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Abstract

The pair-copula Bayesian network (PCBN) is a Bayesian network (BN) where the conditional probability func-

tions are modeled using pair-copula constructions. By assigning bivariate conditional copulas to the arcs of

the BN, one finds a proper joint density which can flexibly model all kinds of dependence structures. It is

a known problem that the PCBN may require numerical integration to perform computations such as sam-

pling and likelihood-inference. To address this issue we propose novel restrictions on the graphical structure

and assignment of copulas such that integration will not be required. The resulting restricted PCBN offers

significant computational benefits. We establish how to estimate and conduct a structure search for the re-

stricted PCBN. A simulation study shows that a restricted PCBN is able to model non-Gaussian dependence

structures more accurately than the widely used Gaussian Bayesian network.
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1
Introduction

A Bayesian network (BN) is a graphical model of high dimensional random vectors. BNs are composed of

a direct acyclic graph (DAG) where the nodes correspond to the univariate random variables and the arcs

encode the dependence structure of these variables. An extremely attractive feature of these models is their

ability to represent complex dependencies in an intuitive way. This is especially important for practitioners,

who can easily describe their problems and rely on a solid mathematical theory and many computer imple-

mentations of BNs. These models have been applied in a wide variety of fields including medicine, finance,

genetics, and forensic science ([29]).

For an in-depth introduction to Bayesian networks, it is advised to read [27]. Other books concerning BNs are

[19], [15], and [8]. Let us start with a simple example.

Suppose that we wish to model the stock price of the following car manufacturers; Tesla, Ford, General Mo-

tors, Toyota, Honda, and Nissan. A plausible assumption is that the largest companies in terms of current

stock price, Tesla and Toyota (as of 29-08-2023), are dependent on each other. Thus, in a graph, there is a

direct arc Tesla→Toyota. We will assume that the stock prices of other American companies are influenced

by the stock price of Tesla, and the stock prices of Japanese companies are influenced by Toyota, giving us the

DAG in Figure 1.1.

Relationships between all variables in the DAG are included. For example, Tesla→Toyota→Nissan implies

that Nissan depends on Toyota, which in turn is dependent on Tesla, and hence the stock price of Nissan

depends on the stock price of Tesla. Intuitively, the stock price of Tesla influences the Nissan stock price

“through” Toyota. If we were to know the stock price of Toyota, then the Tesla stock would not influence

the price of the Nissan stock anymore. Nissan and Tesla are conditionally independent given Toyota. For

more examples of how conditional independence is represented in the BN see [27, ch. 3], [19, ch. 3] and [15,

ch. 2].

1



2 1. Introduction

Tesla

Ford GM Toyota

Honda Nissan

Figure 1.1: Simple BN for prices of stocks of six car companies, where General Motors is abbreviated by GM.

A key property of the BN is that the conditional independencies encoded by the graph, G = (V ,E), allow for a

factorization of the joint probability into a product of conditional probabilities:

fV (xV ) = ∏
v∈V

fv |pa(v)(xv |xpa(v)).

Here, fV is the joint density over all the nodes, and fv |pa(v) is the conditional density of a node v given its

parents pa(v), where node w is said to be a parent of node v if the graph contains the arc w → v . In the

example of the six stocks, the joint probability density function (PDF) may be factorized by the formula below

where arguments are suppressed.

fV = fTesl a · fFor d |Tesl a · fGM |Tesl a · fToyot a|Tesl a · fHond a|Toyot a · fNi ssan|Toyot a .

This factorization allows us to represent a multi-dimensional problem (for all nodes) into a set of lower-

dimensional problems (a node and its parents). Instead of estimating a complex function fV , we are tasked

with finding simpler functions of the form fv |pa(v).

BNs can be used to represent purely discrete, purely continuous, or mixed (discrete and continuous with

more restrictions, see [25]) distributions.

This thesis will only consider the BNs with continuous nodes. Given a graphical structure, we can addition-

ally assume that all conditional PDFs are Gaussian which are linear functions of parents and the constant

variances:

Xv ∼ N (µv +
∑

w∈pa(v)
φw xw ,σ2

v ).

In this case, we get the Gaussian Bayesian network (GBN). GBNs are well-studied (see [19], [22], [8] and

[33]), have been implemented (for example in the R package bnlearn, see [32]) and found many applica-

tions.

An important property of the GBN is that its joint density is multivariate Gaussian ([34]). Hence, condition-

ing on a subset of the variables in a GBN will again provide a Gaussian joint density. This allows us to find

analytical expressions of densities such as fNi ssan|Tesl a or fFor d ,Tesl a|Hond a,Ni ssan , which is convenient when

performing inference and propagating the evidences.

Although the GBN provides clear computational benefits, it also has an obvious disadvantage. These models

can only represent Gaussian dependence structures and all nodes have Gaussian marginal distributions. To

highlight this, we consider a smaller version of the car stock example concerning the Tesla and Toyota stocks.

In particular, we investigate a simulated data set containing observations of the logarithmic returns of said

stocks where the dependence structure is non-Gaussian.

Consider the data set in Figure 1.2. This data was generated1 such that Tesl a ∼ N (0,0.022) and Toyot a ∼
N (0,0.0252) with a Kendall’s τ equal to 0.7. We can observe the asymmetric behavior of the data, in the

1The data was generated such that it roughly resembles an actual data set of stock returns.
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sense that observations in the bottom-left corner are more correlated than the observations in the top-right

corner. Such a property cannot be captured by the multivariate Gaussian distribution, and therefore cannot

be captured by a GBN. If we fit a bivariate Gaussian to the data and simulate from the fitted model, we obtain

the scatter plot displayed in Figure 1.3. Indeed, this generated data looks very different as compared to the

original data, even though the marginal distributions in both models are Gaussian.

Figure 1.2: Simulated data for the log-returns of Tesla and
Toyota.

Figure 1.3: Data simulated from a bivariate Gaussian fitted to
the data in Figure 1.2.

Suppose now that the log-returns of Toyota are exponentially distributed2 with rate 1, and let the dependence

structure be as in the data set above 3 . The scatter plot of the obtained data is plotted in Figure 1.4. Fitting a

bivariate Gaussian distribution to this data leads to the simulated data set displayed in Figure 1.5. Again, it is

clear that a joint Gaussian distribution is not suitable to model this data set.

Figure 1.4: Simulated data for the log-returns of Tesla and
Toyota with Toyot a ∼ E xp(1).

Figure 1.5: Data simulated from a bivariate Gaussian fitted to
the data in Figure 1.4.

The distribution of a multivariate random vector is determined by the univariate marginal distributions and

the dependence function, called copula of the random vector. The copula is the distribution function on the

unit hypercube with uniform marginal distributions. To see which copula should be used to model the depen-

dence of the data, this data can be transformed into the uniform distribution (uniform scale) by applying the

cumulative distribution functions to the margins. The data set obtained by transforming Figures 1.2 and 1.4

to the uniform scale is displayed in Figure 1.6.

2Of course, this assumption is not very realistic.
3Meaning that the data sets were sampled from the same copula, Clayton with Kendall’s τ equal to 0.7, which will be defined in the next

two paragraphs.
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Figure 1.6: Scatter plot of the data in the uniform scale for the Tesla and Toyota stocks.

There are many copula families with different properties that are able to model different dependence struc-

tures for bivariate distributions. Figure 1.7 displays data sets simulated from 5 different copulas; Gaussian,

Clayton, Gumbel, Frank, and Joe. Even though all data sets were simulated with Kendall’s τ equal to 0.7,

the dependence structures are different. For example, the Clayton, Gumbel, and Joe copulas are asymmet-

ric whereas the Gaussian and Frank copulas are symmetric. The GBN is not be able to capture asymmetric

dependence between random variables, as we have seen for the data set in Figure 1.2. It would be very inter-

esting to be able to incorporate the possibility of more flexible dependence into the BN than the GBN.

Figure 1.7: Scatter-plots of 1000 samples from different copulas simulated with τ= 0.7

Instead of assuming that conditional PDFs fv |pa(v) are Gaussian, they can be decomposed as a product of

bivariate copulas. Such a decomposition is called a pair-copula Bayesian network (PCBN), and has been

proposed by [21], and was further investigated in [11], [12], [4] and [3].

In PCBNs the copulas must be assigned in a specific manner. If a node v has more than one parent, then a

total order <v is defined over the parental set pa(v). The order provides us with an ordered set of parents

(p1, . . . , pn) := pa(v) such that i < j implies that pi <v p j . The copulas are then assigned as follows; the arc

from the first parent p1 to v is assigned the copula cp1v , the arc from the second parent p2 to v is assigned

the copula cp2v |p1 , the arc from the third parent p3 to v is assigned the copula cp3v |p1,p2 , etc. Thus, each arc

w → v is assigned the copula cw v |pa(v↓w), where pa(v ↓ w) is the set consisting of all parents of v , which are

lower than w according to <v . It has been shown in [21] that such an assignment of copulas to the arcs of a

BN will provide us with a proper joint density function. Furthermore, if all copulas and margins in the PCBN

are Gaussian, then the PCBN is equivalent to the GBN.
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Parental orders for all nodes are collected in the set O := {<v ; v ∈ V }. A PCBN consists of the tuple (G ,O )

where the graph determines direct dependencies and independencies between elements of the random vec-

tor, and the parental orders indicate (conditional) copula assignments. Additionally, the copula types have to

be determined and their parameters estimated as well as the marginal distributions of all nodes. PCBNs are

much more expensive computationally as compared to GBNs, but we can represent a much more flexible set

of dependencies in this way ([4]).

In Chapter 3, it will be seen that the joint density of a PCBN corresponding to a multivariate random vector

UV := (uv )v∈V with uniform margins, i.e. uv ∼Uni f (0,1) can be written as

c(uV ) = ∏
v∈V

∏
w∈pa(v)

cw v |pa(v↓w)
(
uw |pa(v↓w),uv |pa(v↓w)

)
.

To compute c(uV ), the terms uw |pa(v↓w) and uv |pa(v↓w) are required. These conditional margins may need to

be computed with integration. For example, in [3], the graph in Figure 1.8 was found to require integration

for any assignment of parental orders O . Note that for this graph we have two possible choices of orders for

node 4; 2 <4 3 and 3 <4 2. Suppose that we pick 2 <4 3. Then, the joint density can be factorized by

c(u1,u2,u3,u4) = c12(u1,u2) · c13(u1,u3) · c24(u2,u3) · c34|2(u3|2,u4|2).

Here, the conditional margin u3|2, which depend on u2 and u3 must be computed using integration, as will

be demonstrated in Chapter 3.

U1

U2 U3

U4

Figure 1.8: Graphical structure for which the joint density will require integration for every assignment of copulas.

The one-dimensional integrals can still be computed numerically in a reasonable amount of time with good

accuracy. However, graphs can be constructed for which integration in an arbitrary dimension is required.

Hence, the PCBN in its current state is not scalable in general to larger graphs. Therefore, it would be benefi-

cial to find necessary and sufficient conditions under which one can evaluate the density for PCBNs without

the need to integrate, giving us the first goal of this thesis.

Goal 1. Construct a subclass of DAGs for which we can choose an assignment of copulas such that the compu-

tation of the joint density does not require integration.

Even if we have a DAG for which there exists a suitable assignment of (conditional) copulas, we must still

assign the copulas in an intelligent manner. Therefore, we will construct an algorithm that finds a set of

orders O given a restricted graph.

Goal 2. Construct an algorithm that assigns copulas to the arcs of a restricted graph such that the joint density

does not require integration.

We will prove that this algorithm is always able to find a suitable O given a restricted DAG. This requires a
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substantial amount of work, compelling us to prove many other results which take up a large part of this

thesis.

Goal 3. Prove results concerning restricted DAGs which are needed to show that the steps in the algorithm are

necessary and sufficient to find a suitable O .

With the restrictions on the graph and the algorithm in place, we define a restricted PCBN model for which we

can estimate parameters without expensive integration. Furthermore, we illustrate how to fit such restricted

PCBNs to a data set. We start our presentation by finding the parameters of a fixed graph G , hence we only

have to find the optimal assignment of copulas and parameters of the assigned copula families.

Goal 4. Establish how to fit a restricted PCBN to a data set for a fixed graph.

In real-world applications the graph is generally not known. Hence, we are also tasked with finding the graph-

ical structure. This structure can be chosen by means of expert judgment. However, if the sufficiently good

data set is available it will be of interest to construct the graph given a particular data set. This process is

called structure learning.

Structure learning algorithms can be roughly divided into two categories; score-based and constraint-based

algorithms [19, ch. 18]. We will concentrate on a score-based algorithm. Here, the graph is assigned a score,

most of the time a likelihood-based score function ([18]). The algorithm will move through the search space

of graphs making slight adjustments to the current graph at each iteration. The adjustments are chosen such

that the resulting graph will have a higher score than the current graph. The end result will be a graph for

which no adjustment will provide a higher score. In particular, we will be implementing the Hill climbing

algorithm which is one of the most elementary structure learning algorithms ([31]). Despite its simplicity, the

algorithm is remarkably competitive ([33]).

Goal 5. Illustrate how to apply a structure learning algorithm to find the optimal graph corresponding to a

restricted PCBN given a data set.

An outline of the thesis is as follows. First, all basic concepts which are necessary for the study of PCBNs are

discussed in Chapter 2. This chapter will not contain any novel results with the exception of Theorem 2.25.

Hereafter, we introduce the PCBN in Chapter 3, and construct the subclass of graphs not needing integration.

The algorithm which assigns the copulas to the found restricted graph will be presented in Chapter 4. Chap-

ter 5 contains the necessary results concerning restricted graphs which are needed to prove the necessity and

sufficiency of the steps in the aforementioned algorithm. Finally, we establish how to perform estimation and

structure learning on the subclass of restricted PCBNs in Chapter 6.



2
Preliminaries

This chapter contains an exposition of basic concepts used later in this thesis. The necessary notation is

established and some useful results available in the literature are given. The following subjects are treated;

graph theory, BNs, GBNs, structure learning in GBNs and copulas.

We will not provide background information regarding basic probability theory. This means that all elemen-

tary topics are assumed to be known by the reader. For a good introduction we refer to [10]. All used notation

will be straightforward and inline with the regular expressions found throughout the literature. A few exam-

ples are the following.

• Univariate random variables are denoted with capitol letters; X , Y and Z , and multivariate random

variables are in bold; X, Y and Z. All are assumed to be real-valued1.

• Observations of X are denoted by a small x, and similarly x is an observation of X.

• The probability density function (PDF) of X is denoted by fX , where the subscript is omitted if X is

clear from context.

• The cumulative distribution (CDF) function of X is denoted by FX , where the subscript may be omitted.

• Independence between two random variables X and Y is denoted by X ⊥⊥ Y . If they are dependent,

then we write X��⊥⊥Y .

• Conditional independence is denoted by X ⊥⊥ Y
∣∣ Z which means that X and Y are independent given

Z .

Finally, we assume that all conditional densities exist; i.e. all joint densities are assumed to be positive.

1Sets are also denoted by capitol letters; e.g. A, K or X . In this thesis, sets will often be subsets of nodes in a graph, but they may also
consist of univariate random variables.

7



8 2. Preliminaries

2.1. Graph theory
The idea behind Bayesian networks is to represent key characteristics of a probabilistic model in an under-

standable graphical structure. Therefore, the usage of graph theory will be required throughout this report.

All necessary definitions will be discussed in this section.

Graphs are mathematical objects which consist of nodes which may or may not be connected by edges. The

nodes and edges can represent many things, in the context of Bayesian networks the nodes will be associated

with univariate random variables and the edges between them will imply dependence.

Definition 2.1 (Graph). Let V ̸= ; be a finite set and let E ⊆ {(v, w); v, w ∈ V , v ̸= w}. The pair G = (V ,E) is

called a graph with vertices/nodes V and edges E . Furthermore, we assume that if E contains an edge (w, v),

then the edge (v, w) is not in E .

v1 v2

v3

v4

Figure 2.1: Example of a simple graph.

The graph in Figure 2.1 shows four nodes which are linked by three edges.

Definition 2.2 (Directed/undirected edge). Let G = (V ,E) be a graph and (w, v) ∈ E . The set E can contain

sets {w, v} and ordered pairs (w, v).

• An ordered pair (w, v) is called a directed edge, denoted by w → v .

• A set {w, v} is called an undirected edge, denoted by w − v .

If an edge w → v is not present in E , then we write w ↛ v .

A directed edge is also referred to as an arc. The undirected edges will be represented by lines and the directed

edges by arrows. For example, if the edge between nodes v2 and v3 in Figure 2.1 is to be replaced by a directed

edge v2 → v3, the graph below is obtained.

v1 v2

v3

v4

Figure 2.2: Example of a simple graph with one directed edge.

Note that Figure 2.2 contains a mixture of directed and undirected edges. Such graphs will not be used in this

thesis. All graphs will only consist of either directed or undirected edges. For example, the graph correspond-

ing to a Bayesian network only has directed edges. Figures 2.3a and 2.3b show an undirected and a directed

graph respectively.
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Definition 2.3 (Directed/undirected graph). Let G = (V ,E) be a graph.

• If E only contains directed edges, then G is a directed graph.

• If E only contains undirected edges, then G is an undirected graph.

v1 v2

v3

v4

(a) Undirected graph

v1 v2

v3

v4

(b) Directed graph

Figure 2.3: Example of an undirected and directed graph.

Each directed graph is associated with an undirected graph called a skeleton, which is obtained by removing

the directions of the arcs. These undirected graphs will prove to be useful in revealing certain properties of

Bayesian networks. For example, the graph in Figure 2.3a is the skeleton of the graph in Figure 2.3b.

Definition 2.4 (Skeleton). Let G = (V ,E) be a directed graph. Then, the skeleton of G is defined as the undi-

rected graph obtained by replacing each arc w → v ∈ E with an undirected edge w−v . The skeleton is denoted

by S(G ) = (V ,S(E)).

The directed graph in Figure 2.3b contains the arcs v1 → v2 and v2 → v4. Thus, it is possible to travel from

node v1 to node v4 via the two aforementioned arcs. Such a traversal is called a path. For example, the graphs

in Figures 2.3a and 2.3b contain the paths v1 − v2 − v3 and v1 → v2 → v4, respectively.

Definition 2.5 (Path). Let G = (V ,E) be a graph. A path is a sequence of nodes (v1, v2, . . . , vn) such that

{v1, v2, . . . , vn} ⊆V and {(v1, v2), (v2, v3), . . . , (vn−1, vn)} ⊆ E for some integer n > 0 called the length of the path.

Paths which only contain directed/undirected edges are denoted distinctly:

• Directed edges: v1 → v2 →···→ vn .

• Undirected edges: v1 − v2 −·· ·− vn .

Note that Figure 2.3b contains no path from node v1 to node v3. Traveling from v1 to v3 would only be

possible by violating the directions of the arcs. Such traversals are called trails. For example, the graph in

Figure 2.3b contains the trail v1 → v2 ← v3.

Definition 2.6 (Trail). Let G = (V ,E) be a directed graph. A trail is a sequence of nodes (v1, v2, . . . , vn) such

that v1−, v2 −·· ·− vn forms a path in the skeleton of G .

When considering a general graph, the direction of an arc may not be specified, meaning that an arc between

vi and vi+1 can either point towards the left or right, denoted by vi ⇌ vi+1. If the direction of the arcs is not

specified, a trail is denoted by v1 ⇌ v2 ⇌ · · ·⇌ vn . If the direction of the arc between vi and vi+1 is known,

we may replace vi ⇌ vi+1 by vi → vi+1 or vi ← vi+1, depending on the direction.

Each node (vi ) not corresponding to an end-point of the trail has two neighbours (vi−1 and vi+1). The arcs

between the neighbours and the node itself can both point in different directions. For instance, consider the

trail v1 → v2 ← v3 from Figure 2.3b. Here, both v1 and v3 point towards v2. Such a graphical structure is called

a converging connection. We define three distinct types of connections.
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Definition 2.7 (Connections). Let G = (V ,E) be a directed graph and v1 ⇌ · · ·⇌ vn a trail in G . For an integer

i ∈ {2, . . . ,n −1} we say that vi−1 ⇌ vi ⇌ vi+1 is a

• serial connection if vi−1 ← vi ← vi+1 or vi−1 → vi → vi+1,

• diverging connection if vi−1 ← vi → vi+1,

• converging connection if vi−1 → vi ← vi+1.

