turning the Probability into a Boolean Representation

All the detection rules applied by TASTE produce a proba-

bility that indicates the likelihood that a test class/method is

affected by a certain test smell. In the context of the test smell

detection problem, we needed to convert such probabilities in

a boolean value {true, false} so that the performance of

the devised approach can be compared to the one achieved by

the code metrics-based approaches. To this aim, we empirically

calibrated the optimal probability threshold to use by testing

how the performance of TASTE (in terms of F-Measure) varies

while variating the threshold. More specifically, we tried all

settings from 0.1 to 0.9 in steps of 0.1. As a result, 0.6 was

found as the optimal threshold for all the considered systems.

Thus, we used it in our empirical study.

IV. EMPIRICAL STUDY DEFINITION AND DESIGN

This section defines the goal of our empirical study in terms

of research questions and the subject systems we considered,

and discusses the methodology followed to address the goals

of our research.

TABLE I
CHARACTERISTICS OF THE SOFTWARE SYSTEMS IN OUR DATASET

System Classes Methods JUnit Test Classes KLOCs

Apache Ant 1.8.0 813 8,540 99 204
Apache Cassandra 1.1 586 5,730 130 111
HSQLDB 2.2.8 444 8,808 11 260
Apache Hive 0.9 1,115 9,572 13 204
Apache Ivy 2.1.0 349 3,775 80 58
Apache Log4j 1.1 349 3,775 54 58
Apache Lucene 3.6 2,246 17,021 297 466
Apache Karaf 2.3 470 2,678 70 56
Apache Nutch 1.4 259 1,937 52 51
Apache Pig 0.8 922 7,619 361 184
Apache Qpid 0.18 922 9,777 130 193
Apache Struts 3.0 1,002 7,506 85 152

A. Research Questions

The first goal of the study was to evaluate TASTE, with the

purpose of understanding whether and to what extent the use

of textual information can be useful to detect test smells in

software projects. Hence, we define the first research question

(RQ):

RQ1. To what extent can TASTE detect test smells in
software systems?

Once assessed the performance of TASTE, we then compare

it with the alternative code metric-based approaches proposed

by Van Rompaey et al. [26] and Greiler et al. [27]. In this

case, the goal is to understand how our approach works when

compared with the existing ones. This led to our second

research question:

RQ2. How does TASTE work when compared with existing
code-metric based approaches?

Finally, we evaluated the extent to which the two sources

of information experimented, i.e., textual and structural, are

complementary. Thus, we defined our last research question:

RQ3. To what extent do approaches based on textual and
structural analysis complement each other?

In the following we report the methodological steps con-

ducted to answer our research questions.

B. Context Selection

The context of the study consisted of (i) test smells, (ii)

software systems where to perform the experiments, and (iii)

baseline code metric-based test smell detectors.

As for the former, we considered the three test smell types

described in Section III, i.e., General Fixture, Eager Test, and

Lack of Cohesion of Methods.

As for the subject systems, Table I reports the characteristics

of the 12 open-source systems analyzed1, i.e., their size in

1The list of repositories is available in our online appendix [70]
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terms of number of classes, number of methods, number of

JUnit test classes, and KLOC. The choice of the subject

systems was driven by two main constraints: (i) the availability

of the source code and (ii) the availability of test classes on

which to run the test smell detectors. Hence, starting from

the list of open-source projects available on GITHUB2 we

randomly selected 12 systems having at least 10 JUnit test

classes and 50 KLOC. It is worth noting that we limited the

analysis to systems developed in JAVA because the considered

baseline detectors (as well as our textual-based smell detection

approach) only work on this type of systems.
Finally, with respect to code metric-based approaches to use

as baselines (RQ2), we selected the approaches devised by Van

Rompaey et al. [26] and Greiler et al. [27]. The former was

used to detect instances of General Fixture and Eager Test,
while the latter was used to identify Lack of Cohesion of Test
Methods instances. While also the approach by Greiler et al.
[27] is able to identify General Fixture instances, we employed

the one by Van Rompaey et al. [26] because of experimental

tests (reported in our online appendix [70]) which showed its

superiority in terms of accuracy of the detection: thus, in the

scope of the paper we only report the results obtained by the

best technique for the General Fixture detection.
More in detail, the test smell detector proposed by Van

