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Abstract: Additive manufacturing (AM) or 3D printing is a promising industrial technology that
enables rapid prototyping of complex configurations. Powder Bed Fusion (PBF) is one of the most
popular AM techniques for metallic materials. Until today, only a few metals and alloys are available
for AM, e.g., titanium alloys, the most common of which is Ti-6Al-4V. After optimization of PBF
parameters, with or without post processing such as heat treatment or hot isostatic pressing, the
printed titanium alloy can easily reach tensile strengths of over 1100 MPa due to the quick cooling of
the AM process. However, attributed to the unique features of metallurgical defects and microstruc-
ture introduced by this AM process, their fatigue strength has been low, often less than 30% of the
tensile strength, especially in very-high-cycle regimes, i.e., failure life beyond 107 cycles. Here, based
on our group’s research on the very-high-cycle fatigue (VHCF) of additively manufactured (AMed)
Ti-6Al-4V alloys, we have refined the basic quantities of porosity, metallurgical defects, and the AMed
microstructure, summarized the main factors limiting their VHCF strengths, and suggested possible
ways to improve VHCF performance.

Keywords: titanium alloy; additive manufacturing (AM); powder bed fusion (PBF); heat treatment;
hot isostatic pressing (HIP); very-high-cycle fatigue (VHCF); crack initiation; metallurgical defect;
microstructure; fatigue strength

1. Introduction

Titanium (Ti) is known as the rising third metal element, after iron (Fe) and aluminum
(Al), and titanium alloys are widely used in a variety of engineering and living scenarios.
The element titanium has an isotropic transition: being α phase with hexagonal close-
packed (HCP) lattice at temperatures below 882.5 ◦C, i.e., β transus, in standard atmosphere,
and β phase with body-centered cubic (BCC) lattice at high temperatures above β transus.
Some chemical elements, e.g., Al and vanadium (V), can alloy titanium alloys to stabilize
their α and β phases, called α and β stabilizing elements, respectively. Depending on the
content of α and β stabilizing elements, titanium alloys can be divided into four types: near
α, α + β, metastable β, and β [1,2].

Additive manufacturing (AM), also known as 3D printing, is a form of rapid prototyp-
ing, a technique for constructing objects by printing layer by layer from a digital model
file using bondable materials such as powdered metals or photosensible resins [3]. Powder
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bed fusion (PBF) is one of the advanced AM technologies, which has gradually matured
over a long period of research and industrial development [4–9]. This development has
enabled the widespread adoption of commercial applications of PBF, particularly to pro-
duce high-value products that are not technically feasible with traditional manufacturing
processes [10–14]. Figure 1a gives an illustration of PBF with a scan strategy of meandering
paths [15]. At first, a powder bed of metallic materials was stacked layer by layer with a
thickness of t, and then a moving heat source with a power of p, usually a laser or electron
beam, was focused on the top of the powder bed along a specific track with a velocity of v.
As the beam scanned, the powder melted, fused, and solidified at a rapid cooling rate; the
interval between two adjacent scan tracks is called the hatch spacing of h. After completing
the programmed path for the current layer of powder, a roller restacked the new powder on
top of the current layer to form a new layer of powder, and the previous scanning operation
was replicated, with the scan path typically requiring a rotation angle of θ. These steps
would be repeated many times until the designed specimen was finally 3D printed.
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Figure 1. (a) Schematic drawing for powder bed fusion (PBF) with a scan strategy of meandering
paths [15]. (b) The 3D printed specimens [16] with orientations of 0◦, 45◦, and 90◦.

Figure 1b depicts an additively manufactured (AMed) titanium alloy of Ti-6Al-4V [16],
which is an α + β type, via laser PBF technique (L-PBF) with different orientations of 0◦

(horizontally printed), 45◦, and 90◦ (vertically printed). Ti-6Al-4V is the most used titanium
alloy [1,2] and one of the few metallic materials suitable for AM [3,4]. Given the unique
microstructure produced by the rapid cooling of the AM process, the AMed Ti-6Al-4V is
very easy to make at the ultimate tensile strength (UTS) of σu > 1100 MPa, and can provide
access to the category of so-called high-strength titanium alloys [17]. For the conventional
melting–forging process, the manufactured high-strength titanium alloys have almost
always been preferred to the use of a metastable β type [17].

Nevertheless, the AM process may also cause unavoidable metallurgical defects [18],
e.g., lack-of-fusion (LoF), gas pores, keyholing pores, and other AM pores. These AM
defects will greatly deteriorate the microstructural integrity of AMed materials and sig-
nificantly reduce their fatigue strengths, particularly for the cases of loading number
N > 107 cycles. It should be noted that fatigue strength is one of the most important me-
chanical properties of structural materials in real-world practical applications [19–21], as
fatigue loading is ubiquitous and causes the vast majority of engineering failures, estimated
at 4% GDP loss [22].

Figure 2 presents an example [23], in which a batch of pre-alloyed Ti-6Al-4V powder
was used to vertically print axisymmetric specimens via L-PBF with ten combinations of
processing parameters and a heat treatment of stress relief by heating at 600 ◦C for 2 h then
cooling in a vacuum furnace. These combinations were named as Group 1, Group 2, . . .,
Group 10. Figure 2a shows the tensile properties of the yield strength σy, the UTS σu, and
the total elongation of εt at fracture under quasi-static monotonic loading; Figure 2b shows
the fatigue strengths of σw7 at 107 cycles, i.e., the traditional fatigue limit [24,25], and σw8
at 108 cycles under axially ultrasonic cycling with resonant frequency of 20 k ± 500 Hz at
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stress ratio of R = −1. In Figure 2, the abscissa E = p/(t·v·h) is the volumetric energy density
of the movable power source [26].
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Figure 2. Tensile (a) and fatigue (b) properties of a titanium alloy with Groups 1~10 of processing
parameters via laser powder bed fusion and experienced through annealing [23]. σy: yield strength,
σu: ultimate tensile strength, εt: total elongation at fracture; σw7: fatigue strength at 107 cycles, σw8:
fatigue strength at 108 cycles; solid symbols denoting Groups 1~9, and hollows denoting Group 10.