The node vi is referred to as a serial, diverging or converging node, respectively.

It will be of particular interest if a trail contains nodes which are not located next to each other in the sequence

of the trail, but have an arc between them. Such arcs are called chords. For example, the trail v1 → v2 ← v3 ←
v4 in Figure 2.3b contains the chord v2 → v4.

Definition 2.8 (Chord). Let G = (V ,E) be a directed graph and v1 ⇌ . . .⇌ vn a trail in G . An arc between non-

consecutive nodes in the trail is referred to as a chord. That is, for i ∈ {1, . . . ,n} and j ∈ {1, . . . , i −2, i +2, . . . ,n}

the arcs vi → v j and v j → vi are chords.

Taking a subset of the nodes and arcs of a graph produces a smaller graph called a subgraph.

Definition 2.9 (Subgraph). Let G = (V ,E) be a graph. Then, G ′ = (V ′,E ′) is a subgraph of G if

• V ′ ⊆V ,

• E ′ ⊆ E and for all arcs w → v ∈ E ′ the nodes w and v are in V ′.

If the arc set E ′ of a subgraph G ′ = (V ′,E ′) contains all arcs between nodes in V ′ in the original graph G , then

it is said to be induced by the subset V ′.

Definition 2.10 (Induced subgraph). Let G = (V ,E) be a graph and K ⊆ V a subset of nodes. Then, G (K ) =
(K ,E(K )) is a subgraph induced by K with E(K ) := {w → v ; w → v ∈ E , w, v ∈ K }.

A special type of path is one which follows a circular pattern. These paths are called cycles. For example, if

we reverse the arc v3 → v4 in Figure 2.3b, resulting in the graph in Figure 2.4, the cycle v2 → v4 → v3 → v2 is

found.

Definition 2.11 (Cycle). Let G = (V ,E) be a directed/undirected graph. A directed/undirected path in G is a

cycle if it starts and ends with the same node and if it is of length at least 3.

v1 v2

v3

v4

Figure 2.4: A cyclic graph.

Definition 2.12 (Acyclic). A graph G = (V ,E) is acyclic if it does not contain any cycles.

For example, the graph in Figure 2.3b is acyclic whereas the graph in Figure 2.4 is not. Graphs corresponding

to Bayesian networks are both directed and acyclic. Thus, it is convenient to construct a definition which
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merges the two properties.

Definition 2.13 (Directed acyclic graph). A graph G = (V ,E) is a directed acyclic graph (DAG) if it is directed

and acyclic.

Another useful term is the concept of adjacency, which provides information about the direct connections in

a graph.

Definition 2.14 (Adjacency). Let G = (V ,E) be a graph. Nodes w, v ∈V are adjacent if (w, v) or (v, w) is in E .

Furthermore, we define the adjacency set corresponding to a subset A ⊆V by

ad(A) := {w ∈V \ A; ∃a ∈ A : (w, a) ∈ E or (a, w) ∈ E }.

In a directed graph, the adjacency of two nodes v and w reveals that the graph contains either v → w or

w → v . This warrants definitions which provide insight into the relation between adjacent nodes.

Definition 2.15 (Parents and children). Let G = (V ,E) be a directed graph. For each arc w → v ∈ E the node

w is said to be the parent of v and v is said to be the child of w . For a node v ∈ V the sets containing all its

parents and children are denoted by pa(v) and ch(v) respectively.

For example, in Figure 2.3b, v2 is the child of v1, and nodes v2 and v3 are the parents of v4.

It has been seen that two nodes can be indirectly linked by a path, this give rise to a definition which describes

these indirectly connected nodes. .

Definition 2.16 (Ancestors and descendants). Let G = (V ,E) be a directed graph and w, v ∈V . If there exists

a path from w to v , then w is said to be the ancestor of v and v is said to be the descendant of w . For a node

v ∈V the sets containing all its ancestors and descendants are denoted by an(v) and de(v), respectively.

For a directed graph which models a dependence structure, special attention must be paid to cases where

two arcs point towards the same node; i.e. converging connections. In the literature these constructions are

often called v-structures, where a special distinction is made between coupled and uncoupled v-structures.

Examples of graphs with a coupled and uncoupled v-structure are displayed in Figure 2.5. In this thesis, we

will use the the definitions converging connection and uncoupled v-structure interchangeably.

Definition 2.17 (v-structures). Let G = (V ,E) be a directed graph. Three nodes u, v and w form a v-structure

around v if u → v and w → v are both in E . The v-structure is called coupled if u and w are adjacent and it is

called uncoupled if they are not adjacent.

v1 v2

v3

(a) Uncoupled v-structure.

v1 v2

v3

(b) Coupled v-structure.

Figure 2.5: Example of both types of v-structures around node 3.

It will be desirable to order the nodes of a graph. Therefore, the definition of a total order on an arbitrary set

K is introduced.

Definition 2.18 (Total order). The binary relation < on a set K is a total order if for all a,b,c ∈ K the following
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conditions are satisfied:

1. a |< a.

2. a < b ⇒ b |< a.

3. a < b and b < c ⇒ a < c.

4. a ̸= b ⇒ a < b or b < a.

By using the directions of arcs in a DAG, we can define a particular total order on the nodes of the graph.

Definition 2.19 (Well-ordering). Let G = (V ,E) be a DAG. A total order < on V is called a well-ordering of G

if

∀a,b ∈V : a → b ∈ E ⇒ a < b.

Note that the well-ordering of a DAG is not unique. For example, in Figure 2.5a both v1 < v2 < v3 and v2 <
v1 < v3 are well-orderings. For all nodes v in a DAG, we will also need to define a total order on the parents of

v . Therefore, the concept of parental order is defined.

Definition 2.20 (Parental order). Let G = (V ,E) be a directed graph and v ∈ V be a node with
∣∣pa(v)

∣∣ > 1. A

parental order of v is a total order on the set pa(v) denoted by <v . Furthermore, for all w ∈ pa(v), the set of

parents of v strictly up to w is defined by

pa(v ↓ w) := {z ∈ pa(v); z <v w}.

Moreover, the set of parents of v strictly after w is defined as

pa(v ↑ w) := {z ∈ pa(v); w <v z}.

In the same way, we define

pa(v ↓ w) := pa(v ↓ w)⊔ {v} and pa(v ↓ w) := pa(v ↓ w)⊔ {w}.

Remark 2.21. The two definitions pa(v ↓ w) and pa(v ↓ w) are needed later in this thesis. The motivation

behind the notation is that pa(v ↓ w) has corresponding arc w → v , where w is the parent and v the child. In

all graphs, parents are typically displayed above children. Therefore, when including the parent w , we use an

overline (pa) while an underline is used (pa) to include the child v .

Another way to think about is that an overline implies the inclusion of the right node (which is w) in pa(v ↓
w), whereas an underline implies the inclusion of the left node (which is v).

An important concept for directed graphs is that two subsets of nodes can be connected through trails. These

trails can be either blocked or activated given another subset.

Definition 2.22 (d-separation). Let G = (V ,E) be a directed graph and let X ,Y , Z ⊆ V be disjoint. Then, Z is

said to d-separate X and Y in G , denoted by d − sepG

(
X ,Y

∣∣ Z
)
, if every trail v1 ⇌ v2 ⇌ · · ·⇌ vn with v1 ∈ X

and vn ∈ Y contains at least one node vi satisfying one of the following conditions:

• The trail forms a v-structure around vi , i.e. vi−1 → vi ← vi+1, and the set {vi }⊔de(vi ) is disjoint from

Z .

• The trail does not contain a v-structure around vi and vi ∈ Z .
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If a trail satisfies one of the conditions above, it is said to be blocked by Z , else it is activated by Z . Further-

more, if X and Y are not d-separated by Z , we use the notation ����d − sepG

(
X ,Y

∣∣ Z
)
. Moreover, if X or Y is

equal to the empty set, then we take the convention that d − sepG

(
X ,Y

∣∣ Z
)

always holds.

We make the following remark regarding the definition above.

Remark 2.23. In the literature, d-separation is usually not well-defined if X or Y is equal to the empty-set.

However, we will use the convention that if X or Y or both are empty then they are d-separated.

To better explain the concept of d-separation, three examples will be given. Here, the d-separations in the

graph in Figure 2.6 are examined. For each example, two subsets of nodes, X and Y , are given and we will

examine which subsets, Z , d-separate them.

1. X = {v1}, Y = {v6, v7}:

To d-separate X and Y , we must block all trails between v1 and v6. This immediately implies that

all trails from v1 to v7 are blocked as well. The nodes v2 and v3 must be included in the set Z , since

omitting them would activate the trails; v1 → v2 → v6 or v1 → v3 → v6. Other nodes which are optional

but not required are v4 and v5. Thus, the possible choices for Z are: {v2, v3}, {v2, v3, v4}, {v2, v3, v5} and

{v2, v3, v4, v5}.

2. X = {v1}, Y = {v4}:

The nodes v1 and v4 are connected by the following trails:

(i) v1 → v2 → v5 ← v4

(ii) v1 → v2 → v6 ← v4

(iii) v1 → v3 → v6 ← v4

Since all three trails contain a v-structure, v1 and v4 are d-separated by the empty set. The addition of

v2 and v3 to Z will maintain the d-separation. However, the nodes v5, v6 or v7 can be included in Z ,

but they imply the inclusion of other nodes as well. If node v5 is present in Z , then v2 must also be

included. Indeed, v5 activates the v-structure in trail (i), and hence to block the trail, v2 must be in Z as

well. For v6 to be in Z , we must have v2, v3 ∈ Z for the other two trails to be blocked. The same holds

for v7 since it is a descendant of v6. Thus, the possible choices for Z are: ;, {v2}, {v3}, {v2, v3}, {v2, v5}

and the set {v2, v3} plus any combination of v5, v6 and v7.

3. X = {v4, v5}, Y = {v1, v3}:

The node v6 cannot be included in Z , otherwise the trail v5 → v6 ← v3 would be active. Moreover, v7

cannot be included in Z , since it is a descendant of v6. In order to block the trail v5 ← v2 ← v1, v2 must

be included in Z . Thus, the only possible choice for Z is: {v2}.
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v1

v2 v3

v5 v6

v4

v7

Figure 2.6: A DAG consisting of 7 nodes.

A subclass of DAGs are multitrees.

Definition 2.24 (Multitree). A multitree is a DAG with at most one directed path between two nodes.

For example, the graph in Figure 2.6 is not a multitree since nodes v1 and v6 are joined by two distinct paths;

v1 → v2 → v6 and v1 → v3 → v6. An example of a multitree is displayed in Figure 2.7.

v1

v4

v2

v5

v3

v6

v7

Figure 2.7: Example of a multitree.

Multitrees have the unique property that each pair of parents are d-separated given the empty set. This prop-

erty will prove to be desirable in the context of the pair-copula Bayesian network. Therefore, we propose the

following theorem.

Theorem 2.25. Let G = (V ,E) be a DAG. The following are equivalent:

(i) G is a multitree.

(ii) ∀v ∈V : ∀w, z ∈ pa(v) with w ̸= z we have that d − sepG

(
w, z

∣∣;)
.

Proof.

• (i) ⇒ (ii) : Proof by contraposition. There exist v ∈ V and w ̸= z ∈ pa(v) such that ����d − sepG

(
w, z

∣∣;)
.

Hence, there exists an active trail between w and z. If these nodes are connected, e.g. w → z ∈ E , then

there are obviously two distinct paths from w to v . In case when these nodes are not directly connected,

hence w → z ∉ E and z → w ∉ E , then the active trail between w and z can only correspond to one of

the following paths:
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1. w → v1 →···→ vn → z

2. w ← v1 ←···← vn ← z

3. w ←···← vi →···→ z

For all three cases we can find two nodes which are connected by two distinct directed paths. For case

1, we have that w and v are connected by

w → v,

w → v1 →···→ vn → z → v.

Similarly, for the second case we have that z and v are joined by:

z → v,

z → vn →···→ v1 → w → v.

In the third case, the nodes vi and v are connected by the paths

vi → vi+1 →···→ vn → z → v,

vi → vi−1 →···→ v1 → w → v.

Hence, we get that this graph is not a multitree.

• (ii) ⇒ (i) : Again proof by contraposition. If G is not a multitree, then there exist two nodes x, y ∈V with

two distinct directed paths between them. We can assume that these paths start at x and end with y . A

path between x and y is either direct link x → y or it is of the form x → v1 → ··· → vn → y . Thus, two

cases need to be considered.

1. Suppose that the two paths are of the form

x → v1 →···→ vn → y,

x → y.

It is clear that x, vn ∈ pa(y) and that����d − sepG

(
x, vn

∣∣;)
since x → v1 →···→ vn is an active trail.

2. Let the two paths be as follows

x → v1 →···→ vn → y,

x → w1 →···→ wm → y.

We can assume that these paths do not share a node (except for x and y), i.e. {v1, . . . , vn}∩{w1, . . . , wm} =
;. If this is not the case, we can simply pick the smallest i and j such that vi = w j , and set this

node as our y . The resulting two paths will clearly not share a node. Moreover, if this operation

reduces one of the paths to a direct link we are in case 1. Else, we have that vn , wm ∈ pa(y) and

����d − sepG

(
vn , vm

∣∣;)
since vn ←···← v1 ← x → w1 →···→ wn is an active trail.



16 2. Preliminaries

2.2. Bayesian network
This section will provide the necessary background knowledge on Bayesian networks, for more information

on the topic it is advised to read [27, 22, 15, 19].

First, we must establish the necessary notation concerning graphical models. A graphical model is a graphical

representation of a multivariate random variable. Here, the nodes of the graph correspond to univariate

random variables and the arcs express the direct dependence between them. Consider a random vector X

which is represented by a graph G = (V ,E). Each node v ∈ V corresponds to a univariate random variable

Xi . A random variable Xi will also be referred to as Xv . Moreover, we will denote realizations of Xi by either

xi or xv and the PDF of Xi will be written as fi or fv . This notation is easily extended to subsets K ⊆ V , i.e.

XK = (
Xv

)
v∈K with PDF fK . Furthermore, the PDF of a random variable Xv conditional on XK with K ⊆V \{v}

is denoted by fv |K .

Bayesian networks are graphical models where the graph is a DAG, see Definition 2.13. The arcs induce direct

independencies between random variables and conditional independencies between sets of random vari-

ables through d-separation ([27]), see Definition 2.22.

Definition 2.26 (Bayesian network). A Bayesian network (BN) is a graphical model composed of

• a DAG G = (V ,E) where the nodes correspond to univariate random variables and the arcs describe the

conditional independencies through d-separation,

• a sequence of conditional densities { fv |pa(v); v ∈V }.

The set of conditional independencies allows for the decomposition of the joint density as a product of the

specified conditional densities;

fV (XV ) = ∏
v∈V

fv |pa(v)(xv |xpa(v)). (2.1)

A set of random variables corresponding to a certain BN must have a probability measure that is in compli-

ance with the set of conditional independencies. Such measures are called Markovian w.r.t. the BN.

Definition 2.27 (Markovian). A probability measure P over the nodes of a directed graph G = (V ,E) is said to

be Markovian w.r.t. G if:

∀X ,Y , Z ⊆V : d − sepG

(
X ,Y

∣∣ Z
)⇒ X ⊥⊥P Y

∣∣ Z .

It is easily seen that a probability measure P which is Markovian w.r.t a directed graph G and absolutely

continuous w.r.t. the Lebesgue measure allows for the factorization in Equation (2.1). Since all Markovian

probabilities can be factorized according to Equation (2.1), we can construct the high-dimensional densities

fV by using the conditional distributions fv |pa(v).

Consider a multivariate random variable X which is Markovian w.r.t. a DAG G . Remark that ordering the

univariate random variables Xi according to a well-ordering of G (see Definition 2.19) allows for the factor-

ization

fX(X) =
n∏

i=1
fXi |X1,...,Xi−1 (xi |x1, . . . , xi−1).

An important observation is that BNs with varying graphical structures can induce the exact same collection

of Markovian probabilities, such networks are called equivalent.
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Definition 2.28 (Equivalence class). Two Bayesian networks G 1 and G 2 are equivalent if they induce the

same set of Markovian probability measures. For a network G , the set of all networks which are equivalent to

G is called the equivalence class of G , denoted by [G ].

To illustrate the equivalence between different BNs we examine the graphs in Figure 2.8.

v1 v2

v3

(a)

v1 v2

v3

(b)

v1 v2

v3

(c)

v1 v2

v3

(d)

Figure 2.8: Example illustrating equivalence of graphs.

It is easily seen that the first three graphs are equivalent. For example, by rewriting the factorization of the

first graph;

f (v1, v2, v3) = f (v1) f (v3|v1) f (v2|v3)

= f (v1, v3) f (v2|v3)

= f (v3) f (v1|v3) f (v2|v3),

we can find the factorization of the third graph. However, the fourth graph is not equivalent to the first

three. The v-structure is a special case which implies different conditional independencies. Indeed, the first

three graphs encode the d-separation d − sepG

(
v1, v2

∣∣v3
)

whereas the fourth graph encodes the d-separation

d − sepG

(
v1, v2

∣∣;)
. In [28] it was shown that two DAGs are equivalent if and only if they have the same set of

d-separations. An even more intuitive theorem was proven by Pearl and Verma a year later in [38].

Theorem 2.29. Two DAGs are equivalent if and only if they have the same skeletons and uncoupled v-

structures.

Note that two equivalent DAGs can have different coupled v-structures. For example, the graphs in Figure 2.9

are equivalent, i.e. the d-separations following from both graphs are the same, yet they have different v-

structures.

v1 v2

v3

(a)

v1 v2

v3

(b)

v1 v2

v3

(c)

Figure 2.9: Example illustrating equivalent graphs with varying coupled v-structures.
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2.3. Gaussian Bayesian network
In this section we provide a brief introduction into the Gaussian Bayesian network (GBN). An extensive treat-

ment of GBN models can be found in [19], [22], [8] and [33].

A GBN is a BN where all conditional PDFs in the decomposition of the joint density (Equation (2.1)) are as-

sumed to be Gaussian.

Definition 2.30 (Gaussian Bayesian network). A Gaussian Bayesian network is a BN such that all condi-

tional PDFs of each node, fv |pa(v), are normally distributed with mean equal to a linear combination of its

parents and a constant standard deviation. That is, Xv ∼ N
(
µv + ∑

w∈pa(v)
φw

v Xw ,σ2
v

)
, where µv , σv and φw

v are

constants.

For example, we could define the following GBN.

X1

X2 X3

X4 X5

X1 ∼ N (2,12)

X2 ∼ N (1.2+0.5 ·X1,0.92)

X3 ∼ N (2+0.8 ·X2,0.752)

X4 ∼ N (0.5−X2,0.32)

X5 ∼ N (0−0.75 ·X3 +0.6 ·X4,1.22)

Figure 2.10: GBN with the graph displayed on the left and the conditional distributions displayed on the right.

An important property of GBNs is their equivalency to multivariate Gaussians. This result is proven in The-

orems 7.3 and 7.4 in [19]. When a GBN is specified it is easy to compute the parameters of corresponding

joint Gaussian distributions (see [19, ch. 7]). This can be done for any graph structure. This means that GBNs

inherit all nice properties of joint Gaussian distribution, that is, the marginal distributions of all variables can

be easily computed. The conditionalization of GBNs on observed evidences can be computed analytically.

For example, in Figure 2.10 the conditional density f13|5 is not directly given by the GBN but can be easily

computed, as we will see in Example 2.32.

All parameters of a GBN are contained in a parameter vector denoted by θ. This means that θ contains µv ,

σv and φw
v for all v ∈V and w ∈ pa(v). Observe that the GBN can be seen as a set of regression equations; for

all v ∈V ,

Xv |pa(v) =µv +
∑

w∈pa(v)
φw

v Xw +N (0,σ2
v ).

Consequently, θ can be estimated very fast. In this thesis this will be done by optimizing the log-likelihood,

AIC and BIC.

Definition 2.31 (Likelihood based selection criteria for GBNs). Let G be a BN and fV a density induced by

G with corresponding parameter vector θ. For a random sample D = (x(m)
V )m=1,...,M of size M we define the
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log-likelihood by

ℓ(θ; G ,D) = log
M∏

m=1
fV (x(m)

V ; θ)

=
M∑

m=1

∑
v∈V

log fv |pa(v)(x(m)
v |x(m)

pa(v); θ).

