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Time-Varying Constraints: Applications to

Intelligent Vehicles
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Wei Pan , Member, IEEE, Xin Xu , Senior Member, IEEE, and Haibin Xie

Abstract—In recent years, safe reinforcement learning
(RL) with the actor-critic structure has gained significant
interest for continuous control tasks. However, achieving
near-optimal control policies with safety and convergence
guarantees remains challenging. Moreover, few works have
focused on designing RL algorithms that handle time-
varying safety constraints. This article proposes a safe RL
algorithm for optimal control of nonlinear systems with
time-varying state and control constraints. The algorithm’s
novelty lies in two key aspects. Firstly, the approach intro-
duces a unique barrier force-based control policy structure
to ensure control safety during learning. Secondly, a mul-
tistep policy evaluation mechanism is employed, enabling
the prediction of policy safety risks under time-varying con-
straints and guiding safe updates. Theoretical results on
learning convergence, stability, and robustness are proven.
The proposed algorithm outperforms several state-of-the-
art RL algorithms in the simulated Safety Gym environment.
It is also applied to the real-world problem of integrated
path following and collision avoidance for two intelligent
vehicles—a differential-drive vehicle and an Ackermann-
drive one. The experimental results demonstrate the im-
pressive sim-to-real transfer capability of our approach,
while showcasing satisfactory online control performance.

Index Terms—Barrier force, multistep policy evaluation,
safe reinforcement learning (RL), time-varying constraints.
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I. INTRODUCTION

R EINFORCEMENT learning (RL) is promising for solving
nonlinear optimal control problems [1]. Until recently,

significant progress has been made on RL with the actor-critic
structure for continuous control tasks [2]. In actor-critic RL,
the value function and control policy are represented by the
critic and actor networks, respectively, and learned via exten-
sive policy exploration and exploitation. However, the resulting
learning-based control system might not guarantee safety for
systems with state and stability constraints. It is known that
safety constraint satisfaction is crucial besides optimality in
many real-world robot control applications [3], [4]. For in-
stance, autonomous driving has been viewed as a promising
technology that will bring fundamental changes to everyday
life. Still, one of the crucial issues concerns how to learn to
drive safely under dynamic and unknown environments with
unexpected obstacles [5]. For these practical reasons, many safe
RL algorithms have been recently developed for safety-critical
systems (see, e.g., [6], [7], [8], [9], [10], [11], and the references
therein).

In general, current safe RL solutions can be categorized into
the following three main approaches. 1) The first family utilizes
a unique mechanism in the learning procedure for safe policy
optimization using, e.g., control barrier functions [9], formal
verification [12], shielding [13], and external intervention [14].
These methods are prone to safety-biased learning by sacrificing
greatly on performance, and some of them rely on extra human
interference [14]. 2) The second family proposes safe RL algo-
rithms via primal-dual methods [6]. In the resulting optimization
problem, the Lagrangian multiplier serves as an extra weight
whose update is sensitive to the control performance [6]. 3) The
third is reward/cost shaping-based RL approaches [15] where
the cost functions are augmented with various safety-related
parts, e.g., barrier functions. As stated in [16], such a design
only informs the goal of guaranteeing safety by minimizing
the reshaped cost function but fails to guide how to achieve
it well through an actor-critic structure design. The weights
of actor and critic networks are prone to divergence in the
training process, especially when the control and safety goals
are conflicting. These issues motivated our novel actor-critic
structure with barrier functions and gradients. In this work, we
incorporate this unique structure into a control-theory-based
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RL framework, where model-based multistep policy evalua-
tion mechanism is utilized to ensure convergence and safety
in online learning scenarios. Moreover, few works have ad-
dressed the safe RL algorithm design under time-varying safety
constraints.

This work proposes a model-based safe RL algorithm with
theoretical guarantees for optimal control with time-varying
state and control constraints. First, a new barrier force-based
control policy (BCP) structure is constructed to ensure con-
trol safety during learning and enhance generalization perfor-
mance. Second, the time-varying constraints are addressed by
a multistep policy evaluation (MPE). The proposed safe RL
approach is implemented by an online barrier force-based actor-
critic learning algorithm. The closed-loop theoretical property
of our approach under nominal and perturbed cases and the
convergence condition of the barrier-based actor-critic (BAC)
learning algorithm is derived. The effectiveness of our ap-
proach is tested on both simulations and real-world intelligent
vehicles.

Our contributions are summarized as follows.
1) We proposed a safe RL algorithm for optimal control

under time-varying constraints. Safety can be guaranteed in
both online and offline learning scenarios. The performance and
advantages of our approach are achieved by a barrier force-based
policy shaping method to ensure safety and generalization per-
formance, and a multistep evaluation mechanism to guide policy
to update safely under time-varying constraints.

2) We proved that the proposed safe RL algorithm could
guarantee stability and robustness in the nominal scenario and
under external disturbances. Also, the convergence condition of
the actor-critic learning algorithm was derived by the Lyapunov
method.

3) Our approach was applied to solve a path following and
collision avoidance problem of intelligent vehicles. a) Extensive
simulation results illustrate that our approach outperforms other
state-of-the-art safe RL methods in learning safety and perfor-
mance. b) We verified our approach’s offline sim-to-real transfer
capability and real-world online learning performance, as well as
the strengths to state-of-the-art model predictive control (MPC)
algorithms.