Rompaey et al. [26] computes four normalized size metrics,

i.e., Number of OBject Used in setup (NOBU), Number of

Production-Type Uses (NPTU), Number of Fixture Objects

(NFOB), and Average Fixture Usage of test methods (AFIU),

to characterize the likelihood that a test fixture is too general:

if the average value of these metrics exceeds 0.5, then it detects

a smell instance. As for Eager Test, the technique computes

the number of production calls made by a certain test method:

if this sum is higher than 3, a test smell is detected.
The approach proposed by Greiler et al. [27] (TESTHOUND)

identifies General Fixture instances by using the ratio between

the number of setup fields a test method has and the total

number of setup fields existing in the class: if it is higher

than 0.7 the fixture is marked as smelly. To detect the Lack
of Cohesion of Test Methods smell, the approach exploits an

adjusted version of the Henderson-Seller Lack of Cohesion

of Method metric [71]: specifically, it computes the cohesion

between the test methods in a JUnit class excluding helper or

setup methods (thus focusing only on the methods that actually

exercise production code) and if this value is higher than 0.4

a smell instance is detected.
To the best of our knowledge, these two approaches are

the only ones available for the detection of the considered set

of smells. For this reason, their selection was driven by the

choice of test smells on which we focused. It is important to

note that we relied on the original implementation of the tools

to avoid threats due to their re-implementation.

C. Oracle Construction
To answer our research questions, we needed an oracle

reporting the actual test smell instances present in the con-

2https://github.com

sidered systems. To the best of our knowledge, there is no

annotated set of test smells available in literature. Thus, we had

to manually build our own oracle. Starting from the definition

of the test smells reported in literature [27], [59], we asked two

external developers having more than 10 years of experience in

testing industrial software systems3 to independently inspect

the projects under analysis with the aim of identifying test

classes/methods affected by the three test smells considered.

Specifically, they were provided with the source code of the

considered projects and three spreadsheets, one for each test

smell to analyze: (i) the first two spreadsheets contained the

list of all the test classes belonging to the systems under

analysis, and that were used to classify instances of the class-

level smells, namely General Fixture and Lack of Cohesion of
Test Methods; (ii) the third one contained all the test methods

of the software projects analyzed, which were used to classify

the Eager Test smell. The task was to assign a truth value

in the set {true, false} to each code component present

in the spreadsheets: the inspector assigned the value true
when a code component was affected by a test smell, false
otherwise. Once the inspectors had completed this task, the

produced oracles were compared, and the inspectors discussed

the differences, i.e., smell instances present in the oracle

produced by one inspector, but not in the oracle produced by

the other. All the code components positively classified by both

the inspectors were considered as actual smells. Regarding the

other instances, the inspectors opened a discussion in order

to resolve the disagreement and jointly took a decision. At

the end of this process, the oracle comprised of 21 actual

instances for General Fixture, 268 for Eager Test, and 205 for

Lack of Cohesion of Test Methods (494 instances in total). To

measure the level of agreement between the two inspectors, we

computed the Jaccard similarity coefficient [72], i.e., number

of smell instances identified by both the inspectors over the

union of all the instances identified by them. The overall

agreement between the two inspectors before the discussion

was 76%. Of the remaining 24% of the cases, they reached

an agreement during the discussion. A spreadsheet reporting

the data about the agreement computation is available in our

replication package [70].

D. Methodology

Once the oracle was built, to answer RQ1 we ran TASTE on

the set of test cases contained in the considered systems. It is

worth noting that the detector applies its detection rules on the

JUnit classes contained under the test folder of a software

project, with the aim of excluding production classes. This

step output a list of candidates for each considered test smell

that we could compare against the oracle previously built.

