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A B S T R A C T

Photoacoustic imaging offers optical contrast images of human tissue at acoustic resolution, making it
valuable for diverse clinical applications. However, quantifying tissue composition via optical contrast remains
challenging due to the unknown light fluence within the tissue. Here, we propose a method that leverages
known chromophores (e.g., arterial blood) to improve the accuracy of quantitative photoacoustic imaging. By
using the optical properties of a known chromophore as a fluence marker and integrating it into the optical
inversion process, we can estimate the unknown fluence within the tissue. Experimentally, we demonstrate that
this approach successfully recovers both the spectral shape and magnitude of the optical absorption coefficient
of an unknown chromophore. Additionally, we show that the fluence marker method enhances conventional
optical inversion techniques, specifically (i) a straightforward iterative approach and (ii) a gradient-based
method. Our results indicate an improvement in accuracy of up to 24.4% when comparing optical absorption
recovery with and without the fluence marker. Finally, we present the method’s performance and illustrate its
applications in carotid plaque quantification.
. Introduction

Photoacoustic (PA) imaging emerges as a fast-growing technique in
he biomedical imaging landscape, offering a unique blend of optical
nd ultrasonic modalities to visualize the light-absorbing structures and
unctional imaging of biological tissues [1]. PA imaging exploits the
hotoacoustic effect, where pulsed laser light induces thermoelastic
xpansion in tissues, generating ultrasound signals that are captured
o construct high-resolution images [1]. The advancement of quanti-
ative photoacoustic (QPA) imaging marks a significant leap forward,
nabling not just visualization but also precise quantification of tissue
hromophore and functions, such as hemoglobin concentration, oxygen
aturation, and lipid imaging [2–4]. This quantitative aspect holds
mmense potential for clinical applications, ranging from oncology to
ardiovascular and neurological imaging, where accurate, non-invasive
nsights into tissue physiology and pathophysiology can guide early
iagnosis, treatment planning, and monitoring [5,6]. Two key applica-
ions to list are plaque quantification in blood vessels [7] and oxygen
aturation imaging [8,9]. QPA algorithms are still in their early stages
f development, and improving their accuracy, speed, and ability to

∗ Corresponding author.
E-mail address: f.kalloorjoseph@erasmusmc.nl (K.J. Francis).

incorporate complex tissue modeling is required for the practical usage
of this technology.

QPA methods consist of inverting both optical and acoustic prop-
agation in photoacoustic imaging. The acoustic inversion can be im-
plemented with several methods and requires accurate modeling of
transducer response (such as directivity, bandwidth) and tissue realistic
acoustic properties [10]. While acoustic inversion is crucial for QPA,
the optical and acoustic processes can be decoupled and solved inde-
pendently [2]. Accurate modeling of the light propagation is important
in QPA and methods including simple models like Beer–Lambert law
to Radiative Transfer Equation, Diffusion Approximation, and Monte
Carlo were used [2,9,11]. After modeling light propagation, QPA meth-
ods use model fitting, iterative solutions, or minimization to retrieve
optical properties [2,9,11]. The challenges in QPA imaging include the
nontrivial nature of obtaining absolute chromophore concentrations
from photoacoustic images obtained at multiple wavelengths, which
is essential for accurate functional and molecular imaging [2]. The
inverse problems involved in QPA imaging are nonlinear and ill-posed
and often result in the non-uniqueness of solutions [9]. This work
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Photoacoustics 41 (2025) 100673 
explores utilizing a known chromophore as a fluence marker to mitigate
these issues.

We propose using known absorption coefficients of a reference chro-
mophore as fluence markers to enhance QPA accuracy. The reference
hromophore can be intrinsic absorbers like arterial oxygenated blood,
xogenous contrast agents, catheters, or implants with known optical
roperties. Arterial blood is a natural choice, applicable in clinical
cenarios where an artery is near the target tissue, such as imaging
rterial wall atherosclerosis (using blood inside the lumen as a refer-
nce) or tumor imaging (using the feeding artery as a reference). We
ropose using a reference chromophore as prior information to improve
PA accuracy and convergence. Previous QPA fluence modeling has
mployed priors like average tissue scattering [9], ultrasound-based

tissue surface data [3,12,13], implanted spectrally flat absorbers [14],
catheters [15], and exogenous contrast agents [16]. These methods
sed the prior information for direct modeling of the fluence, which

might pose challenges for deep tissue imaging as they lack feedback
from the measured photoacoustic signal to refine fluence modeling. The
concept of calibrating fluence using arterial blood was first introduced
in a patent [17] and employed in oxygen saturation imaging [18].
This approach follows a two-step methodology: first, calibrating arterial
fluence based on Beer–Lambert’s law, and then assuming a uniform
fluence across nearby structures to estimate absorption. However, the
assumption that fluence in a nearby vein (up to 10 mm) is identical to
the calibrated arterial fluence simplifies the complex light interactions
between the calibration marker and surrounding tissue, overlooking
spatial variations. Key knowledge gaps in QPA using fluence markers
include (I) accurately modeling fluence markers in optical inversions
and (II) practically obtaining a fluence marker in complex tissues,
highlighting the need for advanced and generic methods that consider
the interaction between the unknown tissue and the fluence marker.

In this article, we introduce a novel approach to incorporate a
nown fluence marker into optical inversions for QPA, enhancing
PA accuracy and broadening its applicability across various optical

nversions. We demonstrate spectral decoloring and magnitude recov-
ry with the proposed method on experimental data. By embedding
he fluence marker directly within optical modeling and parameter
pdates, we demonstrate its use in conventional QPA methods; simple
terative inversion, and a gradient-based QPA method. We systemat-
cally evaluate how the fluence marker improves QPA accuracy and
pectral recovery and assess their performance in complex phantoms.
dditionally, we highlight the practical relevance of arterial blood as a

luence marker in carotid plaque quantification.

2. Methods

In this section, we present the formulation of QPA and the optical
nversion in Section 2.1, optical forward modeling, and QPA algorithms
sed for inversion in Section 2.4, respectively. Our approach to incorpo-
ating prior information from the reference chromophore is highlighted
n the QPA algorithms. Section 2.6 describes the implementation and
ection 2.7 includes the potential applications.

