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Abstract

By combining concepts from particle-in-cell (PIC) and hybridized discontinuous Galerkin (HDG) methods,

we present a particle-mesh scheme for flow and transport problems which allows for diffusion-free advection

while satisfying mass and momentum conservation - locally and globally - and extending to high-order

spatial accuracy. This is achieved via the introduction of a novel particle-mesh projection operator which

casts the particle-mesh data transfer as a PDE-constrained optimization problem, permitting advective flux

functionals at cell boundaries to be inferred from particle trajectories. This optimization problem seamlessly

fits in a HDG framework, whereby the control variables in the optimization problem serve as advective fluxes

in the HDG scheme. The resulting algebraic problem can be solved efficiently using static condensation.

The performance of the scheme is demonstrated by means of numerical examples for the linear advection-

diffusion equation and the incompressible Navier-Stokes equations. The results demonstrate optimal spatial

accuracy, and when combined with a θ time integration scheme, second-order temporal accuracy is shown.

Keywords: hybridized discontinuous Galerkin, finite element methods, particle-in-cell, PDE-constrained

optimization, conservation, advection-dominated flows

1. Introduction

Advection-dominated flow and transport phenomena arise in many engineering applications, such as

the transport and mixing of pollutants, turbulent flows, and multiphase flows including phase transition.

Accurate simulation of such problems requires a discretization of the underlying conservation laws with

minimal artificial dissipation relative to the physical damping. To this end, numerous numerical methods5
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have been developed, which may be broadly categorized into Eulerian mesh-based and Lagrangian particle-

based schemes.

On one hand, Lagrangian particle-based methods, such as SPH [1], allow for a diffusion-free treatment of

advection by transporting a cloud of particles. However, due to the lack of a mesh topology, discretization

of the diffusive part in a conservative, yet accurate manner is non-trivial, as pointed out in, e.g., [2, 3, 4, 5].10

On the other hand, Eulerian mesh-based methods, such as finite volume (FV) or finite element methods

(FEM), use a mesh topology which allows for an efficient discretization of the governing conservation laws,

including the constitutive terms. Many of these methods can achieve high-order accuracy, and in particular

discontinuous Galerkin (DG) methods (see, e.g., [6, 7] and references) and hybridized discontinuous Galerkin

(HDG) methods (see, e.g., [8, 9, 10, 11, 12, 13]) possess attractive local (i.e. cellwise) conservation properties.15

On the down side, these methods involve diffusive upwinding (e.g., [8, 10, 11, 12, 13]) or other carefully

designed formulations (e.g., [9, 14]) to stabilize the discrete advection operator, which may obscure principal

features of advection-dominated problems.

By using particles to handle the advective part of a problem and a mesh in the diffusion part, hybrid

particle-mesh methods aim to combine the distinct advantages of Lagrangian and Eulerian methods. Tracing20

back to the 1960s, the particle-in-cell (PIC) method [15] was the first to simultaneously use a set of moving

particles and a static mesh successfully, by introducing two auxiliary steps: (1) a projection of the problem

variables allocated on particles to the mesh, and (2), an update of particle-based data once the constitutive

part has been solved on the mesh. PIC and related methods, such as the material point method (MPM)

[16], consider the particles as moving point masses formulating the particle-mesh projections in terms of25

a summation of particle properties, see, e.g., [17, 18, 19, 20]. While it guarantees conservation of total

mass and momentum, this approach has low-order accuracy only [21]. To achieve high-order accuracy,

particle-mesh schemes have been proposed in which the particles are considered as moving sampling points

of the continuum. Reconstruction of the mesh-based data from the scattered particle data is typically done

using moving least squares (MLS) [22, 21] or local `2-projections [23], which compromise however exact30

conservation.

In this work we extend our particle-mesh method presented in [23] by preserving global and local con-

servation properties on the mesh. The key to the approach is to constrain the particle-mesh projection

used in [23] such that the projected field on the mesh lies in the solution space of a mesh-based advection

operator corresponding to the particle motion. To this end, the `2-projection operator in [23] is augmented35

with Lagrange-multiplier terms whose control variables can be associated with advective fluxes at cell inter-

faces. These interface fluxes ensure a conservative adjustment of the cell-wise fields, while the underlying

`2-projection enforces minimization of the difference between the particle- and mesh-based fields. This new

concept couples naturally to an HDG framework, from which it also will inherit the convergence properties.

Typical to HDG methods is the formulation of cell-wise balances, where flux boundary conditions for each40

2



cell are imposed via an additional degree-of-freedom at faces (see for instance [8, 9, 10]). This interface

field naturally takes on the role of control variable in our constrained `2-projection and enables an efficient

implementation using static condensation. Owing to this strategy, the proposed scheme may be conceived

as an HDG method in which stable advective fluxes are directly inferred from Lagrangian particle motion,

thereby avoiding artificial dissipation as typically present in existing (H)DG and FV methods.45

The remainder of this work is structured as follows. Section 2 presents a spatiotemporal operator splitting

for the advection-diffusion equation, paying attention to the role of the particle-mesh and the mesh-particle

projection. In Section 3 we formulate the PDE-constrained particle-mesh projection, and prove consistency

and conservation in the semi-discrete setting. For completeness, this section also presents the semi-discrete

formulations for the other steps in a particle-mesh scheme. Section 4 presents the corresponding fully-discrete50

formulations and discusses various algorithmic aspects of the resulting numerical scheme. An extension of

the approach to the incompressible Navier-Stokes equations is discussed in Section 5. The performance of the

method is assessed for a range of benchmark tests in Section 6, covering pure advection, advection-diffusion

and advection-dominated incompressible flows. Conclusions are drawn in Section 7 which also provides an

outlook to future research.55

2. Problem formulation and definitions

We consider a domain Ω ⊂ Rd (with d = 2, 3), having Lipschitz continuous boundary Γ = ∂Ω partitioned

into Dirichlet and Neumann boundaries ΓD and ΓN , satisfying ΓD∪ΓN = ∂Ω and ΓD∩ΓN = ∅. The outward

pointing unit vector normal to Γ is denoted by n. The time interval of interest is I =
(
t0, tN

]
, where t0 and

tN are the start and end time of the simulation.60

2.1. Advection-diffusion problem

On the space-time domain Ω × I, the scalar-valued linear advection-diffusion equation is formulated as

a system of two first-order equations as follows: given a solenoidal velocity field a : Ω × I → Rd, an initial

condition φ0 : Ω → R, diffusivity κ, and boundary conditions h : ΓN × I → R and g : ΓD × I → R, find

φ : Ω× I → R such that65

∂φ

∂t
+∇ · σ = f in Ω× I, (1a)

σ = aφ− κ∇φ in Ω× I, (1b)

σ · n = (1− γ) (a · n)φ+ h on ΓN × I, (1c)

φ = g on ΓD × I, (1d)

φ(x, t0) = φ0 in Ω. (1e)70
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The parameter γ in Eq. (1c) is equal to one at inflow Neumann boundaries (where a · n < 0) and equal to

zero on outflow Neumann boundaries (where a ·n ≥ 0), with h specifying the total flux on inflow Neumann

boundaries and the diffusive flux on outflow Neumann boundaries.

2.2. Operator splitting using projection operators75

As in [23], the particle-mesh method is conceived as an operator splitting procedure. To this end, let

the time interval of interest I be partitioned using a sequence of N + 1 discrete time levels {t0, t1, . . . , tN−1,

tN} which for n = 0, N − 1 defines the half-open subintervals In = (tn, tn+1] such that
⋃
n In = I, while

I := {In} defines the ordered sequence of subintervals. Furthermore, let the total flux given by Eq. (1b) be

decomposed additively into an advective part σa and a diffusive part σd, i.e. σ = σa + σd.80

A spatiotemporal operator splitting procedure for the advection-diffusion problem, Eq. (1), now involves

a scalar field ψ : Ω× In → R satisfying an advection problem,

∂ψ

∂t
+∇ · σa = 0 in Ω× In, (2a)

σa = aψ in Ω× In, (2b)

σa · n = (1− γ)(a · n)ψ + γha on ΓN × In, (2c)85

ψ = g on Γ−D × In, (2d)

ψ(x, tn) = PL (φ(x, tn)) in Ω, (2e)

and a scalar field φ : Ω× In → R satisfying a diffusion problem,

∂φ

∂t
+∇ · σd = f in Ω× In, (3a)90

σd = −κ∇φ in Ω× In, (3b)

σd · n = hd on ΓN × In, (3c)

φ = g on ΓD × In, (3d)

φ(x, tn) = PE
(
ψ(x, tn+1)

)
in Ω. (3e)

95

to be applied sequentially for every In ∈ I. In the advection stage, the Dirichlet boundary condition can

only be prescribed at inflow Dirichlet boundaries, denoted with Γ−D . The flux prescribed at ΓN is split into

an advective flux ha and a diffusive flux hd, such that h = ha + hd. Note that the advective flux cannot

be specified at outflow Neumann boundaries, which is automatically taken care of by virtue of Eq. (2c).

Furthermore, PL and PE are projection operators, which are introduced in order to couple the fields ψ and100

φ, with these fields being naturally defined on the particles and the mesh, respectively.

More precisely, the projection operator PL provides the initial condition at tn from the mesh field to

advance the Lagrangian advection problem to tn+1, and the projection operator PE provides the initial
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condition at tn from the particle data to advance the Eulerian diffusion problem to tn+1. To remain

consistent with Eq. (1) it is required that PE ◦ PL equals the identity operator.105

This paper aims to formulate the projection operators PL and PE such that exact conservation is

guaranteed. That is, the projected field ψ satisfies Eq. (2a) in an integral sense over each cell.