To evaluate the performance of TASTE, we employed

precision and recall [64], which are defined as follow:

precision = |TP |
|TP∪FP |% recall = |TP |

|TP∪FN |%

3Information omitted because of double-blind reviewing.
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where TP and FP represent the set of true and false positive

test smells detected by the detector, respectively, while FN
(false negatives) represents the set of missed test smell in-

stances contained in the oracle. To have an aggregate indicator

of precision and recall, we also report the F-measure, defined

as the harmonic mean of precision and recall:

F -measure = 2 ∗ precision ∗ recall
precision+ recall

%

To address our RQ2 and compare TASTE with the code-

metric based approaches defined by Van Rompaey et al. [26]

and Greiler et al. [27], we first needed to run such alternative

detectors on the same set of test cases considered in RQ1. The

list of candidate smells identified by the techniques as output

of this step was then compared to the oracle, so that we could

compute precision, recall, and F-Measure of the alternative

approaches and understand whether and to what extent these

indicators differ from those computed for TASTE.

Finally, to answer RQ3, we compared the sets of smell

instances correctly detected by TASTE and by the baselines

by computing the following overlap metrics:

correctmi∩mj
=
|correctmi ∩ correctmj |
|correctmi

∪ correctmj
|%

correctmi\mj
=
|correctmi

\ correctmj
|

|correctmi ∪ correctmj |
%

where correctmi
represents the set of correct test smells

detected by the approach mi, correctmi∩mj
measures the

overlap between the set of true test smells detected by both

approaches mi and mj , and correctmi\mj
appraises the true

test smells detected by mi only and missed by mj . The latter

metric provides an indication of how a test smell detection

technique contributes to enriching the set of correct code

smells identified by another approach, eventually revealing the

complementarity between structural and textual information

and paving the way for combination opportunities.

V. ANALYSIS OF THE RESULTS

In this section, we report the results that answer to our

research questions. To avoid redundancies, we report the

results for all the three research questions together, discussing

each smell separately. We summarize the answers for each RQ
at the end of the section.

Tables II, III, and IV show the results achieved by TASTE

on the twelve subject systems for General Fixture, Eager Test,
and Lack of Cohesion of Test Methods, respectively. At the

same time, the tables report precision, recall, and F-Measure

achieved by the alternative code metrics-based approaches.

Besides the indications about the performance obtained on

the single systems, we also report the overall performance

of the detectors (row “Overall”), i.e., the evaluation metrics

achieved considering all the systems as a single one. When

no instances of a certain smell were present in the oracle,

it was not possible to compute the recall (division by zero),

while the precision would be zero if at least one false positive

is detected (independently from the number of false positives).

In these cases a “-” is indicated in the project row.

In our online appendix [70] we provide a technical report

in which we also included the number of true and false

positive instances found by both TASTE and the alternative

techniques. In addition, Table V reports values concerning

overlap and differences between TASTE and the structural

techniques: column “TASTE ∩ ST” reports the percentage of

smell instances detected by both TASTE and the alternative

structural approach; column “TASTE \ ST” reports the per-

centage of correct code smells correctly identified by TASTE

but missed by the structural technique; finally, column “ST

\ TASTE” reports the percentage of correctly code smells

identified by the structural technique but not by TASTE. In

the following, we discuss the results for each smell type.

A. General Fixture Discussion

Over the entire dataset, the inspectors that were in charge of

discovering actual test smells only found 25 General Fixture
instances. The achieved results in terms of test smells correctly

identified, clearly indicate that TASTE overcomes the corre-

sponding structural technique, i.e., the one by Van Rompaey

et al. [26]. In particular, TASTE is able to correctly identify

20 General Fixture instances out of the total 25, reaching a

recall of 80%, while the structural technique has 24% of recall,

since it only detects 6 instances correctly. Thus, our results (i)

confirm previous observations made by Van Rompaey et al.
[26] on the limited accuracy of their technique and (ii) show

that textual analysis can be a useful source of information for

the identification of General Fixture instances.

It is worth noting that the precision of TASTE is 57%, i.e.,
36% higher than the precision achieved by baseline. Even if

the performance of our approach outperforms the considered

baseline, one could observe that this level of precision results

in a developer spending considerable amount of time to inspect

candidate instances and discard the ones that are not affected

by any smell. However, it is worth noting that, on average,

the number of false positive candidate smells a developer

should analyze is around 1, thus limiting the amount of

extra effort spent by a developer. Interesting is the case of

Apache Pig, where although our approach presents 5 false

positive smells, it is able to reach the high value of 80%

for the F-measure metric (recall of 80% and precision of

71%). It is worth discussing an example of General Fixture
we found in the Apache Struts project and represented

by the test class named ActionContextCleanUpTest.