2.1. Quantitative photoacoustic imaging

In PA imaging, the tissue is illuminated with pulsed light. The light
ropagating through the tissue experiences attenuation throughout the

medium due to absorption and scattering, resulting in a distribution,
known as light fluence (𝜙). The energy absorbed by a chromophore at
any position 𝐫 is proportional to the fluence and the optical absorption
of the chromophore, given by,

𝐻(𝐫, 𝜆) = 𝜇𝑎(𝐫, 𝜆)𝜙(𝐫, 𝜆, 𝜇𝑎, 𝜇′
𝑠) (1)

where 𝐻(𝐫, 𝜆) is the energy absorbed at a particular wavelength 𝜆.
The reduced scattering coefficient 𝜇′

𝑠(𝐫, 𝜆) = (1 − 𝑔)𝜇𝑠(𝐫, 𝜆) and the
absorption coefficient 𝜇 (𝐫, 𝜆) = 𝐶(𝐫)𝜖(𝐫, 𝜆) are again dependent on the
𝑎 c

2 
wavelength 𝜆 and position 𝐫 (omitted in Eq. (1) for convenience). Here,
𝜇𝑠 is the scattering coefficient, 𝑔 is the anisotropy factor, 𝐶(𝐫) is the
oncentration, and 𝜖(𝐫, 𝜆) is the molar extinction coefficient. The energy
bsorbed by the chromophores results in a local rise in the temperature
nd pressure in the sample. The initial pressure rise is given by,

𝑝0(𝐫, 𝜆) = 𝛤 𝐻(𝐫, 𝜆) (2)

where 𝛤 is the Grüneisen parameter, indicating PA efficiency. The in-
stant pressure variation produces an acoustic wave that travels through
the sample and can be measured at the boundary using an ultrasound
transducer. The boundary signal 𝑝𝑡(𝐫𝐬, 𝜆) is used to reconstruct an
approximation of the initial pressure distribution �̂�(𝐫, 𝜆), called a PA
image, where 𝐫𝐬 represents the transducer location. The photoacoustic
image is proportional to the absorbed energy distribution 𝐻(𝐫, 𝜆). When
𝛤 and the transducer characteristics are known or measured experi-

entally, 𝐻(𝐫, 𝜆) can be accurately obtained from �̂�(𝐫, 𝜆). In this article,
we assume the ideal acoustic detection and inversion, and a spatially
invariant 𝛤 , allowing accurate measurement of 𝐻(𝐫, 𝜆). Thus, we start
the optical inversion from the measured absorbed energy. QPA imaging
aims to retrieve the concentration of chromophores 𝐶(𝐫) from 𝐻(𝐫, 𝜆).
The absorbed energy spectrum at a point 𝐫 is proportional to the ab-
sorption spectrum at that point and is reduced by the accumulated light
absorption along the photon path. This modification of the original
spectra by the spectrally varying absorption in the photon, known as
spectral coloring, prevents the direct fitting of known spectra to ab-
sorbed energy spectra for estimating chromophore concentrations. An
approach to retrieve the chromophore concentrations in QPA imaging
is to use a light transport model and adjust parameters (absorption and
scattering) in the corresponding forward problem until the simulated
or modeled data matches the measured data.

2.2. Fluence marker assumption and its practical relevance

Although the fluence marker can be any known object, as we are
interested in carotid plaque quantification we present the practical
relevance of using arterial blood as a fluence marker. Blood’s optical
properties are influenced by oxygen saturation (SpO2), hematocrit
(Hct), and hemoglobin concentration, which can be accurately mea-
sured. Oxygen saturation is commonly assessed with pulse oximeters,
while Hct is routinely measured in clinical settings in blood tests.
Photoacoustic measurement at the isosbestic point of oxy and deoxy
hemoglobin is independent of SpO2 levels. Using a pulse oximeter to
measure the arterial oxygen saturation and a blood test before the
imaging we can obtain information on these two variables. An FDA-
approved pulse oximeter has an estimated maximum error of 4% and
the error in Hct measurement has a maximum of 1% error. With
SpO2 and Hct data, the absorption coefficient of blood in the carotid
artery can be estimated reliably using models presented in [19]. The
advantage of photoacoustic imaging is that we can obtain coregistered
ultrasound images which helps in the spatial estimation of blood in the
lumen of the carotid artery. This allows us to make a realistic estimation
of the arterial blood spatial location and its optical properties, making
blood a suitable fluence marker for this application.

2.3. Optical modeling

In this work, we utilize two light propagation models. First, we
make a simplifying assumption by treating the unknown plaque as a
homogeneous sample, allowing us to apply an exponentially decaying
Beer–Lambert law for light propagation modeling.

𝜙(𝐫) = 𝜙(0)𝑒−𝜇𝑎𝐫 (3)

Here, we model the fluence, 𝜙(𝐫), within the blood, specifically inside
he lumen of the artery at a location 𝐫 from the origin, chosen as
he light entry point to the plaque. The average optical absorption
oefficient, 𝜇 , of the plaque tissue located above can be estimated as
𝑎
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Photoacoustics 41 (2025) 100673 
explained in Section 2.4. Here, 𝜙0 denotes the fluence at the surface of
the plaque.

For more accurate modeling with a heterogeneous plaque assump-
tion we also make use of the diffusion approximation model. We
use a 2D diffusion approximation for light propagation modeling to
demonstrate the proposed method. Diffusion approximation can be
written as,

𝜇𝑎(𝐫, 𝜆)𝜙(𝐫, 𝜆, 𝜇𝑎, 𝜇′
𝑠) − ∇ ⋅ (𝜅(𝐫, 𝜆)∇)𝜙(𝐫, 𝜆, 𝜇𝑎, 𝜇′

𝑠) = 𝑞0(𝐫, 𝜆) (4)

where 𝜅 = 1∕3(𝜇𝑎 + 𝜇′
𝑠) is the optical diffusion coefficient, and 𝑞0(𝐫, 𝜆)

is the isotropic source term and 𝜇′
𝑠 ≫ 𝜇𝑎.

We employed the open-source NIRFAST software package for MAT-
LAB (MathWorks, Inc., USA) to implement the diffusion approximation
using FEM [20]. The area is discretized into finite elements, enabling
the diffusion equation to be solved at discrete points with optical
properties such as 𝜇𝑎, 𝜇′

𝑠 and the resultant fluence are represented
as piecewise constant within each finite element. We used numerical
phantoms with optical property maps assigned to image pixels. The
EM mesh is created from a Cartesian grid with diagonal edges forming

triangular elements, directly assigning optical properties from phantom
masks to mesh elements, avoiding extra interpolation. Light sources
are isotropically distributed Gaussian sources placed one grid distance
inside the boundary. The boundary condition is chosen such that the
light can exit at the edge of the tissue, but cannot return [20], with
refractive index 𝑛 of the medium outside (set to 1 for air) and inside
the boundary (set to 1.33 for tissue).