The rest of this article is organized as follows. Section II intro-
duces the considered control problem. Section III presents the
proposed safe RL approach, while Section IV presents the main
theoretical results. Section V shows the real-world experimental
results. Finally, Section VI concludes the article. For space
limitations, some proofs of the theoretical results and additional
experimental results are given in our extended version [17].

Notation: We denote N and Nb
aas the set of natural num-

bers and integers a, . . . , b. For a vector x ∈ Rn, we denote
‖x‖2Q as x�Qx and ‖x‖ as the Euclidean norm. For a function
f(x, u) with arguments x and u, we denote �zf(x, u) as the
partial gradient to z, z = x or u. Given a matrix A ∈ Rn×n,
we use λmin(A) (λmax(A)) to denote the minimal (maximal)
eigenvalues. We denote Int(Z) as the interior of a set Z .
For variables zi ∈ Rqi , i ∈ NM

1 , we define (z1, z2, . . . , zM) =

[ z�1 z�2 · · · z�M ]� ∈ Rq, where q =
∑M

i=1 qi.

II. PROBLEM FORMULATION

In this section, we describe the considered model and con-
straints, the optimal control objective, and the safe RL problem
formulation using cost reconstruction with barrier functions.

A. System Model and Constraints

The considered system under control is a class of discrete-time
nonlinear systems described by

xk+1 = f(xk, uk) (1)

where xk ∈ Xk ⊆ Rn and uk ∈ Uk ⊆ Rm are the state and
input variables, k is the discrete-time index, Xk = {x ∈
Rn|Gi

x,k(x) ≤ 0, ∀i ∈ Npx

1 } and Uk = {u ∈ Rm|Gi
u,k(u) ≤

0, ∀i ∈ Npu

1 } are time-varying constraints, {0} ⊆ Uk, ∀ k ∈ N;
functions Gi

z,k(z) ∈ R for z = x, u, are assumed to be C2; f is
a smooth state transition function and f(0, 0) = 0.

In principle, different types of state constraints can be formal-
ized as follows. For instance, 1) Xk with Gi

x,k(x) = Ei
kx− cik

is a linear convex set, where Ei
k ∈ R1×n and cik ∈ R are time-

varying parameters; 2) Xk with Gi
x,k(x) = dik − ‖Ei

kxk − cik‖
represents a dynamic obstacle avoidance constraint of a robot
in a 2-D map, where Ei

k ∈ R2×ni , cik ∈ R2 and dik ∈ R are the
center and radius of the circular dynamic obstacle respectively.

Definition 1 (Local stabilizability [18]): System (1) is stabi-
lizable on Xk × Uk if, for any x0 ∈ X0, there exists a C1 state-
feedback policy π := {u(xk)}∞k=0 with u(xk) ∈ Uk ∀ k ∈ N∞0 ,
such that xk ∈ Xk and xk → 0 as k → +∞.

Assumption 1 (Lipschitz continuous): Model (1) is Lipschitz
continuous in Xk × Uk, for all k ∈ N∞0 , i.e., there exists a
Lipschitz constant 0 < Lf < +∞ such that for all x1, x2 ∈ Xk

and C1 control policies with u(x1), u(x2) ∈ Uk

‖f(x1, u(x1))− f(x2, u(x2))‖ ≤ Lf‖x1 − x2‖. (2)

Assumption 2 (Model): ‖�uf(x, u)‖ ≤ gm in the domain
Xk × Uk, where gm is a positive scalar.

B. Control Objective

Given any initial condition x0 ∈ X0, the control objective is
to find an optimal control policy π∗ that minimizes

J(x0, u0:+∞) =
+∞∑
k=0

γkr(xk, uk) (3)

subject to model (1), xk ∈ Xk, and uk ∈ Uk, ∀k ∈ N;
where r(xk, uk) = ‖xk‖2Q + ‖uk‖2R, and Q = Q� ∈ Rn×n,
R = R� ∈ Rm×m, Q,R � 0, γ is a discounting factor.

Note that, many waypoint tracking problems in the robot
control field can be naturally formed as the above regulation
problem (3), by proper coordinate transformation. Generally, it is
allowed that the time-varying state constraint might not contain
the origin for somek ∈ N, e.g., in a collision avoidance scenario.
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It is still reasonable to introduce the following assumption for
convergence guarantee.

Assumption 3 (State constraint): There exists a finite number
k̄ ∈ N such that {0} ⊆ Xk as k ≥ k̄.

Definition 2 (Multistep safe control): For a given state xk ∈
Xk at time instant k, a control policy πk := {u(xk+l)}∞l=0 with
u(xk+l) ∈ Uk+l, isL-step safe for (1) if the resulting future state
evolutions of (1) satisfy xk+l ∈ X u

k+l, ∀l ∈ NL
1 , where X u

k+l is
the resulting state constraint under πk.

To simplify the notation, in the rest of the article, the super
index in X u

k is neglected, i.e., we use Xk to denote X u
k .

C. Cost Reconstruction With Barrier Functions

As policy improvement is usually performed by the gradient
descent method in actor-critic RL, we have to reconstruct the cost
function in (3) by incorporating continuous barrier functions of
state and control constraints. To this end, we first introduce a
definition of barrier functions as follows.