Here the textual content of the fixture is represented by two

disjoint sets of concepts, i.e., the first having the responsibility

to set up an instance of the InnerDispatcher class,

the second creating a MockFilterChain object. The two

test methods belonging to the class access only one or the

other concept when implementing their responsibilities. The

structural approach cannot detect the smell since the metrics

used for the detection, used to measure the normalized size of

the fixture, are not enough for correctly classifying the instance
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TABLE II
GENERAL FIXTURE - PERFORMANCE OF TASTE COMPARED TO THE ONE OF THE CODE METRICS-BASED TECHNIQUE PROPOSED BY VAN ROMPAEY et al.

[26].

Project
TASTE Code Metrics-based Technique
Precision Recall F-measure Precision Recall F-measure

Apache Ant 50% 100% 67% 0% 0% 0%
Apache Cassandra - - - - - -
HSQLDB 34% 100% 50% 0% 0% 0%
Apache Hive 34% 100% 50% 0% 0% 0%
Apache Ivy 50% 50% 50% 0% 0% 0%
Apache Log4j - - - - - -
Apache Lucene - - - - - -
Apache Karaf 34% 100% 50% 0% 0% 0%
Apache Nutch - - - - - -
Apache Pig 71% 80% 75% 36% 34% 35%
Apache Qpid 50% 100% 67% - - -
Apache Struts 67% 67% 67% 25% 34% 29%

Overall 57% 80% 67% 21% 24% 23%

as smelly. Indeed, the fixture has just two instantiated objects

and it poorly uses non-test objects.

Some other interesting findings can be observed when

considering the overlap between TASTE and the code metrics-

based approach (see Table V). In this case, the technique

by Van Rompaey et al. [26] is able to detect only 1 correct

instance missed by TASTE, while on the other hand 71% of

General Fixture smells are correctly detected by our approach

only. Finally, a quite low percentage of smells, i.e., 24%,

are detected by both techniques. From a practical perspective,

these results indicate that TASTE “dominates” the alternative

technique, since it can correctly identify the vast majority of

test smells detectable using code metrics. This observation

is supported by an additional analysis that we performed:

in particular, we tried to combine the results of the two

techniques by exploiting AND/OR operators. In the AND case,

we considered as smelly all the General Fixture candidates

detected as such by both the approaches; in the OR case,

we considered as smelly all candidates detected by one or

the other approach. While the first combination obtained

performance much lower than the single approaches (F-

Measure≈23%), the OR combination has performance similar

to TASTE (+1% of F-Measure): this confirms that the code

metrics-based approach cannot contribute to the identification

of test smells not identified by our textual-based technique.

To broaden the scope of the discussion, we can observe how

some test smell instances cannot be detected neither by our

approach nor by baselines. This means that further studies

aimed at investigating the characteristics of such instances

might help in the definition of more accurate detection rules.

B. Eager Test Discussion

Among the 268 actual test methods affected by Eager Test
identified by the involved inspectors, the textual approach

reaches an overall recall of 77% and an overall precision

of 75% (F-measure of 76%), and it clearly outperforms the

metrics-based technique used as baseline, which is able to

correctly detect 39% of the affected components, with a

precision of 58%. Also in this case, the use of structural

metrics does not provide good detection performance, confirm-

ing previous findings in the field [26] as well as the need of

alternative approaches for detecting test smells. For instance,

the test method testGetSliceFromLarge belonging to

the TableTest class of the Apache Cassandra project

is affected by Eager Test since it tests the slicing operation

performed against several columns in a database table, but also

it verifies the presence of multiple index entries. The structural

approach is not able to detect the method as smelly because

its metric profile does not suggest the presence of a design

problem: indeed, the number of methods of the production

class invoked is 2 (i.e., it is lower than the threshold used by

the approach for detecting the smell). At the same time, relying

on textual information, TASTE was able to correctly identify

the Eager Test instance. The superiority of our approach is

also confirmed by the complementarity data shown in Table

V. In particular, we observed that in the 56% of the cases, our

approach detects smell instances missed by the alternative one,

while 30% of correct instances are detected by the metrics-

based approach too. Finally, in 14% of the cases, the structural

approach performs better than TASTE. As an example, in the

Apache Ant project, the method testDriverCaching
of the SQLExecTest actually tests three different methods

of the production class, checking the presence of a specific

key in a database as well as both the insertion and update of

a value into a column. Given these characteristics, the code

metrics-based approach [26] can properly identify the smell.