The forward operation uses GPU-based femdata_FD() from NIR-
ASTer [20]. The resultant fluence was obtained by combining fluence

maps from each source using the superposition. The absorbed energy
distribution was calculated as the product of fluence and the absorption
coefficient. Finally, the measured absorbed energy distribution 𝐻𝑀 ,
input to the optical inversion problem Fig. 1, was modeled by adding

aussian white noise at a specific SNR.

2.4. Optical inversion with fluence marker

The optical inversion scheme for recovering the absorption coef-
icient distribution employs a known reference absorber as a fluence
arker, as illustrated in Fig. 1. The algorithm adjusts the absorption co-

fficient 𝜇𝑎 to minimize the difference between the measured absorbed
nergy distribution, 𝐻𝑀 , and the model-calculated energy distribu-
ion, 𝐻𝐶 . Known parameters include the source location, the fluence
arker’s absorption coefficient, 𝜇𝑚𝑎𝑟𝑘𝑒𝑟

𝑎 , and its location, 𝑅 = (𝑖𝑚, 𝑗𝑚),
here 𝑖𝑚 and 𝑗𝑚 are row and column indices of the marker, respectively.
he scattering distribution is assumed to be spatially invariant and
nown.

2.4.1. Direct inversion of Beer–Lambert law with fluence marker
In the case of a homogeneous medium, one can invert the Beer–

ambert law. For example, if the fluence from the arterial blood is
nown, to estimate the fluence in the plaque, one can make a simplistic
ssumption of a homogeneous plaque and retrieve the fluence by
imply inverting the Beer–Lambert law which matches the 𝐻𝑀 in the

plaque region. When light passes through the fluence marker to reach
the plaque we can obtain the unknown plaque absorption as,

𝜇𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑎 𝑒𝜇

𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑎 =

𝐻𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑀

𝑒𝑟𝐻𝑚𝑎𝑟𝑘𝑒𝑟
𝑀

𝜇𝑚𝑎𝑟𝑘𝑒𝑟
𝑎 (5)

Here 𝐻𝑚𝑎𝑟𝑘𝑒𝑟
𝑀 is the absorbed energy at the fluence marker (blood in the

carotid artery) and 𝐻𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑀 is the absorbed energy at the unknown

plaque sample, both these retrieved from the photoacoustic image to
estimate the absorption coefficient (𝜇𝑢𝑛𝑘𝑛𝑜𝑤𝑛

𝑎 ) of the unknown plaque
sample. The 𝜇𝑢𝑛𝑘𝑛𝑜𝑤𝑛

𝑎 can be computed for pixels in the unknown chro-
mophore by using the respective distances 𝑟, along the depth direction
3 
to the fluence marker. If we consider the fluence in the unknown
hromophore to be the same as the marker, then Eq. (5) becomes,

𝜇𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑎 =

𝐻𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑀

𝐻𝑚𝑎𝑟𝑘𝑒𝑟
𝑀

𝜇𝑚𝑎𝑟𝑘𝑒𝑟
𝑎 (6)

We used these approaches to obtain the absorption coefficient of an
unknown chromophore in spectrally varying phantoms in both simula-
tion and experiment and used it to compare with the proposed fluence
marker-based inversion method.

2.4.2. Iterative inversion schemes with fluence marker
For a heterogeneous plaque assumption, we can have a generalized

treatment using optical inversion schemes with the fluence marker
assumption. We can use spatially resolved inversion schemes; (i) a
simple iterative method (SIM) [21] and (ii) a gradient-based method
(GBM) [22]. The algorithm begins by selecting an initial guess, 𝜇(𝑘=0)

𝑎 ,
with fluence marker elements set to the marker’s actual absorption
coefficient. A forward optical simulation then estimates the fluence
distribution, 𝜙(𝑘=0)

𝐶 , for this initial guess, and calculates the correspond-
ing absorbed energy, 𝐻 (𝑘=0)

𝐶 . A stopping criterion is checked, based
on iteration count, a small error threshold for 𝛥𝐻 (𝑘) = 𝐻𝑀 − 𝐻 (𝑘)

𝐶 ,
or a convergence point. If unmet, the absorption coefficient is further
pdated, repeating the process until convergence.

Both methods were adapted to incorporate the fluence marker
for quantitative estimation. Each method minimizes the difference
between 𝐻𝑀 and 𝐻𝐶 . While the original GBM also estimated the
scattering distribution [22], both methods here assume known scat-
tering for consistency in comparison. The following sections detail our
approach for recovering the absorption distribution using these fluence
marker-enhanced techniques.

Recovery of absorption coefficient using SIM with fluence marker:. The
SIM iteratively updates the absorption coefficient 𝜇𝑎 to minimize 𝛥𝐻 (𝑘).
Each update relies solely on the element-wise ratio of 𝐻𝑀 to the fluence
derived from the current 𝜇𝑎 distribution, making this approach compu-
tationally efficient. Algorithm 1 provides pseudocode for estimating 𝜇𝑎
using the fluence marker.

Algorithm 1 SIM with fluence marker.

Require: 𝐻𝑀 is measured
Require: 𝜇marker

𝑎 and the corresponding geometry, R=
{

(𝑖𝑚, 𝑗𝑚)
}

are
known

1: Set the stopping criterion
2: Set initial guess 𝜇(𝑘=0)

𝑎
3: Replace the absorption coefficient of the fluence marker in 𝜇(𝑘=0)

𝑎
with the known value of absorption: 𝜇(𝑘=0)

𝑎
{

(𝑖𝑚, 𝑗𝑚)
}

= 𝜇marker
𝑎

4: k = 0
5: while stopping criteria is not reached do
6: Calculate fluence 𝜙(𝑘)

𝐶 using a forward model
7: 𝐻 (𝑘)

𝐶 = 𝜇(𝑘)
𝑎 𝜙(𝑘)

𝐶
8: 𝛥𝐻 (𝑘) = 𝐻𝑀 −𝐻 (𝑘)

𝐶
9: 𝜇(𝑘+1))

𝑎 = 𝐻𝑀
𝜙(𝑘)𝐶 +𝜎

10: Fluence marker update: 𝜇(𝑘+1)
𝑎

{

(𝑖𝑚, 𝑗𝑚)
}

= 𝜇𝑚𝑎𝑟𝑘𝑒𝑟
𝑎

11: 𝑘 = 𝑘 + 1
2: end while

A regularization parameter 𝜎 is introduced to stabilize regions with
ow fluence [21].