2. Aim and Objectives

Because of its importance in engineering, as mentioned above, metal fatigue [27,28]
has been studied for a long time, dating back to the pioneering work of Wöhler [29] in
the mid-19th century. According to conventional knowledge [19,24,27], there is a distinct
fatigue limit for some metallic materials, such as ferrous alloys and titanium alloys. The
fatigue limit is a level of stress amplitude σa or maximum stress σmax below which an
infinite number of loading cycles can be applied to a material without causing fatigue
failure [19,24,25,27,28,30,31]. In engineering [32], the number of loading cycles is usually
set at 107, and in this case, the fatigue limit is called the traditional fatigue limit [19,24,27].

Forty years ago, Atrens et al. [33] reported that fatigue failure still occurs after 107

cycles in a titanium alloy. This failure phenomenon has been named superlong [34,35]
or ultralong [28] life fatigue, gigacycle fatigue [25,36], and ultra- [37] or very-high-cycle
fatigue (VHCF) [38–40] successively. With the development of modern civilization, there is
an urgent need for service components [41–43] that require a longer safe life, e.g., due to
the high-frequency effects of flutter, many critical components in the aerospace industry
can accumulate 107 cyclic loads every 3 h, including turbine engine fans and compressor
blades. Therefore, the VHCF of titanium alloys, specifically Ti-6Al-4V, produced by conven-
tional [39,43–45] and additive manufacturing [46–50], has attracted increasing attention in
both scientific and industrial communities.

The authors and co-workers have systematically investigated the VHCF behavior
of AMed Ti-6Al-4V and obtained extensive experimental results, which will be further
discussed in-depth below. Based on these results, and with reference to the literature, this
paper presents a research viewpoint to clarify the material characteristics, e.g., porosity,
metallurgical defect types, and the microstructure of AMed Ti-6Al-4V, to summarize the
main factors that will degrade the VHCF strengths, and to propose the applicable methods
that will improve the VHCF performance.

3. Additively Manufactured Titanium Alloys
3.1. Porosities and Metallurgical Defect Types

Although the heat treatments of annealing types may degrade the tensile strength
of AMed Ti-6Al-4V [49,50], the majority of the obtained UTS values in Figure 2a still
satisfy σu > 1100 MPa. In contrast, the greatest of the fatigue strengths σw7 and σw8 does
not exceed 300 MPa. Obviously, even if the applied stress amplitude σa is less than the
traditional fatigue limit of σw7, the fatigue failure will occur during N > 107 cycles as long
as σa > σw8. This falls into the scope of very-high-cycle fatigue (VHCF) [34–40].
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In this regard, Du et al. [23] sequentially used the methods of Archimedean drainage
and cross section to measure the porosity RD of the AMed specimens for Groups 1~10.
Figure 3 exhibits the distributed AM defects for Groups 1~9 on the selected representative
regions within the horizontal and longitudinal cross sections cut from their specimens
under optical microscopy (OM). The measured porosities were displayed on Figure 4 with
different abscissas. Generally, as the energy density E increases, the porosity decreases
to a minimum value in Group 10 and then rebounds slightly to Group 7. As shown in
Figure 3, the metallurgical defects are remarkably diverse, and their shapes become more
and more irregular with increasing porosity. In comparison with Figures 2a and 4b, the
tensile quantities of σy, σu, and εt basically have an opposite trend to the porosity with
varying E values. At last, Figure 4c enumerates the detail L-PBF parameters of Groups 1~10
for AMed Ti-6Al-4V.
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3.2. Basic Features of 3D Printed Microstructures

Figure 5 presents the typical OM microstructure of AMed titanium alloys via L-
PBF [16,51]. Figure 5a has an almost equiaxed microstructure (EM) of prior β grains on the
cross section perpendicular to the building direction, and Figure 5b has almost columnar
prior β grains on the cross section parallel to the building direction. Within the grain
boundary, depicted with dashes in Figure 5, the prior β phase has transformed to the
lamellae of α and β, which constitutes lamellar microstructure (LM). The neighboring
lamellae with a similar crystallographic orientation have stacked one by one to form an LM
colony. Along the building direction, many LM colonies have piled up to a columnar grain
of the prior β phase.
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Figure 5. Optical metallographic images [51] on horizontal (a) and longitudinal (b) cross sections of
specimens from Group 10. Optical metallographic images [16] on cross sections perpendicular to the
specimen axes for another additively manufactured Ti-6Al-4V with different orientations of 0◦, 45◦

and 90◦ at low magnification (a–e) and at high magnification (f–h).

Figure 5c–h is for an AMed Ti-6Al-4V with different orientations of 0◦, 45◦, and
90◦ [16] by using another combination of PBF parameters and after heat treatment of an
annealing, named Group 11. Their OM images show the microstructures on the cross
sections perpendicular to the oriented specimen axes at low and high magnification. As the
angle of orientation increases from 0◦ to 90◦, a global EM morphology gradually emerges
on the cross sections from Figure 5c with blurred domains to Figure 5e with clear grains
of prior β. For the enlarged OM images of Figure 5f–h, within the LM domains, there do
not appear to be any significant differences in the cross sections for the oriented specimens,
except for the presence of coarsened lamellar grains.

According to the traditional classification [1,2] of microstructural morphologies for
the α + β typed titanium alloys, there are four basic microstructures: (1) EM of equiaxed α

grains and transformed β domains [52], (2) LM of lamellar α and β grains [53], (3) bimodal
microstructure (BM) of equiaxed α grains and LM domains [54], (4) basket weave (BW)
microstructure of lamellar α and β grains with irregular orientations. Figure 5f–h shows
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an example of OM images for the BW microstructure. These four microstructures can be
obtained by many specific thermal–mechanical processing procedures.

3.3. Thermal–Mechanical Evolution of Defect and Microstructure

One of the major advantages of AM is the ease with which printed specimens with
complex configurations can be manufactured, but that also limits the possibility of further
mechanical processing. For example, the complex shapes cannot be rolled, forged, stamped
and so forth [55]. This leaves hot isostatic pressing (HIP) as the most popular method of
thermal–mechanical processing for the AMed specimens.