Conversely, the terms used in the test method are all related to

the management of a few operations on a database that share

almost the same vocabulary: this is the reason why TASTE is

not able to flag the method as smelly.
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TABLE III
EAGER TEST - PERFORMANCE OF TASTE COMPARED TO THE ONE OF THE CODE METRICS-BASED TECHNIQUE PROPOSED BY VAN ROMPAEY et al. [26].

Project
TASTE Code Metrics-based Technique
Precision Recall F-measure Precision Recall F-measure

Apache Ant 78% 85% 82% 65% 44% 53%
Apache Cassandra 81% 91% 85% 58% 44% 50%
HSQLDB 100% 50% 67% 0% 0% 0%
Apache Hive 67% 50% 57% 34% 25% 29%
Apache Ivy 67% 67% 67% 100% 34% 50%
Apache Log4j - - - - - -
Apache Lucene 75% 79% 77% 63% 37% 46%
Apache Karaf 75% 75% 75% 25% 25% 25%
Apache Nutch 75% 86% 80% 50% 43% 46%
Apache Pig 74% 72% 73% 58% 41% 48%
Apache Qpid 60% 50% 55% 50% 34% 40%
Apache Struts 75% 63% 69% 59% 68% 63%

Overall 75% 77% 76% 58% 39% 47%

As done for General Fixture, we also tried to combine the

results of the two approaches using AND/OR operators. The

most interesting finding occurred for the technique exploiting

the OR operator: it is indeed able to improve the F-Measure

by 9% and 38% with respect to TASTE and the alternative

approach, respectively, reaching 85% as overall F-Measure.

Thus, we confirm that textual and structural information can

be complemented and that such a combination can lead to

better detection performance.

C. Lack of Cohesion of Test Methods Discussion

The inspectors identified 205 instances of this test smell

over the considered systems. Overall, our approach reaches

an F-Measure of 62% (precision=63% and recall=60%) and,

also in this case, it outperforms the alternative code metrics-

based approach proposed by Greiler et al. [27]. While this

result definitively confirms that the use of textual analysis can

be beneficial for the task of test smell detection, it is also

important to note that in this case the improvement achieved

is lower than the previous test smells: indeed, TASTE has an

F-Measure 9% higher than the baseline.

An interesting example of a test smell properly classified

as such by TASTE is the ActionMappingTest class be-

longing to the Apache Struts project. This class can be

considered poorly cohesive since it contains test cases aimed at

exercising both the actual mapping of the information needed

to invoke the framework and the setting of the external re-

sources required for running it. In this case, the analysis of the

textual cohesion of the class can reveal the presence of a smell

because the methods contained in the class have a significantly

scattered vocabulary: for instance, in the class we find methods

like testGetMapping and testGetUriParam, which do

not contribute to the implementation of a single responsibility.

As for the structural analysis done by the baseline approach,

it cannot identify this test smell instance because the methods

share a number of field accesses that preclude the proper

detection of the smelliness of the class.

Besides the performance analysis of TASTE with respect

to the technique by Greiler et al. [27], further interesting

results come from the analysis of the overlap between the

two approaches. As shown in Table V, this is the only case in

which we can observe a high complementarity: indeed, TASTE

identifies 43% of Lack of Cohesion of Test Methods instances

that the baseline approach cannot detect, while another 38%

of them are missed by our approach and correctly identified

only by the alternative one. Finally, only 19% of the instances

are identified by both the techniques. This result indicates that

textual and structural analysis are almost equally important

and, more importantly, they seem to be used in a complemen-

tary way in order to improve the detection performance for

this smell type.

To test this hypothesis, we combined the results of the

two approaches using AND/OR operators as explained for

the other smells. Interesting, we discover that by taking all

the results given by the approaches (OR combination) it is

possible to improve the performance by up to 25%, leading

to an overall F-measure equal to 87%. Thus, we can conclude

that the complementarity between TASTE and the technique by

Greiler et al. [27] can be effectively exploited by means of a

simple combination of the candidate smells output by both

the approaches. Nevertheless, as part of our future agenda

we plan to further investigate new ways to better combine

complementary techniques.