2.3. Auxiliary definitions

Let T := {K} denote the triangulation of the domain Ω into open, non-overlapping cells K. A measure

of the cell size is denoted by hK , and the outward pointing unit normal vector on the boundary ∂K of each110

cell is denoted by n. The closure of a cell is denoted by K = K∪∂K. Adjacent cells Ki and Kj (i 6= j) share

a common facet F = ∂Ki∩∂Kj . The set of all facets (including the exterior boundary facets F = ∂K ∩∂Ω)

is denoted by F .

2.3.1. Function spaces

The following scalar finite element spaces are defined:115

Wh :=
{
wh ∈ L2(T ), wh|K ∈ Pk(K) ∀ K ∈ T

}
, (4)

Th :=
{
τh ∈ L2(T ), τh|K ∈ Pl(K) ∀ K ∈ T

}
, (5)

W̄h,g :=
{
w̄h ∈ L2(F), w̄h|F ∈ Pk(F ) ∀ F ∈ F , w̄h = g on ΓD

}
, (6)

in which P (K) and P (F ) denote the spaces spanned by Lagrange polynomials on K and F , respectively,120

and k ≥ 1 and l ≥ 0 indicate the polynomial orders. The space W̄h,g contains single-valued functions

that are piecewise continuous on facets F ∈ F . Furthermore, the facet function space W̄h,g satisfies the

inhomogeneous Dirichlet boundary condition on ΓD, with the related space W̄h,0 satisfying the homogeneous

Dirichlet boundary condition on ΓD. Formally, functions in Wh and Th are only defined at the cell boundary

∂K via a trace operator, but this technicality is omitted in the sequel to avoid notational clutter.125

Anticipating the extension of the scheme to the Navier-Stokes problem in Section 5, W h, T h, and W̄ h,g

define the finite element spaces of d-vectors in Rd corresponding to the scalar function spaces Wh, Th, and

W̄h,g. Function spaces required for the discretization of the pressure terms are defined as

Qh :=
{
qh ∈ L2(T ), qh|K ∈ Pk−1(K) ∀ K ∈ T

}
, (7)

Q̄h :=
{
q̄h ∈ L2(F), q̄h|F ∈ Pk(F ) ∀ F ∈ F

}
, (8)130

where the extension of Qh to cell boundaries ∂K is assumed implicit in the definition.

2.3.2. Particle definitions

The Lagrangian particle configuration in the domain Ω at a fixed time instant t is defined as follows

Xt := {xp(t) ∈ Ω}Npp=1, (9)135
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in which xp denotes the spatial coordinates of particle p and Np is the number of particles. Furthermore,

the index set of all particles and the index set of particles hosted by cell K, at a fixed time instant t are

defined as

St := {p ∈ N : xp(t) ∈ Xt}, (10)

SKt := {p ∈ N : xp(t) ∈ K, xp(t) ∈ Xt}. (11)140

Finally, Lagrangian scalar and vector fields on the particles are defined as,

Ψt := {ψp(t) ∈ R, ∀ p ∈ St} , (12)

Vt :=
{
vp(t) ∈ Rd, ∀ p ∈ St

}
, (13)

145

where ψp and vp(t) denote the corresponding scalar and vector quantities associated with particle p.

Importantly, subscripts p and h are used consistently throughout to distinguish between Lagrangian

particle data and Eulerian mesh fields, respectively.

3. Semi-discrete formulations

A particle-mesh operator splitting procedure for the advection-diffusion model problem involves the150

following sequence of steps (see also [23]):

1. Lagrangian discretization of the advection problem, in order to solve Eqs. (2a - 2d) at the particle level;

2. particle-mesh projection, in order to project the scattered particle data onto a (scalar) field on the

Eulerian mesh using the operator PE : Ψt →Wh (see Eq. (3e));

3. Eulerian discretization of the diffusion equation, in order to solve Eqs. (3a - 3d) on the mesh;155

4. mesh-particle projection, in order to update the particle properties from the scalar field on the Eulerian

mesh using the operator PL : Wh → Ψt (see Eq. (2e)).

The main endeavour of this paper is twofold: (i) the formulation of a conservative, high-order accurate

particle-mesh projection for Step 2, and (ii), the coupling of Step 2 to the other steps such that the overall

procedure (Steps 1-4) remains consistent with the strong form of the advection-diffusion problem, Eq. (1).160

To this end, the various steps of the operator splitting scheme are detailed below, with a particular emphasis

on Step 2 in Section 3.2. Consistency will be addressed in Section 3.5.1.

3.1. Lagrangian discretization of the advection problem

The first step, the Lagrangian, particle-based solution of the advection problem Eqs. (2a-2d), is relatively

straightforward by decomposing the problem into two ordinary differential equations for the particle scalar165
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quantity and the particle position. On the time interval In, these equations are given by

ψ̇p(t) = 0 ∀ p ∈ St, (14a)

ẋp(t) = a(xp(t), t
n) ∀ p ∈ St, (14b)

where ψ̇p(t) and ẋp(t) are the total derivatives at time t ∈ In of the scalar quantity and the position of170

particle p. Furthermore, a(x, tn) is a prescribed solenoidal velocity field at time tn. An important observation

is that ψp stays constant throughout the particle advection stage by virtue of Eq. (14a).

3.2. PDE-constrained particle-mesh interaction

The second step involves the projection operator PE , transferring the scattered particle data to piecewise

continuous fields at the mesh. In [23] this is formulated in terms of a least-squares projections obtained175

from the following minimization problem

min
ψh∈Wh

J =
∑
p∈St

1

2
(ψh(xp(t), t)− ψp(t))2

. (15)

Since Wh is a space of discontinuous functions, Eq. (15) is equivalent to a set of decoupled minimization

problems that can be solved efficiently in a cellwise manner. As demonstrated in [23], accurate results are

obtained provided that the particle locations satisfy unisolvency with respect to Wh [24]. However, the

projection does not guarantee conservation of linear quantities after the sequence of steps of the operator180

splitting scheme.

To obtain high-order accuracy, the particles are merely used as sampling points of the continuum that,

by definition, do not possess a metric to evaluate integral quantities (e.g. mass or momentum) from particle

based fields. Conservation properties are therefore lost when projecting fields from the mesh to the particles.

One way to preserve these properties is by keeping track of the integral quantities on the mesh. This can185

be accomplished by constraining the particle-mesh projection to obtain fields ψh that satisfy the hyperbolic

conservation law, Eq. (2). We therefore augment the functional in Eq. (15) with terms multiplying the

hyperbolic conservation law Eq. (2) with a Lagrange multiplier λh ∈ Th. Integration by parts leaves

an unknown flux on interior cell facets which is formulated in terms of a variable ψ̄h ∈ W̄h,g, while the

Neumann boundary condition Eq. (2c) is substituted on exterior facets. For a given particle field ψp ∈ Ψt,190

an advective velocity field a : Ω × In → Rd, the initial condition ψnh ∈ Wh, and an advective Neumann

boundary condition ha : ΓN × In → R, the minimization problem then involves finding the stationary points

of the Lagrangian functional

L(ψh, ψ̄h, λh) =
∑
p∈St

1

2
(ψh(xp(t), t)− ψp(t))2

+
∑
K

∮
∂K

1

2
β
(
ψ̄h − ψh

)2
dΓ +

∫
Ω

∂ψh
∂t

λhdΩ195

−
∑
K

∫
K

aψh · ∇λhdΩ +
∑
K

∮
∂K\ΓN

a · nψ̄hλhdΓ +

∮
ΓN

(1− γ) a · nψhλhdΓ +

∮
ΓN

γhaλhdΓ, (16)
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for every t ∈ In. The collection of terms containing λh constitutes a weak form of the advection subproblem,

Eq. (2). Furthermore, the unknown facet-based field ψ̄h ∈ W̄h,g determines the advective flux at interfaces.

The additional regularization term containing β > 0 penalizes the jumps between ψh and ψ̄h on cell interfaces200

which avoids the problem to become singular in cases with vanishing normal velocity a · n.

Before proceeding with the derivation of the resulting optimality system, we take a brief moment to

interpret the Lagrangian, Eq. (16). First of all, the single-valued facet variable ψ̄h ∈ W̄h,g takes on the

role of control variable. With this ingredient being provided by the facet fields used in the hybridized

Discontinuous Galerkin (HDG) method, it follows that HDG is a natural choice for imposing the optimality205

control on the solution. Embedding the optimality system in other, cell-based spatial discretization methods

(e.g., finite volumes) is possible as well, however, this would require the definition of an additional interface-

based control variable. Second, the optimal solution for ψh based on Eq. (16) will in general not minimize

the `2-error norm, Eq. (15), for the unconstrained and non-conservative case. Indeed, by adding the PDE-

constraint we restrict the minimization of this error to the space of physically admissible functions, i.e., those210

that satisfy the hyperbolic conservation law. Third, the objective function itself is modified compared to

Eq. (15) by adding the regularization term containing β. The influence of this term on the optimal solution

is kept small by choosing the parameter β such that the regularization term is small compared to the first

term at the right-hand side in Eq. (16).