Definition 3 (Barrier function [19]): For a general convex
set Zk = {z ∈ Rl|Gi

z,k(z) ≤ 0, ∀i ∈ Npz

1 }, a barrier function
is defined as

Bok(z) =
{
−∑pz

i=1 log
(
−Gi

z,k(z)
)
, z ∈ Int(Zk)

+∞ otherwise.
(4)

To derive a satisfactory control performance, we define a re-
centered transformation of Bok(z) centered at zc ∈ Rl is defined
as Bck(z) = Bok(z)− Bok(zc)− �zBok(zc)�z, where zc = 0 if
{0} ⊆ Zk or zc is selected such that zc ∈ Zk otherwise. This
definition leads to the property that Bck(z) ≥ 0 and it reaches
the minimum at zc, i.e.,Bck(zc) = 0, �Bck(zc) = 0. For the case
{0} � Zk, we suggest selecting zc far from Int(Zk) and as the
central point or its neighbor of Zk (if possible).

Lemma 1 (Relaxed barrier function [19]): Define a relaxed
barrier function of Bck(z) as

Bk(z) =
{
Bck(z) σ̄k ≥ κb

γb(z, σ̄k) σ̄k < κb

(5)

where the relaxing factor κb > 0 is a small positive number,
σ̄k = mini∈Npz

1
−Gi

k(z), the function γb(z, σ̄k) is strictly
monotone and differentiable on (−∞, κb), and �2

zγb(z, σ̄k)
≤ �2

zBk(z)|σ̄k=κb
, then there exists a matrix Hzk ≥

�2
zBk(z)|σ̄k=κb

, such that ‖�zBk(z)‖ ≤ Bzk,m, Bzk,m =
maxz∈Zk

‖2Hzk(z − zc)‖.
Proof: For details please see [19].
With the aforementioned definitions of barrier functions, we

reconstruct J(xk) with barrier functions defined in (4). Letting
μ > 0 be a tuning parameter, the resulting cost function, denoted
as J̄(xk), is defined as J̄(xk) =

∑+∞
k=0 γ

kr̄(xk, uk), where
r̄(xk, uk) = r(xk, uk) + μBk(uk) + μBk(xk). Note that, in
addition to the logarithmic barrier function (4), other gen-
eral types of differentiable barrier functions such as expo-
nential, polynomial ones can be naturally used instead to
construct J̄(xk); however, this is beyond the scope of this
work.

III. SAFE RL WITH BCP AND MPE

This section presents our safe RL approach and its implemen-
tation by an efficient actor-critic learning algorithm. Our safe RL
approach has two novel designs. The first is a barrier force-based
control policy structure, which has physics force interpretations
to ensure safety. The second is a multistep policy evaluation
mechanism, which provides the multistep safety risk prediction
to guide the policy to update safely online under time-varying
constraints.

A. Design of Safe RL With BCP and MPE

To solve the control problem with J̄(xk), we propose a novel
barrier force-based control policy inspired by the barrier method
in interior-point optimization [20], i.e.,

uk = vk + ρ�vBk(vk) +K�xBk(xk) (6)

where vk ∈ Rm is a new virtual control input, ρ ∈ R and K ∈
Rm×n are decision variables to be further optimized (see also
Section IV); �vBk(vk) is the gradient of Bk(vk) for vk ∈ Uk,
�xBk(xk) is the gradient of Bk(xk) for xk ∈ Xk.

Remark 1: In (6), the roles of the second and third terms are to
generate the repulsive forces, respectively, as the variables x and
vmove toward the corresponding boundary of the constraints. As
a result, (6) generates joint forces to exactly balance the forces
associated with J(xk) and with the barrier functions in J̄(xk).
Hence, our control policy has physical force interpretations to
ensure safety.

Let at any time k the control policy be πk = {uk(xk+l)}∞l=0.
One can write the difference equation for the multistep predic-
tion of the stage cost under πk, i.e.,

J̄ (xk) = r̄(xk, u(xk)) + γJ̄ (xk+1)

=
L−1∑
l=0

γlr̄(xk+l, u(xk+l)) + γLJ̄ (xk+L) . (7)

Under control (6), letting J̄∗(xk) be the optimal value function
at time instant k, a variant of the discrete-time HJB equation can
be written as

J̄∗(xk) = min
uk∈Uk

r̄(xk, uk) + γJ̄∗ (xk+1)

= min
uk+l∈Uk+l,l∈NL−1

0

L−1∑
l=0

γlr̄(xk+l, uk+l)+γLJ̄∗ (xk+L)

and the local optimal control policy is

π∗k = argmin
uk∈Uk

r̄(xk, uk) + γJ̄∗ (xk+1)

= argmin
uk+l∈Uk+l,l∈NL−1

0

L−1∑
l=0

γlr̄(xk+l, uk+l) + γLJ̄∗ (xk+L) .

We propose a safe RL algorithm in Algorithm 1 to approximate
the optimal policy and value function.
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Algorithm 1: Safe RL with BCP and MPE.

require: ε̄ > 0, u0
k, i = 0.

for k = 1, 2, · · · do
while J̄ i(xk)− J̄ i−1(xk) ≥ ε̄ do

1) Compute xk+l with ui
k+l based on model (1) for

l ∈ NL
1 .