In the HIP process, the specimens are simultaneously subjected to both high tempera-
tures and high isostatic pressures using a gaseous transfer medium. The main factor that
distinguishes HIP from other processing techniques is the use of gas as a pressure transfer
medium to induce equivalent changes in three dimensions in the material it surrounds. For
a successful HIP, three variables must be properly controlled: temperature, pressure, and
time [56].

Figures 6 and 7 give an example to describe the effect of HIP on the AMed microstruc-
ture and metallurgical defects of the specimen. Chi et al. [57,58] vertically printed two
batches of specimens for an AMed Ti-6Al-4V via L-PBF, which were subsequently heat-
treated for 2 h at 710 ◦C in a vacuum and then cooled in an argon atmosphere. This
parameter combination of the PBF processing and the annealing was named as Group 12,
in which one batch was selected to further post-treat with a HIP at 920 ◦C and 1000 bar
for 2 h in argon atmosphere. As a control group, the other batch of specimens has no post
processing. Figure 6 shows a characterization of electron backscatter diffraction (EBSD)
for a very local region around an AM defect on a cross section cut from these specimens
of Group 12 without HIP. No difference was observed in the local microstructure of the
defect edges from that of the LM or BW matrix. Figure 7 gives a visual comparison of the
EBSD morphologies for the AMed matrix after the heat treatment (Group 12) and then with
(Figure 7a,b) or without (Figure 7c,d) this HIP treat.
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Figure 6. Electron backscatter diffraction (EBSD) for an additively manufactured titanium alloy
with Group 12 of processing parameters via laser powder bed fusion and experienced through
annealing [57]: (a) Phase map, yellow for α and cyan for β; (b) Inverse pole figure (IPF) showing
crystallographic orientations of α and β grains. (c,d) enlarging boxes c and d in (a,b).
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(b,d) inverse pole figures (IPFs). The white scale bars all represent 20 µm.

In general, the main purpose of HIP is focused on the effectiveness in eliminating
the void-types of metallurgical defects, and the side effect is equivalent to performing
additional heat treatment, which will coarsen the AMed microstructure. For Group 12,
along the building direction, the tensile properties of the specimens without HIP [57] are
σy = 951 MPa and σu = 1007 MPa, and the elongation is about 14% at fracture. Compara-
tively, the specimens with HIP [58] are σy = 849 MPa, σu = 946 MPa, and a longer elongation.
This is attributed to the additional annealing of the HIP, i.e., at 920 ◦C for 2 h.

4. Fatigue Behaviors in High-Cycle and Very-High-Cycle Regimes
4.1. S-N Data and Curves

Figure 8 shows S-N data and curves for AMed Ti-6Al-4V alloys via L-PBF with
different combinations of processing parameters, heat treatments, surface states, and
building orientations. The abscissa is the failure cycle Nf, and the ordinate is the applied
stress amplitude σa. All fatigue tests were conducted at room temperature and in ambient
air by axial cycling at an ultrasonic frequency of 20 k ± 500 Hz.

Figure 8a is for the combinations of Groups 1~10 under stress ratios R = −1 [23].
The fatigue specimens of Groups 1~10 were vertically printed to hourglass shapes; after
heat treatment, the specimens were ground and polished to the final dimensions [23,51].
Figure 8b is for vertically printed specimens with a combination Group 13 of L-PBF param-
eters of p = 325 W, t = 0.03 mm, v = 1300 mm/s, h = 0.12 mm, and E = 69.44 J/mm3 [59],
then stress relieved by heating at 600 ◦C for 2 h. Along the building direction, the Vickers
hardness is 367 HV, and σy = 1068 MPa, σu = 1202 MPa. The fatigue specimens were di-
vided into two batches: one retained the directly printed rough surface, called As-built, and
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the other had a polished surface, called Polished. Figure 8c is for Group 11 [16]. The fatigue
specimens were printed with orientations of 0◦, 45◦, and 90◦, and the tensile properties
along these orientations were not reported in Ref. [16].
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with different surface states at R = −1 and 0.7 [59]; (c) Group 11 with building orientations of 0◦, 45◦,
and 90◦ [16]. Symbols with arrows represent runout specimens, solid or dashed lines correspond to
the approximate fits for data points of the same colors.

4.2. Specimens with Different Surface States

The S-N curve of As-built specimens for Group 13 has a slope in a high-cycle regime
(N < 107 cycles) and a horizontal asymptote at a negative stress ratio of R = −1. All
specimens failed by high-cycle fatigue (HCF, Nf < 107 cycles) while σa > 80 MPa and either
failed in the HCF stage or survived beyond 109 cycles while σa < 80 MPa. No VHCF occurs.

The S-N curve of Polished specimens for Group 13 has two slopes in high-cycle and
very-high-cycle regimes, respectively, at R = −1, and changes to a single slope from HCF
to VHCF at R = 0.7. The fatigue strengths at 107 cycles are σa7 = 130 MPa at R = −1 and
σa7 = 80 MPa at R = 0.7. VHCF can occur at both stress ratios of R = −1 and 0.7.

For Group 13, Figure 9a,b of OM images presents the AM defect distributions on the
horizontal cross sections of As-built and Polished specimens with metallographic etching.
There is a defect-enriched layer with an offset distance T inward from the surface for
both As-built and Polished specimens due to different AM strategies for surface and inner
filling, as shown in Figure 1a. Figure 9c–f shows the representative morphologies of fatigue
fracture surfaces imaged by scanning electron microscopy (SEM). Figure 9c,d is for HCF
of As-built specimens, in which fatigue failure was induced by cooperative interactions
of directly printed rough surface and subsurface-enriched defects. Figure 9e,f gives an
example of VHCF for Polished specimens; the enriched subsurface defects still appeared
on the fracture surface, as shown in Figure 9e, and the final failure originated from a
subsurface defect, as shown in Figure 9f.