The AIC and BIC are defined as

AIC (θ; D) =−2 ·ℓ(θ; G ,D)+2k,

B IC (θ; D) =−2 ·ℓ(θ; G ,D)+ log(M)k,

where k is the number of parameters in θ.

As an example, we apply the GBN on a data set generated from the GBN in Figure 2.10.

Example 2.32. Consider the data set in Figure 2.11.

Figure 2.11: Data set of 1000 samples generated from the GBN in Figure 2.10.

We fit a GBN using the true graph in Figure 2.10 by minimizing the BIC with the function bn.fit() from the

bnlearn package in R. The fitted model has the following conditional distributions:

X1 ∼ N (2.009, 1.0082),

X2 ∼ N (1.188+0.537 ·X1, 0.9082),

X3 ∼ N (1.942+0.822 ·X2, 0.7482),

X4 ∼ N (0.502−1.000 ·X2, 0.2982),

X5 ∼ N (0.009−0.725 ·X3 +0.660 ·X4, 1.1922).

The found parameters closely resemble the parameters of the true GBN in Figure 2.10. Moreover, the BIC of

the fitted model is equal to 11445.13 which is close to the BIC of the true distribution; 11453.3. Therefore, we

can conclude that the estimated GBN fits the data rather well.
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With the function gbn2mvnorm() from bnlearn, we can convert this GBN into an equivalent multivariate

Gaussian, which has mean vector and covariance matrix equal to

µ=


2.009

2.268

3.806

−1.767

−3.919

 and Σ=


1.017 0.546 0.449 −0.547 −0.687

0.546 1.118 0.919 −1.119 −1.406

0.449 0.919 1.315 −0.920 −1.562

−0.547 −1.119 −0.920 1.208 1.465

−0.687 −1.406 −1.562 1.465 3.520

 .

We see what are the mean and the variance of Gaussian distribution of each node and we are able to deter-

mine any desired conditional distribution in closed form. Suppose that we wish to find (X1, X3)|X5 = x5. First,

we observe that the joint distribution of (X1, X3, X5) is joint normal with

µ135 =

µ1

µ3

µ5

 and Σ135 =

Σ11 Σ13 Σ15

Σ31 Σ33 Σ35

Σ51 Σ53 Σ55

 .

Now, it follows (see for instance [9, p. 116] that the conditional random vector (X1, X3)|X5 is joint normally

distributed with mean vector and covariance matrix equal to(
µ1

µ3

)
+

(
Σ15

Σ35

)
1

Σ55
(x5 −µ5) and

(
Σ11 Σ13

Σ31 Σ33

)
−

(
Σ15

Σ35

)
1

Σ55

(
Σ15 Σ35

)
which in this case are equal to (

−0.198 · x5 −1.223

−0.446 · x5 −2.001

)
and

(
0.929 0.152

0.152 0.613

)
.
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2.4. Score-based structure learning in GBNs
In this section the process of finding the optimal graphical structure of a GBN for a given data set using score-

based structure learning is described. For more information concerning structure learning in GBNs we refer

to [33], [19, ch. 18] and [18].

Score-based algorithms are composed of a search strategy and score function. The score function evaluates

how well the proposal graph represents independencies and conditional independencies of the data assum-

ing that it has joint Gaussian distribution. The search space of possible graph structures is traversed according

to a certain search strategy and graphs are evaluated. The one with maximum score is chosen.

There are many different score functions and search strategies, for a good overview see [18].

2.4.1. Score functions
In this thesis, only the following likelihood based score functions are applied.

Definition 2.33 (Likelihood-based score functions for GBNs). Consider a data set D and a GBN G . We define

the following likelihood-based score functions:

scor eℓ = ℓ(θℓ; G ,D),

scor e AIC =−AIC (θAIC ; G ,D),

scor eB IC =−B IC (θB IC ; G ,D).

Here, θℓ, θAIC and θB IC are the parameter vectors maximizing the log-likelihood, -AIC and -BIC respectively.

Score functions that have desirable properties are favoured, such properties include decomposability and

score equivalence.

Decomposability: A score function is called decomposable if it can be written as a sum over the nodes of

functions depending only on the node and its parents. Observe that the score functions in Definition 2.33 are

decomposable. For example, scor eℓ can be written as

scor eℓ = ℓ(θℓ; G ,D)

= ∑
v∈V

[ M∑
m=1

log fv |pa(v)
(
x(m)

v |x(m)
pa(v); µ

ℓ
v ,σℓv , {φw,ℓ

v }w∈pa(v)
)]

.

Here, the functions fv |pa(v) do not require the entire vector θℓ as input, instead they only need the relevant

parameters; µℓv , σℓv and {φw,ℓ
v }w∈pa(v). If this were not the case, then the score function would not be decom-

posable.

Decomposability is a desirable trait for a score function, since it allows for fast computations. This is be-

cause the score of a node v will only be affected by arc operations concerning arcs pointing towards v . Thus,

computing the score change of an arc operation becomes a local problem.

Score equivalency: Equivalent graphs induce the same probability distributions, therefore it would be logical

if they are assigned the same score. A score function satisfying this property is called score equivalent. The

score functions in Definition 2.33 are score equivalent. Indeed, two equivalent GBNs induce the same set of

probability distributions, and therefore optimizing the log-likelihood, AIC or BIC for both graphs results in

an identical score.

2.4.2. Search strategy
In this thesis, the search strategy that will be employed is the Hill climbing algorithm [31]. This algorithm

is initialized with a graph, often equal to the empty graph. At each iteration, the score of the current graph
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G max is compared with all neighbouring graphs; i.e. graphs reachable from G max by arc addition, removal or

reversal.

If there is a neighbour for which the score increases, then the current graph is replaced by a neighbour with

the highest score. The described steps are formalized in Algorithm 1. Hereunder, we consider an example

where the Hill climbing algorithm is applied to the data set from Example 2.32.

Algorithm 1 Hill climbing for GBNs

Input: DAG G , data D, score function scor e(G ; D)
Output: the DAG G max that locally maximizes scor e(G ; D)

G max ←G

Smax ← scor e(G ; D)
while Smax increases do

for each arc operation e on G max resulting in a DAG G e do
compute the score delta ∆(e) = scor e(G e ; D)−Smax

end for
if max{∆(e)} > 0 then

e∗ = argmax
e

{∆(e)}

G max ←G e∗

Smax ← Smax +∆(e∗)
end if

end while
return Gmax

Example 2.34. Let us apply the Hill climbing algorithm implemented in the bnlearn function hc() to the data

set in Figure 2.11. By default, bnlearn uses the scor eB IC , and therefore we do the same.

After starting with the empty graph, the algorithm adds the arcs 2 → 4, 2 → 3 and 3 → 5, giving us the graph

displayed below.

X1

X2 X3

X4 X5

Now, the algorithm will compute the change in score for every arc operation e resulting in a DAG G e . This

provides us with Table 2.1. There are two operations which provide the highest score delta, i.e. the additions

of the arcs 1 → 2 and 2 → 1. When confronted with two operations resulting in an equal increase in score,

bnlearn consults the order of the columns in the data-frame.

For example, if the columns of the data-frame are ordered as X1, X2, X3, X4 and X5, it will add the arc 1 → 2,

since 1 comes before 2. However, if we choose another order such as X2, X4, X1, X5 and X3, then bnlearn

prefers the arc 2 → 1. Thus, depending on the order of the columns either arc 1 → 2 or arc 2 → 1 is added,

hereafter its search is continued.

If we supplied bnlearn with the column order X1, X2, X3, X4 and X5, then the Hill climbing algorithm finds
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the correct graph, i.e. the graph in Figure 2.10. In this case we find the same fitted model from Example 2.32.

If we order the columns as X2, X4, X1, X5 and X3, then bnlearn finds the graph displayed below. Observe that

this graph is equivalent to the true graph. Since equivalent graphs induce the same set of probability distri-

butions, fitting a GBN with this graph provides an identical distribution to the one found in Example 2.32.

X1

X2 X3

X4 X5

Figure 2.12: Found graph when applying the Hill climbing algorithm in bnlearn to the data in Figure 2.11 with the column order X2, X4,
X1, X5 and X3.

operation arc e ∆e

addition 1 → 2 122.073
addition 1 → 3 -3.442
addition 1 → 4 -1.767
addition 1 → 5 3.342
addition 2 → 1 122.073
addition 2 → 5 51.193
addition 3 → 1 60.408
addition 3 → 4 -3.366
addition 4 → 1 119.551
addition 4 → 3 -3.366
addition 4 → 5 62.569
addition 5 → 1 49.182
addition 5 → 4 5.431
remove 2 → 3 -374.682
remove 2 → 4 -1282.861
remove 3 → 5 -310.571
reverse 2 → 3 0
reverse 2 → 4 0
reverse 3 → 5 -229.583

Table 2.1: The score-delta of the BIC-based score function for all possible arc operations.

2.4.3. Performance metrics
There are many methods to test the performance of structure learning algorithms ([18]). We will discuss three

approaches; graphical distance, inference measures and statistical distance. It should be noted that the first

approach requires us to know the true graphical structure, and the third approach requires us to know the

true distribution. In this thesis, algorithms will be tested on simulated data sets for which the true graph and

distribution are known. Therefore, this will not pose a problem.

First approach: A simple metric would be to run the algorithm and check if the estimated graph matches the

true graph. For instance, one could compute the Structural Hamming Distance (SHD) between the true and
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the estimated graph ([36]). This metric returns the number of arc operations it would require to transform

the estimated DAG into the true DAG.

A down sight of such metrics is that equivalent graphs are often assigned a distance greater than zero. Indeed,

the SHD between the equivalent graphs in Figure 2.9 is greater than zero.

By Theorem 2.29, two BNs are equivalent if they have the same skeleton and uncoupled v-structures. There-

fore, we propose a metric based on these two properties. Moreover, instead of measuring the difference

between uncoupled v-structures we also take into account distinct coupled v-structures. This means that

two equivalent graphs might still be assigned a distance greater than zero.. However, later in this thesis, this

choice will be justified when we apply the metric to the pair-copula Bayesian networks. Here, we will see that

two PCBNs can only be equivalent if their coupled v-structures are also the same. Hence, we propose the

following distance metric.

Definition 2.35 (Distance). Let G 1 = (V ,E 1) and G 2 = (V ,E 2) be two DAGs, and let K ⊆V be the set contain-

ing all nodes in V that correspond to a v-structure in either G 1 or G 2. Then, the distance between the G 1 and

G 2 is given by

di st ance(G 1,G 2) = ∑
v,v ′∈V

1

(
v − v ′ ∈ S(E 1)∆S(E 2)

)
+ ∑

v∈K

∣∣pa(v)(G 1)∆pa(v)(G 2)
∣∣

where ∆ represents the symmetric difference and S(E 1) and S(E 2) are as in Definition 2.4.

The first sum measures the number of different edges in the two skeletons, and the second sum compares

the parents of the v-structures in both graphs.

As an example, let us now compute the distance between the two graphs below. The skeletons differ in two

edges; X3 −X4 and X3 −X5. Moreover, the v-structures at X4 and X5 are different;∣∣pa(X4)(G 1)∆pa(X4)(G 2)
∣∣= ∣∣{X3}

∣∣= 1 and
∣∣pa(X5)(G 1)∆pa(X5)(G 2)

∣∣= ∣∣{X3, X6}
∣∣= 2.

Thus, the distance between the two graph is 2+1+2 = 5.

X2 X3 X4

X1

X5

X6

(a) G 1

X2 X3 X4

X1

X5

X6

(b) G 2

Figure 2.13: Two graphs whose distance is equal to five.

Second approach: In the inference-based approach, the performance of an estimated GBN is measured by

how well it fits the data. This is generally done by using the log-likelihood, AIC or BIC. To compare an es-

timated GBN to the true GBN, one can compare the inference-based metrics of the optimized parameter

vector for both the true and estimated graph. For instance, in Example 2.34 we have seen that the BIC of the

estimated GBN and the true GBN were relatively close; 11445.13 and 11453.3, respectively.



2.4. Score-based structure learning in GBNs 25

Third approach: Alternatively, it is possible to measure the distance between the true probability measure

and the estimated measure. This can for instance be done with the Kullback-Leibler divergence ([20]).

Definition 2.36 (Kullback-Leibler divergence). Let F be the true probability measure and F̂ the estimated

measure. The Kullback-Leibler divergence between F and F̂ is defined by

K L(F, F̂ ) =
∫ ∞

−∞
log

( f (x)

f̂ (x)

)
dF (x)

= E
[

log
( f (x)

f̂ (x)

)]

2.4.4. Hill climbing extensions
In this thesis, we will apply the standard version of the Hill climbing algorithm. An obvious flaw of the Hill

climbing algorithm is that it could get stuck in a local maximum, which is not equal to the global maximum.

We briefly discuss two extensions which aim to solve this problem.

Random restarts: One approach is to use random restarts once the algorithm reaches a local maximum ([13]).

This means that the found graph is augmented with a certain amount of random arc operations, in the hope

of finding a better graph.

Tabu search: Here, the algorithm keeps a “tabu” list of recently visited graphs which the algorithm will avoid

([6, p. 99]). Moreover, instead of only moving to graphs which increase the score function, it applies the

optimal arc operation, even it results in a lower score. This means that when reaching a local maximum, the

algorithm will continue its search. Generally, the number of allowed decreasing steps is specified, and if this

number is reached, then the algorithm returns the last found local maximum.
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2.5. Copulas
This section will provide the necessary background knowledge on copulas. For a more in depth explanation

it is advised to read [7, 17, 26].

Definition 2.37 (Copula). A copula is distribution on the d-dimensional unit hypercube, [0,1]d , with uniform

marginal distributions.

Copulas are able to model any real valued multivariate distribution by Sklar’s theorem [35].

Theorem 2.38 (Sklar’s theorem). Let F be a CDF on Rd with univariate margins F1, . . . ,Fd . Then, there exists

a copula C : [0,1]d 7→ [0,1] such that for all x = (x1, . . . , xd ) ∈Rd :

F (x) =C
(
F1(x1), . . . ,Fd (xd )

)
.

If the univariate margins are continuous, then C is unique.

Sklar’s theorem immediately implies a similar equation for the joint PDF. Using the same setting as in Theo-

rem 2.38, for the joint density f and marginal densities f1, . . . , fd corresponding to F and F1, . . . ,Fd assuming

that they exist, we have that

f (x1, . . . , xd ) = f1(x1) . . . fd (xd )c
(
F1(x1), . . . ,Fd (xd )

)
,

where c is the PDF corresponding to C .

2.5.1. Bivariate copulas
Before examining various bivariate copulas we define the concepts of Kendall’s τ and tail dependence. These

are dependence measures used to summarize the dependence between random variables.

Definition 2.39 (Kendall’s tau). Let X and Y be two real-valued random variables joined by copula C with

distributions FX and FY . Then, the X and Y are correlated with Kendall’s τ equal to

τ= 4
∫
R

∫
R

C (FX (x),FY (y)) dC (FX (x),FY (y))−1.

Definition 2.40 (Tail dependence). Let X and Y be two real-valued random variables joined by copula C with

distributions FX and FY . Then, the upper and lower tail index are defined as

λU = lim
u→1

1−2u +C (u,u)

1−u
and λL = lim

u→0

C (u,u)

u
,

respectively. If λU ∈ (0,1] (respectively λL ∈ (0,1]), then X and Y are upper tail dependent (respectively lower

tail dependent). If λU = 0 (respectively λL = 0) then X and Y are upper tail independent (respectively lower

tail independent).

There is a vast amount of parametric copula families to choose from. An in depth overview can be found in

[16] and [26].

This research will focus on a subset of widely used copula families. In particular we will use the Gaussian,

Clayton, Gumbel, Frank and Joe copula families, which all require the specification of one parameter.

The Gaussian copula with correlation ρ ∈ [−1,1] is constructed by using the multivariate normal distribution

and is defined by

Cρ(u1,u2) =Φρ

(
Φ−1(u1),Φ−1(u2)

)
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where the functions Φρ and Φ correspond to the multivariate normal with correlation ρ and the univariate

standard normal distribution.

The Clayton, Gumbel, Frank and Joe copulas fall into the class of Archimedean copulas, meaning that they

are constructed using a generator function. A generator function is a convex and strictly decreasing function

ϕ : (0,1] 7→ [0,∞], satisfying ϕ(0) = 1. For such functions the expression

C (u1,u2) =ϕ−1(ϕ(u1),ϕ(u2)
)

will be a properly defined copula, i.e. a CDF on [0,1]2 with uniform margins. The generator functions of our

copulas and additional information about Archimedean copulas can be found in [26, Section 4.3].

2.5.2. Bivariate estimation
There are several methods to estimate a copula corresponding to a certain 2-dimensional data set. A clear

overview can be found in [23]. One approach is to apply a two-step procedure. That is, first transform the

marginal data to uniforms, by either parametric or empirical distributions. Hereafter, the copula will be esti-

mated using the uniform data. This is the approach that will be used during this thesis.

To estimate a bivariate copula, we will select the family and parameters based on likelihood criteria, e.g. AIC,

BIC and log-likelihood. These are defined in the same way as in Definition 2.31. That is, for a given dataset

D = {(u(m)
1 ,u(m)

2 )}m∈{1,...,M } containing M samples a of 2-dimensional random vector, the log-likelihood, AIC

and BIC of a copula c with parameters θ are given by

ℓ(θ; D) =
M∑

m=1
logc

(
u(m)

1 ,u(m)
2 ;θ

)
,

AIC (θ; D) =−2 ·ℓ(θ; D)+2k,

B IC (θ; D) =−2 ·ℓ(θ; D)+ log(M)k,

where k is the number of parameters. Naturally, we will pick the copula family and parameters which opti-

mize one of these criteria, that is minimize the AIC or BIC, or maximize the log-likelihood. Model selection

among parametric copula families using such procedures is implemented by the function BiCopSelect() from

the VineCopula package in R ([24]). Hence, this research will utilize said function for the model selection of

bivariate copulas.

2.5.3. Conditional copulas
When decomposing high-dimensional copulas into a product of bivariate copulas we will make use of con-

ditional copulas, which are copulas that join conditional marginal distributions. For example, if we have

random variables X1, . . . , Xn , i ̸= j ∈ {1, . . . ,n} and K ⊆ {1, . . . ,n} with K ∩ {i , j } =;, then

Fi , j |K (xi , x j |xK ) =Ci , j |K
(
Fi |K (xi |K |xK ),Fi |K (x j |K |xK )

∣∣xK
)
,

where Ci , j |K is a conditional copula. Formally, this copula is a 2-dimensional CDF with uniform margins

which depends on the realizations of the conditioning variables xK . Modeling such functions is quite com-

plex. Therefore, it is often assumed that the copula does not explicitly depend on the conditioning variables.

That is, we assume that

Fi , j |K (xi , x j |xK ) =Ci , j |K
(
Fi |K (xi |K |xK ),Fi |K (x j |K |xK )

)
.

This assumptions is referred to as the “simplifying assumption”. It should be noted that the usage of the sim-

plifying assumption has been debated in the literature. In [14] it is stated that using the simplifying assump-

tion will still lead to adequate approximations of the true copulas. Moreover, it is argued that their usage is
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necessary in the application of the pair-copula construction, as non-simplified copulas require significantly

more computational power. However, [2] shows examples for which it is argued that models using the sim-

plifying assumptions will not suffice. Throughout this thesis, the simplifying assumptions will assumed to

hold.

2.5.4. Pair-copula construction
The pair-copula construction is a method which enables us to model a multivariate distributions by decom-

posing the PDF into a product of bivariate (conditional) copulas. Moreover, the construction is hierarchical

in nature. This means that the model can be graphically represented by a collection of trees. The pair-copula

construction will not explicitly be used in this research. However, it has a strong connection with the pair-

copula Bayesian network. Therefore, this section will briefly explain the ideas behind the pair-copula con-

struction. For an extensive explanation on the subject we refer to [17, 5, 7, 1].