Equating the variations of Eq. (16) with respect to the three unknowns
(
ψh, λh, ψ̄h

)
∈
(
Wh, Th, W̄h,g

)
to215

zero, results in the following system of variational equations. At time t ∈ In, variation with respect to the

scalar field ψh gives the co-state equation∑
p∈St

(ψh(xp(t), t)− ψp(t)) δψh(xp(t))−
∑
K

∮
∂K

β
(
ψ̄h − ψh

)
δψhdΓ

+

∫
Ω

∂δψh
∂t

λhdΩ−
∑
K

∫
K

a · ∇λhδψhdΩ +

∮
ΓN

(1− γ) a · nλhδψhdΓ = 0 ∀ δψh ∈Wh.

(17a)

Variation with respect to the Lagrange multiplier λh gives the state equation,220 ∫
Ω

∂ψh
∂t

δλhdΩ−
∑
K

∫
K

aψh · ∇δλhdΩ +
∑
K

∮
∂K\ΓN

a · nψ̄hδλhdΓ

+

∮
ΓN

(1− γ) a · nψhδλhdΓ +

∮
ΓN

γhaδλhdΓ = 0 ∀ δλh ∈ Th.
(17b)

Finally, variation with respect to the control variable ψ̄h leads to the optimality condition,∑
K

∮
∂K\ΓN

a · nλhδψ̄hdΓ +
∑
K

∮
∂K

β
(
ψ̄h − ψh

)
δψ̄hdΓ = 0 ∀ δψ̄h ∈ W̄h,0. (17c)

After an appropriate discretization of the time derivatives in Eqs. (17a and 17b) - to be discussed in Section 4225

- a field ψh ∈ Wh can be reconstructed from the particle data ψp ∈ Ψt by solving the optimality system
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Eq. (17). This reconstructed field is used to provide the initial condition for the subsequent diffusion

subproblem.

3.3. Eulerian discretization of the diffusion equation

The discretization of the diffusion step, Eq. (3), is based on the HDG method presented by Labeur & Wells [8]230

and seeks solutions (φh, φ̄h) ∈ (Wh, W̄h). This choice allows for trivial projections between fields ψh and

φh, which seamlessly fits in the approach used for solving the optimality system Eq. (17). Referring to [8]

for further details, the HDG discretization results in a set of local and global problems, stated as: at time

t ∈ In, given the initial condition φnh ∈ Wh, the diffusive Neumann boundary condition hd : ΓN → R and

the diffusivity κ, find φh ∈Wh and φ̄h ∈ W̄h,g such that locally235 ∫
Ω

∂φh
∂t

whdΩ +
∑
K

∫
K

κ∇φh · ∇whdΩ +
∑
K

∮
∂K

σ̂d,h · nwhdΓ

+
∑
K

∮
∂K

κ
(
φ̄h − φh

)
n · ∇whdΓ =

∫
Ω

fwhdΩ ∀ wh ∈Wh,

(18a)

and globally ∑
K

∮
∂K

σ̂d,h · nw̄hdΓ =

∮
ΓN

hdw̄hdΓ ∀ w̄h ∈ W̄h,0, (18b)

where σ̂d,h is a diffusive flux at cell facets defined by240

σ̂d,h = −κ∇φ− α

hK
κ
(
φ̄h − φh

)
n, (18c)

in which α is a dimensionless parameter as is typical to interior penalty methods [25]. Solving Eq. (18)

yields φ̄h and φh, where the latter is to be used for updating the particle properties ψp in the subsequent

mesh-particle projection step.245

3.4. Mesh-particle projection

The mesh-particle projection PL : Wh → Ψt is based on the following minimization problem

min
ψp(t)

J :=
∑
p∈St

1

2
(φh(xp(t), t)− ψp(t))2

, (19)

where we emphasize that the objective functional J is also at the basis of the particle-mesh projection

Eq. (16). Carrying out the minimization yields the particularly simple result250

ψp(t) = φh(xp(t), t) ∀ p ∈ St. (20)

The mesh-particle projection is not restricted to the mapping of the scalar field φh ∈ Wh itself, but can be

applied to project arbitrary fields in Wh - e.g. the temporal increments of φh, see Section 4.4 - onto the

particles. As such, it is used for updating the particle quantities, which completes the semi-discrete sequence255

of steps comprising the particle-mesh operator splitting of the advection-diffusion equation.
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3.5. Properties of the semi-discrete formulation

We now demonstrate consistency and conservation of the semi-discrete particle-mesh operator splitting

method formulated in Eqs. (17), (18) and (20).

3.5.1. Consistency260

Consistency of the particle-mesh operator splitting scheme entails three different aspects, (i) the operator

splitting has to be consistent with the unsplit governing equations (Eqs. (1)), (ii) the Eulerian part of the

operator splitting (step 3) has to be consistent with the diffusion subproblem (Eqs. (3)), and (iii), the

constraint imposed weakly in the projection operator PE (step 2) has to be consistent with the advection

subproblem (Eqs. (2)).265

To start with (i), splitting of the advection-diffusion equation into a kinematic part (advection problem)

and a constitutive part (diffusion equation) has been the subject of numerous studies, and is known to

be consistent up to a time step dependent splitting error which vanishes in the continuous time limit, see

[26, 27, 28] among many others. However, specific to a particle-mesh framework, we also have to ensure

consistency of the projection operators PE (particle - mesh) and PL (mesh - particle). This implies that in270

absence of advection the subsequent application of PL and PE must recover an initially mesh-based field

ψh ∈Wh exactly, which can be expressed mathematically as (see also Section 2.2),

PE ◦ PL(ψh) = ψh ∀ ψh ∈Wh. (21)

For an arbitrary initial field ψh, the mesh-particle projection PL formulated in Eq. (20) gives ψp = ψh(xp).275

By setting a = 0 in the subsequent particle-mesh projection PE , and substituting ψp = ψh(xp) in the

co-state equation, Eq. (17a), it follows that in the limit β ↓ 0 the initial field ψh is recovered exactly, while

λh = 0 everywhere. This owes to the symmetry in the objective functions underpinning the particle-mesh

and the mesh-particle projection for vanishing β, see Eq. (16) and Eq. (19). Since β must be non-zero in

order to explicitly couple the state variable ψh and the control variable ψ̄h, we choose β > 0, yet sufficiently280

small to accurately approximate the consistency criterion on the projection operators.

Concerning (ii), consistency of the HDG method used in the diffusion step was proven in [8]. To prove

consistency of the PDE-constrained projection (iii), consider a sufficiently smooth scalar field ψ. Substitution

into Eq. (17b) gives, after integration by parts,

285 ∑
K

∫
Ω

(
∂ψ

∂t
+∇ · (aψ)

)
δλhdΩ +

∑
K

∮
∂K\ΓN

a · n
(
ψ̄h − ψh

)
δλhdΓ

−
∮
ΓN

γa · nψ δλhdΓ +

∮
ΓN

γha δλhdΓ = 0 ∀ δλh ∈ Th, (22)
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which demonstrates consistency with the strong form of the advection problem Eqs. (2a-2b) and the Neu-

mann boundary condition Eq. (2c), with the enforcement of ψ̄ = ψ on interior cell facets and the Dirichlet290

boundary ΓD.

3.5.2. Conservation

Since the particles carry point evaluations of the underlying field, lacking a metric to evaluate mass or

volume, conservation can be satisfied at the mesh level only. The latter requires that the mesh-based parts

of the scheme, i.e. step 4 (diffusion) and step 2 (advection) are both conservative. Since global and local295

conservation of the HDG method for the diffusion step was demonstrated in [8], it remains to prove (mass)

conservation of the PDE-constrained particle-mesh projection.

Setting δλh = 1 in Eq. (17b), and rearranging, leads to∫
Ω

∂ψh
∂t

dΩ = −
∑
K

∮
∂K\ΓN

a · n ψ̄hdΓ −
∮
ΓN

(1− γ) a · nψhdΓ −
∮
ΓN

γhadΓ. (23)

For a point-wise divergence free vector field a the boundary integral on the union of interior cell facets

vanishes, due to ψ̄h being single-valued on facets F ∈ F . The right-hand side therefore equals the total300

ingoing advective flux at the exterior boundary Γ , thereby proving global mass conservation. For local mass

conservation, setting δλh = 1 on cell K and δλh = 0 on Ω \K gives, after rearrangement,∫
K

∂ψh
∂t

dΩ = −
∮

∂K\ΓN

a · n ψ̄hdΓ −
∮
ΓN

(1− γ) a · nψhdΓ −
∮
ΓN

γhadΓ (24)

The right-hand side of Eq. (24) constitutes the ingoing advective flux on the cell facet ∂K which proves

local conservation in terms of the numerical flux on F .

4. Fully-discrete formulations305

We now present a fully-discrete formulation of the particle-mesh operator splitting scheme. To this

end, the time interval of interest I is partitioned using a sequence of N + 1 discrete time levels {t0, t1, . . . ,
tN−1, tN}, see also Section 2.2. The particular time stepping strategy we discuss below largely follows the

approach used in [23], albeit special care is required to render the particle-mesh projection compatible with

the mesh-particle projection.310

4.1. Particle advection

From Eq. (14a) it follows that particle quantities other than the position remain constant throughout this

stage. A fully-discrete implementation of the Lagrangian advection stage is therefore obtained by integrating

Eq. (14b) in time to advance the particle position from xnp → xn+1
p . For this purpose, we use a three-stage

third-order accurate Runge-Kutta scheme.315
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At inflow boundaries, particles have to enter the domain. To this end, particles are seeded in the cell

contiguous to the inflow boundaries, in such a way to keep the number of particles constant in these cells.