2) Multistep policy evaluation:

J̄ i+1 (xk) =

L−1∑
l=0

γlr̄(xk+l, u
i
k+l) + γLJ̄ i (xk+L) . (8a)

3) Barrier force-based control policy update:

(vk, ρ,K)i+1 = argmin
vk,ρ,K

r̄(xk, uk) + γJ̄ i+1 (xk+1) ,

ui+1
k (xk) = vi+1

k + ρi+1�vBk(vi+1(xk))

+Ki+1�xBk(xk). (8b)

4) πi+1
k ← {ui+1

k (xk+l)}∞l=0.
5) i← i+ 1.

end while
end for

B. Barrier-Based Actor-Critic Learning Algorithm

In the following, Algorithm 1 is implemented with a barrier-
based actor-critic (BAC) structure. We first construct a consistent
type of critic network to J̄ with barrier functions

ˆ̄J(xk) = W�
c1σc(xk) +Wc2Bk(xk) (9)

where Wc1 ∈ RNc and Wc2 ∈ R are weighting matrices, σc ∈
RNc is a vector composed of basis functions. In a collective

form, we write ˆ̄J(xk) = W�
c hc(xk), where Wc = (Wc1,Wc2),

hc(xk) = (σc(xk),Bk(xk)).
The ultimate goal of the critic network is to minimize

the distance between J̄∗ and ˆ̄J via updating Wc. How-
ever, as J̄∗ is not available, the following J̄d(xk) [defined
according to (8a)] is used as the target to be steered by
ˆ̄J , i.e., J̄d(xk) =

∑L−1
l=0 γlr̄(xk+l, uk+l) + γL ˆ̄J(xk+L). Let

εc,k = J̄d(xk)− ˆ̄J(xk) be the approximation residual, δc,k =
ε2c,k, and γc be the learning rate, then the update rule of weight
Wc according to the gradient descent is given as

Wc,k+1 = Wc,k − γc
∂δc,k
∂Wc,k

. (10)

We next design the actor network for learning the control
policy (6) with the following form

uk = W�
a,σσa(xk) + K̂�xBk(xk)) + ρ̂�vBk(vk) (11)

where Wa,σ ∈ RNu×m, K̂ ∈ Rm×n, and ρ̂ ∈ R are the
weighting matrices, σa ∈ RNu is a vector of basis func-
tions. Let W�

a = [W�
a1 ρ̂I], W�

a1 = [W�
a,σ K̂] and ha(xk) =

(ha1(xk),�vBk(vk)), ha1(xk) = (σa(xk),�xBk(xk)), then
one can write (11) in a collective form as u(xk) = W�

a ha(xk).

Fig. 1. Schematic diagram of the barrier-based actor-critic learning
algorithm.

In view of (8b) and (11), letting νk = 2Ruk + μ�uBk(uk),
we define a desired target of νk, i.e., νdk as νdk =

−�uf(xk, uk)
�∂ ˆ̄J(xk+1)/∂xk+1. Denote εa,k = νdk − νk as

the approximation residual, δa,k = ‖εa,k‖2, and γa be the learn-
ing rate, then the update rule of Wa1 and ρ̂ according to the
gradient descent is given as

Wa1,k+1 = Wa1,k − γa
∂δa,k
∂Wa1,k

(12a)

ρ̂k+1 = ρ̂k − γa
∂δa,k
∂ρ̂k

. (12b)

For a visual display of the barrier-based actor-critic learning
algorithm, please see Fig. 1.

Remark 2: The proposed actor and critic comprise a neu-
ral network and safety-related terms multiplied by weighting
parameters [see (9) and (11)]. In the critic (9), the safety-
related term is to capture variations of the barrier functions
in J̄(xk). In the actor (11), the safety-related terms have
clear physical interpretations for safety certificates. In princi-
ple, an extra neural network might be used for representing
the safety-related terms in (9) and (11). However, the phys-
ical interpretations of the policy structure no longer exist.
The theoretical results (deferred in the next section) might
not hold directly due to possible approximation errors of
neural networks. The extension to this case with theoretical
guarantees is an open problem and will be left for further
investigation.

IV. THEORETICAL RESULTS

This section presents the theoretical results of the pro-
posed safe RL in nominal and disturbance scenarios as
well as the convergence analysis of the BAC learning
algorithm.
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A. Safety and Stability Guarantees in Nominal Scenario

Assumption 4 (Stabilizability): For any xk ∈ Xk, there exists
a control policy π := {uk}∞k=0 with uk ∈ Uk defined in (6) such
that system (1) is locally stabilizable.

From Assumption 4, one promptly obtains the following L-
step safe control condition: givenxk ∈ Xk, there exists anL-step
safe control policy such that xk+l ∈ Xk+l ∀l ∈ NL

1 . Note that
this is a standard condition and can be derived from a 1-step safe
control condition using mathematical induction. We highlight
that the variation of the state constraints between adjacent time
instants can not be arbitrarily large. Let X̃k+1 = {x̃k+1|x̃k+1 =
f(xk, uk), ∀xk ∈ Xk, uk ∈ Uk} be the maximal reachable set
from Xk under Uk. We require that the real state constraint at
any time k + 1 satisfies Xk+1 ⊆ X̃k+1.