Recovery of absorption coefficient using GBM with fluence marker:. The
core of the gradient-based technique is to provide a functional gradi-
ent within an optimization algorithm for iterative minimization. The
algorithm estimates an optimal value for 𝜇 to minimize the error. The
𝑎
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Fig. 1. Fluence marker-based iterative optical inversion for quantitative photoacoustic imaging.
functional gradient of the error, 𝜖 = 1
2 ∫ (𝐻𝑀 −𝐻𝐶 )2𝑑 𝑉 , is obtained by

differentiating with respect to 𝜇𝑎 and is given by
𝜕 𝜖
𝜕 𝜇𝑎

= −𝜙(𝐻𝑀 −𝐻𝐶 ) + 𝜙𝜙∗ (7)

where 𝜙∗ is the solution of the adjoint equation,

𝜇𝑎𝜙
∗ + ∇ ⋅ (𝜅∇)𝜙∗ = 𝜇𝑎(𝐻𝑀 −𝐻𝐶 ) (8)

For simplicity, the dependence of variables on position and wavelength
is omitted. The term 𝜙∗ in Eq. (7) can be calculated using the same
forward model but with the source term 𝜇𝑎(𝐻𝑀 −𝐻𝐶 ).

In our case, the value of 𝜇𝑎 is known at the location of the fluence
marker, while 𝜇𝑎 at other points must be optimized, keeping the known
values fixed. This can be approached in two ways: the first method
includes an extra step to update 𝜇𝑎 at

{

(𝑖𝑚, 𝑗𝑚)
}

after each iteration.
The pseudocode for recovering the optical absorption distribution using
GBM is presented in Algorithm 2.

The second approach to incorporating the fluence marker in the
GBM algorithm is to constrain the 𝜇𝑎 of the reference chromophore to
remain unchanged during optimization. A spatial equality constraint
enforces this, as detailed in the pseudocode in Algorithm 3.

We used an equality constraint of the form 𝐴𝑒𝑞𝑋 = 𝐵𝑒𝑞 , where 𝑋 is
the unknown 𝜇𝑎. In iterative solving, the unknown optical absorption
map is constrained by the prior information of the fluence marker. To
do so, the spatial equality constraint 𝐴𝑒𝑞𝑋 = 𝐵𝑒𝑞 can be imposed on the
optical absorption by specifying all 𝑎𝑒𝑞(𝑖𝑚 ,𝑗𝑚) = 1 and 𝑏𝑒𝑞(𝑖𝑚 ,𝑗𝑚) = 𝜇𝑚𝑎𝑟𝑘𝑒𝑟

𝑎 ,
where 𝑎𝑒𝑞 and 𝑏𝑒𝑞 are the elements of 𝐴𝑒𝑞 and 𝐵𝑒𝑞 and 𝑖𝑚 and 𝑗𝑚 are
the indices corresponding to the fluence marker location.

2.5. Experimental demonstration

To simulate the geometry of a carotid artery with plaque, we
used two concentric polyurethane tubes (Raumedic AG, Germany) with
inner diameters of 6 mm and 4 mm with 0.1 and 0.15 mm thickness
respectively, as shown in Fig. 2. The inner tube (T2), acting as a
4 
Algorithm 2 GBM with fluence marker.

Require: 𝐻𝑀 is measured
Require: 𝜇𝑚𝑎𝑟𝑘𝑒𝑟

𝑎 and the corresponding geometry, R=
{

(𝑖𝑚, 𝑗𝑚)
}

are
known

1: Set the stopping criterion
2: Set initial guess 𝜇(𝑘=0)

𝑎
3: Replace the fluence marker absorption coefficient in 𝜇(𝑘=0)

𝑎 with
the known value of absorption: 𝜇(𝑘=0)

𝑎
{

(𝑖𝑚, 𝑗𝑚)
}

= 𝜇marker
𝑎

4: k = 0
5: while stopping criteria is not reached do
6: Calculate fluence 𝜙(𝑘)

𝐶 using a forward model
7: 𝐻 (𝑘)

𝐶 = 𝜇(𝑘)
𝑎 𝜙(𝑘)

𝐶
8: Get updated 𝜇(𝑘+1)

𝑎 for minimum value of error functional, 𝜖(𝑘),
based on gradient 𝜕 𝜖

𝜕 𝜇𝑎
9: Fluence marker update: 𝜇(𝑘+1)

𝑎
{

(𝑖𝑚, 𝑗𝑚)
}

= 𝜇𝑚𝑎𝑟𝑘𝑒𝑟
𝑎

10: 𝑘 = 𝑘 + 1
11: end while

fluence marker, was filled with India Ink (Talens, The Netherlands),
which has an absorption coefficient of 0.44mm−1 at 800 nm. The
outer tube (T1), representing an unknown chromophore, was filled
with CuSO4 ⋅5H2O (Sigma-Aldrich, USA) with an absorption coefficient
of 0.51mm−1 at 800 nm. The tubes were placed in a tank with an
absorbing and scattering medium. The surrounding medium in the
tank was initially prepared with 3% intralipid in water, followed by
two different concentrations of CuSO4 6.8 mM and 11.61 mM, which
corresponds to the absorption coefficient values of 0.0076 mm−1 and
0.0131 mm−1 respectively at 800 nm were added to incrementally adjust
the absorption in the medium.

A tunable diode-pumped OPO laser (Spitlight EVO-OPO, 100 Hz
PRF, 5 ns pulse width, Innolas GmbH, Germany) was used for sample
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Algorithm 3 GBM with fluence marker using constraint.