Consider the continuous random variables X1, . . . , Xn . By factorizing the joint PDF f by

f (x1, . . . , xn) =
n∏

i=1
f (xi |x1, . . . , xi−1), (2.2)

we are left with n conditional distributions These function can be expressed with bivariate copulas with the

help of Sklar’s theorem. For example, in the 3-dimensional case we can rewrite the conditional densities

by

f2|1(x2|x1) = f1,2(x1, x2)

f1(x1)

= f1(x1) · f2(x2) · c1,2
(
F1(x1),F2(x2)

)
f1(x1)

= f2(x2) · c1,2
(
F1(x1),F2(x2)

)
,

f3|2,1(x3|x1, x2) = f2,3|1(x2, x3)

f2|1(x2|x1)
(2.3)

= f2|1(x2|x1) · f3|1(x3|x1) · c2,3|1
(
F2|1(x2|x1),F3|1(x3|x1)

)
f2|1(x2|x1)

= f3|1(x3|x1) · c2,3|1
(
F2|1(x2|x1),F3|1(x3|x1)

)
= f3(x3) · c1,3

(
F1(x1),F3(x3)

) · c2,3|1
(
F2|1(x2|x1),F3|1(x3|x1)

)
,

where the conditional CDFs are computed by

F2|1(x2|x1) = ∂C1,2
(
F1(x1),F2(x2)

)
∂F1(x1)

,

F3|1(x3|x1) = ∂C1,3
(
F1(x1),F3(x3)

)
∂F1(x1)

,

giving us the joint PDF

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c1,2
(
F1(x1),F2(x2)

) · c2,3|1
(
F2|1(x2|x1),F3|1(x3|x1)

)
· c1,3

(
F1(x1),F3(x3)

)
.

It should be noted that this decomposition is not unique. Indeed, the ordering of the variables in Equa-

tion (2.2) is arbitrary. Furthermore, we could have chosen
f1,3|2
f1|2 on the right-hand-side of Equation (2.3). For

most parametric families, these decompositions are not equivalent whenever the simplifying assumption is

assumed. Remark that the found joint density is Markovian w.r.t. the Bayesian network displayed in Fig-

ure 2.14, highlighting the connection between the two concepts.
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X1 X2

X3

Figure 2.14: Bayesian network with 3 nodes.

2.5.5. h-functions
In Section 2.5.4 we have seen that the pair-copula construction requires the computation of conditional cop-

ulas which in turn require the computation of the conditional margins. That is, we must compute expressions

of the type Fv |K (xv |xK ) where K ⊆ V and {v}∩K = ;. Using the notation K−w = K \ {w} we have that for all

w ∈ K

Fv |K (xv |xK ) = ∂Cv,w |K−w

(
Fv |K−w (xw |xK−w ),Fw |K−w (xv |xK−w ))

)
∂Fw |K−w (xw |xK−w )

(2.4)

by [17]. Since this expression is quite cumbersome, a shorter notation for the conditional margins is used

throughout the literature; “h-functions”. Suppose that v, w ∈V , then

hv ,w (Fv (xv ),Fw (xw )) = ∂Cv,w (Fv (xv ),Fw (xw ))

∂Fw (xw )
= Fv |w (xv |xw ).

similarly hv,w = Fw |v (xw |xv ). The h-functions extend naturally to larger conditioning sets. For example,

Equations (2.4) is written as

Fv |K (xv |xK ) = hv ,w |K−w (Fv |K−w (xv |K−w ),Fw |K−w (xw |K−w )).

The h-functions are recursive functions, in the sense that their inputs are two lower dimensional conditional

margins. These margins can be conditional margins which must again be computed with h-functions. This

recursion continues until we are left with unconditional margins. For example, the conditional margin u2|143

can be computed with the recursion displayed below. This recursion is certainly not unique.

u4|123

u4|13

u1|3 u4|3

u1 u3 u4 u3

u2|13

u3|1 u2|1

u1 u3 u1 u2

h24|13

h14|3 h32|1

h13 h43 h13 h12

2.5.6. Notation
For a general multivariate random vector X = (X1, · · · , Xn) with non-uniform margins we will need to use ex-

pressions of the form fi (xi ), Fi (xi ) or Fi |K (xi |xK ) in our equations. This notation is cumbersome and results

in long equations. Moreover, we will be using a two-step process during estimation. To simplify presentation

we first remove the information of the marginals leaving us with uniform data. The main focus of this thesis

lies in the copula part of the estimation process. Therefore, we will only discuss uniform random variables
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U = (U1, · · · ,Un). This is rather convenient since then we have that fi (ui ) = 1 and Fi (ui ) = ui . Note that the

term Fi |K (ui |uK ) is not necessarily uniform and will be denoted by ui |K .

For example, the joint density of a random vector (X1, X2, X3) can be written as

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c123
(
F1(x1),F2(x2),F3(x3)

)
.

The estimation of the univariate PDFs, f1, f2 and f3, falls into the first step of the estimation process. We

will assume that this part has been completed, allowing us to apply the probability integral transform to find

that

f (x1, x2, x3) = f̂1(x1) · f̂2(x2) · f̂3(x3) · c123
(
F̂1(x1), F̂2(x2), F̂3(x3)

)
.

The second step of the estimation process involves finding a decomposition for c123
(
u1,u2,u3

)
consisting of

bivariate copulas, and estimating these copulas. For example, if f is Markovian w.r.t. the Bayesian network in

Figure 2.14, then c123 can be decomposed as

c123
(
u1,u2,u3

)= c1,2
(
u1,u2

) · c2,3|1
(
u2|1,u3|1

) · c1,3
(
u1,u3

)
.

Hence, throughout this thesis, we will concern ourselves with finding the decomposition of PDFs with uni-

variate marginal distributions denoted by c. Finally, we will also be dropping the commas in the subscripts,

since in most cases this will not pose any problems. Thus, the equation reduces further to

c(u1,u2,u3) = c12
(
u1,u2

) · c23|1
(
u2|1,u3|1

) · c13
(
u1,u3

)
.



3
Pair copula Bayesian network

In the previous chapter, we saw that a density fV , which is induced by a BN, can be factorized by

fV (xV ) = ∏
v∈V

fv |pa(v)(xv |xpa(v)).

Furthermore, we have discussed the pair-copula construction. Here, it was shown that we can decompose

conditional densities using bivariate conditional copulas. By decomposing all conditional densities in the

factorization of the BN, we can construct a pair-copula Bayesian network (PCBN). Before presenting the gen-

eral definition of the PCBN, we will examine several examples. Consider the BN displayed in Figure 3.1.

X1

X2 X3

Figure 3.1: Simple Bayesian network.

The joint density can be factorized as

f (x1, x2, x3) = f1(x1) · f2|1(x2|x1) · f3|1(x3|x1).

In Section 2.5.4 we have seen that the conditional densities f2|1 and f3|1 can be decomposed by

f2|1(x2|x1) = f2(x2) · c12
(
F1(x1),F2(x2)

)
,

f3|1(x3|x1) = f3(x3) · c13
(
F1(x1),F3(x3)

)
.

By substituting these expressions into the factorization we find that

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c12
(
F1(x1),F2(x2)

) · c13
(
F1(x1),F3(x3)

)
.

Thus, we need copulas c12 and c13 which correspond to the arcs X1 → X2 and X1 → X3, respectively. So, the

graph immediately tells us which copulas are required in order to decompose all conditional densities using

the pair-copula construction. However, this is not always the case. Specifically, when we have nodes with

multiple parents, i.e. v-structures. For such nodes, we need to define a total order on the parental set. For

instance, let us examine the BN displayed in Figure 3.2.

31
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X1 X2

X3

Figure 3.2: Simple Bayesian network with a v-structure.

The joint density can be factorized by

f (x1, x2, x3) = f1(x1) · f2(x2) · f3|12(x3|x1, x2).

By using the same computation as in Section 2.5.4, we can decompose the conditional density f3|12 in two

(generally) distinct ways;

f3|12(x3|x1, x2) = f3(x3) · c23
(
F2(x2),F (x3)

) · c13|2
(
F1|2(x1|x2),F3|2(x3|x2)|x2

)
,

= f3(x3) · c13
(
F1(x1),F (x3)

) · c23|1
(
F2|1(x2|x1),F3|1(x3|x1)|x1

)
.

Theoretically, these decompositions are equal. However, they will not provide the same estimators during in-

ference and might be very different when the simplifying assumption is assumed. Thus, we have two distinct

factorizations of the joint density,

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c13
(
F1(x1),F3(x3)

) · c23|1
(
F2|1(x2|x1),F3|1(x3|x1)

∣∣x1
)

and

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c23
(
F2(x2),F3(x3)

) · c13|2
(
F1|2(x1|x2),F3|2(x3|x2)

∣∣x2
)
.

The graph does not specify which decomposition is used. Therefore, we define a total order on the parental

set of each node, see Definition 2.18. The order of the parents will determine which copulas are used in the

decomposition. For this example, the order 1 <3 2 implies that we will be using the copulas c13 and c23|1.

Hence, the arc connecting node 3 with the first parent (1) in the total order is assigned the unconditional

copula c13, and the arc connecting node 3 with the second parent (2) in the order is assigned the conditional

copula c23|1. Similarly, the order 2 <3 1 implies the usage of copulas c23 and c13|2. When displaying a PCBN in

a figure we will assign the copulas along the arcs of the graph. Here, we do not fully write out c13 or c23|1, but

simply put 13 and 23|1, respectively. The resulting PCBNs are displayed in Figure 3.3.

X1 X2

X3

13
23|1

(a) 1 <3 2

X1 X2

X3

13|2 23

(b) 2 <3 1

Figure 3.3: Simple PCBNs with a v-structure.

This concept is easily extended to the general case where we have an arbitrary DAG G . For each node v ∈ V

and w ∈ pa(v), the arc w → v is assigned the copula cw v |pa(v↓w), where the set pa(v ↓ w) := {z ∈ pa(v); z <v
w} contains all parents earlier than w in the order, see Definition 2.20. For example, the graph in Figure 3.4,

with 1 <4 2 <4< 3, has corresponding copulas

c14|pa(4↓1) = c14,

c24|pa(4↓2) = c24|1,

c34|pa(4↓3) = c34|12.
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X1 X2 X3

X4

14

24|1

34|1
2

Figure 3.4: PCBN where node X4 has corresponding parental order 1 <4 2 <4 3.

The graphical structure and the parental orders will provide us with an assignment of copulas such that we

can decompose the joint density using pair copula constructions. Moreover, this decomposition will be in

accordance with the conditional indecencies induced by the d-separations in the graph. Thus, in the formal

definition of the PCBN, we must include the parental order for each node.

Definition 3.1 (Pair-copula Bayesian network). A pair-copula Bayesian network is composed of

• a pair (G ,O ) consisting of a DAG G and a collection of orderings O = {<v ; v ∈V },

• a collection marginal densities { fv ; v ∈V },

• a collection of (conditional) copulas {cw v |pa(v↓w); w → v ∈ E }.

The set of conditional independencies allows for the decomposition of the joint density as a product of the

marginal densities and copulas;

fV (xV ) = ∏
v∈V

fv (xv )
∏

w∈pa(v)
cw v |pa(v↓w)

(
Fw |pa(v↓w)(xw |xpa(v↓w)),Fv |pa(v↓w)(xv |xpa(v↓w))

∣∣xpa(v↓w)
)
. (3.1)

An important remark is that the set of probability measures induced by a PCBN (G ,O ) is equal to the set of

measures induced by the BN G . This is due to the fact that any Markovian density w.r.t. G can be decomposed

according to Equation (3.1) regardless of the choice of O . This result follows by Theorem 3.2 which was proven

in [4].

Theorem 3.2. Let (G ,O ) be a PCBN and let P be an absolutely continuous probability distribution with

strictly increasing univariate marginal CDFs which is Markovian w.r.t. G . Then, P is uniquely determined

by its margins and the set of conditional pair copulas {cw v |pa(v↓w); w → v ∈ E }. Moreover, the density can be

factorized as in Equation (3.1).

In Section 2.3, we have seen that two GBNs with equivalent graphs induce the same set of probability mea-

sures. This is not the case for the PCBN. Indeed, two PCBNs can have an equivalent DAG but a different

assignment of copulas, and hence distinct distributions. Now, consider two DAGs whose distance as defined

in Definition 2.35 is equal to zero. Then, these graphs have the same v-structures and skeleton. Hence, for

both graphs we can assign the copulas such that their corresponding PDFs are the same.

The PCBN (G ,O ) provides us with a set of conditional copulas which are assigned to arcs in the graph;

{cw v |pa(v↓w); w → v ∈ E }. These copulas are said to be specified by the PCBN. That is, when applying a PCBN

model they are assumed to be known. For example, for the PCBN in Figure 3.4 we have

{cw v |pa(v↓w); w → v ∈ E } = {c14,c24|1,c34|12}.

Furthermore, the graph of a PCBN induces conditional independencies between random variables by d-

separation. For example, for the PCBN in Figure 3.4 we have

d − sepG

(
1,2

∣∣3
)
.
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Hence, the PCBN implies that X1 and X2 are independent given X3, and thus we have that c12|3 is equal to the

independence copula. This copula is also regarded as specified. In general, if we have d − sepG

(
w, v

∣∣K
)

with

w, v ∈V and K ⊆V \ {w, v}, then the copula cw v |K is equal to the independence copula. Hence, it is specified

by the PCBN.

Later we will see that the computation of the joint density may require a copula which is not specified by the

PCBN. In this case, we must compute this copula. Therefore, it will be convenient to have conditions in place

that state whether a copula is specified by the PCBN or not.

For example, for the PCBN in Figure 3.4, the copulas c14|2 and c13|4 are not specified. Indeed, the former

copula is not specified since the arc 1 → 4 has been assigned the copula c14 which is not equal to c14|2. The

latter copula is not specified as there is no arc between nodes 1 and 3 and this copula is not the independence

copula, since����d − sepG

(
1,3

∣∣4
)
.

Thus, in general, a copula cw v |K with w, v ∈V and K ⊆V \{w, v} is specified by the PCBN when it is assigned to

an arc in the graph or equal to the independence copula by d-separation. Naturally, both types of arcs, w → v

or v → w , could be assigned with the copula above, which will be denoted as cw v |pa(v↓w) and cv w |pa(w↓v),

respectively. For one of these two copulas to be equal to cw v |K , we must have either K = pa(v ↓ w) or K =
pa(w ↓ v). Hence, a copula cw v |K is assigned to an arc in the graph if one of the following is satisfied:

• w → v and pa(v ↓ w) = K .

• v → w and pa(w ↓ v) = K .

Thus, we have the following definition.

Definition 3.3. Let (G ,O ) be a PCBN. A conditional copula cw v |K with w, v ∈V and K ⊆V \ {w, v} is specified

by the PCBN if one of the following is satisfied:

(i) d − sepG

(
w, v

∣∣K
)
.

(ii) w → v and pa(v ↓ w) = K .

(iii) v → w and pa(w ↓ v) = K .

The expression found for the joint density in Equation (3.1) suffers from heavy notation. However, we can

notice that this density is always built as a product of the marginal densities for nodes in V (the first product

in Equation (3.1)) and a copula density (the second product in Equation (3.1)). This copula density is then

decomposed as a product of copula densities assigned to arcs in the graph.

To simplify the notation, from this point on we will only discuss the copula density corresponding to the

density fV , which is denoted as cV . This is equivalent to considering densities with uniform margins. More-

over, we will make use of the more straightforward notation for the arguments of the copulas introduced in

Section 2.5.6 and assume that the simplifying assumption holds, which will allow us to drop the conditional

terms (xpa(v↓w)) from the copulas. Thus, instead of using Equation (3.1) we will be writing

c(uV ) = ∏
v∈V

∏
w∈pa(v)

cw v |pa(v↓w)
(
uw |pa(v↓w),uv |pa(v↓w)

)
. (3.2)

where the conditional margins uw |pa(v↓w) and uv |pa(v↓w) are computed with a recursion of h-functions (see

Section 2.5.5).

For example, consider the PCBN in Figure 3.5. The parental orders of nodes 4 and 5 can be easily seen from

the copulas assigned to the arks. The term c45|123
(
u4|123,u5|123

)
appears in its joint density, which requires
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the computation of the conditional margin u4|pa(5↓4) = u4|123. Remark that in Section 2.5.5, we displayed a

recursion of h-functions to compute this margin. An important observation is that all h-functions in this

recursion correspond to copulas which are specified by the PCBN. Indeed, the h-functions in this recursion

are h12, h13, h13, h34, h14|3, h23|1 and h24|13 and they correspond to the copulas c12, c13, c34, c14|3, c23|1 and

c24|13, which are all specified by the PCBN (c13, c23|1 are independent copulas).

If an h-function corresponds to a specified copula, then the h-function is also said to be specified and the

recursion composed of only specified h-functions is called a proper recursion. There exist recursions of h-

functions where some copulas are not specified. For example, to compute u4|123 we could have chosen the

recursion shown below. We can see that the h-function shown in red (h12|3) corresponds to a copula (c12|3)

that is not specified by the PCBN. In such a case, we say that the recursion is not proper.

u4|123

u4|13

u1|3 u4|3

u1 u4 u3 u3

u2|13

u1|3 u2|3

u1 u3 u2 u3

h24|13

h14|3 h12|3

h13 h34 h13 h23

U1

U2

U4

U3

U5

14|3
24|13

34

1525|1

35|1245
|12

3

Figure 3.5: A PCBN consisting of five nodes.

Naturally, it would be convenient if all conditional margins in the joint density can be computed with a proper

recursion. If an h-function is not specified, we must compute its corresponding copula. In the example above,

we could simply take the recursion from Section 2.5.5. However, in the next section, we will see that in some

cases a conditional margin cannot be computed with a proper recursion. That is, we will encounter condi-

tional margins for which any possible recursion of h-functions contains a non-specified h-function.

3.1. Problematic conditional margins
We have seen that each conditional margin appearing in the joint density of a PCBN is computed with a

recursion of h-functions. Problems occur if there exists no proper recursion to compute a conditional margin.

In this case, the computation of the conditional margin will require integration. Let us investigate an example

of a PCBN with such problematic conditional margins.
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Example 3.4. Consider the PCBN displayed in Figure 3.6.

U1

U2 U3

U4

12 13

24
34|2

Figure 3.6: PCBN where conditional margin u3|2 requires integration.

The density corresponding to this network can be factorized by

c(uV ) = c12
(
u1,u2

) · c13
(
u1,u3

) · c24
(
u2,u4

) · c34|2
(
u3|2,u4|2

)
.

Here, we need to compute the conditional margin u3|2 by

u3|2 = h23(u2,u3).

Thus, we need the copula c23. Remark that����d − sepG

(
2,3

∣∣;)
, and no arc in the network is assigned the copula

c23. Therefore, c23 is not specified by the PCBN, and thus we must compute the conditional margin by

u3|2 = h23(u2,u3)

=
∫ u3

0
c23(u2, w3) dw3

=
∫ u3

0

∫ 1

0
c123(w1,u2, w3) dw1 dw3

=
∫ u3

0

∫ 1

0
c12(w1,u2) · c13(w1, w3) dw1 dw3 (3.3)

=
∫ 1

0
c12(w1,u2) ·

(∫ u3

0
c13(w1, w3) dw3

)
dw1

=
∫ 1

0
c12(w1,u2) ·h13(w1,u3) dw1.

So, we require integration in order to compute the conditional margin u3|2. It should be noted that the condi-

tional margin u4|2 does not pose a problem since it can be computed with the h-function h24(u2,u4), whose

corresponding copula c24 is specified by the PCBN.

The integrals appearing in the computation of the conditional margins do not pose a problem theoretically.

In practice however, these integrals cannot in general be computed analytically. Hence, we have to recourse

to numerical integration, which is not optimal as the estimation of the joint density compels us to integrate

many times. In this example, integrating might still be doable, since it is merely a one-dimensional integral.

However, we can construct graphs requiring integration in an arbitrary amount of dimensions. For example,

for the graph in Figure 3.7, we must compute uz|w by

uz|w = hw z (uw ,uz )

=
∫ uz

0
cw z (uw , wz ) dwz

=
∫ uz

0

∫ 1

0
· · ·

∫ 1

0
c1w (w1,uw )cnz (wn , wz )

n−1∏
i=1

ci ,i+1(wi , wi+1) dw1 . . . dwn dwz

=
∫ 1

0
· · ·

∫ 1

0
c1w (w1,uw )hnz (wn , wz )

n−1∏
i=1

ci ,i+1(wi , wi+1) dw1 . . . dwn .
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Thus, it is interesting to find out under which conditions the computation of the joint density does not require

integration. We remark that the graphical structure in Figure 3.7 is an example of an active cycle, which will

be defined in Section 3.3. It will be seen that active cycles always require integration.