Summary for RQ1. The devised textual-based approach

can identify General Fixture, Eager Test, and Lack of
Cohesion of Test Methods instances with an overall F-

Measure of 67%, 76%, and 62%, respectively. We also

observed that in some cases TASTE can achieve even higher
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TABLE IV
LACK OF COHESION OF TEST METHODS - PERFORMANCE OF TASTE COMPARED TO THE ONE OF THE CODE METRICS-BASED TECHNIQUE PROPOSED BY

GREILER et al. [27].

Project
TASTE Code Metrics-based Technique
Precision Recall F-measure Precision Recall F-measure

Apache Ant 64% 65% 65% 59% 61% 60%
Apache Cassandra 61% 58% 59% 55% 45% 50%
HSQLDB 67% 65% 64% 52% 44% 48%
Apache Hive 60% 60% 60% 55% 56% 56%
Apache Ivy 65% 55% 60% 45% 47% 46%
Apache Log4j 60% 58% 59% 58% 54% 56%
Apache Lucene 55% 50% 53% 51% 47% 49%
Apache Karaf 64% 60% 62% 55% 60% 48%
Apache Nutch 65% 60% 63% 63% 57% 60%
Apache Pig 68% 60% 64% 58% 58% 58%
Apache Qpid 63% 68% 65% 60% 55% 58%
Apache Struts 58% 65% 61% 44% 44% 44%

Overall 63% 60% 62% 55% 52% 53%

TABLE V
OVERLAP BETWEEN TASTE AND CODE METRICS-BASED TECHNIQUES

(ST). FOR GENERAL FIXTURE AND EAGER TEST IT IS THE APPROACH

PROPOSED IN [26], WHILE FOR LACK OF COHESION OF TEST METHODS

(LCTM) IT IS THE TECHNIQUE BY GREILER et al. [27].

Test Smell
TASTE∩ST TASTE\ST ST\TASTE

# % # % # %

General Fixture 5 24% 15 71% 1 5%
Eager Test 80 30% 151 56% 37 14%
LCTM 38 19% 89 43% 78 38%

values for all the considered evaluation metrics.

Summary for RQ2. TASTE improves upon the code

metrics-based techniques by up to 44%, 29%, 9%, respec-

tively, for the three smell types. Our results show that

textual information is more suitable than structural one for

the identification of the three test smell types considered

in the study.

Summary for RQ3. Textual and structural information

is sometimes complementary. In case of General Fixture,

we observe that TASTE detects almost all the instances

identified by the alternative approach, dominating it. As for

Eager Test and Lack of Cohesion of Test Methods, instead,

we find that the two approaches detect different sets of

test smells: by exploiting such complementarity through

an OR based combination, we can improve the detection

performance of TASTE by up to 9% and 25%, respectively.

Nevertheless, we observe that there exist other actual test

smell instances that cannot be identified by any of the

experimented approaches, calling for future investigations

aimed at understanding the nature of such instances.

VI. THREATS TO VALIDITY

This section describes the threats that can affect the validity

of our empirical study.

A. Construct Validity
Threats in this category are related to the relation between

theory and observation. The main threat in this category is

related to the way we defined the oracle of test smells in

the studied software projects. With the aim of avoiding bias

from our side, we asked two external developers—having

more than ten years of testing experience—to build an oracle

reporting the actual instances of General Fixture, Eager Test,
and Lack of Cohesion of Test Methods. To ensure a fair

process the two inspectors separately classified test fixtures

and test classes/methods as smelly or not and solved instances

with disagreement via an open discussion to achieve a shared

decision. Moreover, the oracles were built before producing

(and knowing) test smell instances detected by our tool as

well as by the alternative structural approaches. However,

we cannot exclude that test smell oracles can be subject to

imprecision and incompleteness. As part of our future research

agenda we plan to enlarge our study, possibly increasing the

confidence on the oracle built so far by involving other external

developers in the evaluation.
The code metrics-based approaches employed in the study,

i.e., the ones by Van Rompaey et al. [26] and Greiler et al.
[27], represent the original implementations made available by

the corresponding authors. In this way, we avoided possible

threats due to re-implementation.