It should be noted that although the fatigue cracks lead to the final failure initiated
from the edge of the subsurface defect, this does not indicate that the failure type of the
AMed specimens can be classified as a surface one. In fact, the classification of failure types
should be based on the overall macroscopic fractography rather than on some local fracture
characteristics [60].
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Figure 9. Optical metallographic images on horizontal cross section of As-built (a) and Polished (b)
specimens. Scanning electron micrographs for fatigue fracture surfaces of As-built (c,d) and Polished
(e,f) specimens, (f) enlarging box in (e). (a) R = −1, σa = 139.1 MPa, Nf = 2.9 × 105 cycles; (b) R = −1,
σa = 125.2 MPa, Nf = 4.3 × 105 cycles; (c) R = −1, σa = 153 MPa, Nf = 3.3 × 107 cycles [59].

4.3. Specimens with Different Processing Parameters

For Groups 1~10 of different L-PBF parameters, in Figure 8a, the hollow and solid
symbols represent fatigue failure induced by surface and internal crack initiation. Fatigue
performances are optimized with decreasing porosity of Groups 1~10, and single S-N
characteristics become duplex or stepwise at a negative stress ratio of R = −1. The fatigue
strength at 107 cycles from σa7 = 75 MPa is enhanced to 300 MPa. Figure 10 demonstrates
typical morphologies of fatigue crack initiation for different failure types. Figure 10a,b
depict SEM images for HCF induced by specimen surface and a surface defect, respectively.
Figure 10c depicts an SEM image for VHCF induced by an irregular void-typed defect at
the specimen subsurface caused by the AM process. Figure 10d schematically draws the
possible formation process of this AM defect. Figure 10e,f of SEM images is for VHCF
induced by subsurface AM defects with different shapes or types.

Figure 9a,b also presents an EM of prior β grains distributed on the cross sections
perpendicular to the building direction. Their equivalent diameters are in the same order
of magnitude as the transverse dimensions of columnar grains as dashed in Figure 5a,b.
Consequently, the yield strength and UTS of As-built and Polished specimens for Group 13
are close to those for Group 10. However, their fatigue performance varies greatly in both
HCF and VHCF regimes. The fatigue strength of As-built specimens is only comparable to
that of specimens for Group 3 with the highest porosity in HCF and VHCF regimes. The
HCF strength of Polished specimens is between those of specimens with the second and
third highest porosity for Groups 2 and 8, and the VHCF strength is even lower than the
latter two. This indicates that the weakening of fatigue strength, especially in the VHCF
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regime, is attributed, firstly, to the directly printed rough surface and, secondly, to the
subsurface-enriched defects in the AMed specimens of titanium alloys.
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Figure 10. Typical morphologies for fatigue crack initiation at stress ratio R = −1: (a) Group 7,
σa = 291 MPa, Nf = 6.95 × 105 cycles; (b) Group 5, σa = 175 MPa, Nf = 8.93 × 106 cycles; (c) Group 2,
σa = 116 MPa, Nf = 1.56 × 108 cycles; (d) schematic of melting pools without overlap; (e) Group 1,
σa = 174 MPa, Nf = 2.38 × 108 cycles; (f) Group 7, σa = 262 MPa, Nf = 1.28 × 108 cycles [23].

4.4. Internal Crack Initiation with Different Building Orientations

For Group 11 with orientations 0◦, 45◦, and 90◦, the fatigue specimens were coaxially
machined from the heat-treated round bars of AMed Ti-6Al-4V and then ground to the
final hourglass shapes. In the range of 200 MPa ≤ σa ≤ 500 MPa, all specimens failed by
internal crack initiation in HCF and VHCF regimes regardless of failure cycles. The S-N
curves show continuously decreasing slopes with low data scatter. Basically, the specimens
with 0◦ orientation had the best fatigue resistance, followed by 45◦ and 90◦, although the
differences in their values are inconsiderable.

Figure 11 provides the representative SEM morphologies of crack initiation for these
specimens, in which the main cracks originated from the AM defects at the specimen
interior. There appears to be a certain orientation relationship between these critical AM
defects that lead to the ultimate fatigue fracture. The AM defect in Figure 11a can be tilted
45◦ to obtain the defect in Figure 11b and then tilted a further 45◦ to obtain the defect in
Figure 11c. They also seem to be interpreted by Figure 10d. Figure 11d–f give alternative
situations for other metallurgical defects with different shapes or AM types.

The AM defects in Group 11 have projected areas on the fracture surfaces of about the
same order of magnitude as those in Group 1, as shown in Figure 10e. In comparison to the
crack initiation behaviors mentioned above, the location of fatigue origin tends to be the
specimen interior (Group 11) rather than on the directly printed rough surface, polished
surface, subsurface-enriched defects (As-built and Polished specimens of Group 13), or
other subsurface defects (Group 1~10) as the depth of the layer removed from the specimen
surface increases. As a result, the fatigue resistance of Group 11 is much better than that of
Groups 1~10 and 13. Even for Group 10, which has the lowest porosity, its HCF resistance
is significantly lower than that of Group 11.



Crystals 2024, 14, 749 11 of 23

Crystals 2024, 14, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 11. Internal origins of fatigue crack initiation for specimens of Group 11 with orientations 0°, 
45° and 90° at stress ratio R = −1: (a) 0°, σa = 400 MPa, Nf = 5.35 × 106 cycles; (b) 45°, σa = 225 MPa, Nf 
= 3.39 × 108 cycles; (c) 90°, σa = 350 MPa, Nf = 3.99 × 106 cycles; (d) 0°, σa = 300 MPa, Nf = 2.51 × 107 
cycles; (e) 45°, σa = 400 MPa, Nf = 7.55 × 105 cycles; (f) 90°, σa = 320 MPa, Nf = 9.81 × 106 cycles [16]. 
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Figure 12 shows the S-N data in terms of the applied maximum stress σmax for the 
AMed Ti-6Al-4V alloys with different L-PBF processing and heat treatments of Groups 10 
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Figure 11. Internal origins of fatigue crack initiation for specimens of Group 11 with orien-
tations 0◦, 45◦ and 90◦ at stress ratio R = −1: (a) 0◦, σa = 400 MPa, Nf = 5.35 × 106 cycles;
(b) 45◦, σa = 225 MPa, Nf = 3.39 × 108 cycles; (c) 90◦, σa = 350 MPa, Nf = 3.99 × 106 cycles;
(d) 0◦, σa = 300 MPa, Nf = 2.51 × 107 cycles; (e) 45◦, σa = 400 MPa, Nf = 7.55 × 105 cycles; (f) 90◦,
σa = 320 MPa, Nf = 9.81 × 106 cycles [16].