Uv

Uw Uz

U1 Un

Ui

Ui−1 Ui+1

Figure 3.7: Graph where the integration of uz|w requires computation in n dimensions.

We do not need to integrate if all conditional margins appearing in the joint density can be computed with

copulas that are specified by the PCBN. For example, computing the conditional margin

u3|2 = h23(u2,u3)

will not be a problem for the PCBNs displayed in Figure 3.8. In the PCBN (a), the copula c23 is specified by the

arc 2 → 3, and in the PCBN (b), c23 is specified because it is the independent copula due to the d-separation

d − sepG

(
2,3

∣∣;)
.

U1

U2 U3

U4

13|2

23

24
34|2

(a)

U1

U2 U3

U4

12

24
34|2

(b)

Figure 3.8: Two PCBN where the conditional margin u3|2 does not require integration.

An important remark is that in many cases, certain orderings O necessitate integration, while others do not.

For example, in Figure 3.8a, if we change the order of <3 to 1 <3 2, then the copula c23 is not specified by the

PCBN. Hence, we can no longer compute the conditional margin u3|2 without integration.
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Thus, to prevent the need for integration in the evaluation of the joint density, it will not suffice to only provide

conditions on the allowed graphical structure of the graph. We also need to choose the order of parents O in

a particular manner.

In the example above, the cardinality of the conditioning set of the conditional margin (u3|2) was equal to one.

Hence, one h-function is needed. In such a case it is easy to determine whether this h-function is specified or

not.

If we need to compute a conditional margin of the form uv |K , with | K |> 1, then all conditional margins in

the recursion presented already have to be considered.

For example, for a conditional margin uv |K , we can pick any k ∈ K and compute the margin by

uv |K = hkv |K \{k}
(
uk|K \{k},uv |K \{k}

)
.

Naturally, different choices of k will lead to different conditional margins, i.e. uk|K \{k}, uv |K \{k} as arguments

of hkv |K \{k}. To be able to compute uv |K without integration we will need to choose k such that both uk|K \{k}

and uv |K \{k} can be computed with h-functions specified by the PCBN.

Such a recursion may not exist, as was seen for the conditional margin u3|2 in the PCBN of Figure 3.6. In this

case, the conditional margin is said to require integration. Hence, the joint density requires integration if its

copula decomposition contains a conditional margin for which there does not exist a proper recursion.

Let us examine a more complicated example where the computation of the joint density of a PCBN requires

integration.

Example 3.5. Consider the PCBN in Figure 3.9.

U1

U5U3 U4U2

U6

13 14

35 45|3

26

36|2

46|235
56|2

3

Figure 3.9: PCBN where the computation of u4|235 requires integration.

To compute the joint density, we need to compute the conditional margin u4|235 which is an argument of

copula c46|235. We will demonstrate that there exists no recursion of specified h-functions to compute this

conditional margin.

To start the recursive process we may consider the following h-functions: h24|35, h34|25 or h45|23. Only the first

one is specified by the PCBN as the corresponding copula c24|35 is the independent copula. This is because

the d − sepG

(
2,4

∣∣ {3,5}
)

holds. Hence, to avoid integration, the recursion must start with h24|35. Now, we have

to compute the conditional margins u2|35 and u4|35. The former can be computed with no issues as U2 is
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independent of both U3 and U5. Hence, we focus on the latter margin, which can be computed with h34|5,

which is not specified, or h45|3, which is specified. Thus, u4|35 is computed with h45|3, whose arguments are

u4|3 and u5|3. The margin u5|3 is computed from the specified copula c35, but u4|3 has to be computed with

h34, whose corresponding copula is not specified by the PCBN. Hence, we cannot construct a recursion of

specified h-functions to compute the conditional margin u4|235. The process is shown graphically below.

u4|235

u2|35 u4|35

u4|3u5|3

u3 u4

h24|35

h45|3

h34

Note that the reason that we cannot compute the margin u4|235 without integration is that nodes U1, U3, U4,

and U6 form an active cycle, which will be defined and discussed in Section 3.3.

To show that a density cannot be computed without integration (a recursion of specified copulas does not

exist) it suffices to investigate a specific part of the recursion. In the example above, the computations of con-

ditional margins u4|K with K ⊆ pa(6 ↓ 4) := {2,3,5} were investigated. The same approach will be used later,

in Sections 3.3, 3.4 and 3.5, to prove that certain choices of parental orderings or certain graphical structures

for all choices of orderings require integration.

In proving the results in this thesis, we will often consider arguments similar to the ones described in the

previous example. We will investigate a particular part of the recursion. That is, for a conditional margin of

the form uw |pa(v↓w) we will show that we cannot construct the part of the recursion involving margins of the

form uw |K with K ⊆ pa(v ↓ w).

The conditional margins which appear in the factorization of the joint density in Equation (3.1) are of the

form uw |pa(v↓w) and uv |pa(v↓w). It should be noted that we can always find a specified h-function to start

the recursion for the computation of uv |pa(v↓w). Since, for z the largest element in pa(v ↓ w) with respect to

order <v , we have that the copula czv |pa(v↓z) is specified by the definition of the PCBN. Moreover, we have

pa(v ↓ z) = pa(v ↓ w) \ {z}. Hence, we can compute the margin by

uv |pa(v↓w) = hzv |pa(v↓z)
(
uz|pa(v↓z),uv |pa(v↓z)

)
,

where the margins uz|pa(v↓z) and uv |pa(v↓z) also appear in the factorization of the joint density. For exam-

ple, for the PCBN in Figure 3.9, the conditional margin u6|pa(6↓4) = u6|235 can be computed with c56|pa(6↓5)

by

u6|235 = h56|23
(
u5|23,u6|23

)
,

where u5|23 = u5|pa(6↓5) and u6|23 = u6|pa(6↓5) appear in the joint density.

If we assume that all conditional margins of the form uw |pa(v↓w) are computable without integration, then

finding a recursion of specified h-functions for a margin uv |pa(v↓w) becomes quite trivial. Indeed, we sim-

ply start the recursion with a conditional copula czv |pa(v↓z), which requires the computation of the margin

uv |pa(v↓z). Now, we repeat the same process for uv |pa(v↓z).
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Thus, to show that the joint density can be computed without integrating, it is sufficient to prove that any con-

ditional margin of the form uw |pa(v↓w) can be computed without integration. This result is proven formally

in the lemma below.

Lemma 3.6. Let (G ,O ) be a PCBN. If any conditional margin of the form uw |pa(v↓w) does not require integra-

tion, then the joint density can be computed without integration

Proof. It suffices to prove that all terms of the form uv |pa(v↓w) can be computed without integration.

Consider an arbitrary node v ∈ V . If,
∣∣pa(v)

∣∣ = 0, then pa(v) = ;, hence no terms of the form uv |pa(v↓w)

appear in the factorization of fV . If,
∣∣pa(v)

∣∣ = 1, then for w the single node in pa(v), we have that cw v is

specified. Thus, we can compute uv |w by

uv |w = hw v
(
uw ,uv

)
.

Assume that
∣∣pa(v)

∣∣ > 1 and let pa(v) := {w1, . . . , wn} be an ordered set according to <v . We must show that

for all i ∈ {1, . . . ,n} the conditional margins uv |pa(v↓wi ) do not require integration.

We use induction. As above, for i = 1, the statement clearly holds. Now, suppose that uv |pa(v↓wi−1) can be

computed without integration. The conditional margin uv |pa(v↓wi ) can be computed by

uv |pa(v↓wi ) =
∂Cwi−1,v |pa(v↓wi−1)

(
uwi−1|pa(v↓wi−1),uv |pa(v↓wi−1)

)
∂uwi−1|pa(v↓wi−1)

,

where the copula Cwi−1,v |pa(v↓wi−1) is specified by the PCBN. Moreover, the conditional margin uv |pa(v↓wi−1)

does not require integration by the induction hypothesis, and by assumption, uwi−1|pa(v↓wi−1) does not require

integration by the assumptions of the lemma. Hence, the conditional margin uv |pa(v↓wi ) does not require

integration.

To summarize, we have seen that the computation of the joint density of a PCBN may require integration. This

can be caused by the structure of the graph or choice of O . Therefore, it is of interest to determine conditions

on the graph structure that guarantee the existence of an order O such that the joint density does not require

integration. To achieve this, first in Section 3.2 we discuss a subclass of graphs for which the integration is not

needed irrespective of the choice of order O . In Sections 3.3 and 3.4, two types of graphical structures, namely

actives cycles and interfering v-structures, are presented which will always require integration. Moreover, we

will prove that for any graph not containing these structures, we can choose O such that the joint density does

not require integration. This result is proven in Theorem 3.15 which is the main result of this thesis.
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3.2. Multitrees
The simple graphical structure which does not lead to integration irrespective of the copula assignments, oc-

curs when all parents are mutually independent, i.e. d-separated given the empty set. PCBNs with graphs sat-

isfying this restriction will not require integration. To see this, we investigate an example of such a PCBN.

Example 3.7. Consider the PCBN displayed in Figure 3.10 which has corresponding factorization

fV (uV ) = c14(u1,u4) · c25(u2,u5) · c35|2(u3|2,u5|2) · c45|23(u4|23,u5|23).

By Lemma 3.6, we only have to show that conditional margins of the form uw |pa(v↓w) do not require integra-

tion. Hence, the conditional margins of interest are u3|2 and u4|23. Remark that U2, U3, and U4 are mutually

independent due to the d-separations represented by the graph. Thus, we have u3|2 = u3 and u4|23 = u4.

So, we have found expressions for all conditional margins without any integrals. Moreover, the same prin-

ciple can be applied regardless of the choice of parental order <5, since any conditional margin is directly

computable due to mutual independence of the parents.

U5

U3U2 U4

U1

14

25

35|2

45|2
3

Figure 3.10: PCBN with mutually independent parents.

From Example 3.7, it is clear that we do not require integration if all parents are mutually independent, i.e. for

all v ∈ V and w, z ∈ pa(v) with w ̸= z we have that d − sepG

(
w, z

∣∣;)
. This is exactly the case for the subclass

of graphs called multitrees, see Definition 2.24 and Theorem 2.25. Thus, a PCBN (G ,O ) where G is a multitree

does not require integration. We will now prove this in full generality.

Theorem 3.8. Let (G ,O ) be a PCBN where G is a multitree. Then, the corresponding joint density can be

computed without integration.

Proof. By Theorem 2.25, for all v ∈ V and w, z ∈ pa(v) with w ̸= z, we have that d − sepG

(
w, z

∣∣;)
. Hence,

for any recursion used to compute a conditional margin of the form uw |pa(v↓w), the copulas corresponding to

the h-functions will be specified by the PCBN. That is, they are all equal to the independence copula. Hence,

the computation of uw |pa(v↓w) = uw does not require integration. Consequently, Lemma 3.6 implies that the

joint density does not require integration, completing the proof.

It should be remarked that for any multitree G , the pair (G ,O ) will not require integration for any choice of

O . Furthermore, it is not the case that multitrees are the only graphs for which integration is not needed (e.g.

the PCBN in Figure 3.8a).

Before we state the main results of this thesis several graphical structures that necessitate integration are

investigated.
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3.3. Active cycles
We have seen that for the PCBN in Figure 3.6, we will need to determine the copula c23 through integration in

order to compute the conditional margin u3|2. This is because the copula c23 is not specified. Indeed, there

is no arc between nodes 2 and 3, and we have ����d − sepG

(
2,3

∣∣;)
by the trail 2 ← 1 → 3. Note that this trail

combined with the v-structure 2 → 4 ← 3 forms the cycle 4− 2− 1− 3− 4 in the corresponding undirected

graph. Such undirected cycles will always lead to a problematic conditional margin. We will refer to these

structures as active cycles.

Definition 3.9. Let G be a DAG. Consider a node v ∈V with distinct parents w, z ∈ pa(v) which are connected

by a trail w ⇌ x1 ⇌ · · ·⇌ xn ⇌ z satisfying the following conditions:

(i) n > 1.

(ii) w ⇌ x1 ⇌ · · ·⇌ xn ⇌ z consists of only diverging or serial connections, see Definition 2.7.

(iii) v ← w ⇌ x1 ⇌ · · ·⇌ xn ⇌ z → v contains no chords, see Definition 2.8.

Then, the trail v ← w ⇌ x1 ⇌ · · · ⇌ xn ⇌ z → v is called an active cycle in G . Furthermore, G is said to

contain an active cycle.

The presence of an active cycle in the graph necessitates integration. This statement is proven in Theo-

rem 3.11. Before proving the theorem we will first establish a convenient lemma. This lemma will be used in

the proofs of Theorem 3.11, Theorem 3.14, and Lemma 3.20.

In each of these proofs, we will show that there is a conditional margin of the form uw |pa(v↓w) for which there

is no recursion consisting of specified copulas. In Example 3.5, we have seen that it suffices to only examine a

specific part of the recursion. That is, we are only concerned with the computation of conditional margins of

the form uw |K with K ⊆ pa(v ↓ w). In this part of the recursion, we repeatedly apply the following operations

starting with K = pa(v ↓ w):

1. We pick a k ∈ K such that the copula ckw |K−k
is specified by the PCBN, where we use the notation

K−k := K \ {k}. If there is no such k, then uw |K−k must be computed using integration.

2. We compute the conditional margin by

uw |K = hwk|K−k
(uw |K−k ,uk|K−k

)

which requires the computation of uw |K−k .

3. Return to Step 1, with K = K−k .

In Step 1, there can be multiple choices for k, each resulting in a distinct recursion. Remark that for any recur-

sion, we can define an ordered set O := (o1, . . . ,on) = pa(v ↓ w) such that i < j implies that o j is picked before

oi in Step 1. For example, the recursion to compute u4|234 in Example 3.5 has O = (3,5,2). Consequently, any

conditional margin uw |o1,...,oi in the recursion is computed with hoi w |o1,...,oi−1 . Indeed, the recursion in Exam-

ple 3.5 contains the h-functions h24|35, h45|3 and h34. Naturally, to prevent integration, O must be ordered

such that any copula coi w |o1,...,oi−1 is specified by the PCBN. If there is no such O, then there is no recursion of

specified h-functions 1 .

For an ordered set O to exist, there cannot be a node z ∈ O for which no copula of the form uzw |K with

1This ordered set O bears great resemblance to the partial order we will later define in Section 4.1. Indeed, they are based on the same
intuition; the parents must be ordered in a particular way. One of the differences being that this O is a subset of pa(v ↓ w) while the
partial order is a subset of pa(v).
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K ⊆ pa(v ↓ w) \ {z} is specified. Indeed, suppose that z := oi , then czw |o1,...,oi−1 would not be specified. In

Example 3.5, node 3 is exactly such a node z, since none of the copulas c34, c34|2, c34|5 and c34|25 are specified.

Thus, we have the following lemma.

Lemma 3.10. Let (G ,O ) be a PCBN. Consider the nodes v ∈V and w ∈ pa(v). The computation of the condi-

tional margin uw |pa(v↓w) requires integration if there exists a node z ∈ pa(v ↓ w) such that for all K ⊆ pa(v ↓
w) \ {z} the copula czw |K is not specified by the PCBN.

Proof. Pick a recursion to compute uw |pa(v↓w). Let O := (o1, . . . ,on) = pa(v ↓ w) such that for all i ∈ {1, . . . ,n}

the h-function hoi w |o1,...,oi−1 appears in the recursion. Let j ∈ {1, . . . ,n} such that o j = z. Subsequently, the

conditional margin uw |o1,...,o j−1,z is computed with hzw |o1,...,o j−1 . Since {o1, . . . ,o j−1} ⊆ pa(v ↓ w) \ {z}, we have

that czw |o1,...,o j−1 is not specified by the PCBN. Hence, the computation of uw |pa(v↓w) requires integration

Now we are ready to prove that a PCBN containing an active cycle will require integration.

Theorem 3.11. Let (G ,O ) be a PCBN. If G contains an active cycle, then the computation of the joint density

requires integration.

Proof. Consider an active cycle in G of the form

v ← w ⇌ x1 ⇌ · · ·⇌ xn ⇌ z → v.

Since w and z are both parents of v , we have either w <v z or z <v w . Without loss of generality, we assume

that z <v w . We need to prove that the margin uw |pa(v↓w) requires integration. Due to Lemma 3.10, we must

show that for any K ⊆ pa(v ↓ w) \ {z} the copula czw |K is not specified by the PCBN. Consider an arbitrary

K ⊆ pa(v ↓ w) \ {z}.

Note that w and z are not adjacent and the trail between w and z is not blocked by any subset of nodes in

pa(v), because of the existence of trail w ⇌ x1 ⇌ · · · ⇌ xn ⇌ z without a cord. Because K ⊆ pa(v ↓ w) ⊆
pa(v), we have that����d − sepG

(
w, z

∣∣K
)
. Thus, the copula czw |K is not specified by the PCBN.
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3.4. Interfering v-structures
In Figure 3.8a, we saw that the v-structure around node 4 required the copula c23 to compute the conditional

margin u3|2. Hence, the order 1 <3 3 will lead to integration, but if we pick the ordering of 3 required by v-

structure at node 4, i.e. 2 <3 1, the integration is not needed. In the next example, we show a situation where

a v-structure is influenced by two distinct v-structures which require different orders.

Example 3.12. Consider the PCBN in Figure 3.11. Here, we have three v-structures where the ordering of

node 3 has yet to be decided. Naturally, we would like to pick <3 such that we will not require integration. The

v-structures around nodes 4 and 5 require us to compute the conditional margins u3|1 and u2|3 respectively.

The former implies that c13 must be specified, and thus we must have 1 <3 2. But, the latter requires c23 to be

specified, implying that 2 <3 1. Since we cannot have both, there does not exist a suitable ordering for node

3. This issue will occur for every possible pair of orders <4 and <5.

U1

U3

U2

U4 U5

? ?

14

34
|1 35 25

|3

Figure 3.11: PCBN with interfering v-structures.

If G contains three v-structures (or more) that interact in a similar fashion as in Example 3.12, then the joint

density will require integration for any choice of O . Such v-structures will be referred to as interfering v-

structures.

Definition 3.13. Let (G ,O ) be a PCBN. Consider the nodes v1, v2, v3, v4, v5 ∈ V , satisfying the following con-

ditions:

• v3 ∈ pa(v4)∩pa(v5).

• v1 ∈ pa(v3)∩pa(v4) and v1 ∉ pa(v5).

• v2 ∈ pa(v3)∩pa(v5) and v2 ∉ pa(v4).

That is, G contains the subgraph below.

v3

v1 v2

v4 v5

Then, the nodes v1, v2, v3, v4 and v5 are said to be interfering v-structures. Moreover, G is said to contain

interfering v-structures.

We will now prove in full generality that for any graph containing interfering v-structures, the computation of

the joint density will require integration for any choice of O .
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Theorem 3.14. Let (G ,O ) be a PCBN. If G contains interfering v-structures, then the computation of the joint

density requires integration.

Proof. Let v1, v2, v3, v4, v5 ∈ /V be nodes corresponding to interfering v-structures in G . We have 8 distinct

cases concerning constraints of parental orderings of nodes 3, 4, and 5, these are:

1 <3 2, 1 <4 3 and 2 <5 3, 2 <3 1, 1 <4 3 and 2 <5 3

1 <3 2, 1 <4 3 and 3 <5 2, 2 <3 1, 1 <4 3 and 3 <5 2

1 <3 2, 3 <4 1 and 2 <5 3, 2 <3 1, 3 <4 1 and 2 <5 3

1 <3 2, 3 <4 1 and 3 <5 2, 2 <3 1, 3 <4 1 and 3 <5 2.

Since all cases are analogous, we will only consider the case when: 1 <3 2, 1 <4 3 and 2 <5 3. Remark that we

have

1 ∈ pa(4 ↓ 3) and 1 ∉ pa(5 ↓ 3) ⊆ pa(5),

2 ∈ pa(5 ↓ 3) and 2 ∉ pa(4 ↓ 3) ⊆ pa(4).

The factorization in Equation (3.2) requires us to compute the conditional margin u3|pa(5↓3) where 2 ∈ pa(5 ↓
3).