Require: 𝐻𝑀 is measured
Require: 𝜇𝑚𝑎𝑟𝑘𝑒𝑟

𝑎 and the corresponding geometry, R=
{

(𝑖𝑚, 𝑗𝑚)
}

are
known

1: Set the stopping criterion
2: Set initial guess 𝜇(𝑘=0)

𝑎
3: Replace the fluence marker absorption coefficient in 𝜇(𝑘=0)

𝑎 with
the known value of absorption: 𝜇(𝑘=0)

𝑎
{

(𝑖𝑚, 𝑗𝑚)
}

= 𝜇marker
𝑎

4: k = 0
5: while stopping criteria is not reached do
6: Calculate fluence 𝜙(𝑘)

𝐶 using a forward model
7: 𝐻 (𝑘)

𝐶 = 𝜇(𝑘)
𝑎 𝜙(𝑘)

𝐶
8: Get updated 𝜇(𝑘+1)

𝑎 for a minimum value of error functional,
𝜖(𝑘), based on gradient 𝜕 𝜖

𝜕 𝜇𝑎 and subject to constraint,

𝜇𝑎
{

(𝑖𝑚, 𝑗𝑚)
}

= 𝜇𝑚𝑎𝑟𝑘𝑒𝑟
𝑎

9: 𝑘 = 𝑘 + 1
10: end while

illumination, with the beam delivered through an 8 mm diameter
optical fiber bundle. Photoacoustic (PA) data were recorded using a Ve-
asonics ultrasound system (Vantage 256, Kirkland, WA, United States)
quipped with a linear transducer (L12-3v) with a center frequency of
 MHz. PA images were captured under varying CuSO4 concentrations

in the background medium.
For the optical inversion of PA image, the values 𝐻𝑢𝑛𝑘𝑛𝑜𝑤𝑛

𝑀 and
𝐻𝑚𝑎𝑟𝑘𝑒𝑟

𝑀 were determined from the PA signal from T1 and T2 (as shown
in Fig. 2) by assuming 𝛤 = 1. Then the absorption coefficient of
unknown chromophore (CuSO4) was obtained by optimizing Eq. (5)
sing MATLAB’s fsolve function with initial guess 1 × 10−5 mm−1)

with the calculated distance to the lumen of the inner tube as 𝑟 and the
known values 𝜇𝑚𝑎𝑟𝑘𝑒𝑟

𝑎 of the fluence marker.
The images were acquired across wavelengths from 700 to 900 nm,

normalized to pulse energy, and analyzed for the spectral characteris-
ics of both tubes. The ground truth absorption coefficient spectra were

obtained using a spectrophotometer (Agilent Cary 3500, California,
United States) through absorbance measurements, under the assump-
ion that both Indian Ink and CuSO4 solutions are non-scattering. We
nalyzed the spectral coloring effect introduced by the medium and
ompared it with the proposed fluence marker-based optical inversion
resented in Section 2.4.1. Additionally, we compared our results with

an estimation based on the equal fluence assumption, where the fluence
in CuSO4 is assumed to be equivalent to that of the fluence marker
(Indian Ink).

2.6. Implementation of iterative inversion

The fluence marker concept integrates a known chromophore in the
QPA algorithm. Here, phantoms with a central circular disc represent
an artery cross-section as a fluence marker, with chromophore ab-
sorption coefficients modeling tissue properties in the NIR region [23]
nd a constant scattering coefficient of 2 mm−1. Optical properties are

mapped to the mesh by placing FEM nodes at pixel centers. Simulations
se ten point sources placed just inside the boundary. The absorbed
nergy density for each 𝜇𝑎 distribution was computed with NIRFAST
Section 2.3), adding white Gaussian noise (SNR = 30 dB) by mea-

suring the signal power using MATLAB’s awgn function. This energy
distribution served as the input 𝐻𝑀 for inversion. All programs used
the same initial guess for 𝜇𝑎 (1 × 10−10 mm−1) and a known scattering
coefficient. The choice of initial guess has no significant impact on the
results provided it is sufficiently small (on the order of ≤ 10−5). For
IM, the regularization parameter 𝜎 was set to 0.002. Fluence marker
ixels are set to the marker’s actual absorption coefficient. The forward
5 
simulation then calculates 𝜙(𝑘)
𝐶 and 𝐻 (𝑘)

𝐶 . The 𝜇𝑎 update is derived
from the ratio of 𝐻𝑀 to 𝜙(𝑘)

𝐶 from the previous iteration. Before each
new iteration, marker elements in 𝜇𝑎 are reset to the original value.
Iterations continue until stopping criteria are met. The GBM algorithm,
using MATLAB’s fminunc, minimizes the error function with the
upplied gradient. After calculating 𝜙(𝑘)

𝐶 and 𝐻 (𝑘)
𝐶 , 𝜇𝑎 is updated to

inimize error, with marker elements reset before the next iteration.
his process repeats until convergence. In constrained GBM, MATLAB’s
mincon with equality constraint 𝐴𝑒𝑞𝑋 = 𝐵𝑒𝑞 is used. Here, 𝐴𝑒𝑞 and

𝐵𝑒𝑞 are specified, and no post-optimization update is required, as the
onstraint maintains the fluence marker. Using a complex spatially

varying phantom (Fig. 3A) inspired by Ref. [22], we compared methods
with and without the marker. This 20 mm × 20 mm phantom (pixel size
0.2 mm) has a central fluence marker (absorption 0.2 mm−1) with nine
bsorption levels ranging from 0.001 mm−1 to 0.2 mm−1. We applied
ive reconstruction methods: (i) SIM (ii) SIM with fluence marker 1

(iii) GBM (iv) GBM with fluence marker 2, and (v) GBM with fluence
marker using constraints 3, each iterated 700 times. At each iteration,
any negative values in the updated 𝜇𝑎 resulting from noise were set
to zero. To assess image quality, we used PSNR, excluding the fluence
marker region from 𝜇𝑎 calculations.

For further analysis, we compared convergence and accuracy for
five regions in the phantom, plotting the average recovered 𝜇𝑎 across
iterations to track recovery progress for each method (Fig. 3).

2.7. Application

We evaluated the proposed method’s ability to mitigate spectral
oloring. A simple digital phantom with two concentric discs, repre-
enting a cross-section of the carotid artery surrounded by plaque,

was used. The phantom had dimensions of 20 mm × 20 mm and a
resolution of 0.2 mm. Blood served as the fluence marker, while the
surrounding chromophore represented plaque with unknown optical
properties. The optical absorption of the unknown chromophore and
background varied with wavelength, whereas the fluence marker’s
absorption (0.2 mm−1) was considered invariant. The absorption co-
efficient of the unknown chromophore was recovered using a GBM
with the fluence marker method across multiple wavelengths. The
absorption spectrum was also retrieved by assuming equal fluence
within the unknown region and the fluence marker (Eq. (6)). We then
compared the accuracy of the proposed method and the equal fluence
assumption in addressing spectral coloring.