In order to remain consistent with the boundary conditions in Eq. (2), properties of the inserted particles

are interpolated at the intersection point of the particle trajectory with the domain boundary, using the

corresponding values imposed by the boundary conditions.320

4.2. PDE-constrained particle-mesh projection

The fully-discrete PDE-constrained particle-mesh projection is formulated with the objective to find the

optimal scalar field ψh at time level n+ 1 given the particle field ψp at time tn+1. Employing the θ-method,

where 1/2 ≤ θ ≤ 1, the constraint in the Lagrangian functional L is evaluated at time tn+θ := (1−θ)tn+θtn+1

using linear interpolation between discrete time levels. To this end, the scalar field ψh at time level n+ θ is325

approximated by

ψh
(
tn+θ

)
≈ (1− θ)ψ∗,nh + θψn+1

h (25)

in which ψ∗,nh ∈Wh is an initial field given by

ψ∗,nh = ψnh + ∆tn

(
(1− θL)φ̇n−1

h + θLφ̇
n
h

)
, (26)

where ∆tn = tn+1 − tn is the time step size, θL is an additional time stepping parameter (1/2 ≤ θL ≤ 1,330

but possibly different from θ), and the increments φ̇mh (with m = n− 1, n) are defined by

φ̇mh =
φmh − φ∗,m−1

h

∆tm−1
, (27)

with φmh and φ∗,m−1
h = ψ∗,mh being fields in Wh related to the particular time stepping scheme used in the

diffusion problem (step 3) and mesh-particle projection (step 4), see Sections 4.3 and 4.4. The use of ψ∗,nh

in Eq. (26) in place of ψnh ensures that the fully-discrete projection operators PL and PE are mutually

consistent, as discussed in Section 3.5.1 and to be elaborated further in Appendix A. The time derivative of335

the scalar field ψh at time level n+ θ is now given by

∂ψh
∂t

∣∣∣∣
tn+θ

≈ ψn+1
h − ψ∗,nh

∆tn
, (28)

which follows from the linear interpolation used in Eq. (25).

Next, variations of the dependent fields are taken with respect to the degrees of freedom at time level

n+ 1, which involves the replacement of variations
(
δφh, δλh, δφ̄h

)
∈
(
Wh, Th, W̄h

)
in the optimality system340

Eq. (17) with test functions (wh, τh, w̄h) ∈
(
Wh, Th, W̄h

)
. Using the expression for the time derivative of ψh

given in Eq. (28), the time derivative appearing in the co-state equation (17a) is approximated as follows

∂δψh
∂t

∣∣∣∣
tn+θ

≈ δψn+1
h − δψ∗,nh

∆tn
=

wh
∆tn

, (29)
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since variations δψ∗,nh ∈Wh vanish.

Given these approximations, the fully-discrete co-state equation reads: given the particle field ψnp ∈345

Ψt, the particle positions xn+1
p ∈ Xt, and the intermediate field ψ∗,nh ∈ Wh, find

(
ψn+1
h , λn+1

h , ψ̄n+1
h

)
∈(

Wh, Th, W̄h,g

)
such that

∑
p∈St

(
ψn+1
h (xn+1

p )− ψnp
)
wh(xn+1

p )−
∑
K

∮
∂K

β
(
ψ̄n+1
h − ψn+1

h

)
whdΓ

+

∫
Ω

wh
∆tn

λn+1
h dΩ− θ

∑
K

∫
K

(awh) · ∇λn+1
h dΩ + θ

∮
ΓN

(1− γ) a · nλn+1
h whdΓ = 0 ∀wh ∈Wh. (30a)350

Correspondingly, the fully-discrete counterpart of the state equation Eq. (17b) reads:∫
Ω

ψn+1
h − ψ∗,nh

∆tn
τhdΩ− θ

∑
K

∫
K

(
aψn+1

h

)
· ∇τhdΩ +

∑
K

∮
∂K\ΓN

a ·nψ̄n+1
h τhdΓ + θ

∮
ΓN

(1− γ) a ·nψn+1
h τhdΓ

+

∮
ΓN

γhn+θ
a τhdΓ = (1− θ)

∑
K

∫
K

(
aψ∗,nh

)
· ∇τhdΩ− (1− θ)

∮
ΓN

(1− γ) a · nψ∗,nh τhdΓ ∀τh ∈ Th. (30b)355

Finally, the fully-discrete optimality condition becomes

∑
K

∮
∂K\ΓN

a · nλn+1
h w̄hdΓ +

∑
K

∮
∂K

β
(
ψ̄n+1
h − ψn+1

h

)
w̄hdΓ = 0 ∀w̄h ∈ W̄h,0. (30c)

In these equations, the Lagrange multiplier λh and the control variable ψ̄h are conveniently taken at time360

level n+ 1, which is allowed since these variables are fully-implicit, not requiring differentiation in time.

The reconstructed field ψn+1
h which is obtained after solving Eq. (30) for (ψn+1

h , λn+1
h , ψ̄n+1

h ) will serve

as an input to the solver for the diffusion equation.

4.3. Diffusion equation

Using a backward Euler time integration as in [23], the fully-discrete counterparts of Eqs. (18) read:365

given the initial field φ∗,nh = ψn+1
h ∈ Wh, the source term fn+1, the diffusive Neumann boundary condition

hn+1
d and the diffusivity κ, find φn+1

h ∈Wh and φ̄n+1
h ∈ W̄h,g such that∫

Ω

φn+1
h − φ∗,nh

∆tn
whdΩ +

∑
K

∫
K

κ∇φn+1
h · ∇whdΩ +

∑
K

∮
∂K

σ̂n+1
d,h · nwhdΓ

+
∑
K

∮
∂K

κ
(
φ̄n+1
h − φn+1

h

)
n · ∇whdΓ =

∫
Ω

fn+1whdΩ ∀ wh ∈Wh,

(31a)

and ∑
K

∮
∂K

σ̂n+1
d,h · nw̄hdΓ =

∮
ΓN

hn+1
d w̄hdΓ ∀ w̄h ∈ W̄h,0, (31b)370
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in which the fully-discrete diffusive flux σ̂n+1
d,h is given by

σ̂n+1
d,h = −κ∇φn+1

h − α

hK
κ
(
φ̄n+1
h − φn+1

h

)
. (31c)

Solving Eq. (31) for
(
φn+1
h , φ̄n+1

h

)
provides the ingredients necessary to update the particle field ψp in the

subsequent mesh-particle projection step.375

4.4. Mesh-particle projection

Finally, a fully-discrete mesh-particle projection is formulated by mapping the increments of the mesh

related field (φh) to the particles using ([23])

ψn+1
p = ψnp + ∆tn

(
(1− θL)φ̇nh

(
xnp
)

+ θLφ̇
n+1
h

(
xn+1
p

))
∀ p ∈ St, (32)

380

where 1/2 ≤ θL ≤ 1, and φ̇nh ∈ Wh is defined according to Eq. (27). We emphasize the similarity between

the formulation for the mesh-particle update (Eq. (32)) and the definition of ψ∗,nh ∈ Wh in Eq. (26), which

is required to respect the consistency condition, Eq. (21), in the fully-discrete setting, see Appendix A.

Furthermore, it readily follows that in the advective limit (i.e. for κ = 0) it holds that ψn+1
p = ψnp , since

φ̇nh = φ̇n+1
h = 0.385

4.5. Algorithmic aspects

4.5.1. Choosing the Lagrange multiplier space

A significant simplification of the fully-discrete optimality system is obtained when choosing the polyno-

mial basis for the Lagrange multiplier of the lowest possible order, i.e. l = 0. For this particular choice, the

cell integrals in Eqs. (30) containing gradients of the Lagrange multiplier, or of its associated test function,390

vanish.

This choice will not affect the conservation proofs given by Eqs. (23) and (24). Indeed, for the choice

l = 0 it readily follows from Eq. (30b) that the cell-integrated temporal increments of the conserved variables

remain in balance with the facet fluxes. Except for the outflow Neumann boundaries, these facet fluxes are

implicitly controlled by the interface variable ψ̄n+1
h ∈ W̄h,g, not requiring differentiation in time. Hence, for395

the presented time integration scheme the major advantage of choosing l = 0 is that it avoids time stepping

dependencies in the PDE-constrained particle-mesh projection, thus rendering the particle-mesh projection

independent of θ. In view of this evident advantage, we will restrict the discussion in the sequel to the

choice l = 0. In fact, it is only for this particular choice of the Lagrange multiplier space that second-order

accuracy in time can be expected for the given time integration scheme. Furthermore, independent of the400

choice for l, we expect optimal spatial convergence rates of the scheme of order k+ 1, provided a sufficiently

accurate particle advection scheme is used.
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Finally, albeit l = 0 is sufficient to guarantee local conservation of linear quantities (e.g. mass and

momentum), it is conjectured that conservation of quadratic quantities (e.g. energy) requires l > 0. This

topic - in combination with alternative time stepping strategies - is left as an interesting area for future405

investigation.

4.5.2. Accuracy of the time stepping scheme

In [23] - with the particle-mesh projection being formulated in terms of local `2-projections - it was shown

that overall second-order accuracy in time can be expected when combining a backward Euler method for

the Eulerian step, Eq. (31), with a second-order mesh-particle update as in Eq. (32), using θL = 1/2. Note410

that the latter requires saving the particle field from the previous time step. Backward Euler suffices on the

Eulerian step since φn+1
h is advanced over one time step from the second-order field φ∗,nh . Thus, the local,

second-order accuracy of backward Euler pertains.