Because of the arc 2 → 3, the nodes 2 and 3 are not d-separated given any subset of V \ {2,3}. Hence, we have

that����d − sepG

(
2,3

∣∣K
)

for any K ⊆ pa(5 ↓ 3) \ {2} ⊆ V \ {2,3}. Thus, the copula c23|K is not specified to be the

independence copula for any K ⊆ pa(5 ↓ 3) \ {2}.

The arc 2 → 3 has the assigned copula c23|pa(3↓2) with 1 ∈ pa(3 ↓ 2). Since 1 ∉ pa(5) we have that 1 ∉ K for any

K ⊆ pa(5 ↓ 3) \ {2}. Hence, the copula c23|K is not specified by an arc for any K ⊆ pa(5 ↓ 3) \ {2}.

Thus, for any K ⊆ pa(5 ↓ 3) \ {2} the copula c23|K is not specified. Consequently, we can apply Lemma 3.10,

with z = 2, w = 3 and v = 5 in the notation of the lemma, to find that the computation of u3|pa(5↓3) requires

integration.

The active cycles and interfering v-structures are the only graphical structures which will necessitate integra-

tion. Thus, we propose the following theorem.

Theorem 3.15. Let (G ,O ) be a PCBN. The computation of the joint density does not require integration if and

only if G contains no active cycles or interfering v-structures.

Proof. The sufficiency is proven using contraposition and applying Theorems 3.11 and 3.14. The necessity is

proven by Theorem 4.5.

To prove the necessity in Theorem 3.15, we must demonstrate that for any graph G that does not contain

active cycles or interfering v-structures, we can find an ordering O such that we do not need to integrate.

Therefore, we will construct an algorithm which is able to find a suitable O for any restricted DAG G . First, in

Section 3.5, we will establish certain restrictions that a parental order <v with v ∈V must abide to. Hereafter,

we will construct the algorithm in Section 4.1 and prove Theorem 4.5 which states that the algorithm is always

able to find a suitable order.
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3.5. B-sets
Consider the graph in Figure 3.12. To compute the joint density we will need to compute the conditional

margin u3|1 or u1|3, depending on the order <4. Thus, to prevent integration, the copula c13 must be assigned

to the arc 1 → 3. Therefore, the arc 1 → 3 is said to blocked by the v-structure at node 4. That is, we know

that we must have 1 <3 2, otherwise, we must integrate. Moreover, we say that the order <3 must abide to the

blocked arc 1 → 3.

U1

U3

U2

U4

Figure 3.12: Graph with one blocked arc coloured in red.

A v-structure can block multiple arcs at the same time, see Figure 3.13. Here, the v-structure at node 5 requires

us to compute one of the margins u4|12, u2|14 or u1|24 which means that we will need copula c14|2 or c24|1.

Hence, the arcs 1 → 4 and 2 → 4 are blocked by 5. That is, we must have 1 <4 2 <4 3 or 2 <4 1 <4 3.

U1 U2 U3

U4

U5

Figure 3.13: Graph with two blocked arcs coloured in red.

To find the blocked arcs in the example above, we must examine if there are any children with overlapping

parental sets. For example, in Figure 3.13, we have that 5 is a child of 4, and 4 and 5 both have 1 and 2 as

parents. Such graphical structures will always produce blocked arcs. To formalize this concept we introduce

the B-sets.

Definition 3.16 (B-set). Let G = (V ,E) be a DAG. For v1, v2 ∈V , we denote by

B(v1, v2) :=
pa(v1)∩pa(v2), if v1 → v2,

;, else.

We say that B(v1, v2) is a B-set of v1.

The B-sets will provide us with clear restrictions an order must abide to, so that the joint density does not

require integration. That is, if we have two nodes v1, v2 ∈ pa(v) and v1 is in a certain B-set of v which does

not contain v2, then v1 <v v2. It should be noted that a node has as many B-sets as it has children. Some of

them can be empty and not all of them have to be distinct. For example, in Figure 3.14 we have three distinct

B-sets for node 6, i.e.
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• B(6,7) = {1,3,4},

• B(6,8) = {3,4},

• B(6,9) = {4}.

Thus, the allowed orderings are 4 <6 3 <6 1 <6 2 <6 5 and 4 <6 3 <6 1 <6 5 <6 2. Remark that for each pair of

B-sets we have that one is contained in the other, i.e. B(6,9) ⊆ B(6,8) ⊆ B(6,7) in this example. This property

is true in general if the graph does not contain interfering v-structures, as proven in the lemma below.

U1

U3

U2

U4 U5

U6

U7 U8 U9

Figure 3.14: Graph where node U6 has three distinct B-sets.

Lemma 3.17. Let G = (V ,E) be a DAG. The following two statements are equivalent:

(i) G does not contain interfering v-structures.

(ii) For all v1 ∈V and v2, v3 ∈ ch(v1) we have B(v1, v2) ⊆ B(v1, v3) or B(v1, v3) ⊆ B(v1, v2).

Proof. If G contains interfering v-structures, then (ii) is violated. For example, in Figure 3.11 we have {v1} =
B(v3, v4)�⊆B(v3, v5) = {v2} and B(v3, v5)�⊆B(v3, v4).

If (ii) is violated, then we can find v4 ∈ B(v1, v2) \ B(v1, v3) and v5 ∈ B(v1, v3) \ B(v1, v2). In this case the nodes

v1, . . . , v5 are exactly interfering v-structures.

Thus, if our graph does not contain interfering v-structures, we can order the B-sets corresponding to a node

according to the inclusion relation ⊆. It will be convenient to order the B-sets based on this order. For ex-

ample, for the graph in Figure 3.14, we will denote B(6,9), B(6,8) and B(6,7) by B1(6), B2(6) and B3(6), re-

spectively. Moreover, we define B0(6) := ; and B3(6) := pa(6). Note that distinct children of the same node

can lead to identical B-sets. For example, in Figure 3.15 we have that B(3,4) = B(3,5) = {1,2}. Naturally, iden-

tical B-sets will give the same information regarding potential restrictions on the parental order. Remark

that sets of the form {B(v1, v2); v2 ∈ ch(v2)} will not contain any duplicates2. Thus, in Figure 3.14, we have

2By the standard definition of a set. A set containing duplicates would be a so-called multiset.
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{B(6, v2); v2 ∈ ch(6)} = {;, {4}, {3,4}, {1,3,4}, {1,2,3,4,5}}. The sorted sequence of these subsets with respect to

the inclusion relation is referred to as the B-sets of node U6.

U1 U3 U2

U4 U5

Figure 3.15: Graph where node U3 has two identical B-sets.

Definition 3.18 (B-sets). Let G be a DAG with no interfering v-structures and let v ∈V with

Q =Q(v) := ∣∣{B(v, w); w ∈ ch(v)}
∣∣.

the number of distinct B-sets corresponding to v . We denote by B1(v), . . . ,BQ (v) the sorted sequence of

{B(v, v2); v2 ∈ ch(v)} in increasing order with respect to ⊆. We also define B0(v) := ; and BQ+1 := pa(v).

The sequence
(
Bq (v)

)
q=0,...,Q+1 is referred to as the B-sets of v .

Furthermore, for each B-set Bq with q <Q(v)+1, we denote by bq an arbitrary node such that Bq = B(v,bq ).

This node bq may not be unique.

The B-sets introduce the restriction that all nodes in Bq must be earlier than nodes in Bq+1 \ Bq in order <v .

We denote this by Bq <v Bq+1 \ Bq . Hence, we must have

B1 <v B2 \ B1 <v B3 \ B2 <v · · · · · · · · · <v BQ+1 \ BQ .

For example, for node 6 in Figure 3.14, we have

{4} <6 {3} <6 {1} <6 {2,5}.

Indeed, we have seen that the only orders not resulting in integration are 4 <6 3 <6 1 <6 2 <6 5 and 4 <6 3 <6

1 <6 5 <6 2.

We now state the following definition.

Definition 3.19 (Abiding by the B-sets). Let (G ,O ) be a PCBN where G contains no interfering v-structures.

A parental order <v is said to abide by the B-sets if

B1 <v B2 \ B1 <v B3 \ B2 <v · · · · · · · · · <v BQ+1 \ BQ .

Similarly, a set of orders O := {<v ; v ∈V } abides by the B-sets if all its parental orders <v abide by the B-sets.

Any PCBN whose set of orders does not abide by the B-sets will require integration.

Lemma 3.20. Let (G ,O ) be a PCBN where G contains no active cycles or interfering v-structures. If O does

not abide by the B-sets, then the computation of the joint density requires integration.

Proof. By assumption, we can pick a node v in V such that <v does not abide by the B-sets. Hence, there
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exist u, w ∈ pa(v) and a node z ∈V such that G contains the subgraph below with w ∉ pa(z) and w <v u.

v

u w

z

The factorization of the joint density requires the computation of the conditional margins uv |pa(z↓v) and

uu|pa(z↓u). Remark that we can have u <z v or v <z u. Since both cases are analogous, we will only con-

sider the case when u <z v , which implies that u ∈ pa(z ↓ v). To compute the joint density, we need the

conditional margin uv |pa(z↓v), and we will show that this margin requires integration. Using Lemma 3.10, it

remains to prove that for any K ⊆ pa(z ↓ v) \ {u} the copula cuv |K is not specified by the PCBN. Consider an

arbitrary K ⊆ pa(z ↓ v) \ {u}.

Because of the arc u → v , we have that����d − sepG

(
u, v

∣∣K
)
. Hence, the copula cuv |K is not the independence

copula. Moreover, copula cuv |pa(v↓u), where w ∈ pa(v ↓ u), is assigned to the arc u → v . Since w ∉ pa(z ↓
v) ⊆ pa(z), we have that w ∉ K . Therefore, the copula cuv |pa(v↓u) is not equal to the copula cuv |K . Hence, the

copula cuv |K is not specified by the PCBN.





4
Determining assignment of copulas

In this chapter, we illustrate the process of finding a suitable set of orders O for an arbitrary DAG G without

active cycles and interfering v-structures. First, we will provide an intuitive motivation for the algorithm to-

gether with the necessary terminology followed by the algorithm itself. Hereafter, we prove that the algorithm

is able to identify all possible orderings, which do not necessitate integration.

4.1. Algorithm
The idea behind Algorithm 2 is that for any node v in V we find a suitable ordering <v . We determine these

parental orders sequentially, following an arbitrary well-ordering of the graph. That is, we pick a well-ordering

<, such that V = (v1, . . . , vn) where i < j implies vi < v j and determine all <vi ’s in this order. As a result, when

we arrive at a node v we will have already chosen the order <z for all nodes in z ∈ pa(v). The process of

finding a suitable order <v involves growing an ordered set Ok
v , referred to as a partial order.

Definition 4.1 (Partial order). For a node v ∈V , an ordered subset of k parents will be referred to as a partial

order denoted by Ok
v . Thus, we have

Ok
v = (o1, . . . ,ok )

with k ≤ ∣∣pa(v)
∣∣ and oi ∈ pa(v) for all i ∈ {1, . . . ,k}. Note that we will omit the subscript (v) whenever it is

evident from the context to which node v we refer, and we drop the superscript (k) if the partial order is of

arbitrary size.

An initial state is O0
v = ; to which at each iteration a node from the set pa(v) is added until we have found

O|pa(v)|
v . A node can be added to a partial order Ok

v if it satisfies certain constraints. Specifically, we can add a

w ∈
pav such that the conditions on the B-sets are satisfied and for which we can compute the conditional margin

uw |Ok
v

with a proper recursion. Remember that by Lemma 3.6 this implies that all conditional margins of the

form uv |Ok
v

are computable without integration as well. The first constraint dictates that we must add a node

from the smallest possible B-set. That is, we only incorporate a node from Bi (v) if all nodes from Bi−1(v)

are already included in Ok
v . Then, the elements of the smallest B-set larger than Ok

v (denoted as B(Ok
v )) are

added.

Definition 4.2. The smallest B-set strictly larger than a partial order Ok
v with k < ∣∣pa(v)

∣∣ is denoted by B(Ok
v ).

Thus, B(Ok
v ) := Bq̃ (v) with

q̃ := min{q ∈ {1, . . . ,Q(v)+1}; Ok
v ⊊Bq (v))}.

51
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Remark that such a q̃ always exists, since by definition BQ(v)+1(v) = pa(v). Furthermore, we remark that that

B(O|pa(v)|
v ) is not defined.

Remark 4.3. In Definition 4.2, the set B(O|pa(v)|
v ) is not defined because it is not possible to find a strictly larger

B-set than O|pa(v)|
v . Furthermore, the largest B-set BQ(v)+1 is equal to pa(v), by definition. Consequently, we

always have Ok
v ⊊B(Ok

v ).

It is important to note that including a node w ∈ B(Ok
v ) \ Ok

v ensures that our order abides by the B-sets.

Therefore, the only allowed additions to a partial order Ok
v are nodes in B(Ok

v )\Ok
v for which we can compute

uw |Ok
v

without integration. These nodes will be referred to as possible candidates. The set of possible candi-

dates can be divided into three subsets. The most elementary case is whenever d − sepG

(
w,Ok

v

∣∣;)
. Here, we

have uw |Ok
v
= uw which obviously does not require any integration. We will refer to these nodes as possible

candidates by independence.

If this d-separation does not hold, the computation of the conditional margin uw |Ok
v

will require integration,

unless we can compute it with a proper recursion. Naturally, this recursion must start with an h-function

corresponding to copulas of the form

cwo|pa(o↓w) or cow |pa(w↓o)

where o is a node in Ok
v . Such copulas are already specified in the PCBN as they concern parents of node v ,

hence they appear earlier in the total order of nodes. A potential node w that could be added to Ok
v can be

connected to a node already in Ok
v by incoming or outgoing arc, but this node will be eligible to be added to

Ok
v if the copula cwo|Ok

v \{o} corresponds to a copula already assigned to such arc. This gives rise to the other

two subsets:

• ∃o ∈Ok
v : w → o and cwo|Ok

v \{o} = cwo|pa(o↓w),

• ∃o ∈Ok
v : o → w and cwo|Ok

v \{o} = cow |pa(w↓o)

and the margins of these copulas uw |pa(o↓w), uo|pa(o↓w), uw |pa(w↓o), uo|pa(w↓o) can be computed without inte-

gration. We will refer to the nodes as belonging to these two subsets as possible candidates by incoming arcs

(outgoing arc), respectively.

It is clear how the set of possible candidates by independence can be found. Below three examples are pre-

sented in which the subsets of possible candidates are illustrated. We show the conditions that have to be

satisfied for a node to belong to sets of possible candidates by incoming and outgoing arcs.

1. By independence: We will examine the graph in Figure 4.1 and determine the parental order for node

4. Naturally, we initialize our algorithm with the ordered set O0
4 = ;. Note that we have the following

B-sets of node 4:

B1(4) = {1} and B2(4) = {1,2,3}.

At each step of the algorithm, we will display the graph, highlighting the nodes belonging to each sub-

set. Nodes currently present in Ok
4 will be colored in blue, while the potential candidates by indepen-

dence will be shown in red.
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1 2 3

4

5

Figure 4.1: Graph for which we will determine the order <4.

Iteration 1

Add a node from the set

B(O0
4) \O0

4 = {1} \;= {1}.

Since u1|O0 = u1 is an unconditional margin, node 1 is considered a possible can-

didate by independence since we have that

d − sepG

(
1,O0

4

∣∣;)= d − sepG

(
1,; ∣∣;)

which is assumed to hold by convention, see Remark 2.23. Consequently, we color

it red in the graph on the right. Thus, O1
4 = (1).

1 2 3

4

5

O

Independent

Iteration 2

To determine the possible candidates to add to O1
4, we consider the set

B(O1
4) \O1

4 = {1,2,3} \ {1} = {2,3}.

We need to select w ∈ {2,3} such that we can compute uw |O1
4

without integration.

Since we have

d − sepG

(
3,1

∣∣;)⇒ u3|1 = u3,

d − sepG

(
2,1

∣∣;)⇒ u2|1 = u2,

both nodes 2 and 3 are possible candidates by independence. Suppose we add

node 3 and update the ordered set to O2
4 = (1,3).

1 2 3

4

5

O

Independent

Iteration 3

Finally, we have

B(O2
4) \O2

4 = {1,2,3} \ {1,3} = {2},

leaving us with one choice. The conditional margin u2|13 can be computed with-

out integration since

d − sepG

(
2,{1,3}

∣∣;)⇒ u2|13 = u2.

Thus, the partial order is O3
4 = (1,3,2), giving us the order 1 <4 3 <4 2.

1 2 3

4

5

O

Independent

The pattern in the example is clear, at each iteration we add a node w ∈ B(Ok
v )\Ok

v such that d − sepG

(
w,Ok

v

∣∣;)
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holds.

We can observe that the algorithm requires the subgraph induced by the parents, children and the node

v to find the ordered sequence of B-sets and choices of candidates. In the example above, it would have

sufficed to only display a subgraph containing nodes in pa(4). Therefore, from this point on, we will

display the subgraph of parents while running the algorithm.

2. Incoming arcs: Consider the graph in Figure 4.2 for which the orders <4 and <5 have already been

chosen: 1 <4 2 <4 3 and 1 <5 2 <5 4 <5 3. Our objective is to choose a suitable ordering <6 by growing a

partial order Ok
6 . Note that node 6 does not have any corresponding B-sets, as it has no children.

1 2

4

3 5

6

14
24|1

34|1
2

15

25|1

35|124

45|12

Figure 4.2: Graph for which we will determine <6.

Iteration 1

Any node in pa(6) can be added to O0
6 = ; by independence. Suppose that we choose node 4 and get

O1
6 = (4).

1 2

4

3 5

14

24|1

34|1
2

15

25|1

35|124

45|12

O

Independent

Incomi ng

Iteration 2

None of the nodes in B(O1
6) \ O1

6={1,2,3,5} are d-separated from 4 by the empty set. Therefore, we must

use one of the copulas corresponding to an arc connected to 4. The only suitable arc is the incoming arc

1 → 4, since its corresponding copula c14 allows computation of the margin u1|O1 = u1|4. To represent

this, we color the incoming arc and corresponding node yellow. Thus, we add 1 to the ordered set and
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get O2
6 = (4,1).

1 2

4

3 5

14

24|1

34|1
2

15

25|1

35|124

45|12

O

Independent

Incomi ng

Iteration 3

Next, we consider as possible candidates nodes in the set

B(O2
6) \O2

6 = {1,2,3,4,5} \ {1,4} = {2,3,5}.

There are two incoming arcs to node 4, i.e. 2 → 4 and 3 → 4. Node 2 is a possible candidate since

the margin u2|O2
6
= u2|14 can be computed with the copula c24|pa(4↓2) = c24|1. Indeed, we remark that

pa(4 ↓ 2) = {z ∈ pa(4); z <4 2} = {1}.

Node 3 is not a possible candidate by incoming arc 3 → 4. The copula corresponding to this arc,

c34|pa(4↓3) = c34|12, contains node 2 in its conditioning set whereas 2 ∉ O2
6 = {1,4}. Hence, computing

u3|O2
6
= u3|14 from the copula c34|12 requires integration with respect to node 2:

u3|14 =
∫ 1

0

∂C34|12
(
u3,u4 |u1, w2

)
∂u4

dw2.

Note that

pa(4 ↓ 3) = {z ∈ pa(4); z <4 3} = {1,2}⊈ {1,4} =O2
6.

This condition is necessary: for a node w to be considered as a possible candidate for Ok
v by incoming

arc w → o, it must be that pa(o ↓ w) ⊆Ok
v . Thus, it must be that parents of node o earlier in the ordering

than w must already be included in Ok
v .

This is condition not sufficient (as shown in Iteration 5 below). Indeed, if Ok
v contains nodes that are not

in pa(o ↓ w), then these elements should be “removable” from the conditioning set of a copula by d-

separation. Hence, another required condition is d − sepG

(
w,Ok

v \ pa(o ↓ w)
∣∣pa(o ↓ w)

)
. In Iteration 5,

we examine this condition more closely.