We applied the method to a carotid artery cross-section with re-
alistic tissue properties, inspired by [24]. The phantom, representing
rtery and surrounding tissue (24 mm × 24 mm, 0.15 mm resolution),

assigned optical properties based on literature values [19,23,25,26]
at 𝜆 = 930 nm, where lipid absorption peaks (Table 3). The forward
simulation provided the absorbed energy density, with Gaussian noise
(SNR = 40 dB) added. We have compared GBM with and without the
fluence marker for a fixed number of iterations (1000) and compared it
against the ground truth. To assess practical applicability, we examined
fluence marker uncertainties. Hct measurement variability is under 1%
in clinical practice [27], and FDA-approved pulse oximeters show a
maximum 4% error. For robustness testing, a 10% error margin was
simulated, introducing a 10% increase and decrease in the fluence
marker’s absorption to evaluate the effects on chromophore recovery.

3. Results

In this section, we first present the advantage of using a fluence
arker experimentally in optical inversion. Then we compare different

ptical inversion methods and present application of fluence marker in
arotid plaque imaging.

Fig. 2B displays the photoacoustic image of two tubes acquired
at 800 nm. The photoacoustic spectra in Fig. 2C reveal the spectral
variations in both the CuSO and India Ink spectra, comparing them
4
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Fig. 2. (A) Experimental setup and (B) reconstructed PA image for 𝜆 = 800 nm. (C) The average photoacoustic signal obtained for India Ink and CuSO4 at different wavelengths
compared to the ground truth absorption spectra. Recovered absorption spectra using (D) proposed fluence marker-based optical inversion method compared to equal fluence
assumption and the ground truth absorption spectra. (E) Predicted absorption coefficient plotted against ground truth.
to the ground truth absorption spectra. In the CuSO4 spectrum, a peak
shift is observed from its original position at 810 nm. As absorption
in the surrounding medium increases, this red shift in the CuSO4
spectrum becomes more pronounced, accompanied by a reduction in
spectral magnitude. Notably, the CuSO4 spectrum affects the India Ink
spectrum, resulting in elevated PA signals between 700–750 nm and
850–900 nm, which distorts the spectral profile of India Ink from the
ground truth spectrum.

Utilizing the proposed fluence marker-based optical inversion
(Fig. 2D), both spectral shape and magnitude were retrieved. If we
consider an equal fluence assumption in the surrounding medium
(Fig. 2D), the spectral shape is recovered to a reasonable level, but
shows error in the magnitude estimation. The optical absorption of
the surrounding medium in the tank was modified in the experiment;
hence, the recovered spectra for all three cases after the optical in-
version are expected to align with the original spectra. The recovered
spectrum using the fluence marker method in Fig. 2D closely matches
the ground truth spectrum, with minor discrepancies attributed to
unaccounted optical scattering effects of the chromophore. With the
proposed fluence marker-based optical inversion a mean error in the
optical absorption coefficient estimate of 0.07 mm−1 standard deviation
of 0.013 mm−1 was observed. The estimation using an equal fluence
assumption resulted in a mean absorption coefficient error of 0.21 mm−1

with a standard deviation of 0.079 mm−1. These experimental results
demonstrate the capability of the proposed approach in accurately
quantifying chromophores. The spectral recovery also confirms that
an equal fluence assumption around the fluence marker can result in
quantification error as shown in Fig. 2E. In this analysis, we assumed
a homogeneous unknown tissue for the inversion. In the following
results, we will demonstrate and compare optical inversion schemes
for heterogeneous media using the fluence marker.

Fig. 3 compares the recovered absorption coefficient (𝜇𝑎) using SIM
and GBM algorithms, with and without the fluence marker. Fig. 3A
shows the digital phantom, and Fig. 3B shows the absorbed energy
distribution (𝐻𝑀 ). Recovered 𝜇𝑎 and absolute error for SIM without
and with the fluence marker are presented in Figs. 3C-F. For GBM, re-
covered 𝜇 and error appear in Figs. 3G-J, with and without the fluence
𝑎

6 
Table 1
Comparison of PSNR values of recovered images using different methods.

Method PSNR
(dB)

SIM 37.53
SIM with fluence marker 39.27
GBM 43.24
GBM with fluence marker 45.47
GBM with fluence marker using constraint 46.37

marker, and Figs. 3K-L display results for GBM with the fluence marker
using constraint optimization. Fig. 3M shows error (log(‖𝐻𝑀 −𝐻𝐶‖

2))
convergence over iterations and Fig. 3N-P shows the average value of
the absorption coefficient updates against iterations in different regions
of the reconstructed image.

The recovered 𝜇𝑎 distribution using SIM shows accurate reconstruc-
tion at shallow depths (< 10 mm), with reduced accuracy at greater
depths. Comparing Figs. 3D and 3F and PSNR values in Table 1, SIM
with the fluence marker improves reconstruction. GBM offers better
noise reduction and accuracy, with further improvement when using
the fluence marker. The GBM with fluence marker constraint yields
the highest accuracy, as shown in Fig. 3L. SIM converges within 25
iterations but reaches a higher final error of −10.54 mm−2s−1 with the
fluence marker due to background noise, compared to −10.80 without.
GBM with the fluence marker shows oscillations and requires over 50
iterations to stabilize. GBM without the marker, converges to an error of
−12.97 after 700 iterations. Using the fluence marker constraint, GBM
achieves the same error level in only 348 iterations.

Table 2 summarizes the recovered 𝜇𝑎 across regions. SIM with the
fluence marker improves 𝜇𝑎 accuracy across all regions despite higher
background error, while GBM with the fluence marker and constraint
yields the most accurate recovery, especially at depths over 10 mm
(Regions 4 and 5). Region 4 shows a trend toward true 𝜇𝑎 with the
fluence marker in GBM. Extended iterations in Region 4 allowed only
GBM with constraints to converge close to the true 𝜇𝑎 value (0.08 mm−1,
after 1366 iterations) before halting when the function no longer
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Fig. 3. Comparison of Algorithms: (A) ground truth absorption coefficient (mm−1) distribution and (B) absorbed energy (mm−2s−1) obtained using forward optical simulation.
(C)-(F) Comparison of reconstructed images using SIM: (C) recovered 𝜇𝑎 (mm−1), and (D) absolute error (difference of ground truth and recovered 𝜇𝑎) without fluence marker and
(E) recovered 𝜇𝑎 and (F) error with fluence marker. (G)-(L) Comparison of reconstructed images using GBM: (G) recovered 𝜇𝑎 and (H) error without fluence marker, (I) recovered
𝜇𝑎 and (J) error with fluence marker, and (K) recovered 𝜇𝑎, and (L) error with fluence marker using constraint. (M) Log of the sum of the squared error against iteration number
and the nature of convergence for SIM methods for the first 50 iterations (inset). The average value of the absorption coefficient updates against iterations in different regions of
the reconstructed image: (N) Region 2, (O) Region 3, (P) Region 4.