5. Effect of Stress Ratio on Fatigue Strength and Fractography
5.1. S-N Data with Various Stress Ratios

Fu et al. [61] vertically printed a batch of round bars for an AMed Ti-6Al-4V by using L-
PBF with the same parameters of processing and heat treatment as Group 13. The porosity
is 2.93%, and the tensile properties are σy = 1191 MPa, 1246 MPa, and εt = 5.6% along
the building direction. The fatigue specimens were coaxially machined from the round
bars, then ground and polished to hourglass shapes for ultrasonic push–pull and pull–pull
cycling at a loading frequency of 20 k ± 500 Hz in ambient air and at room temperature.
These specimens were named as Group 14.

Figure 12 shows the S-N data in terms of the applied maximum stress σmax for the
AMed Ti-6Al-4V alloys with different L-PBF processing and heat treatments of Groups 10
(Figure 12a), 14 (Figure 12b) and 12 (Figure 12c) under various stress ratios of R = −1, −0.5,
0.1, 0.2 and 0.5.

For Group 10 of Figure 12a, in the range of 300 MPa ≤ σmax ≤ 800 MPa, the S-N data
exhibit a continuous decreasing shape for the failure life from 105 to 109 cycles. While
σmax > 500 MPa, two specimens were tested and failed by surface crack initiation-induced
HCF; while σmax < 500 MPa, six specimens were tested; one ran out, and others failed by
internal crack initiation-induced VHCF. At σmax = 500 MPa, two specimens were tested,
one failed by surface crack-induced HCF and the other by internal crack-induced VHCF.
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5.2. Crack Initiation Morphologies for Case-I

For Group 14 of Figure 12b, the fatigue resistance in terms of maximum stress first
decreases and then increases as the stress ratio of the R value increases. For R = −1, −0.5,
0.1, and 0.5, the specimens under R = 0.5 have the highest σmax, R = −1 the second, R = 0.1
the third, and R = −0.5 the lowest. All fatigue specimens that failed in the VHCF regime
were classified as internal crack initiation.

While R = −1, 25 specimens were tested, two ran out of 109 cycles, 21 failed by internal
crack initiation-induced VHCF or HCF, and only one failed by surface crack initiation-
induced fatigue failure at Nf = 3 × 105 cycles under σmax > 300 MPa, which has the shortest
Nf and the highest σmax. While R = −0.5, thirteen specimens were tested, one ran out of
109 cycles at σmax < 100 MPa, and the other twelve failed in HCF or VHCF regime caused
by internal crack initiation in the range of 100 MPa < σmax < 250 MPa. While R = 0.1,
11 specimens were tested, and all fatigue failed by internal crack initiation in HCF and
VHCF from 2 × 105 to 5 × 108 cycles, regardless of failure life. While R = 0.5, twenty-four
specimens were tested, one ran out of 109 cycles at σmax = 200 MPa, and the others preferred
(18/19) internal crack initiation in the range of 300 MPa < σmax < 400 MPa.

Figure 13a–l offers representative SEM images of crack initiation and growth mor-
phologies on the fracture surface for selected specimens that failed in different fatigue
regimes and stress ratios. In these subfigures, the crack that leads to the final fatigue failure
was originated from an AM defect, which was yellow dashed and marked as LOF. To be
exact, the defect is not LoF but a type of AM pore that Fu et al. [61] had mislabeled.

For the negative stress ratios of R = −1 and −0.5, a crack initiation region of rough
area (RA) incubates, nucleates, and matures at Nf > 108 cycles as the fatigue life grows
around the AM defect. The RA regions are circular or elliptical in shape and tangent to
the specimen surfaces, as shown in Figure 13c,f. As the stress ratio increases to R = 0.1,
a large RA region can be formed at 107 cycles < Nf < 108 cycles, as shown in Figure 13h,
the boundary of which is not tangent to the specimen surface and the projected area of
which is even larger than the RA at Nf > 108 cycles as shown in Figure 13i. While the
stress ratio further increases to R = 0.5, around the dominating AM defect, which causes
the final failure, no identifiable RA region was observed on the fracture surface even at
Nf > 108 cycles, as shown in Figure 13j–l. This crack initiation behavior with the RA region
is quite similar to that with the fine granular area (FGA, [62]) in high-strength steels under
negative and positive R values [63].
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Figure 13. Scanning electron micrographs showing crack initiation and growth regions of selected
fatigue specimens (a–l) for Group 14 under different stress ratios and loading cycles. LOF: lack-of-
fusion typed defect, RA: rough area of crack initiation region [61].

5.3. Crack Initiation Morphologies for Case-II

For Group 10 of the AMed Ti-6Al-4V, Figure 14 displays the typical SEM images for
crack initiation in HCF and VHCF under negative and positive stress ratios of R = −1 and
0.5. Figure 14a is for surface crack initiation-induced HCF, which originated from a surface
AM defect. Figure 14b,c is for internal crack initiation-induced VHCF at R = −1, which orig-
inated from a subsurface AM defect and encircled by an RA region with granular morphol-
ogy. Figure 14d–i gives two examples showing the whole fracture surface (Figure 14d,g)
and the detailed region of fatigue crack initiation and early propagation, which originated
from an internal AM defect and cracking of a leaf-like facet (Figure 14e,f,h,i) for failure
lives of 107 and 108 cycles at R = 0.5. Obviously, for a positive stress ratio of R = 0.5, the
crack initiation morphologies of Group 10, as shown in Figure 14d–i, are very different
from those of Group 14, as shown in Figure 13k,l, which is defined as Case-I. In contrast,
the former case of fatigue crack initiation for Group 10 is defined as Case-II.
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Figure 14. Typical morphologies of scanning electron microscopy for fatigue crack initiation and
growth on fracture surfaces in high-cycle and very-high-cycle regimes under negative (a–c) and
positive (d–i) stress ratios. Red bars P1, P2, P3, P4, and P5 are locations of TEM (transmission electron
microscopy) samples cut by FIB (focused ion beam) milling [51].