In this example, node 2 is the only node satisfying both of these conditions. Indeed, for w = 2 and o = 4,

we have

d − sepG

(
w,Ok

v \ pa(o ↓ w)
∣∣pa(o ↓ w)

)= d − sepG

(
2,{1,4} \ {1,4}

∣∣ {1,4}
)= d − sepG

(
2,; ∣∣ {1,4}

)
which is satisfied by convention, see Remark 2.23. Therefore, we add it to the partial order O2

6, and

obtain O3
6 = (4,1,2).
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1 2

4

3 5

14

24|1

34|1
2

15

25|1

35|124

45|12

O

Independent

Incomi ng

Iteration 4

First, we remark that node 5 is a possible candidate by the outgoing arc 4 → 5. To highlight this, the

node and its corresponding arc will be colored green. For the sake of this example, we will focus on

incoming arcs.

Now we are able to use the incoming arc 3 → 4 since the condition pa(4 ↓ 3) = {1,2} ⊆ O3
6 = {4,1,2} is

satisfied. Indeed, we can compute the conditional margin u3|O3
6
= u3|124 with the copula c34|pa(4↓3) =

c34|12. Remark that the second condition is also satisfied since

d − sepG

(
w,O3

6 \ pa(4 ↓ 3)
∣∣pa(4 ↓ 3)

)= d − sepG

(
3,{1,2,4} \ {1,2,4}

∣∣ {1,2,4}
)= d − sepG

(
3,; ∣∣ {1,2,4}

)
holds by convention. Hence, node 3 is a possible candidate by incoming arc 3 → 4 at this iteration.

However, rather than adding node 3, we add node 5 by the outgoing arc 4 → 5. Subsequently, in the

next iteration, we will encounter a situation where the second condition proves to be necessary. So, we

extend the partial order to O4
6 = (4,1,2,5).

1 2

4

3 5

14

24|1

34|1
2

15

25|1

35|124

45|12

O

Independent

Incomi ng

Out g oi ng

Iteration 5

After the addition of node 5, the only remaining node is node 3. There are two incoming arcs 3 → 5

and 3 → 4. Note that in the previous iteration, it was possible to use the incoming arc 3 → 4. We now

explain why we cannot use the incoming arc 3 → 4 anymore, even though the condition pa(4 ↓ 3) =
{1,2} ⊆ {1,2,4,5} =O4

6 is satisfied.

The reason for this is the following: we need the conditional margin u3|O4
6
= u3|1245 but the arc 3 → 4

corresponds to the copula c34|pa(4↓3) = c34|12. From this copula u3|124 can be computed, and

u3|O4
6
= u3|1245 ̸= u3|124 = u3|pa(4↓3)⊔{4} = u3|pa(4↓3). (4.1)
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The margin that can be computed is not the same as the one we require. There is no equality in Equa-

tion 4.1. Removing node 5 from the conditioning set in u3|1245 requires the d-separation

d − sepG

(
3,5

∣∣ {1,2,4}
)= d − sepG

(
3,O4

6 \ pa(4 ↓ 3)
∣∣∣pa(4 ↓ 3)

)
which does not hold due to the arc 3 → 5.

The general condition is that a node w is a possible candidate for Ok
v by an incoming arc w → o, if

d − sepG

(
w,Ok

v \ pa(o ↓ w)
∣∣∣pa(o ↓ w)

)
and

pa(o ↓ w) ⊆Ok
v

hold. In this example, the incoming arc 3 → 5 satisfies these restrictions with o = 5, w = 3 because

d − sepG

(
3,{1,2,4,5} \ {1,2,4,5}

∣∣∣ {1,2,4,5}
)
= d − sepG

(
3,;

∣∣∣ {1,2,4,5}
)
.

and

pa(5 ↓ 3) = {1,2,4} ⊆ {1,2,4,5} =O4
6

hold. Therefore, we can add node 3 by incoming arc 3 → 5 to obtain O5
6 = (4,1,2,5,3), giving us the

order; 4 <6 1 <6 2 <6 5 <6 3.

1 2

4

3 5

14

24|1

34|1
2

15

25|1

35|124

45|12

O

Independent

Incomi ng

Out g oi ng

To summarize, w is a possible candidate that can be added to Ok
v by an incoming arc w → o with o ∈Ok

v ,

if we can compute the conditional margin uw |Ok
v

with the conditional copula cwo|pa(o↓w). This requires

satisfying the following restrictions:

• pa(o ↓ w) ⊆Ok
v .

• d − sepG

(
w,Ok

v \ pa(o ↓ w)
∣∣pa(o ↓ w)

)
.

Remark that the set pa(o ↓ w) := pa(o ↓ w)⊔ {o} contains all parents of o ordered lower than w accord-

ing to <o and o itself, see Definition 2.20

3. Outgoing arcs: Consider the graph in in Figure 4.3 for which we will determine a suitable order for node

7. Note that the order <5 has already been determined, i.e. 1 <5 2 <5 3 <5 4. Furthermore, node 7 has

no corresponding B-sets, as it has no children.
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5

2 3

1 4

6

7

15

25|1

35
|12

45|123

Figure 4.3: Graph for which we will determine the order <7.

Iteration 1

We commence with O0
7 = ;, to which any node in the set B(O0

7) \ O0
7 = {1,2,3,4,5,6} can be added by

independence. We start with 1, so O1
7 = (1).

5

2 3

1 4

6
15

25|1

35
|12

45|123

O

Independent

Incomi ng

Out g oi ng

Iteration 2

Nodes 2, 3, 4 and 6 can be added by independence. Moreover, node 5 is a possible candidate since we

can compute the margin u1|5 using the copula c15 which corresponds to outgoing arc 1 → 5. Let us add

node 3 instead and get O2
7 = (1,3).

5

2 3

1 4

6
15

25|1

35
|12

45|123

O

Independent

Incomi ng

Out g oi ng

Iteration 3

Node 5 is not a possible candidate by the outgoing arc 3 → 5, since its corresponding copula c35|pa(5↓3) =
c35|12 cannot be used to compute u5|O2

7
= u5|13 without integration. That is, we have

u5|13 =
∫ 1

0

∂C35|12
(
u3,u5 |u1,uw

)
∂u3

dw2.

Note that

pa(5 ↓ 3) = {1,2}⊈ {1,3} =O2
7. (4.2)

If the inclusion in Equation 4.2 were to hold, then the margin u3|O2
7

could be computed using c35|pa(5↓3)

without integration. This gives rise to the first necessary condition for w to be a possible candidate to

be added to Ok
v by an outgoing arc o → w : pa(w ↓ o) ⊆Ok

v must hold.
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We add to O2
7 = (1,3) node 2 by independence, resulting in O3

7=(1,3,2).

5

2 3

1 4

6
15

25|1

35
|12

45|123

O

Independent

Incomi ng

Out g oi ng

Iteration 4

With the addition of node 2, we observe that

pa(5 ↓ 3) = {1,2} ⊆ {1,2,3} =O3
7.

Thus, node 5 satisfies the first condition. The second condition that is needed is as follows:

d − sepG

(
w,Ok

v \ pa(w ↓ o)
∣∣pa(w ↓ o)

)
.

This condition is analogous to the one in the case of candidates by an incoming arc. A motivation for

this condition is given in Iteration 5.

Remark that arc 3 → 5 satisfies the second condition, since

d − sepG

(
5,O3

7 \ pa(5 ↓ 3)
∣∣pa(5 ↓ 3)

)= d − sepG

(
5,{1,2,3} \ {1,2,3}

∣∣ {1,2,3}
)= d − sepG

(
5,; ∣∣ {1,2,3}

)
.

Hence, node 5 is a possible candidate. Indeed, the margin u5|O3
7
= u5|123 can be computed with the

copula c35|pa(5↓3) = c35|12.

To illustrate the necessity of the second condition, we proceed by adding node 6 to the ordered set by

independence, providing us with O4
7 = (1,3,2,6).

5

2 3

1 4

6
15

25|1

35
|12

45|123

O

Independent

Incomi ng

Out g oi ng

Iteration 5

With node 6 added, we can no longer add node 5 by the outgoing arc 3 → 5. This is because we have

u5|O4
7
= u5|1236 ̸= u5|123 = u5|pa(5↓3)).

This inequality prevents us from using the copula c35|pa(5↓3) = c35|12. The conditional margin could be

obtained if we could remove 6 from the conditioning set of u5|O4
7
= u5|1236. However, this would require

d − sepG

(
5,O4

7 \ pa(5 ↓ 3)
∣∣pa(5 ↓ 3)

)= d − sepG

(
5,6

∣∣ {1,2,3}
)

which is not satisfied since the trail 5 ← 4 → 6 is activate given {1,2,3}.
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Thus, we have that a node w is a possible candidate for Ok
v by an outgoing arc o → w , if

d − sepG

(
w,Ok

v \ pa(w ↓ o)
∣∣pa(w ↓ o)

)
and

pa(w ↓ o) ⊆Ok
v

hold.

We cannot add node 5 but we can include node 4 by the incoming arc 4 → 6, giving us O5
7 = (1,3,2,6,4).

5

2 3

1 4

6
15

25|1

35
|12

45|123

O

Independent

Incomi ng

Out g oi ng

Iteration 6

Now, node 5 is a possible candidate for O5
7 by the outgoing arc 4 → 5 since both restrictions are satisfied.

Indeed,

d − sepG

(
5,O5

7 \ pa(5 ↓ 4)
∣∣∣pa(5 ↓ 4)

)
= d − sepG

(
5,;

∣∣∣ {1,2,3,4}
)

and

pa(5 ↓ 4) = {1,2,3} ⊆ {1,2,3,4,6} =O5
7

hold. Thus, we can expand the partial order with node 5 to obtain O6
7 = (1,3,2,6,4,5), giving us the

order; 1 <7 3 <7 2 <7 6 <7 4 <7 5.

5

2 3

1 4

6
15

25|1

35
|12

45|123

O

Independent

Incomi ng

Out g oi ng

To summarize, w is a possible candidate to be added to Ok
v by an outgoing arc o → w with o ∈ Ok

v , if

we can compute the conditional margin uw |Ok
v

with the conditional copula cwo|pa(w↓o). The following

restrictions must be satisfied:

• pa(w ↓ o) ⊆Ok
v .

• d − sepG

(
w,Ok

v \ pa(w ↓ o)
∣∣pa(w ↓ o)

)
.

Remark that the set pa(w ↓ o) := pa(w ↓ o)⊔{o} is defined in Definition 2.20. This set contains o and all

parents of w which are lower than o according to <w .

Now we are ready to define in full generality the set of possible candidates for a partial order of node v in the

k-th iteration, Ok
v . This set will be denoted as Poss.C and(Ok

v ).
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Definition 4.4 (Possible candidates). The set of possible candidates for a partial order Ok
v is defined by

Poss.C and(Ok
v ) := Poss.C andInd (Ok

v )⊔Poss.C andIn(Ok
v )⊔Poss.C andOut (Ok

v ),

where the three disjoint sets are defined as

Poss.C andInd (Ok
v ) := {

w ∈ B(Ok
v ) \Ok

v ; d − sepG

(
w,Ok

v

∣∣;)}
,

Poss.C andIn(Ok
v ) := {

w ∈ B(Ok
v ) \Ok

v ; ∃o ∈Ok
v ; w → o, pa(o ↓ w) ⊆Ok

v and d − sepG

(
w,Ok

v \ pa(o ↓ w)
∣∣pa(o ↓ w)

)}
,

Poss.C andOut (Ok
v ) := {

w ∈ B(Ok
v ) \Ok

v ; ∃o ∈Ok
v ; o → w, pa(w ↓ o) ⊆Ok

v and d − sepG

(
w,Ok

v \ pa(w ↓ o)
∣∣pa(w ↓ o)

)}
.

The proof that the three subsets, Poss.C andInd (Ok
v ), Poss.C andIn(Ok

v ) and Poss.C andOut (Ok
v ), are disjoint

can be found in the Appendix in Lemma A.1.

In each iteration, an arbitrary node is selected from Poss.C and(Ok
v ), and added to the current partial order

Ok
v . This process continues until we have exhausted the parental set, and found a partial order O|pa(v)|

v . Sub-

sequently, the parental order <v is established based on the ordered set. That is, <v is chosen such that for

w1, w2 ∈ pa(v), if w1 appears before w2 in the ordered set O|pa(v)|
v , then w1 <v w2.

All steps described above provide us with Algorithm 2. Given a DAG G without active cycles and interfering

v-structures, it is always able to find a set of orders O not necessitating integration. Moreover, any suitable

set orders O can be found by the algorithm. These statements are formalized in the theorem below which is

proven in Section 4.2.

Theorem 4.5. Let G be a DAG containing no active cycles nor interfering v-structures. Then, the following

statements concerning Algorithm 2 hold:

• The joint density of a PCBN (G ,O ) does not requires integration if and only if the set of orders O is

determined by Algorithm 2.

• Given G , the algorithm can find at least one set of orders O not resulting in integration.



62 4. Determining assignment of copulas

Algorithm 2 Finding a suitable O .

Input: restricted DAG G

Output: set of orderings O for which we will not require integration
1: for each node v in V according to a well-ordering do
2: O ←;
3: while

∣∣O∣∣< ∣∣pa(v)
∣∣ do

4: B(O) ← smallest B-set strictly larger than O
5: Poss.C andInd ,Poss.C andIn ,Poss.C andOut ←;
6: for each w in B(O) \O do
7: if d − sepG

(
w,O

∣∣;)
then

8: Poss.C andInd ← Poss.C andInd ⊔ {w}
9: end if

10: if ∃o ∈O s.t. pa(o ↓ w) ⊆O and d − sepG

(
w,O \ pa(o ↓ w)

∣∣pa(o ↓ w)
)

then
11: Poss.C andIn ← Poss.C andIn ⊔ {w}
12: end if
13: if ∃o ∈O s.t. pa(w ↓ o) ⊆O and d − sepG

(
w,O \ pa(w ↓ o)

∣∣pa(w ↓ o)
)

then
14: Poss.C andOut ← Poss.C andOut ⊔ {w}
15: end if
16: end for
17: Poss.C and ← Poss.C andInd ⊔Poss.C andIn ⊔Poss.C andOut

18: Append one element of Poss.C and to the ordered set O
19: end while
20: Set <v according to O
21: end for
22: O ← {<v ; v ∈V }
23: return O
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4.2. Proof of Theorem 4.5.
In this section, we prove Theorem 4.5 by demonstrating that for a DAG G without active cycles and interfering

v-structures, the algorithm finds a set of orders O for which the computation of the density does not require

integration. Furthermore, we show that the algorithm is capable of identifying all suitable orderings. To

accomplish this, it suffices to prove that for every node v , at each step of our algorithm with current partial

order Ok
v with k < ∣∣pa(v)

∣∣, the following properties hold:

P1. For any node w in Poss.C and(Ok
v ), we can compute uw |Ok

v
and uv |Ok

v
without integration.

P2. For any node w not in Poss.C and(Ok
v ), integration is required to compute uw |Ok

v
.

P3. The set Poss.C and(Ok
v ) is not empty.

These results are proved in separate subsections. P1 will be proven by induction. We will assume that the

arguments of copulas assigned to arcs of the BN up to the current point of the algorithm (copulas assigned to

arcs pointing to a node earlier in the well-ordering than node v and copulas assigned to arcs from nodes in Ok
v

to v) do not require integration. This means that the following copulas have been assigned by our algorithm

upon the arrival at Ok
v :

• cx y |pa(y↓x) with x → y ∈ E and y < v .

• c
o j v |O j−1

v
with j ≤ k.

By proving P1 and P2 we show that the restrictions placed on the set of possible candidates (see Definition

4.4) are necessary and sufficient to prevent integration in the density corresponding to a PCBN.

Moreover, we can conclude that the algorithm is able to find all possible orderings of parents that do not lead

to integration.

P3 implies that we will never encounter a case where there is no possible candidate to be added. Hence, the

algorithm will never terminate prematurely and will return a suitable set of orders O .

We remark that the proof of P3 requires many additional results regarding trails, B-sets, partial orders and

possible candidates. These results can be found in Chapter 5. Most of the lemmas are interesting in their own

right, and do not only serve as a tool to prove P3. For instance, Lemma 5.15 provides us with a clear intuition

on how possible candidates are selected by the algorithm. Furthermore, some lemmas can be applied outside

of our specific framework, e.g. Lemma 5.6 which can be applied to a general DAG and not only a restricted

DAG.

4.2.1. Set of possible candidates (P1)
We must prove that for any w ∈ Poss.C and(Ok

v ), we can compute the conditional margins uw |Ok
v

and uv |Ok
v

without the need for integration. This means that both margins can be computed with a proper recursion of

h-functions, see Chapter 3. By induction, the conditional margins of copulas assigned to arcs of the BN up

to the current point of the algorithm (copulas assigned to arcs pointing to a node earlier in the well-ordering

than node v and copulas assigned to arcs from nodes in Ok
v to v) do not require integration.

First, we consider the conditional margin uv |Ok
v

. The copula cok v |Ok−1
v

has been assigned by our algorithm,

and hence by the induction hypothesis, the conditional margins uok |Ok−1
v

and uv |Ok−1
v

are computable without

integration. Consequently, uv |Ok
v

can be computed with a specified h-function (see Chapter 3) by

uv |Ok
v
= hok v |Ok−1

v
.
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It remains to prove that uw |Ok
v

does not require integration.

Since w ∈ Poss.C and(Ok
v ), w must be in one of the three subsets of Poss.C and(Ok

v ) defined in Definition 4.4.

Hence, three cases are considered:

1. w ∈ Poss.C andInd (Ok
v ): By definition of Poss.C andInd (Ok

v ), we have d − sepG

(
w,Ok

v

∣∣;)
. Thus, the

conditional margin is

uw |Ok
v
= uw ,

which does not require any integration.

2. w ∈ Poss.C andIn(Ok
v ): There exists an o ∈Ok

v such that

(i) w → o ∈ E ,

(ii) pa(o ↓ w) ⊆Ok
v ,

(iii) d − sepG

(
w,Ok

v \ pa(o ↓ w)
∣∣pa(o ↓ w)

)
.

Note that due to (i i ), Ok
v can be split into two parts as

Ok
v = (

Ok
v \ pa(o ↓ w)

)⊔pa(o ↓ w).

Then, by (iii) we have that elements of Ok
v \ pa(o ↓ w) can be removed from the conditioning set Ok

v , so

uw |Ok
v
= u

w |
(
Ok

v \pa(o↓w)
)
⊔pa(o↓w)

= uw |pa(o↓w).

Remark that the arc w → o exists by (i), and is assigned the copula cwo|pa(o↓w) which has been speci-

fied by the algorithm. Moreover, by the induction hypothesis the conditional margins uw |pa(o↓w) and

uo|pa(o↓w) are computable without integration. Hence, the conditional margin uw |pa(o↓w) can be com-

puted without integration as follows:

uw |Ok
v
= uw |pa(o↓w) = hwo|pa(o↓w)(uw |pa(o↓w),uo|pa(o↓w)).

3. w ∈ Poss.C andOut (Ok
v ): There exists an o ∈Ok

v such that

(i) o → w ∈ E ,

(ii) pa(w ↓ o) ⊆Ok
v ,

(iii) d − sepG

(
w,Ok

v \ pa(w ↓ o)
∣∣pa(w ↓ o)

)
.

As in the previous case, by (ii) we have that

Ok
v = (

Ok
v \ pa(w ↓ o)

)⊔pa(w ↓ o).

Then, by (iii) the elements of Ok
v \ pa(w ↓ o) can be removed from the conditioning set;

uw |Ok
v
= u

w |
(

Ok
v \pa(w↓o)

)
⊔pa(w↓o)

= uw |pa(w↓o).

The arc o → w exists by (i), and is assigned the copula cow |pa(w↓o) which has been specified by the al-

gorithm. Furthermore, by induction the conditional margins uo|pa(w↓o) and uw |pa(w↓o) are computable

without integration. Hence, uw |Ok
v

can be computed without integration by

uw |Ok
v
= uw |pa(w↓o) = how |pa(w↓o)(uo|pa(w↓o),uw |pa(w↓o)).

This concludes the proof of P1.
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4.2.2. Outside the set of possible candidates (P2)
We want to show that if at any point in the algorithm, Ok

v is extended by w outside Poss.C and(Ok
v ), then in

the computation of uw |Ok
v

, integration will be needed. Hence, we must show that there is no proper recursion

of h-functions to compute this conditional margin, see Chapter 3.

First, we remove elements from the conditioning set of uw |Ok
v

by d-separation. In particular, we pick the

smallest possible set A ⊆ Ok
v such that d − sepG

(
w,Ok

v \ A
∣∣ A

)
, giving us the equality uw |Ok

v
= uw |A . Now, it

remains to prove that no proper recursion exists to compute uw |A .