To retain this second-order accuracy in time for the PDE-constrained particle-mesh projection pursued

here, we have to use l = 0 as argued above. In addition, ensuring compatibility between the mesh-particle415

update, Eq. (32), and the PDE-constrained particle-mesh interaction in the fully-discrete setting, Eq. (30)

leads to a definition for ψ∗,nh via Eq. (26). This is further detailed in Appendix A.

4.5.3. Numerical implementation

As is typical for a HDG formulation, the fully-discrete PDE-constrained particle-mesh projections can

be implemented efficiently by eliminating the unknowns local to a cell K (i.e. ψn+1
h and λn+1

h ) in favor of420

the global control variable ψ̄n+1
h via static condensation. As a result, the size of the global system is reduced

significantly as it depends only on the number of degrees of freedom of the control variable. After solving

this system for ψ̄n+1
h , the local variables ψn+1

h and λn+1
h are obtained in a back substitution step.

The global system for the PDE-constrained projection is similar in size to the one resulting from the

diffusion equation. Compared to the unconstrained, local `2-projection from [23], this indeed is a small price425

to be payed for obtaining exact conservation.

5. Extension to incompressible Navier-Stokes

The above constrained particle-mesh operator splitting can be extended in a relatively straightforward

manner to the incompressible Navier-Stokes equations by using a vector-valued version of the Lagrangian

functional, Eq. (16), in order to project the particle specific momenta vp ∈ Vt onto the mesh (see also the430

definitions in Section 2.3). Apart from this, the formulation for the Navier-Stokes problem is similar to that

for the advection-diffusion problem sharing the same conservation properties. Hence, Lagrangian particles

are used for the advection of specific momentum and an Eulerian mesh is used to solve an incompressible,

unsteady Stokes problem, where these steps are coupled by the particle-mesh and mesh-particle projections.
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As in the scalar-valued case, the PDE-constrained particle-mesh projection does not involve upwinding of435

the interface fluxes. Particular differences occur due to the non-linearity of the advection term and the

inclusion of the incompressibility constraint in the diffusive part (Stokes equations):

• The spatial discretization of the unsteady Stokes equations, see Appendix B.3, is based on the HDG

formulation as proposed in [29, 13]. As shown in these references, carrying out the discretization

using local and global velocity spaces W h, W̄ h,g, in combination with local and global pressure spaces440

Qh, Q̄h, results in a Stokes solver which is inf − sup stable, conserves momentum globally and locally,

is energy stable and produces H(div)-conforming velocity fields un+1
h ∈W h.

• The H(div)-conformity of the velocity fields has the distinct advantage in that particles can be ad-

vected through velocity fields being pointwise-divergence free within a cell and having a continuous

normal component across cell facets, see Appendix B.1. Satisfying these two criteria is paramount in445

maintaining a uniform particle distribution over time [23].

• The non-linear advection term appearing in the constraint equations, is linearized by using velocity

fields explicitly known from the Stokes solve in the previous time step, see Appendix B.2.

• Consistency between the PDE-constrained particle-mesh projection and the mesh-particle projection,

requires a definition of the initial velocity field in the PDE-constrained projection as the vector valued450

counterpart of Eq. (26), see Eq. (B.6).

The fully-discrete formulation of the particle-mesh operator splitting method for the incompressible

Navier-Stokes equations is further detailed in Appendix B.

6. Numerical examples

In this section, the properties of the proposed method are illustrated for a selection of numerical exam-455

ples for the linear advection-diffusion equation and the incompressible Navier-Stokes equations. Particular

attention is paid to mass and momentum conservation. Throughout, domains Ω ∈ R2 are considered and

the time domain of interest is partitioned using constant time step sizes ∆t. Furthermore, the regularization

term β is set to a fixed value of 10−6 for all computations. The penalty parameter α in Eq. (31) (diffusion

equation) and Eq. (B.9) (Stokes problem) is set to 12k2 and 6k2, respectively. Unless otherwise specified,460

we choose l = 0, thus rendering the scheme independent of θ, see Section 4.5.1.

Tools from the finite element framework FEniCS [30] are used to assemble and solve the equations on

the mesh arising from the discretization of the PDE-constrained projections, the diffusion equation and the

unsteady Stokes equations. A static condensation procedure is applied in all cases and the resulting global

systems are solved using direct Gaussian elimination. The computer code for performing the computations is465

available under an open source license and can be obtained via bitbucket.org/jakob maljaars/leopart.
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6.1. Advection-diffusion: Gaussian hump

The accuracy of the presented method is assessed by considering a (rotating) Gaussian pulse in the

diffusive limit, for moderate diffusion, and in the advective limit. The domain of interest is the circular disk

Ω := {(x, y) |x2 + y2 ≤ 0.5} and the velocity field is either set to a = 0 (diffusive limit), or given by470

a = π (−y, x)
>
. (33)

The corresponding analytical solution for a rotating Gaussian pulse is given by

φ(x, t) =
2σ2

2σ2 + 4κt
exp

(
−‖x̄(x, t)− xc‖2

2σ2 + 4κt

)
, (34)

in which xc = (xc, yc)
> is the position vector of the center, σ is the initial standard deviation, and κ is

a constant diffusivity. Furthermore, ‖·‖2 denotes the square of the Euclidean norm and x̄(x, t) is a co-475

ordinate in the rotating frame of reference, given by (x cos(πt) + y sin(πt),−x sin(πt) + y cos(πt))
>

. The

initial condition φ(x, 0) is deduced from Eq. (34), with the standard deviation σ set to 0.1 and center

coordinates (xc, yc) = (−0.15, 0). The disk-shaped domain Ω is triangulated using a sequence of mesh

refinements, and particles are randomly seeded in Ω such that each cell contains on average 30 particles,

initially.480

Table 1: Gaussian hump: Overview of model settings for advection-diffusion.

k l θ θL a

Case 1 2 0 - 1/2 0

Case 2 1 0 - 1/2 Eq. (33)

Case 3 2 0 - 1/2 Eq. (33)

Case 4 2 1 1/2 1/2 Eq. (33)

Four different cases (listed in Table 1) are considered for three values of the diffusivity, κ = 0.01,

κ = 0.001, and κ = 0 (advective limit). The Dirichlet boundary condition for the diffusion step is deduced

from the analytical solution Eq. (34), and we emphasize that in the advective limit the particle specific mass

ψp stays constant by virtue of Eq. (32). The same meshes, initial conditions, and particle distributions are

used in all four cases.485

Results obtained after a full revolution are presented in Table 2. For Cases 1-3, at least second-order

convergence is obtained. More precisely, for the largest value of the diffusivity (i.e. κ = 0.01), the conver-

gence rate tends to second-order, whereas near-optimal convergence is obtained for moderate diffusion, with

diffusivity κ = 0.001, resulting in third-order convergence for Cases 1 and 3, and second-order convergence

for Case 2. In the advective limit, optimal convergence rates are obtained for Cases 2 and 3.490
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Case 3 and Case 4 only differ in the polynomial orders of the Lagrange multiplier space. However, the

convergence rates drastically reduce for Case 4 to approximately second-order for the pure advection test

(with κ = 0) and to approximately first order for the mixed advection-diffusion regime. This behavior

illustrates the difference between the choice l = 0 compared to l ≥ 1 in combination with the chosen time

stepping scheme, as discussed in Section 4.5.1.495

Table 2: Gaussian hump: L2-error for advection-diffusion after one full revolution. Convergence rates based on hK,max.

Mesh κ = 0.01 κ = 0.001 κ = 0.0

∆t hK,min hK,max ‖φ− φh‖ Rate ‖φ− φh‖ Rate ‖φ− φh‖ Rate

Case 1

0.08 6.6e-2 1.2e-1 7.3e-5 - 5.3e-4 -

-
0.04 3.2e-2 6.2e-2 1.5e-5 2.3 6.0e-5 3.2

0.02 1.6e-2 3.1e-2 3.5e-6 2.1 7.5e-6 3.0

0.01 7.9e-3 1.6e-2 8.7e-7 2.0 9.6e-7 3.0

Case 2

0.08 6.6e-2 1.2e-1 1.2e-3 - 7.2e-3 - 1.3e-2 -

0.04 3.2e-2 6.2e-2 3.3e-4 1.9 1.8e-3 2.0 3.9e-3 1.8

0.02 1.6e-2 3.1e-2 6.3e-5 2.4 2.7e-4 2.7 9.6e-4 2.0

0.01 7.9e-3 1.6e-2 1.2e-5 2.4 9.4e-5 1.6 2.4e-4 2.0

Case 3

0.08 6.6e-2 1.2e-1 1.6e-4 - 8.9e-4 - 2.9e-3 -

0.04 3.2e-2 6.2e-2 1.6e-5 3.3 1.3e-4 2.8 2.5e-4 3.5

0.02 1.6e-2 3.1e-2 3.0e-6 2.4 1.9e-5 2.8 3.0e-5 3.1

0.01 7.9e-3 1.6e-2 7.4e-7 2.0 2.4e-6 2.9 4.4e-6 2.8

Case 4

0.08 6.6e-2 1.2e-1 3.2e-3 - 1.4e-2 - 2.8e-2 -

0.04 3.2e-2 6.2e-2 2.0e-3 0.7 3.4e-3 2.0 1.5e-2 0.9

0.02 1.6e-2 3.1e-2 1.1e-3 0.9 9.1e-4 1.9 3.1e-3 2.3

0.01 7.9e-3 1.6e-2 5.6e-4 0.9 5.1e-4 0.8 8.2e-4 1.9

6.2. Advection: rigid body rotation

In order to qualitatively assess the scheme’s ability to preserve point and line singularities, we next

consider the advection test proposed in [31]. This test comprises the rigid body rotation of a pointy cone

(initially centered at (x, y) = (−0.3, 0)), a slotted disk (initially centered at (x, y) =(0, -0.3)), and a Gaussian

hump (initially centered at (x, y) = (0.15, 0.15)) on the the circular disk Ω := {(x, y) |x2 + y2 ≤ 0.5}. The500

velocity field is given by Eq. (33). By virtue of Eq. (32) it follows that in the advective limit the particle

specific masses need not be updated, so that any discontinuities at the particle level persist.