In Figure 14, the red bars of P1, P2, P3, P4, and P5 locate the lamellae for further
characterization of the profile microstructure underneath the fracture surface by using
transmission electron microscopy (TEM). The lamellae were cut from the representative
locations on the fracture surfaces with the milling of a focused ion beam (FIB). P1 is for
a core region around a surface AM defect of crack initiation experienced HCF at R = −1;
P2 and P3 are for locations near and away from the crack initiation site of a subsurface
AM defect experienced VHCF at R = −1; P2 is within the RA region and P3 outs; P4 and
P5 are for locations near the internal AM defect of crack initiation experienced VHCF at
R = 0.5; P4 is within the facet; and P5 is outs but adjacent. The microstructures on TEM
lamellae of P1, P3, P4, and P5 almost keep the original AMed LM or BW with coarse grains
of α and β phases. On top of the TEM lamella of P2, there is a nanograin layer [51] with
a heterogeneous refined microstructure [64] of twisted lamellar α/β grains and equiaxed
grains, which may be produced by recrystallization.

Similar phenomena of nanograin formation and microstructure refinement can also
occur in other metallic materials, whether conventional manufacturing [63,65–68] or
AM [15,61,69]. Hong et al. [63] proposed a model of numerous cyclic pressing (NCP)
to explain these phenomena, in which fracture surface nanocrystallization occurs and is
associated with VHCF initiation under negative stress ratios due to a very long process
(N > 107 cycles) of repeated crack opening and closing. This process can assume and store a
massive amount of cyclic strain energy, which is introduced by the applied stress amplitude,
thus allowing the material to have a relatively high σa value. The key to the NCP model is
a sufficient number of load cycles and a sufficiently high value of the compressive stress
component.
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5.4. Fatigue Strength Estimation under Tensile Mean Stress

Figure 15 of Haigh diagrams [70] quantitatively delineates the effect of tensile mean
stress or stress ratio on the fatigue resistance of an AMed Ti-6Al-4V alloy in comparison of
high-strength steels and titanium alloys with several microstructures based on the relations
of Goodman [71], Gerber [72] and Pan et al. [65]. Figure 15a,b is for the AMed titanium
alloy of Group 14 [61] in the HCF and VHCF regime, respectively. Figure 15c is for the
VHCF limit of high-strength steel [73]. Figure 15d,e is for a Ti-6Al-4V alloy with EM [74] in
HCF and VHCF regimes, respectively. Figure 15f is for the VHCF limit of titanium alloys
with LM, BM, or EM.
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have many similarities [75], e.g., the nonmetallic inclusions [76,77] in high-strength steels 
play a similar role in inducing fatigue crack initiation and early growth, as do the AM 
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AMed alloys from high-strength steel. 

The AMed titanium alloy is often with a microstructure of LM or BW. For the 
conventionally manufactured titanium alloys, Figure 15d–f depicts how microstructure 
affects the effect of tensile mean stress σm and stress ratio R on fatigue strength. For the 
EM, HCF and VHCF strengths deteriorate with increasing σm in accordance with a 
Goodman line and Pan et al. [65,74]’s under-convex curve, respectively. On the “true” 
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Figure 15. Haigh diagrams for an additively manufactured Ti-6Al-4V of Group 14 [61] for the
following: (a) 1 × 106 cycles < Nf < 8 × 106 cycles; (b) 1 × 108 cycles < Nf < 7 × 108 cycles. (c) Haigh
diagram for very-high-cycle fatigue limit of a high-strength steel [73]. Haigh diagrams for a titanium
alloy [74] with equiaxed microstructure (EM) at (d) 107 cycles and (e) 109 cycles. (f) Haigh diagram
for titanium alloys [54] with lamellar microstructure (LM), bimodal microstructure (BM), or EM.

For both HCF and VHCF regimes, the fatigue strength of the AMed titanium alloy
degrades sharply from the stress ratio of R = −1 to 0.5, worse than that of a mill-annealed
titanium alloy with EM [74]. We noticed that the AMed alloys and high-strength steels have
many similarities [75], e.g., the nonmetallic inclusions [76,77] in high-strength steels play a
similar role in inducing fatigue crack initiation and early growth, as do the AM defects in
AMed alloys. Sakai et al. [73] proposed a bilinear model to describe the stress ratio effect
on the VHCF limit of σa with varying mean stress σm in high-strength steel. Following the
analogy of inclusions and AM defects, this model can be transferred to AMed alloys from
high-strength steel.

The AMed titanium alloy is often with a microstructure of LM or BW. For the conven-
tionally manufactured titanium alloys, Figure 15d–f depicts how microstructure affects the
effect of tensile mean stress σm and stress ratio R on fatigue strength. For the EM, HCF and
VHCF strengths deteriorate with increasing σm in accordance with a Goodman line and Pan
et al. [65,74]’s under-convex curve, respectively. On the “true” fatigue limit [30,31] beyond
109 cycles, crack initiation in an LM domain [53] abides by a Gerber up-convex curve, and
the BM [54] follows a Goodman line, which can be regarded as a mixed microstructure of
LM and EM.
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6. Discussion of Promising Methods to Improve Fatigue Property
6.1. Influences of Heat Treatment and Hot Isostatic Pressing