Theorem 1 (Convergence): If u0
k(xk+l) ∈ Uk+l is such that

the relaxed barrier function Bk+l+1(xk+l+1) ∀l ∈ NL−1
0 , is fi-

nite, and the value function J̄0(xk) ≥ r̄(xk, u
0
k) + γJ̄0(xk+1);

then with (8), it holds that
1) J̄ i+1(xk) ≤ V i(xk) ≤ J̄ i(xk), where V i(xk) = r̄(xk,

ui
k) + γJ̄ i(xk+1);

2) J̄ i(xk)→ J̄∗(xk) and πi
k → π∗k, as i→ +∞.

Proof: Please refer to the extended verison [17]. �
Let π∗ be the local optimal control policy via minimizing

J̄(xk)with (1), i.e., π∗ = π∗k if the constraints are time-invariant
and π∗ = π∗0(0), π

∗
1(0), · · · , otherwise; where π∗k(0) = u∗k(xk).

The following proposition can be stated.
Proposition 1 (Stability): Let γ = 1, x0 ∈ X0. Under As-

sumptions 3 and 4, the state xk of model (1) using π∗, converges
to the origin as k → +∞.

Proof: Please refer to the extended verison [17]. �

B. Safety and Robustness Guarantees in Disturbed
Scenario

We show that our approach can guarantee safety and ro-
bustness under disturbances by properly shrinking the state
constraints in the learning process. To this end, let the real model
dynamics be given as

zk+1 = f(zk, uk) + wk (13)

where zk is the real state, wk ∈ W is an additive bounded and
unknown disturbance that can represent the modeled uncertainty
or measurement noise, W is a compact set containing origin
in the interior. Note that models obtained by first principles
or data-driven modeling using neural networks can be utilized
in the proposed approach. For a specific data-driven modeling
approach and the estimation of the associated uncertainty setW ,
please refer to [18].

Let at any time instant k, xk+j|k be the predicted state by
applying the controluk, . . . , uk+L−1 using model (1). Assuming
that the uncertainty set W is norm-bounded, i.e., ‖wk‖ ≤ εw,
then the following lemma is stated.

Lemma 2 ([21]): The difference between the real state under
u(z) and the nominal one under u(x) satisfies

‖xk+j|k − zk+j‖ ≤
Lj
f − 1

Lf − 1
εw (14)

where xk|k = zk.
Proof: The proof is similar to [21]. �
Let the constraint on the nominal state be shrunk,

i.e., xk+j|k ∈ X̄k+j where X̄k+j = Xk+j �Dj
εw

, Dj
εw

= {y ∈
Rn|‖y‖ ≤ Lj

f−1
Lf−1εw}. The barrier function on the state in J̄(xk)

is modified according to the constraint xk+j|k ∈ X̄k+j . Assume
that the computed X̄k+j is nonempty and contains the origin in
the interior for all k ≥ k̄.

Theorem 2 (Robustness): Under Assumptions 3-4, the state
evolution of (13), by applying the learned optimal policy π∗

with (1), converges to the set D∞εw , i.e., limk→+∞ xk → D∞εw .
Proof: Please refer to the extended version [17]. �
As noted in [21], to reduce the size ofDj

εw
, i.e., the Lipschitz

constant Lf , two design choices are suggested: i) a different
suitable norm type can be used; ii) an additional feedback term
K(zk − xk) can be added in the control input to reduce the
conservativeness of the multistep prediction of (1), where K ∈
Rm×n is a stabilizing gain matrix of (1).

C. Convergence Analysis of BAC Learning Algorithm

Note that, as shown in the Proposition 1 of our extended
version [17], the control problem for (1) with J̄(xk) is
equivalent to an unconstrained problem for a time-varying
model xk+1 = f(xk, uk), yk = (xk,

√Bk(xk)) with J̄u(xk) =∑+∞
k=0 γ

k(‖yk‖2Qy
+ ‖uk‖2R + μBk(uk)), where Qy = diag

{Q,μ}. The convergence analysis for the BAC learning algo-
rithm in this scenario would be much involved by Lyapunov
method since the optimal weights of the actor and critic are
time-dependent due to yk = (xk,

√Bk(xk)). For the sake of
simplicity, we recall that a time-varying constraint can be par-
titioned into several segments of time-invariant ones. Hence, in
the following, we prove the convergence of the BAC learning
algorithm under time-invariant state and control constraints,
i.e., X = Xk and U = Uk. That is, we prove that whenever the
constraints are changed, our algorithm can eventually converge
after some time steps. To this end, one first write

J̄∗(x) = W ∗
c
�hc(x) + κc(x), u

∗(x) = W ∗
a
�ha(x) + κa(x)

where W ∗
c and W ∗

a are constant weights, κc and κa are recon-
struction errors. We introduce the following assumption.

Assumption 5 (Weights and reconstruction errors of BAC):
1) ‖W ∗

c ‖ ≤Wc,m, ‖σc(x)‖ ≤ σc,m, ‖�xσc(x)‖ ≤ σ̄c,m,
‖κc(x)‖ ≤ κc,m;

2) ‖W ∗
a‖ ≤Wa,m, ‖σa(x)‖ ≤ σa,m, ‖κa(x)‖ ≤ κa,m. �

To state the following theorem in a compact form, we letW̃� =
W ∗

� −W�, � = a, c in turns, denote Δh̄c,k = Δh�c,kΔhc,k,
whereΔhc,k = γLhc,k+L − hc,k, and use q and q+ to denote qk
and qk+1 respectively unless otherwise specified. For simplicity,
we assume that Gi(u) = Eiu, Ei ∈ R1×m.