A mesh with moderate spatial resolution (Mesh 1, containing 16189 cells), and a fine resolution mesh

(Mesh 2, containing 64561 cells) are considered. Approximately 30 particles are assigned per cell initially,

resulting in a total number of slightly over 5×105 and 2×106 particles in total for Mesh 1 and Mesh 2. Time505
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step sizes are chosen such to keep the CFL-number approximately the same on both meshes, see Table 3.

Table 3: Rigid body rotation: Overview of mesh, particle and time step settings.

|T | hK,min hK,max |St| ∆t

Mesh 1 16189 7.9e-3 1.6e-2 502480 1e-2

Mesh 2 64561 4.0e-3 7.8e-2 2010783 5e-3

The results obtained for the two different configurations are assessed visually after a half and a full

rotation in Fig. 1. Since the particle values are not updated, the initial discontinuities are maintained at the

particle level. The shapes of the pointy cone and the Gaussian hump are well-preserved (without numerical

damping), both for a half rotation as well as for a full rotation. Although the shape is well-preserved for the510

slotted-disk, localized overshoot is observed near the discontinuities for a half rotation. Rather than being

a dispersion artifact, the over- and undershoot should be interpreted as a resolution issue with the mesh

resolution being too coarse to capture the sharp discontinuity at the particle level monotonically. This is

clearly illustrated by Fig. 1c and Fig. 1f, showing that the initial condition is accurately recovered for a full

rotation at t = 2, in contrast to the diffusive results obtained for this test in e.g. [31, 32, 33].515

In order to investigate the mass conservation errors, a measure for the relative global mass conservation

error at time T is defined as

ε∆φΩ =

∫
Ω

(φh(x, T )− φh(x, 0)) dΩ∫
Ω

φh(x, 0)dΩ
, (35)

in which φh(x, 0) and φh(x, T ) are the mesh related fields at time 0 and time T , respectively.

The local mass conservation error is investigated via the L2-norm of the time-discrete counterpart of the520

local conservation statement, Eq. (24). For the problem under consideration, this local mass conservation

error norm at time level n+ 1 is given by

ε∆φK =

∑
K

∫
K

ψn+1
h − ψ∗,nh

∆t
dΩ +

∮
∂K

a · nψ̄n+1
h dΓ

2


1/2

. (36)

The mass conservation errors as defined by Eqs. (35) and (36) after a half rotation (T = 1) and a full

rotation (T = 2) are tabulated in Table 4, confirming global and local mass conservation of the PDE-525

constrained projection to machine precision, irrespective of the resolution of the Eulerian mesh.
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(b) Mesh 1, t = 1.
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(c) Mesh 1, t = 2.
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(d) Mesh 2, t = 0.
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(e) Mesh 2, t = 1.
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(f) Mesh 2, t = 2.

Figure 1: Rigid body rotation: numerical solution ψh for different meshes at various time instants using polynomial orders

(k, l) = (1, 0).
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Table 4: Rigid body rotation: mass conservation errors (defined by Eqs. (35) and (36)) for different mesh configurations after

a half rotation (T = 1) and a full rotation (T = 2).

Mesh 1 Mesh 2

T = 1 T = 2 T = 1 T = 2

ε∆φΩ -2.0e-16 2.0e-16 -3.1e-15 5.9e-16

ε∆φK 1.7e-16 1.5e-16 1.3e-16 1.3e-16

6.3. Advection: advection skew to mesh

Finally, we consider the advection of a discontinuity on the unit-square Ω := [0, 1]2 for different transport

velocities u = [cosα, sinα]> with characteristic directions α of 15◦, 30◦, 45◦, 60◦. The diffusivity κ is set

to 0, so that we solve a pure advection problem. A regular triangular mesh is used with uniform cell size530

hK = 1/25, and each cell contains on average approximately 20 particles. Except for the case φ = 45◦,

the propagation directions are not aligned with the mesh. Dirichlet boundary conditions are prescribed

at the inflow boundaries, and the specific mass ψp carried by the particles flowing into the domain is set

accordingly. Similar to the preceding rigid body rotation benchmark, the particle specific masses need not

be updated, so that any discontinuities at the particle level persist without artificial diffusion. Hence, this535

test is well-suited for assessing the behavior of the scheme in the presence of steep gradients.

The fields φh at t = 2.0 are plotted in Fig. 2. For a characteristic direction of 45◦, the discontinuity

is captured exactly at the mesh level. For the other characteristic directions, an overshoot is observed

near the discontinuity. However, this overshoot remains strictly localized to one mesh cell upstream of the

discontinuity. This behavior can be expected since no attempts are presently made to preserve monotonicity540

at the mesh, while the discontinuity at the particle level is inherently maintained without any diffusion. We

leave the introduction of limiters as a fruitful area for future research, and refer to the work of Bochev and

coworkers on bound-preserving remaps as an interesting starting point [32].

The global mass conservation property of the scheme is verified by virtue of the time-discrete equivalent

of Eq. (23). The global mass conservation error, denoted by ε∆φΩ
, is the residual after subtracting the right-545

hand side from the left-hand side in this equation. The values for ε∆φΩ
thus obtained at t = 2 are tabulated

in Table 5 for the four characteristic angles, confirming global mass conservation to machine precision.

Table 5: Advection skew to mesh: global mass conservation errors for different characteristic directions.

α 15◦ 30◦ 45◦ 60◦

ε∆φΩ -1.25e-15 -2.70e-15 -4.43e-15 -4.75e-15
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(a) α = 15◦. (b) α = 30◦

(c) α = 45◦ (d) α = 60◦

Figure 2: Advection skew to mesh: numerical solution φh on a unit square domain at t = 2.0 for different characteristic

directions using polynomial orders (k, l) = (1, 0) .

6.4. Navier-Stokes equations: Poiseuille flow

Plane Poiseuille flow is considered to assess the behavior of the particle-mesh operator splitting scheme

for the incompressible Navier-Stokes equations in the presence of no-slip boundaries and to elaborate upon550

the required minimum number of particles per cell.

Starting from rest, the flow gradually develops towards a steady state under the influence of a constant,

axially applied body force f . The model domain is given by Ω := [0, 1]×[−0.25, 0.25], with the x-axis pointing

in the flow direction. The flow is periodic in the x-direction and at the location of the plates (y = ±0.25)

no-flux and no-slip boundary conditions are used in the PDE-constrained particle-mesh projection and the555

Stokes step, respectively. The kinematic viscosity is set to ν = 1 · 10−3, and the body force f = (fx, 0)T

is chosen such that the steady state Reynolds number Re = 2Ud/ν equals 200. The analytical transient

solution of the axial velocity can be found in, e.g., [34].
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6.4.1. Convergence study

The domain of interest Ω is triangulated using a series of refined meshes, and on average, 30 particles560

are initially assigned per cell. This number is kept constant upon mesh refinement. Throughout, we will

use a θL-value of 1/2 for the particle updating, and the time step size corresponds to a CFL-number of

approximately 0.25. Results at the dimensionless time instant t∗ = tU/2d = 100 are presented in Table 6

for polynomial orders (k, l) = (1, 0) and (k, l) = (2, 0). The observed convergence is near-optimal, i.e. order

k + 1 in the velocity and order k in the pressure.565

Table 6: Poiseuille flow: convergence of the L2-error in the velocity and the pressure at dimensionless time t∗ = tU/2d = 100

for different polynomial orders (k, l).

(k,l) = (1, 0) (k,l) = (2, 0)

Cells ∆t ‖u− uh‖ Rate ‖p− ph‖ Rate ‖u− uh‖ Rate ‖p− ph‖ Rate

64 0.2 6.2e-3 - 1.4e-4 - 3.9e-6 - 1.3e-7 -

256 0.1 1.6e-3 2.0 8.1e-5 0.7 4.3e-7 3.2 1.8e-8 2.8

1024 0.05 3.9e-4 2.0 3.7e-5 1.2 5.1e-8 3.1 3.7e-9 2.3

4096 0.025 9.7e-5 2.0 1.8e-5 1.0 5.1e-9 3.3 8.0e-10 2.2

6.4.2. Assessing the particle resolution

Evidently, it is desirable from an efficiency perspective to keep the number of particles as low as possible

without compromising accuracy. We therefore investigate the influence of the particle resolution on the

accuracy by considering the Poiseuille flow benchmark, using l = 0 and k = 1, 2, 3, 4, combined with a

variable particle resolution. We restrict the discussion to the mesh containing 256 cells and a time step of570

∆t = 0.1 and only vary the particle resolution for this configuration so that the number of particles per

cell (denoted with S̄K0 ) is in the range 2-50, initially. In order to have full control over the initial particle

configuration, particles are placed on a regular lattice.