Photoacoustics 41 (2025) 100673 
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Table 2
Comparison of recovered 𝜇𝑎 (in mm-1) in Fig. 3 after 700 iterations using different reconstruction methods. The corresponding error in percentage (%) is given in brackets.

Region Ground truth 𝜇𝑎 Recovered 𝜇𝑎 using SIM Recovered 𝜇𝑎 using GBM

Without marker With marker Without marker With marker With marker-constraint

1 0.020 0.0195 (2.5) 0.0196 (2) 0.0199 (0.5) 0.020 (0) 0.020 (0)
2 0.075 0.0661 (11.8) 0.0697 (7) 0.0732 (2.5) 0.0746 (0.5) 0.0747 (0.4)
3 0.150 0.1090 (27.3) 0.1212 (19.2) 0.1437 (4.2) 0.1541 (2.7) 0.1506 (0.4)
4 0.075 0.0167 (77.7) 0.0298 (60.3) 0.0253 (66.3) 0.0342 (54.4) 0.0445 (40.6)
5 0.001 0.0037 (270) 0.0053 (430) 0.0001 (90) 0.0037 (270) 0.0035 (250)
ig. 4. Spectral imaging : (A) Digital phantom used for simulations and the inset is a magnified image of the sample where the area of averaging is marked. (B) Absorbed energy
istribution for wavelength 𝜆4. (C) Average absorbed energy for different regions in the unknown chromophore and ground truth 𝜇𝑎 of unknown chromophore and background of
ample for five different wavelengths. (D) Comparison of the absorption spectrum of the unknown chromophore at different regions recovered using fluence marker method and
qual fluence assumption.
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ecreased within the optimality tolerance. At greater depths (Region
), noise impacts 𝜇𝑎 recovery, and none of the methods recovered
bsorption values accurately, primarily due to the shadowing of this
egion with the high absorption of the fluence marker.

Key observations from Table 2 and Fig. 3C-P include: (i) GBM
ffers better noise reduction and accuracy than SIM but requires more
terations, (ii) the fluence marker improves both algorithms and (iii)
ccuracy decreases with depth. Algorithm ranking by accuracy and
terations is as follows: GBM with fluence marker constraint, GBM with
luence marker, GBM without fluence marker, SIM with fluence marker,
nd SIM without fluence marker.

The proposed method was tested for quantitative recovery of 𝜇𝑎 in
ulti-wavelength imaging. Fig. 4A shows the carotid artery phantom,
here the central circular disc mimics the arterial lumen as the fluence
arker, surrounded by plaque (unknown chromophore) within a uni-

orm background. Fig. 4B illustrates the absorbed energy distribution at
4. Fig. 4C displays both the ground truth 𝜇𝑎 values for the background
nd the unknown chromophore, along with the absorbed energy in the
hree regions marked in Fig. 4A across five wavelengths.

We employed GBM with a fluence marker for the optical inversion
nd compared this approach to the equal fluence assumption, as shown
 e

8 
n Fig. 4D. For the GBM method, a maximum of 450 iterations was set
or reconstruction. The average 𝜇𝑎 at each region using both the GBM
ith fluence marker and the equal fluence assumption is presented in
ig. 4D. For Region 1, the equal fluence assumption yielded an estimate
lose to the actual value, while for Regions 2 and 3, an overestimation
f 𝜇𝑎 occurred. This overestimation in absorption is attributed to the
luence variation with distance from the reference chromophore. In
ontrast, the fluence marker-based inversion effectively recovered the
pectral shape and magnitude of 𝜇𝑎 across regions. These findings align
ith experimental data (Fig. 2D), where overestimation is similarly
bserved under the equal fluence assumption. This emphasizes the
mportance of fluence marker-based inversion for accurate recovery
f both spectral shape and magnitude, particularly in heterogeneous
nvironments.

A potential application of the fluence marker technique for carotid
rtery imaging is shown in Fig. 5. Fig. 5A presents the digital phantom,
hile Fig. 5B shows the ground truth 𝜇𝑎 distribution, and Fig. 5C
isplays the absorbed energy density. The recovered 𝜇𝑎 using GBM
ith fluence marker update is shown in Fig. 5D. Table 3 lists ground

ruth 𝜇𝑎, corresponding pixel values, and average recovered 𝜇𝑎 for
ach phantom component. The average 𝜇 was calculated by averaging
𝑎
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Fig. 5. (A) Digital phantom used for the simulation (ST: superficial tissue, M: muscle, L: lipid, BL: blood, B: background, BT: background tissue). (B) Ground truth absorption
coefficient (mm−1) distribution (see Table 3) and (C) absorbed energy (mm−2s−1) obtained using forward optical simulation. (D) Recovered 𝜇𝑎 distribution. Note that the range of
the absorption coefficient map in (B) and (D) are from 0 to 0.2 mm−1, while the maximum value of the blood (fluence marker) is 0.65 mm−1.
Table 3
Comparison of the recovered values of the absorption coefficients, 𝜇𝑎 (in mm-1) for different components of the phantom in Fig. 5: recovered with fluence marker, recovered
when a ±10% error is included in the absorption of the marker and recovered without the fluence marker. 𝜇𝑀

𝑎 is the absorption coefficient of the marker, 𝜇𝐺 𝑇
𝑎 is the ground truth

absorption coefficient. The corresponding error in percentage (%) is given in brackets.
Component 𝜇𝑎𝐺 𝑇 Recovered 𝜇𝑎

𝜇𝑀
𝑎 = 𝜇𝐺 𝑇

𝑎 𝜇𝑀
𝑎 = 𝜇𝐺 𝑇

𝑎 +10% 𝜇𝑀
𝑎 = 𝜇𝐺 𝑇

𝑎 -10% Without Marker

Blood (BL) 0.650 NA NA NA 0.104 (84)
Lipid (L) 0.013 0.013 (0.77) 0.015 (14.5) 0.012 (10.8) 0.008 (36.2)
Muscle (M) 0.050 0.051 (2) 0.051 (2) 0.049 (2) 0.049 (2.4)
Superficial tissue (ST) 0.040 0.040 (0) 0.040 (0) 0.040 (0) 0.039 (0.25)
Background tissue (BT) 0.040 0.006 (85) 0.004 (90.5) 0.004 (91.3) 0.002 (94.2)
Background (B) 0.008 0.008 (2.5) 0.008 (1.3) 0.008 (3.8) 0.005 (32.5)
pixels for each component. As seen in Fig. 5D and Table 3, the proposed
method accurately recovered lipid 𝜇𝑎 using blood as a fluence marker,
with less than 1% error, and reconstructed superficial tissue and muscle
effectively. Due to the absorption by muscle and tissue, light intensity
is minimal at deeper regions, resulting in noise in the recovered 𝜇𝑎 at
depths > 12 mm, especially in the background tissue at 15 mm, where
the error is highest.