Figure 16a presents S-N data and curves for Ti-6Al-4V alloys with a BM [78] and several
AMed microstructures [79] subjected to HCF and VHCF with axial cycling at an ultrasonic
frequency of 20 [78] and 19 kHz [79] under R = −1 at room temperature and in ambient
air. The BM has tensile properties of σy = 920 MPa, σu = 1010 MPa, and εt = 17.5%, named
Heinz [78]. An AMed Ti-6Al-4V was produced via L-PBF with processing parameters of
p = 175 W, t = 0.03 mm, v = 710 mm/s, h = 0.12 mm, and E = 68.47 J/mm3 by using a
SLM (selective laser melting) 250HL system to obtain a batch of raw cylinders. Then, the
cylinders were divided into two groups: one named SLM-1b, which was heat treated at
800 ◦C for 2 h in argon atmosphere, and the other named SLM-2, which was HIP treated at
920 ◦C for 2 h at 1000 bar in an argon atmosphere. The other AMed Ti-6Al-4V was produced
via an electron beam PBF (EB-PBF)—also called an electron beam melting (EBM) [80]—with
processing parameters of acceleration voltage 60 kV, maximum current 21 mA, t = 0.05 mm,
v = 4530 mm/s, h = 0.1 mm. An Arcam A2X system is used to obtain a batch of raw
cylinders without any post-treatment. This batch was designated EBM. All specimens of
the AMed Ti-6Al-4V alloys were machined from the raw cylinders by turning along the
building direction.
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EBM, and SLM-1b; The HCF and VHCF strengths for HIP specimens of SLM-2 are the 
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third and the minimum in the range of 250 MPa < σa < 450 MPa. In the VHCF regime, 

Figure 16. (a) S-N data and curves for titanium alloys produced by methods of additive and
conventional manufacturing [78,79]. S-N curves at R = −1 for an additively manufactured Ti-6Al-
4V of Group 12 [58] without (b) and with (c) a treatment of hot isostatic pressing (HIP). Symbols
with arrows representing runout specimens. Fatigue fracture surfaces of HIP specimens failed at
the following: (d) σa = 700 MPa, Nf = 1.32 × 108 cycles; (e) σa = 525 MPa, Nf = 1.69 × 105 cycles;
(f) σa = 525 MPa, Nf = 4.34 × 105 cycles; (g) σa = 420 MPa, Nf = 2.69 × 105 cycles [58].

In the range of 400 MPa < σa < 700 MPa, the conventionally manufactured Ti-6Al-4V
with BM of Heinz [78] maintains the maximum HCF and VHCF strengths than SLM-2,
EBM, and SLM-1b; The HCF and VHCF strengths for HIP specimens of SLM-2 are the
second for the corresponding range of 400 MPa < σa < 600 MPa; EBM and SLM-1b are the
third and the minimum in the range of 250 MPa < σa < 450 MPa. In the VHCF regime,
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fatigue damage preferentially initiates from internal defect, and S-N data and curves can
be easily categorized into two groups, from high to low-stress amplitude of σa and from
long to short fatigue life of Nf. The VHCF resistance of SLM-2 is slightly less than that of
the BM; they both greatly exceed that of EBM and SLM-1b, and the resistance of SLM-1b
is also slightly less than that of EBM. In the HCF regime, fatigue damage preferentially
initiates from surface defect, and S-N data can be categorized into four groups: the BM,
SLM-2, EBM, and SLM-1b from high to low-stress amplitude of σa, and from long to short
fatigue life of Nf.

It is easy to see that HIP significantly improves the fatigue properties of AMed tita-
nium alloys, especially in VHCF. This improvement can be attributed to two factors: the
coarsening of AMed microstructure and the elimination of void-typed defects.

For AMed Ti-6Al-4V, annealing can also produce a coarsened LM or BW microstruc-
ture, which enhances the ductility by reducing the tensile strength. Groups 10, 12, and
14 give examples. Group 14 has the optimum fatigue performance and the best tensile
plasticity. In fact, due to the presence of void-typed AM defects, the fatigue strength is
strongly dependent on some quantities of fatigue short or long crack growth [81,82], similar
to fracture toughness, which is more appropriately related to local plasticity [83] and can
be directly assessed by tensile strength and ductility.

6.2. Competitions among Metallurgical and Artificial Defects

Chi et al. [58] investigated the HCF and VHCF behaviors of smooth specimens and
the specimens with artificial defects for an AMed Ti-6Al-4V of Group 12 without and with
a HIP treatment, as shown in Figure 16b,c. All fatigue specimens were tested, at room
temperature and in air, by ultrasonic axial cycling at a loading frequency of 20 k ± 500 Hz
with a stress ratio of R = −1.

For specimens without HIP, in the range of 500 MPa ≤ σa ≤ 600 MPa, fatigue cracks
tend to nucleate from the edges of the artificial surface defects for 1 × 105 cycles ≤ Nf ≤
3 × 105 cycles, and from the AM defects at specimen interior for 3 × 106 cycles ≤ Nf ≤
5 × 107 cycles. While σa < 500 MPa, all failed specimens were internally cracked by interior
AM defects inducing VHCF, despite specimens with or without artificial defects.

For specimens with HIP, the smooth specimens perform very well in both HCF and
VHCF regimes. While σa > 700 MPa, two specimens were tested, and all failed by surface
crack initiation; one failed at about Nf = 2 × 106 cycles, and the other failed at about
Nf = 2 × 107 cycles. In the range of 600 MPa < σa < 700 MPa, seven specimens were
tested; two ran out of 109 cycles, the other five failed by internal crack initiation inducing
VHCF, and Figure 16d gives an SEM example for the fracture surface. Simultaneously,
all specimens with artificial defects failed in the HCF regime, no VHCF occurred, and
the fatigue cracks all originated from the drilled holes on specimen surfaces, as shown in
Figure 16e–g, which were named Defect-A, Defect-B, and Defect-C.

In Figure 16d, a crack initiation area with a rough fracture surface was identified as a
dashed ellipse, which had been mislabeled FGA by Chi et al. [58], and the correct name
should be RA. Within the RA region, no AM defect of the void types can be determined on
the fracture surface. In Figure 16e–g, around the artificial defects, there is no discernible
region of crack initiation and early growth.