As expected, many of the low particle resolution tests fail prematurely before reaching the end time

t∗ = tU/2d = 100. In Fig. 3, results are visualized by plotting the L2-error of the velocity field against575

the average number of particles per cell for the different polynomial orders. For convenience, we assign an

error-value of 1 to all low particle resolution runs failing prematurely.

Evident from the figure is the sharp transition in the error levels. That is, for low particle resolutions

the computations are prone to fail prematurely, whereas from a certain particle resolution threshold onward,

accurate results are obtained with error values being independent of the particle resolution. Interestingly,580

this threshold particle resolution depends on the polynomial order of the basis functions and is approximately

equal to S̄K0 = 8, 8, 10, 15 for k = 1, 2, 3, 4. By recognizing that the particle-mesh projection is based on the

local least-squares minimization problem (Eq. (15)), we note that unisolvency of the particle locations with
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respect to the discontinuous function space W h is a necessary condition for the particle-mesh projection to

be accurate. Empirically, we thus observe this condition to be satisfied if the minimal number of particles585

in a cell is at least equal to the number of local basis functions, except for linear basis functions (k = 1) and

to a lesser extent for quadratic basis functions (k = 2), which require a higher number of particles per cell.

1 5 10 20 50 100

SK

0

10−8
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10−5
10−4
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100

‖u
−
u
h
‖

Figure 3: Poiseuille flow: L2-error at t∗ = 100 as a function of the average number of particles initially assigned per cell (SK0 )

for an Eulerian mesh with a fixed number of 256 cells and a time step of ∆t = 0.1 for a linear (×), quadratic (+), cubic (∗)
and quartic (•) polynomial basis.

6.5. Navier-Stokes equations: Taylor-Green flow

The Taylor-Green flow on the bi-periodic domain Ω := [−1, 1]× [−1, 1] is considered as a final example.

This problem features a periodic sequence of decaying vortices. Provided the Reynolds number is sufficiently590

small, closed analytical expressions for the velocity and the pressure are given by,

u(x, t) = U exp
(
−2νπ2t

)
(− cos(kxx) sin(kyy) , sin(kxx) cos(kyy))

>
, (37)

p(x, t) =
1

4
exp

(
−4νπ2t

)
(cos(2kxx) + cos(2kyy)) , (38)

in which U is the initial velocity amplitude, ν is the kinematic viscosity, and kx = 2π/Lx and ky = 2π/Ly595

are wave numbers in the x- and y-direction, with Lx and Ly being the associated wave lengths.

Since body forces and boundary tractions are absent in this test, specific momentum should be conserved.

In order to verify this, a mesh-related measure for the global momentum conservation error is defined as

εm =

∣∣∣∣∣∣
∫
Ω

(uh(x, t)− uh(x, 0)) dΩ

∣∣∣∣∣∣ . (39)

600

To investigate the convergence properties of the scheme, we consider a time interval of interest I = (0, 2].

The initial peak velocity U in Eq. (37) is set to 1, the wave lengths Lx = Ly = 2, and the kinematic

viscosity is either ν = 2 · 10−2 or ν = 2 · 10−3, with corresponding Reynolds numbers of Re = UL/ν = 100
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and Re = 1000. The chosen time step corresponds to a CFL-number of approximately 0.4. Different

function space combinations are considered, see Table 7. For comparison, Case 3 uses the non-conservative605

`2 particle-mesh interaction from [23].

Table 7: Taylor-Green flow: Overview of model settings.

Projection Method k l θL

Case 1 PDE 1 0 1/2

Case 2 PDE 2 0 1/2

Case 3 `2 2 0 1/2

Table 8: Taylor-Green flow: overview of model runs with the associated errors ‖u− uh‖, ‖p− ph‖ and εm at time t = 2.

Re = 100 Re = 1000

Cells ∆t ‖u− uh‖ Rate ‖p− ph‖ Rate εm ‖u− uh‖ Rate ‖p− ph‖ Rate εm

Case 1

128 0.1 1.2e-1 - 6.5e-2 - 2.8e-15 2.4e-1 - 2.9e-1 - 1.5e-15

512 0.05 2.4e-2 2.3 2.6e-2 1.3 4.5e-15 4.8e-2 2.3 8.7e-2 1.7 8.1e-15

2048 0.025 4.7e-3 2.4 1.2e-2 1.1 3.5e-15 1.1e-2 2.1 4.0e-2 1.1 3.6e-15

8192 0.0125 1.5e-3 1.6 6.0e-3 1.0 1.2e-14 4.0e-3 1.5 2.0e-2 1.0 7.1e-16

Case 2

128 0.1 6.5e-3 - 1.5e-2 - 8.8e-14 7.6e-2 - 5.6e-2 - 1.4e-13

512 0.05 1.9e-3 1.8 3.2e-3 2.2 1.6e-13 1.2e-2 2.7 1.3e-2 2.1 3.1e-13

2048 0.025 5.1e-4 1.9 8.4e-3 1.9 3.4e-13 2.3e-3 2.4 3.2e-3 2.0 6.1e-13

8192 0.0125 1.3e-4 2.0 2.1e-4 2.0 6.3e-13 5.6e-4 2.0 7.8e-4 2.0 1.3e-12

Case 3

128 0.1 6.6e-3 - 1.5e-2 - 3.0e-4 7.6e-2 - 5.6e-2 - 1.3e-3

512 0.05 1.9e-3 1.8 3.2e-3 2.2 1.2e-4 1.2e-2 2.7 1.3e-2 2.1 6.4e-5

2048 0.025 5.2e-4 1.9 8.5e-4 1.9 2.9e-6 2.2e-3 2.4 3.1e-3 2.1 1.4e-6

8192 0.0125 1.3e-4 2.0 2.1e-4 2.0 2.8e-7 5.5e-4 2.0 7.6e-4 2.0 1.5e-6

Velocity and pressure errors are tabulated in Table 8 for different model runs. In all these runs, the

average number of particles per cell is 28. For Case 1, consistent second-order convergence is observed for

the velocity and first-order convergence is obtained for the pressure. Given the function spaces (piecewise

linear velocity, and piecewise constant pressure), no better convergence rates would be expected.610

For Case 2, we obtain approximately second-order convergence in the velocity and the pressure, both for

the Re = 100 test case and the Re = 1000 test case. This indicates that the time stepping error becomes

dominant over the spatial error, where the former is expected to converge with second-order. Momentum is

conserved globally up to machine precision for the PDE-constrained particle-mesh interaction (Case 1, Case

2), whereas this is clearly not so for the unconstrained projection method (Case 3), using local `2-projections.615
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Noteworthy to mention is that the errors in the velocity and pressure are almost identical for Cases 2 and 3.

7. Conclusions and outlook

This paper presented a particle-mesh scheme which allows for diffusion-free advection, satisfies mass

and momentum conservation properties in a local (i.e. cellwise) sense, and allows the extension to high-

order spatial accuracy. Central in obtaining this, is to formulate the particle-mesh projections in terms620

of a PDE-constrained minimization problem. The key idea in formulating the constraint is that from a

mesh-perspective the particle motion must satisfy a hyperbolic conservation law. By expressing the control

variable in terms of single-valued functions at cell interfaces, it was shown that the HDG method naturally

provides the necessary ingredients for formulating the optimality system. Consistency and conservation of

the constrained interaction were proven. An analysis of the resulting discrete optimality system, revealed625

that a specific choice for the Lagrange multiplier field renders the PDE-constrained optimization procedure

independent of the time integration method, thus resulting in a particularly attractive and robust scheme.

The PDE-constrained particle-mesh interaction is embedded in a Lagrangian-Eulerian operator splitting

approach for the advection-diffusion and the incompressible Navier-Stokes equations. Consistency require-

ments specific to particle-mesh methods were formulated, and a particular fully-discrete formulation was630

formulated to obey these requirements. A range of numerical experiments unveils the potential of the

presented approach. For a pure advection problem the absence of artificial diffusion was confirmed, and

standard convergence rates in space and second-order convergence rates in time were confirmed for a range

of examples for the linear advection-diffusion problem and the incompressible Navier-Stokes equations. The

method turns out to be promising, albeit monotonicity is not guaranteed.635

The presented method opens many avenues for further investigation. Future work can include a more

rigorous mathematical analysis of the method, finding alternative (high-order time-accurate) operator split-

ting approaches, and the reconstruction of monotonicity preserving background fields from scattered particle

data by, e.g., exploiting the subgrid information available at the particle level. Future work will also inves-

tigate the applicability of the presented projection method for mass conservative interface tracking in, e.g.,640

multiphase flows.
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Appendix A. Consistency of the projection operators in the fully-discrete setting650

Consider a repeated back-and-forth mapping of a scalar-valued quantity between the particles and the

mesh via PE and PL, while omitting the particle advection step (i.e. a = 0) and the diffusion step (i.e.

κ = 0), and choosing l = 0. For ease of presentation, we further assume that the regularization term

governed by β is negligibly small as motivated in Section 3.5.1. Consistency in the fully-discrete setting now

requires the constraint equations to be inherently satisfied, i.e. λh = 0 everywhere.655

To verify this consistency criterion, consider the discrete optimality system Eq. (30) at time level n+ 1.