Assuming a ±10% error in the fluence marker’s absorption estima-
tion in a practical setting is presented in Table 3. Table shows that all
components, except lipid were recovered accurately. Lipid 𝜇𝑎 varied
by approximately 15%, indicating how quantification of chromophores
near the fluence marker can affect the estimation. The 𝜇𝑎 recovery
without the marker yielded lower accuracy across all components. It
should be noted that for lipid, the resulting error is 36% without the
fluence marker, compared to 15% with the fluence marker. The GBM
algorithm without a marker required 4,223 iterations to converge,
accurately recovering the muscle, superficial tissue, and background
but yielding a 12% error in lipid absorption. In contrast, the GBM with
a marker converged in only 1,663 iterations, accurately recovering all
components except for the background tissue. This comparison shows
that even an approximation estimate of the fluence marker can improve
the optical inversion.

4. Discussion

We introduced the use of a known chromophore’s absorption co-
efficient as a fluence marker in optical inversion for the quantitative
recovery of chromophores from photoacoustic (PA) images. Our re-
sults demonstrate that this approach enhances the accuracy of optical
property quantification by anchoring the fluence at the fluence marker
location.

Spectral coloring poses a challenge in quantitative photoacoustic
(QPA) imaging, especially in cases with wavelength-dependent back-
ground absorption. The results in Figs. 4 and 2 illustrate the impact
of spectral coloring in environments with wavelength-dependent back-
ground absorption. The recovered spectrum under the equal fluence
assumption suggests that this assumption holds true in regions at the
9 
same depth and in close proximity to the fluence marker. However,
in regions at varying depths, even closer to the reference, the equal
fluence assumption leads to inaccuracies. Specifically, both Figs. 4 and
2 reveal an overestimation of the absorption coefficient in regions
located above the fluence marker. The proposed fluence marker tech-
nique successfully recovered the absorption spectrum in terms of both
spectral shape and absolute magnitude, independent of spatial position
(see Fig. 4D). Notably, a consistent trend in spectral coloring and
decoloring was observed with the proposed method in both simulation
and experimental settings, validating the effectiveness and practical ap-
plicability of our method. These results underscore the potential of the
fluence marker-based inversion technique for accurate chromophore
quantification in complex, heterogeneous media.

The comparison of QPA algorithms in Fig. 3 showed that both
SIM and GBM improved accuracy with fluence marker. The absolute
error in recovered 𝜇𝑎 was reduced by up to 24%. The gradient-based
method (GBM) with the fluence marker constraint resulted in the
lowest absolute error (Fig. 3), while the simple iterative method (SIM)
converged faster but had larger errors. Though GBMs required more
iterations, they produced lower errors than SIM. The fluence marker
reduced iterations needed in both methods, though constraint optimiza-
tion remains computationally intensive. Region-wise analysis (Fig. 3)
reveals accuracy is depth-dependent: at depths < 10 mm, the fluence
marker offers minimal improvement (0.5%), while at depths of 10–
20 mm, it enhances SIM by 17.5%, GBM by 9.4%, and GBM with
constraint by 24.4%. Thus, the fluence marker improves QPA accuracy
at greater depths, with GBM offering the best balance of accuracy and
computational demand.

The carotid artery imaging application in Fig. 5 demonstrates the
effectiveness of the fluence marker technique for recovering a lipid
plaque target, with blood in the lumen serving as the fluence marker.
This method recovers plaques with lower optical absorption, even
when obscured by highly absorbing muscle and superficial tissue. Our
analysis of fluence marker estimation errors suggests that even ap-
proximate, practically obtainable information can significantly improve
chromophore absorption recovery.
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The current implementation presents some limitations that should
be acknowledged. In the experimental results shown in Fig. 2, a homo-
geneous tissue assumption was adopted. Conversely, for the heteroge-
neous case, we relied on simulated phantom data. These simulations
assume ideal acoustic reconstruction, excluding practical artifacts like
those seen in band-limited transducers, as observed in Fig. 2B. To
enhance practical applicability, incorporating realistic transducer prop-
rties into the inversion process or deconvolving the transducer’s re-
ponse is required. The estimation of the reduced scattering coefficient
sing a GBM is feasible, it was not included in this study. Furthermore,
he simulations were conducted in 2D phantoms to reduce computa-
ional complexity to demonstrate the concept. However, extending the
odel to 3D would more accurately represent realistic scenarios and is
 logical progression for future work.

The proposed fluence marker-based quantitative PA method has
ther potential applications in clinical settings with identifiable chro-
ophores, such as tissue oxygenation using an artery as a reference,

umor imaging with feeding vessels, or targeting tissue near catheters or
mplants. It may also benefit optical wavefront shaping, diffuse optical
maging, and spectroscopy.

5. Conclusion

This study demonstrates, using both experimental and simulated
hantoms, that integrating the optical properties of a known chro-
ophore as a fluence marker in optical inversion can substantially

nhance the accuracy of tissue quantification in photoacoustic imaging.
The results show accurate recovery of spectral shape and magnitude in
xperimental settings. Comparisons across inversion methods indicate

improvements of up to 17.5% in the simple iterative approach and 9.4%
in the gradient-based approach when incorporating the fluence marker.
Additionally, constrained optimization further boosted gradient-based
accuracy by 24.4%. The fluence marker technique is effective in me-
dia with biologically relevant absorption and scattering properties,
demonstrating potential in applications such as carotid plaque quan-
tification. With further inclusion of acoustic transducer characteristics,
this method could expand its utility for tissue quantification in various
clinical contexts.
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