Theorem 3 (Convergence of BAC learning): Under
Assumptions 2 and 5, if

R− μHu � 0 and I − 3dm(R+ μHu)
2 � 0 (15a)

where dm = 4γa(σ
2
a,m + B2

v,m + B2
x,m), and

q1 ≤ Δh̄c,k ≤ q2 (15b)
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Fig. 2. (a) Simulation scenario in Safety Gym: The objective is to move
the vehicle (red) to the green region while avoiding two static obstacles
(grey), the moving soft object (purple) is not considered in the controller
design. (b) Experimental platform of the differential-drive vehicle and
testing scenario.

where q1, q2 > 0, then it holds that ‖(ξa,k, W̃c,k)‖ ≤√
εm

λmin(S) , as k → +∞, where ξa,k = W̃�
a,kha(xk), εm is a

bounded error and S is a positive-definite matrix, whose
definitions are given in the extended version [17]. Also,
(ξa,k, W̃c,k)→ 0, as k → +∞, if κ�(xk)→ 0, � = a, c in
turns.

Proof: Please refer to the extended verison [17]. �

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we focus on the applications of our approach
to two real-world intelligent vehicles.

A. Application to a Differential-Drive Vehicle: Offline
Learning Scenario

Consider a kinematics model

q̇ = (ṗx, ṗy, θ̇) = (vo cos θ, vo sin θ, ω), (16)

where (px, py) is the coordinate of vehicle in Cartesian frame, θ
is the yaw angle, u = [vo, ω]

� is the input, where vo and ω are
the linear velocity and yaw rate, respectively.

Let us define the path following error as e = qr − q, where
qr is the reference state. One can write the error model and
discretize it with a sampling interval Δt = 0.05 s to derive
the model like (1). The constraint for collision avoidance was
formulated as Xk = {(px, py)|‖(px, py)− ck‖ ≥ d}, where d
and ck are the radius and center of the obstacle respectively.
Also, the size of Xk was properly shrunk by increasing d to
account for uncertainties. In the training, the penalty matrices
were selected as Q = I , R = 0.1, μ = 0.001. The discounting
factor γ was γ = 0.95. The relaxing factor κb was κb = 0.05.
The basis functions σc(x) and σa(x) were chosen as hyperbolic
tangent activation functions with Nc = Nu = 4. The step L was
chosen as L = 10. Weights Wc and Wa were initialized with
uniformly random numbers.

Simulation results using Safety Gym environment [22]: We
tested our approach in the Safety Gym environment with the
MoJoCo simulator [23] (see the left panel in Fig. 2). Our
method was compared with several state-of-the-art safe RL
algorithms: constrained policy optimization (CPO) [24], trust
region policy optimization with Lagrangian methods (TRPO-
L) [22], proximal policy optimization with Lagrangian methods
(PPO-L) [22], deep deterministic policy gradient [25] with cost
shaping (DDPG-CS), and soft actor-critic (SAC) [26] with cost

shaping (SAC-CS). In the training stage, all the parameter
settings of CPO, TRPO-L, and PPO-L were consistent with
that in [22]. In DDPG-CS and SAC-CS, we used the same
cost function as ours. We directly deployed the offline learned
control policy in implementation since we did not know the
vehicle’s dynamic model. All the comparative algorithms were
trained and deployed using the same environment in Safety
Gym. The simulation results in Table I show that our approach
outperforms all the comparative algorithms in data efficiency,
collision avoidance, and performance (see the video details1 with
extracting code: 9426.).

As shown in Table II, when the obstacles overlapped with
the reference path between the target and vehicle, our approach
offers a significant performance improvement compared with
other adopted approaches1. In summary, our approach out-
performs the comparative model-free safe RL approaches for
the following two reasons. Firstly, the proposed barrier force-
inspired control policy structure has a clear physical interpreta-
tion to guarantee safety online and improve the generalization
ability. Secondly, our approach is model-based, facilitating mul-
tistep policy evaluation online.

Real-world experimental results with comparisons to nonlin-
ear MPC algorithms: We also tested our proposed algorithm
on a real-world differential-drive vehicle platform. The control
task is to follow a predefined reference path (with vo,r = 0.7
m/s) while passing and avoiding collision with a moving object
(vehicle) that is traveling along the reference path. In such a
situation, the conflict between the goals of path following and
collision avoidance leads to a challenging multiobjective control
problem.

In the experiment, the vehicle was equipped with a Laptop
running Ubuntu in an Intel i7-8550 U CPU@1.80 GHz. The
sampling interval was set as Δt = 0.1s. We directly deployed
the offline learned policy of our approach to control the vehicle.
At each sampling instant, the onboard laptop computed the
control input in real-time using the state information, which was
periodically measured by the onboard satellite inertial guidance
integrated positioning system (SIGIPS). To simplify the exper-
imental setup, another wheeled vehicle following the reference
path with a lower speed profile (vo,r = 0.3 m/s) was regarded as
the obstacle to be avoided. Its position and velocity information
was measured in real-time by SIGIPS and transmitted to the ego
vehicle via a WIFI network.