For a cell K and with a = 0 and l = 0, these conditions simplify to

∑
p∈SKt

ψn+1
h (xp)wh(xp) +

∫
K

wh
∆t

λn+1
h dΩ =

∑
p∈SKt

ψnpwh(xp), (A.1a)

∫
K

ψn+1
h

∆t
τhdΩ =

∫
K

ψ∗,nh
∆t

τhdΩ, (A.1b)

660

where we used that ψ̄n+1
h and ψn+1

h coincide in a weak sense over the facets by virtue of the discrete

optimality condition for a = 0, Eq. (30c).

With the element contributions following from Eq. (A.1), the system for a single element K can be written

as Mp G

G> 0

ψn+1
h

λn+1
h

 =

 χpψ
n
p

G>ψ∗,nh

 . (A.2)665

Performing a Gaussian elimination, results in the following algebraic form for λn+1:

G>M−1
p Gλ

n+1
h = G>

(
M−1

p χpψ
n
p −ψ∗,nh

)
. (A.3)

Using the definition of ψ∗,nh in Eq. (26) and updating the particle field ψnp via Eq. (32), it follows that

the right hand side of Eq. (A.3) equals zero. Since the mass matrix Mp is symmetric and non-negative

definite [18, 17], the Schur-complement G>M−1
p G is non-singular. The solution of Eq. (A.3) is then given670

by λn+1
h = 0 which, after substitution in Eq (A.2), leads to ψn+1

h = M−1
p χpψ

n
p = ψ∗,nh . This proves mutual

consistency of the operators PE and PL.

Appendix B. A fully-discrete formulation for the incompressible Navier-Stokes equations

This appendix presents the fully-discrete formulations for the four model components constituting the

particle-mesh operator splitting method for the incompressible Navier-Stokes equations. Following [23], such675
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an operator splitting procedure reads: find a vector-valued field v : Ω × In → Rd satisfying an advection

problem,

∂v

∂t
+∇ · σa = 0 in Ω× In, (B.1a)

σa = v ⊗U in Ω× In, (B.1b)

σan = (1− γ) (v ⊗U) n + γha on ΓN × In, (B.1c)680

v = g on Γ−D × In, (B.1d)

v(x, tn) = PL (u(x, tn)) in Ω, (B.1e)

and a velocity field u : Ω× In → Rd satisfying an incompressible Stokes problem,

∂u

∂t
+∇ · σd = f in Ω× In, (B.2a)685

∇ · u = 0 in Ω× In, (B.2b)

σd = pI− 2ν∇su in Ω× In, (B.2c)

u = g on ΓD × In, (B.2d)

σdn = hd on ΓN × In, (B.2e)

u(x, tn) = PE
(
v(x, tn+1)

)
in Ω, (B.2f)690

with notation similar to Eqs. (2-3). The advective field U in Eq. (B.1b) is not yet specified, other than to

require this field to be a consistent approximation to u which is piecewise constant on the partitioning I of

the time interval of interest I.

For ease of comparison, the subsection numbering below corresponds to the one used in Section 4.695

Appendix B.1. Particle advection

To advect the particle positions, the ODE

ẋp(t) = Uh(xp(t), t
n) ∀ p ∈ St (B.3)

is solved. A judicious choice for the advective field Uh(x, t) in this equation is to use the mesh related

velocity field uh ∈Wh, which is obtained in the Stokes step, frozen at the old time level tn, i.e.

Uh (xp(t), t) = uh(xp(t), t
n). (B.4)

The H(div)-conformity of the velocity field uh ∈Wh following the solution of the Stokes problem guarantees700

that the advective field Uh is pointwise divergence-free [13], while it is also explicitly known in each time

interval In ∈ I. Thus, Eq. (B.3) can be integrated in time using explicit integration schemes.
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Appendix B.2. PDE-constrained particle-mesh projection

Analogously to Eq. (26), an approximation of the time derivative

∂vh
∂t

∣∣∣∣
tn+θ

≈ v
n+1
h − v∗,nh

∆tn
, (B.5)705

with v∗,nh defined as

v∗,nh := vnh + ∆tn
(
(1− θL)u̇n−1 + θLu̇n

)
, (B.6)

is used. Furthermore the advective fields are given explicitly by the corresponding velocity fields uh and ūh

from the previous Stokes step, i.e. for t ∈ In we make use of

Uh(x, t) := unh(x), and Ūh(x, t) := ūnh(x), (B.7)710

which de facto linearizes the PDE-constrained particle-mesh projection problem.

With these definitions, a fully-discrete implementation of the optimality system for the constrained

projection of the specific momentum reads: given the vector-valued particle field vnp ∈ Vt, the particle

positions xn+1
p ∈ Xt, and the field v∗,nh ∈ W h, and the advective Neumann boundary condition ha, find715 (

vn+1
h ,λn+1

h , v̄n+1
h

)
∈
(
W h,T h, W̄ h,g

)
such that

∑
p∈St

(
vn+1
h (xn+1

p )− vnp
)
·wh(xn+1

p )−
∑
K

∮
∂K

β
(
v̄n+1
h − vn+1

h

)
·whdΓ +

∫
Ω

wh

∆tn
· λn+1

h dΩ

− θ
∑
K

∫
K

(wh ⊗ unh) : ∇λn+1dΩ + θ

∮
ΓN

(1− γ) (wh ⊗ unh) n · λn+1
h dΓ = 0 ∀ wh ∈W h. (B.8a)

720

∫
Ω

vn+1
h − v∗,nh

∆tn
· τhdΩ− θ

∑
K

∫
K

(
vn+1
h ⊗ unh

)
: ∇τhdΩ +

∑
K

∮
∂K\ΓN

(
v̄n+1
h ⊗ ūnh

)
n · τhdΓ

+ θ

∮
ΓN

(1− γ)
(
vn+1
h ⊗ unh

)
n · τhdΓ +

∮
ΓN

γhn+θ
a · τhdΓ

= (1− θ)
∑
K

∫
K

(
v∗,nh ⊗ unh

)
: ∇τhdΩ− (1− θ)

∮
ΓN

(1− γ)
(
v∗,nh ⊗ unh

)
n · τhdΓ ∀ τh ∈ T h, (B.8b)725

∑
K

∮
∂K\ΓN

(
λn+1
h ⊗ unh

)
n · w̄hdΓ +

∑
K

∮
∂K

β
(
v̄n+1
h − vn+1

h

)
· w̄hdΓ = 0 ∀ w̄h ∈ W̄ h,0. (B.8c)

Solving Eqs. (B.8) for
(
vn+1
h ,λn+1

h , v̄n+1
h

)
gives the reconstructed field vn+1

h , serving as an input to the

Stokes solver.730
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Appendix B.3. Stokes problem

The unsteady Stokes equations are discretized in space employing the HDG formulation from [13,

29]. By using the backward Euler method for the time discretization, the fully-discrete problem reads:

given the intermediate field u∗,nh = vn+1
h ∈ W h , the diffusive Neumann boundary condition hn+1

d ∈[
L2 (ΓN )

]d
, the forcing term fn+1 ∈

[
L2 (Ω)

]d
, and the kinematic viscosity ν, find

(
un+1
h , ūn+1

h , pn+1
h , p̄n+1

h

)
∈735 (

W h, W̄ h,g, Qh, Q̄h
)

such that (local and global momentum balances),∫
Ω

un+1
h − u∗,nh

∆tn
·whdΩ−

∑
K

∫
K

σn+1
d,h : ∇whdΩ +

∑
K

∮
∂K

σ̂n+1
d,h n ·whdΓ

+
∑
K

∮
∂K

2ν
(
ūn+1
h − un+1

h

)
· ∇swhndΓ =

∫
Ω

fn+1 ·whdΩ ∀ wh ∈W h,

(B.9a)

∑
K

∮
∂K

σ̂n+1
d,h n · w̄hdΓ =

∮
ΓN

hn+1
d · w̄hdΓ ∀ w̄h ∈ W̄ h,0, (B.9b)

and (local and global mass balances),740

∑
K

∫
K

un+1
h · ∇qhdΩ−

∑
K

∮
∂K

un+1
h · nqhdΓ = 0 ∀ qh ∈ Qh, (B.9c)

∑
K

∮
∂K

un+1
h · nq̄hdΓ −

∮
∂Ω

ūn+1
h · nq̄hdΓ = 0 ∀ q̄h ∈ Q̄h, (B.9d)

are satisfied. In these equations, the diffusive fluxes σn+1
d,h and σ̂n+1

d,h are given by

σn+1
d,h = pn+1

h I− 2ν∇sun+1
h , (B.10)745

σ̂n+1
d,h = p̄n+1

h I− 2ν∇sun+1
h − 2ν

α

hK

(
ūn+1
h − un+1

h

)
⊗ n. (B.11)

Appendix B.4. Mesh-particle projection

For the incompressible Navier-Stokes equations, the mesh-particle projection is the vector-valued coun-

terpart of Eq. (32), i.e. the momentum field on particles is updated according to750

vn+1
p = vnp + ∆tn

(
(1− θL) u̇nh(xnp ) + θLu̇n+1

h (xn+1
p )

)
∀ p ∈ St, (B.12)

with u̇nh(xnp ) and u̇n+1
h (xn+1

p ) denoting the mesh-based accelerations at the respective time levels n and

n+ 1, evaluated at the individual particle positions.
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