B. Internal Validity
An important factor that might affect our results is rep-

resented by the threshold we used to detect test smells.
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Fig. 1. F-measure scores achieved with different thresholds. Dashed red line
corresponds to our threshold.

In the study, we adopted a threshold of 0.6 to distinguish

smelly and non-smelly test cases. Such a threshold came

from experimental results: specifically, as reported in Section

III, we investigated the effects of different thresholds on the

performance of TASTE when detecting test smells for all

the systems considered in our study. For example, Figure 1

plots the F-measure scores achieved by TASTE when using

different thresholds when detecting Eager Test on the Apache
Cassandra project. The best F-measure is achieved when

using 0.6 as threshold, i.e., the dashed red line in Figure 1.

Similar results are also obtained for the other projects and test

smell types, as reported in our online appendix [70].

Another threat to internal validity is represented by the

settings used for the IR process. During the preprocessing, we

filtered the textual corpus by using standard procedures that

have been widely-adopted in previous literature: stop word

list, stemmer and the tf-idf weighting schema, and identifiers

splitting [64]. For LSI, we choose the number of concepts (k)

based on the heuristics proposed by Kuhn et al. [68].

Finally, the textual-based technique devised relies on both

identifiers and comments when detects test smells. However,

in a real-case scenario source code comments might be not

available, possibly threatening the practicability of TASTE. To

better understand the extent to which our technique can suffer

of this issue, we completely re-run our empirical study just

considering identifiers as source of information to be exploited

for the textual-based identification of test smells. Results are

in line with the ones discussed in Section V. A report of this

analysis is available in our online appendix [70].

C. External Validity

In the context of this paper, we started analyzing the

feasibility of the use of textual information for detecting three

specific types of test smells, General Fixture, Eager Test,
and Lack of Cohesion of Test Methods. They have different

levels of granularity and have been reported in literature as

pretty harmful for the maintainability of test code [28], [19].

We are aware that there might be other test smells that can

be potentially detected using TASTE and not considered in

this paper [59], [61]. Such an investigation is part of our

future reseach agenda. Another threat can be related to the

number of object systems used in our empirical evaluation.

To show the generalizability of our results, we conducted

a large empirical study involving twelve JAVA open source

systems having different size and different domains. It could

be worthwhile to replicate the evaluation on other projects

written in different programming languages as well as coming

from an industrial context.

VII. CONCLUSION

In this paper we investigated whether and to what extent

textual information can be effectively adopted for the task of

test smell detection. To this aim, we defined TASTE (Textual

AnalySis for Test smEll detection), an approach able to detect

test smells by only relying on the textual component of source

code. We instantiated our approach on three types of test

smells that have been shown to be highly diffused and harmful

for developers, i.e., General Fixture, Eager Test, and Lack of
Cohesion of Test Methods.

We demonstrated the validity of TASTE in an empirical

study, where we (i) compared its performance with the one

achieved by two baseline code metrics-based approaches such

as those proposed by Van Rompaey et al. [26] and Greiler et
al. [27] and (ii) evaluated the complementary between textual

and structural information. The study was conducted on a set

of twelve software projects, and in particular on 494 manually

validated test smells.

Summing up, the contributions made by this paper are:

1) A novel approach able to exploit Information Retrieval

methods for detecting instances of the three considered

test smell types;

2) An large-scale empirical study on the performance of

TASTE, which reveals that our approach can be more ef-

fective than the alternative code metrics-based approaches

by up to 44%. As a second take, the study also showed

that textual and structural analysis can be nicely comple-

mented for two test smells, i.e., Eager Test and Lack of
Cohesion of Test Methods, reaching higher performance.

3) A replication package that contains the manually-

validated set of test smells built in the context of this

research and that can be used by other researchers for

experimenting further improvements in the field of test

smell detection. Moreover, it also includes the scripts

used for our analysis [70].

Based on the findings achieved so far, our future research

agenda includes the experimental analysis of more sophis-

ticated and accurate combined techniques, as well as the

evaluation of the usefulness of the proposed textual approach

in the detection of other test smell types. Also, we plan to

define a test smell prioritization approach that exploits the

smelliness probability computed by TASTE.
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