The following MPC algorithms were adopted for comparison.
1) A nonlinear MPC algorithm with nonconvex circular

constraints (NMPC-C). The vehicle obstacle was approx-
imated by a circle, i.e., we enforce constraint (Δpx)

2 +
(Δpy)

2 > d2o in NMPC-C, where Δpx and Δpy were
deviations from the robot to the obstacles in the associated
coordinate axes, do = 1m.

2) A nonlinear MPC algorithm with nonconvex ellipsoidal
constraints according to [27]. The vehicle obstacle was
approximated by an ellipsoid, where the semimajor axis
of the ellipsoid was in the direction of the reference

1[Online]. Available: https://pan.baidu.com/s/1NxJ-zgD4ZdVvqIXQgJk
Cqg.

https://pan.baidu.com/s/1NxJ-zgD4ZdVvqIXQgJkCqg
https://pan.baidu.com/s/1NxJ-zgD4ZdVvqIXQgJkCqg
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TABLE I
NUMERICAL COMPARISONS IN SAFETY GYM WITH RANDOMLY GENERATED OBSTACLE POSITIONS

TABLE II
NUMERICAL COMPARISONS IN SAFETY GYM WITH GENERATED OBSTACLES ON THE PATH BETWEEN THE TARGET AND VEHICLE

Fig. 3. CPU running time comparison in C++. In many time instants,
the computational time values of the NMPC-c, NMPC-e, NMPC-cbf are
greater than the adopted sampling interval, i.e., 0.1 s, which could
hamper the control performance (see Table III), while the computational
time of our approach is much smaller (less than 1 ms) and its influence
on the control performance can be negligible.

path. The semimajor radius and semiminor radius were
computed as 1.517 and 1.017 m, respectively.

3) A nonlinear MPC algorithm with control barrier func-
tion [28] (NMPC-CBF). The collision avoidance con-
straint is formulated by a control barrier function
constraint, i.e., h(k + 1)− h(k) ≥ −ηh(k), where h =
(Δpx)

2 + (Δpy)
2 − d2o is a control barrier function, η >

0 is properly tuned for fair comparisons.
The stage costs of all the comparative MPC algorithms

were designed the same, and the prediction horizon was set as
Np = 20. According to [27], the following potential function

Jp(k) =
∑Np−1

j=0 μp
1

(Δpx(k+j))2+(Δpy(k+j))2+εp
,was addition-

ally adopted to improve the collision avoidance performance in
NMPC-C and NMPC-E, εp was chosen as 0.0001, and μp was
tuned for fair comparisons.

All the MPC algorithms were solved at each sampling interval
based on the CasADi toolbox [29] with an Ipopt solver [30].
All the algorithms were tested under different reference pro-
files. A brief summary of experimental results under dynamic
collision avoidance was illustrated in Table III (see the video

TABLE III
EXPERIMENTAL COMPARISONS UNDER DYNAMIC OBSTACLES WITH do = 1

details). Please see Table V and Figs. 4–9 in [17] for more ex-
perimental results with various parameter tuning conditions. The
results show that the NMPC-C and NMPC-E failed in realizing
overtaking and followed behind the moving obstacle when the
adopted reference points were dense, while our approach can
realize conflict resolution in all scenarios. Also, our approach
outperforms NMPC-C and NMPC-E in terms of the planning
performance and path following performance (see Table III). In
addition to the unique policy design and learning mechanism
of our approach, the performance improvement to the MPC
algorithms is also due to the significant computational load
reduction (see Fig. 3). To further show the effectiveness of our
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Fig. 4. (a) HongQi EHS3 autonomous driving experimental platform. (b) Upper panel presents the road map with road boundary constraints,
where “S” stands for the starting point, “E” stands for the ending point, and the red line is the reference path for the path following control. The lower
panel presents the corresponding state errors compared with the offline learning case, a significantly improved performance can be achieved by
online policy learning. (c) Upper panel presents the road map with a collision avoidance scenario, while the lower panel gives the numerical state
errors.

approach, we carried out extra tests by manually manipulating
the moving obstacle to block the path of the ego vehicle when the
latter reacted promptly to avoid collision successfully (see Fig. 9
in [17]).

B. Application of an Ackermann-Drive Vehicle: Online
Learning Scenario

Consider the path following control of an Ackermann-drive
vehicle with collision avoidance. Its simplified lateral dynamics
is described by a “bicycle” model (cf. [31]), i.e,

Ẋ = vx cosϕ− vy sinϕ

Ẏ = vx sinϕ+ vy cosϕ

v̇y = − vxϕ̇+
2

m

[
Cf

(
δ − vy + lf ϕ̇

vx

)
+ Cr

lrϕ̇− vy
vx

]

ϕ̈ =
2

Iz

[
lfCf

(
δ − vy + lf ϕ̇

vx

)
− lrCr

lrϕ̇− vy
vx

]
(17)

where X and Y are the coordinates of the vehicle center of
mass in the Cartesian frame XoY , vx and vy are the longi-
tudinal and lateral velocities respectively, ϕ is the yaw angle,
Iz = 4175 kg·m2 is the yaw moment of inertia, m = 1723 kg
is the mass of the vehicle, Cf = 66900 N and Cr = 62700 N
are the cornering stiffness of the front and rear tires, respectively,
lf = 1.322 m, lr = 1.468 m, δ is the front wheel angle variable
to be manipulated.