Attributed to the presence of artificial defects, the fatigue strength of the drilled speci-
mens is significantly lower than that of the smooth specimens and continues to decrease
as the defect size increases. The VHCF limit at 109 cycles was measured as σa = 625 MPa
for the smooth specimens, σa = 490 MPa for specimens with Defect-A, σa = 460 MPa for
Defect-B, and σa = 380 MPa for Defect-C. For the smooth specimens of Group 12 with
HIP, the fatigue performance is even better than the BM without any AM defects which is
produced by conventional manufacturing.
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6.3. Roles of Microstructure, Local Plastiticity, Tensile Strength and Ductility

It is very reasonable that the fatigue behavior of AMed materials can be modulated
by adjusting the defect size [84,85]. This is exactly the same as for high-strength steels,
except that the AM defects [15,18] were replaced by the nonmetallic inclusions [28] or other
inhomogeneities [86–88] and can be easily described by Kitagawa-Takahashi diagrams [89].

For the AMed microstructure of Group 12 with HIP treatment, fatigue crack initiation
occurs from the matrix and sustains a VHCF limit of σa = 625 MPa in the absence of void-
typed AM defects and other artificial defects. Even if an AM defect with an equivalent
size of Defect-C exists in the specimen interior, the AMed matrix with HIP still can endure
a VHCF limit of σa = 380 MPa, which is greater than that of the AMed Ti-6Al-4V of
Groups 1~11, 13 and 14 without HIP treatment. This is because the additional annealing
introduced by HIP actually coarsens the AMed microstructure.

As mentioned in Section 6.1, the coarsening of AMed microstructure also plays a key
role in fatigue performance, especially in very-high-cycle regimes. It is noted that, for mate-
rials with void-typed defects, coarsening of the microstructure is not required, and simply
increasing the local plasticity of the defect edges can make a substantial improvement in
fatigue properties.

For titanium alloys, the local plasticity depends on the local microstructure and can be
enhanced by methods of microstructural design [52,54,90–95], e.g., tension [52], torsion [92]
and compression with or without recrystallization annealing. This method is not only
applicable to the symmetrically cyclic tension and compression (R = −1) but may also be
applied to a wider range of working conditions. Specifically, the VHCF crack initiation in the
LM domain [53] with increasing tensile mean stress approximately obeys a Gerber relation
for −1 < R ≤ 0.5 [54], which is consistent with the case in AMed aluminum alloys [96,97].
In the result of Du et al. [51], the AM defect causes the surrounding LM domain cleavage
to form a lamellar facet as the VHCF origin and leads to the final fatigue fracture at R = 0.5.
Therefore, we can shield the AM defect itself by regulating the microstructure around the
AM defect to optimally dominate the VHCF behavior of the AMed materials at R > −1.

We can utilize the micro and/or nano tests, such as microhardness and nanoinden-
tation [98–100], to provide a better assessment of the local microstructure and plasticity.
However, it is always difficult to acquire detailed information on local microstructure and
plasticity around the AM defects, so we also often use global quantities to estimate the
potential fatigue resistance of AMed Titanium alloys. Tensile strength and ductility are the
most popularly used global quantities for structural materials.

Figure 17 displays the several tensile curves of engineering stress versus engineering
strain under quasi-static monotonic loading of titanium alloys produced by methods of
AM and conventional manufacturing. The tensile properties rely mainly on the global
microstructure rather than the distribution of metallurgical defects when the porosity is
not very large. As shown in Figure 17a, in comparison with a titanium alloy with EM of
equiaxed (α + β), the microstructure of acicular α’ martensite makes a higher strength and
a lower plasticity. After an annealing, the martensite will transform to a microstructure of
coarse lamellar (α + β) with a downgraded strength and upgraded ductility. Xu et al. [101]
tailored the microstructure of ultrafine lamellar (α + β) to simultaneously achieve superior
tensile properties of AMed Ti-6Al-4V than the conventional one. Chong et al. [102] devel-
oped a technique of rapid heat treatment that can globally enhance the tensile strength
and ductility of a Ti-6Al-4V with fully martensitic microstructures, as shown in Figure 17b.
More recently, Qu et al. [103] used HIP treatment to remove void-typed defects, followed
by heat treatment to modulate the microstructure, and claim to have achieved the highest
HCF strength to date. This is an example of the potential viability of this approach.
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Figure 17. Simultaneous enhancement of tensile strength and ductility for Ti-6Al-4V produced by
methods of additive [101] (a) and conventional [102] (b) manufacturing.

7. Summary and Perspectives

In this paper, based on our previous works, we have reviewed the characteristics of
additively manufactured (AMed) Ti-6Al-4V alloys and the current status of fatigue research
in the high-cycle and very-high-cycle regimes, as shown in Table 1, to summarize and rank
the main factors affecting fatigue properties and discuss the effect of stress ratio on fatigue
strength and fractography.

Table 1. Ranking of main factors dominating very-high-cycle fatigue and the possible solutions.

Rank Dominating Factor Possible Solution

1 Large porosity Optimization of AM parameters
2 As-built roughed specimen surface Machining and/or polishing
3 Big void-typed defects Hot isostatic pressing

4 Trade-off between strength and
plasticity Microstructure design

By using AM, AMed titanium alloys can easily achieve high-strengths, even for the
commercially used Ti-6Al-4V, an α + β type, whereas metastable β types are required by
conventional methods. For optimized AM parameters, the directly printed state has the
highest strength and not optimal plasticity. In very-high-cycle regimes, fatigue strength
is related to both tensile strength and ductility. If the AM parameters are not optimized,
the primary factor influencing fatigue performance is porosity, which tends to be a high
value. When the porosity is relatively low, surface roughness, e.g., the as-built specimen
surface, becomes an important influence, followed by the maximum size of metallurgical
defects on the projection plane perpendicular to the loading direction. These factors are also
dependent on plasticity, and their influence decreases as ductility increases. As a result, the
AMed titanium alloys often exhibit higher values of very-high-cycle fatigue strength after
an equivalent annealing of thermal–mechanical treatments than the directly printed state.
However, annealing will inevitably reduce the strength of the AMed material, which in
turn will reduce its fatigue strength. In this way, the trade-off relationship between strength
and plasticity can be reproduced to very-high-cycle fatigue. Therefore, those methods that
can simultaneously improve the strength and plasticity of titanium alloys also hold promise
for improving very-high-cycle fatigue strength.
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