Given the path reference points (Xr, Y r) and vx, we
aim to minimize the lateral distance from the vehicle cen-
ter of mass to the nearest reference point while avoid-
ing potential collisions with obstacles. To this end, let the
nearest point be (Xr

p , Y
r
p ), then one can compute the ref-

erence yaw angle ϕr
p. Define ey = −(X −Xr

p)sin(ϕ
r
p) +

(Y − Y r
p )cos(ϕ

r
p), eϕ = ϕ− ϕr

p. Let x = (ey, ėy, eϕ, ėϕ), then
one can obtain the continuous-time lateral dynamical model:
ẋ = F1(x) + F2(x)δ + F3(x)ϕ

r
p, where F1(0) = 0, F3(0) �=

0. Since (x, δ) = 0 might not be an equilibrium point if ϕr
p �= 0,

we introduced a virtual control variable u = δ + δf , where δf
was selected such that F2(x)δf = F3(x)ϕ

r
p. Consequently, the

lateral dynamical model was discretized with a sampling interval
Δt = 0.02 s, i.e., xk+1 = xk +ΔtF1(xk) + ΔtF2(xk)uk.

In the path following control task with collision
avoidance, the cost function was chosen as J̄ =

∑+∞
k=0

‖xk‖2Q + ‖uk‖2R + μBk(ey,k), where Q = I , R = 1,
μ = 0.02. The basis functions σc(x) and σa(x) were
chosen as polynomial kernel functions with Nc = 10 and
Nu = 14.

Real-world experimental results1: We also tested our safe RL
algorithm on the real-world intelligent vehicle platform built
with a HongQi EHS3 electric car to realize the path following
control (see Fig. 4). In the experiment, the states of the vehicle
were measured by a SIGIPS; then, the measured states were
transmitted to an industrial control computer, where the con-
trol policy was computed using our approach with a sampling
interval of 0.02 s. We first applied our algorithm to follow a
reference path with road boundaries [see Fig. 4(b)]. Different
from that in the simulation tests, the vehicle speed was controlled
by a PI controller to track a time-varying speed reference. This
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caused a strong nonlinearity of the lateral dynamics, leading to
extra difficulties in the control task. The experimental results
displayed in Fig. 4 show that the control policy of our approach
can be learned offline and deployed online safely, showing an
impressive sim-to-real transfer capability. Also, one can achieve
better control performance by online learning the control policy,
which further demonstrates the adaptability of our approach to
dynamic environments.

To show the capability of dealing with time-varying state con-
straints, we tested our approach to tracking a reference path that
overlapped with obstacles [see Fig. 4(c)]. Similarly, the location
information of obstacles was assumed to be pre-detected. In
the experiment, the control policy was learned and deployed
synchronously online. The initial constraints were the road
boundaries. Then, the constraint on ey was changed accordingly
once the vehicle was near the obstacle. The vehicle using our
approach can avoid collision successfully and converge rapidly
to the reference path after completing the collision avoidance
task (see again Fig. 4).

C. Implementation Issues and Discussions

Implementation issues: First, the tuning parameter μ is sug-
gested to be chosen smaller than the entries of Q and R to obtain
a satisfactory control performance. A larger choice of μ might
result in a safe but conservative control policy. Second, the initial
values of Wa,σ , K̂, and ρ̂ in the actor must be properly selected
such that the initial control policy with (11) isL-step safe, which
is a prior condition in Theorem 1. Finally, the relaxing factor κb

in Lemma 1 must also be selected properly. A smaller choice
is suggested if a less conservative control policy is expected,
while a larger choice can be made to ensure absolute control
safety.

Discussions: As a prominent feature, our approach can
learn an explicit control policy offline and deploy it to a
different control scenario even if the concerned constraints
are nonlinear and nonconvex. However, in MPC, the con-
trol action must be computed online by periodically solv-
ing an optimization problem [18], which can be difficult for
the on-the-fly implementation under nonlinear and nonconvex
constraints, see Section V-A. As shown in the simulation,
our learned policy using an inaccurate model shows an im-
pressive sim-to-real transfer capability compared with state-
of-the-art model-free RL approaches. In the experiments of
differential-drive vehicles, our approach outperforms compar-
ative MPC algorithms under measurement noises and model-
ing uncertainties. Indeed, our approach is a step forward in
applying safe RL to the real-world intelligent vehicle control
problem.

VI. CONCLUSION

This article proposed a safe RL algorithm with a barrier
force-based control policy structure and a multistep policy eval-
uation mechanism for optimal control of discrete-time nonlinear
systems with time-varying safety constraints. Under certain con-
ditions, safety can be guaranteed by our approach in both online
and offline learning cases. Our approach can solve continuous

control tasks in the dynamic environment both online and offline.
The convergence and robustness of our safe RL under nominal
and disturbed scenarios were proven, respectively. The conver-
gence condition of the barrier force-based actor-critic learning
algorithm was obtained.

The simulation and real-world experiment results illustrate
that our method outperforms state-of-the-art safe RL approaches
in control safety, and shows an impressive sim-to-real transfer
capability and a satisfactory real-world online learning perfor-
mance. In general, the proposed safe RL is a step forward in
applying safe RL to the optimal control of real-world nonlinear
physical systems with time-varying safety constraints. Future
works will consider the extension to model-free and multiagent
safe RL with theoretical guarantees.
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