We prove this by contradiction. Assume that a proper recursion exists. This recursion must start with an

h-function corresponding to a specified copula caw |A\{a} with a ∈ A.

First, we show that this copula cannot be equal to the independence copula. If this was the case, then we

would have d − sepG

(
w, a

∣∣ A \ {a}
)
, implying d − sepG

(
w,Ok

v \ A
∣∣ A

)
and d − sepG

(
w, a

∣∣ A \ {a}
)
. By the con-

traction property of d-separation, see [27, p. 128], this implies that d − sepG

(
w,Ok

v \
(

A \ {a}
)∣∣ A \ {a}

)
. This

is a contradiction with the definition of the set A. Indeed, we picked A to be the smallest set for which this

d-separation holds. Hence, the copula caw |A\{a} is not equal to the independence copula, and therefore must

be specified by an arc w → a or a → w . We consider both cases.

• w → a: In this case we have that caw |A\{a} = cw a|pa(a↓w). Hence, A \{a} = pa(a ↓ w), and thus A = pa(a ↓
w) := pa(a ↓ w)⊔ {a}. This gives

d − sepG

(
w,Ok

v \ A
∣∣ A

)= d − sepG

(
w,Ok

v \ pa(a ↓ w)
∣∣pa(a ↓ w)

)
,

Moreover, it is the case that pa(a ↓ w) = A ⊆ Ok
v , which means that w ∈ Poss.C andIn(Ok

v ) by the in-

coming arc w → a. This of course contradicts the fact that w ∉ Poss.C and(Ok
v ).

• a → w : In this case cw a|A\{w} = caw |pa(w↓a). Hence, we have that A \ {a} = pa(w ↓ a), and thus A =
pa(w ↓ a) := pa(w ↓ a)⊔ {a}. Similarly to the earlier case

d − sepG

(
w,Ok

v \ A
∣∣ A

)= d − sepG

(
w,Ok

v \ pa(w ↓ a)
∣∣pa(w ↓ a)

)
.

Moreover, pa(w ↓ a) = A ⊆ Ok
v which means that w ∈ Poss.C andOut (Ok

v ) by the outgoing arc a → w .

This contradicts the fact that w ∉ Poss.C and(Ok
v ).

Thus, there is no proper recursion to compute uw |Ok
v

, and the proof of P2 is concluded.

4.2.3. The set of possible candidates is not empty (P3)
We will show that at any point of the algorithm, we are able to extend the current order Ok

v with a possible

candidate w ∈ Poss.C and(Ok
v ). Thus, we must prove that there exists a node w ∈ Poss.C and(Ok

v ).

By definition, we have that

Poss.C and(Ok
v ) = Poss.C andInd (Ok

v )⊔Poss.C andIn(Ok
v )⊔Poss.C andOut (Ok

v ).

If Poss.C andInd (Ok
v ) is not empty, then the proof is complete. Therefore, we assume that Poss.C andInd (Ok

v ) =
;. Consequently, we can apply Lemma 5.14 to find that ad(Ok

v ) ∩ B(Ok
v ) ̸= ;. Thus, there must exist a

w1 ∈ B(Ok
v ) \Ok

v and o1 ∈Ok
v such that w1 → o1 ∈ E or o1 → w1 ∈ E .

We will now show that the existence of an arc w1 → o1 implies that Poss.C andIn(Ok
v ) is not empty. Thus, after

establishing this claim we will assume that no arc of the form w1 → o1 exists. Hereafter, we prove that this
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statement paired with the existence of an arc o1 → w1 implies that Poss.C andOut (Ok
v ) is not empty, conclud-

ing the proof. The cases of the existence of the arcs w1 → o1 and o1 → w1 are considered separately.

First case: w1 → o1 ∈ E .

If w1 can be added to Ok
v by the incoming arc w1 → o1, then w1 ∈ Poss.C andIn(Ok

v ), completing the proof.

Thus, we assume that w1 ∉ Poss.C andIn(Ok
v ). Since w1 ∈ pa(o1)∩ (

B(Ok
v ) \ Ok

v

)
, then we must show that w1

does not belong to the set pa(o1)∩ (
B(Ok

v ) \ Ok
v

)∩Poss.C andIn(Ok
v ). Assume now that for all w ∈ pa(o1)∩(

B(Ok
v ) \ Ok

v

)
, we have w ∉ Poss.C andIn(Ok

v ). To find a contradiction with the statement above, the lemma

below will be used. This lemma states that under the assumptions above, the arc w1 → o1 implies the exis-

tence of another pair of nodes w2 ∈ B(Ok
v ) \ Ok

v and o2 ∈Ok
v such that w2 → o2 and o1 → o2. It is the case that

o2 ̸= o1, but w1 and w2 may be the same node. We will again apply this lemma with arc w2 → o2 and obtain a

sequence of arcs.

Lemma 4.6. Let w1 ∈ B(Ok
v ) \Ok

v and o1 ∈Ok
v such that w1 → o1. Assume

pa(o1)∩ (
B(Ok

v ) \Ok
v

)∩Poss.C andIn(Ok
v ) =;.

Then, there exist w2 ∈ B(Ok
v ) \Ok

v and o2 ∈Ok
v such that w2 → o2 and o1 → o2.

By applying Lemma 4.6 iteratively, we obtain a sequence of connected nodes of G

o1 → o2 → o3 →···

Since the graph G is acyclic and has a finite number of nodes, this sequence must therefore be finite. Let o∗

be the last element of the longest sequence that can be constructed starting from o1. Then some parent of o∗

must belong to Poss.C andIn(Ok
v ), otherwise, o∗ would not be the last node in the sequence. This means that

Poss.C andIn(Ok
v ) ̸= ;, completing the proof. It remains to prove Lemma 4.6.

Proof of Lemma 4.6. Without loss of generality, we can assume that w1 is the smallest element with respect

to <o1 in pa(o1)∩ (
B(Ok

v ) \ Ok
v

)
. By assumption, w1 ∉ Poss.C andIn(Ok

v ), hence one of the conditions below

must be violated:

1. pa(o1 ↓ w1) ⊆Ok
v .

2. d − sepG

(
w1,Ok

v \ pa(o1 ↓ w1)
∣∣pa(o1 ↓ w1)

)
.

The first restriction is satisfied by the lemma below.

Lemma 4.7. Let w1 be the smallest element in B(Ok
v )∩pa(o1) with respect to <o1 . Then, pa(o1 ↓ w1) ⊆Ok

v .

Proof of Lemma 4.7. Suppose that there exists an x ∈ pa(o1 ↓ w1) \ Ok
v . That is, x ∈ pa(o1) \ Ok

v and x <o1 w1.

Since w1 is the smallest node in B(Ok
v )∩pa(o1), we have x ∉ B(Ok

v ). Remark that o1 has corresponding B-set

B(Ok
v )∩ pa(o1) which contains w1. Since x <o1 w , x must also be included in this B-set. Otherwise, our

algorithm would have never chosen the order x <o1 w . Indeed, by Lemma 5.17 all previously determined

parental orders chosen by the algorithm abide by the B-sets in the sense of Definition 3.19. But then, x ∈
B(Ok

v ) as well, which is a contradiction with the definition of w1.

Therefore, the second condition must be violated. We consider two possible cases.
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• pa(o1 ↑ w1)∩Ok
v ̸= ;: Lemma 5.19 immediately implies that there exists an o2 ∈ Ok

v as desired (where

w1 is w , o1 is oi and o2 is õ in the notation of Lemma 5.19) and we set w2 := w1.

• pa(o1 ↑ w1)∩Ok
v =;: We can apply Lemma 5.28 (with w = w1 and o = o1 in the notation of Lemma 5.28)

to find that there exists a trail between w1 and a node õ ∈ Ok
v \ pa(o1 ↓ w1) which is activated by

pa(o1 ↓ w1) containing no converging connections. Let us pick a shortest such trail.

w1 ⇌ x1 ⇌ · · ·⇌ xn ⇌ õ.

Remark that this trail is a shortest trail activated by the empty set between w1 ∈ B(Ok
v ) and õ ∈ Ok

v ⊆
B(Ok

v ) consisting of nodes in V \ pa(o1 ↓ w1). Therefore, we can combine Lemma 5.5 (with K = V \

pa(o1 ↓ w1)) and Lemma 5.12 to find that {xi }i=1,...,n ⊆ B(Ok
v ). In particular we obtain xn ∈ B(Ok

v ).

Furthermore, xn cannot be contained in Ok
v . Otherwise, the trail from w to xn would be an even shorter

active trail from w to a node in Ok
v . Hence, xn ∈ B(Ok

v ) \Ok
v .

Now, the trail

o1 ← w ⇌ x1 ⇌ · · ·⇌ xn ⇌ õ

is an active trail between two nodes in Ok
v given the empty set consisting of nodes not in Ok

v . Thus,

by Lemma 5.15, o1 and õ must be adjacent. By the assumption that pa(o1 ↑ w1)∩Ok
v = ;, we have

õ ∉ pa(o1 ↑ w1). Remark that õ ∉ pa(o1 ↓ w1) (by definition of õ) and that pa(o1) = pa(o1 ↓ w1)⊔pa(o1 ↑
w1)⊔ {w1}. This shows that õ ∉ pa(o1). Therefore, we must have o1 ∈ pa(õ); this means that we have

the subgraph below.

o1 w1 x1 x2 xn−1 xn õ

Clearly, õ is our desired node o2 and xn is our desired node w2. Indeed, we have o1 → õ and xn → õ,

with õ ∈Ok
v and xn ∈ B(Ok

v ) \Ok
v .

Second case: o1 → w1 ∈ E .

First, we remark that if E contains arcs of the form w → o with w ∈ B(Ok
v )\Ok

v and o ∈Ok
v , then by the previous

case we have that Poss.C andIn(Ok
v ) ̸= ;. Therefore, we can assume that E contains no such arcs.

If w1 ∈ Poss.C andOut (Ok
v ), then the proof is complete. Assume now that w1 ∉ Poss.C andOut (Ok

v ). We will

show that Poss.C andOut (Ok
v ) ̸= ; with the lemma below. The lemma states that under the assumptions

above, the arc o1 → w1 implies the existence of another pair of nodes w2 ∈ B(Ok
v ) \ Ok

v and o2 ∈ Ok
v such that

w1 and w2 are connected by a trail where all arcs point in direction of w1. We can repeat this argument and

construct a sequence of nodes.

Lemma 4.8. Let w1 ∈ B(Ok
v ) \ Ok

v and o1 ∈ Ok
v such that o1 → w1 ∈ E . Assume that w1 ∉ Poss.C andOut (Ok

v ),

and E contains no arcs of the form w → o with w ∈ B(Ok
v ) \ Ok

v and o ∈ Ok
v . Then, there exist w2 ∈ B(Ok

v ) \ Ok
v

and o2 ∈Ok
v such that o2 → w2, and w1 and w2 are connected by a trail of the form

w1 ← x1 ←···← xn ← w2.
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By applying Lemma 4.8 iteratively, we obtain a sequence

w1 ←···← w2 ←···← w3 ←··· .

Since the graph G is acyclic and has a finite set of nodes, this sequence must be finite. Let w∗ be the

last element of the longest sequence that can be constructed starting from w1. Then, w∗ must belong to

Poss.C andOut (Ok
v ), otherwise, it would not be the last. Hence, we have Poss.C andOut (Ok

v ) ̸= ;, completing

the proof. It remains to prove Lemma 4.8.

Proof of Lemma 4.8. Without loss of generality, we can assume that o1 is the highest element in Ok
v ∩pa(w1)

with respect to <w1 .

We consider two cases.

• pa(w1 ↓ o1) \Ok
v ̸= ;: Let x1 ∈ pa(w1 ↓ o1) \ Ok

v . That is, x1 ∈ pa(w1) \ Ok
v and x1 <w1 o1. Remark that

B(Ok
v )∩pa(w1) is a B-set corresponding to node w1 which contains the node o1. By Lemma 5.17, all

parental orders determined by the algorithm abide by the B-sets. Consequently, the order x1 <w1 o1

implies that x1 ∈ B(Ok
v )∩pa(w1), and thus x1 ∈ B(Ok

v ). Hence, x1 ∈ B(Ok
v ) \Ok

v .

By the assumption that Poss.C andInd (Ok
v ) =;, we have����d − sepG

(
x1,Ok

v

∣∣;)
. Let us pick a shortest trail

from x1 to Ok
v

x1 ⇌ x2 ⇌ · · ·⇌ xn ⇌ õ (4.3)

activated by the empty set with õ ∈Ok
v . Note that x1 and õ are both included in the B-set B(Ok

v ). There-

fore, by Lemma 5.12, we have that xi ∈ B(Ok
v ) for all i = 1, . . . ,n. In particular, xn ∈ B(Ok

v ). Furthermore,

xn is not contained in the set Ok
v . Otherwise, the trail

x1 ⇌ x2 ⇌ · · ·⇌ xn

would be a shorter trail from x1 to Ok
v activated by the empty set than (4.3), which is a contradiction.

Therefore, xn must be in B(Ok
v ) \Ok

v .

We assumed that there is no arc pointing from a node in B(Ok
v ) \ Ok

v to a node in Ok
v . This means that

the arc xn → õ is not possible. Consequently, the trail (4.3) must contain the arc xn ← õ.

Since, the trail is activated by the empty set it contains no converging connections by Lemma 5.1.

Therefore, (4.3) must be of the form

w1 ← x1 ←···← xn ← õ.

with xn ∈ B(Ok
v ) \Ok

v and õ ∈Ok
v . Hence, xn is our desired node w2 and õ is our desired node o2.

• pa(w1 ↓ o1) \Ok
v =;: By assumption, we have that w1 ∉ Poss.C andOut (Ok

v ). Hence, one of the follow-

ing conditions is violated:

1. pa(w1 ↓ o1) ⊆Ok
v .

2. ����d − sepG

(
w1,Ok

v \ pa(w1 ↓ o1)
∣∣pa(w1 ↓ o1)

)
.

Remark that the assumption that pa(w1 ↓ o1)\Ok
v =; implies that the first condition is satisfied. Hence,

the second condition must be violated. Therefore, there exists a trail between w1 and a node in Ok
v \

pa(w1 ↓ o1) activated by pa(w1 ↓ o1). By Lemma 5.29, there exists such a trail containing no converging
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connections. Thus, we can pick a shortest trail from w to Ok
v \ pa(w1 ↓ o1) activated by pa(w1 ↓ o1)

containing no converging connections:

w1 ⇌ x1 ⇌ · · ·⇌ xn ⇌ õ (4.4)

with õ ∈ B(Ok
v ) \Ok

v .

First, we show that (4.4) must be of length n > 1. If n = 0, then we would have that w1 ⇌ õ. This arc must

point to the left, since the arc w1 → õ is an arc from a node in B(Ok
v ) \ Ok

v to a node in Ok
v which cannot

be present by the assumptions of the lemma. By the arc w1 ← õ, we know that õ ∈ pa(w1). Moreover,

by definition the node õ is included in Ok
v \ pa(w1 ↓ o1), and thus õ ∈ Ok

v \ pa(w1 ↓ o1) ∩ pa(w1) =
Ok

v ∩pa(w1 ↑ o1). This means that o1 <w1 õ. But, we picked o1 to be largest element in Ok
v ∩pa(w1)

according to <w1 . Therefore, o1 <w1 õ is not possible, proving that n > 1.

Now, we show that for all i = 1, . . . ,n, xi ∉Ok
v . Suppose that for some i , we have that xi ∈Ok

v . The set Ok
v

can be rewritten as Ok
v = (

Ok
v \ pa(w1 ↓ o1)

)⊔pa(w1 ↓ o1). Since xi ∈Ok
v , it must be in Ok

v \ pa(w1 ↓ o1)

or in pa(w1 ↓ o1). If xi ∈Ok
v \ pa(w1 ↓ o1), then the w1 ⇌ x1 ⇌ · · ·⇌ xi would be a shorter trail between

w1 and Ok
v \ pa(w1 ↓ o1) activated by pa(w1 ↓ o1) than (4.4). This is a contradiction, because we picked

a shortest such trail. Hence, xi must be in pa(w1 ↓ o1). However, in this case the trail (4.4) would be

blocked by pa(w1 ↓ o1) which is also a contradiction. Therefore, xi cannot be in Ok
v proving the claim.

The trail (4.4) is a shortest trail activated by the empty set between two nodes in B(Ok
v ) (w and õ), and

thus by Lemma 5.12, xi ∈ B(Ok
v ) for all i = 1, . . . ,n.

This means that for all i = 1, . . . ,n, xi ∈ B(Ok
v )\Ok

v , in particular xn ∈ B(Ok
v )\Ok

v . Similarly to the previous

case, this implies that we must have xn ← õ, and therefore (4.4) takes the form

w1 ← x1 ←···← xn ← õ

with xn ∈ B(Ok
v ) \Ok

v and õ ∈Ok
v and n > 0. So, xn is our desired node w2 and õ is our desired node o2.

The proof of Lemma 4.6 is completed.





5
On the properties of restricted DAGs

In this chapter we prove many useful results concerning restricted DAGs. These include properties concern-

ing trails, B-sets, partial orders, possible candidates and more. Although, the ultimate purpose of the lemmas

presented in this chapter is to solve the proof in Section 4.2.3, each lemma provides an interesting insight on

their own.

5.1. About trails with no converging connection
First, a simple but interesting result which states that trails with no converging connections are equivalent to

trails activated by the empty set is presented.

Lemma 5.1. A trail is activated by the empty set if and only if it does not contain a converging connection.

Proof. This statement follows directly from the definition of d-separation, see Definition 2.22.

If a trail contains no converging connections, then it must have at most one diverging connection. An intuitive

property of such a diverging node is that it is an ancestor of both end-points. Therefore, we refer to it as a

common ancestor. Whenever a trail contains only serial connections, the common ancestor is defined to be

the end-point to which the arrows point away from.

Definition 5.2 (Common ancestor). Let G be a DAG and let x0 and xn+1 be two nodes joined by a trail

x0 ⇌ x1 ⇌ · · ·⇌ xn ⇌ xn+1

with no converging connections. The common ancestor among this trail is defined as follows.

• If x0 is an ancestor of xn+1, then xm = x0.

• If xn+1 is an ancestor of x0, then xm = xn+1.

• If x0 is not an ancestor of xn+1 and vice versa, then xm with m ∈ {1, . . . ,n} is an ancestor of both x0 and

xn+1.

Remark that xm is well-defined, since strictly one of the cases above holds.

We remark that in every figure from now on the common ancestors will be displayed in the middle of a trail.

Therefore, the common ancestor will always be denoted with a subscript “m” which is an abbreviation for

71
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“middle”.

In many proofs we will repeatedly pick trails between nodes, e.g. x0 and xn+1, for which all nodes on the trail

are included in a certain subset K ⊆ V . In this case we say that the trail consists only of elements of K . This

does not include the end-points (x0 and xn+1), i.e. these end-points may or may not be in K .

Definition 5.3. Let G = (V ,E) be a DAG, let K ⊆ V , and let x0 ⇌ x1 ⇌ · · ·⇌ xn+1 be a trail. We say that the

trail consists only of elements of K if ∀i = 1, . . . ,n, xi ∈ K .

In few lemmas below we prove that a shortest trail satisfying a certain property also satisfies a second prop-

erty. Let us first formalize what is meant by a property of a trail.

Definition 5.4 (Trail property). Let G be a DAG containing a trail x0 ⇌ x1 ⇌ · · · ⇌ xn+1. A property P :=
P(x0, . . . , xn+1) specifies the existence of certain arcs between the nodes on the trail. Here, we mean that P

states that E contains a certain set of arcs {xi → x j ; i ∈ I , j ∈ J } with I , J ⊆ {0,1, . . . ,n +1}.

For instance, the following are regarded as trail properties:

• The first arc of the trail points to the left; x0 ← x1.

• The i -th and j -th node on the trail are adjacent; xi ⇌ x j .

• The trail is of the form x0 ← x1 → x2 →···→ xn−1 → xn , and we have that x0 → xn−1.

Proofs where one property of a trail implies another will not only hold for shortest trails but also for shortest

trails consisting of nodes in a subset K ⊆V . For instance, Lemma 5.6 also holds for shortest trails activated by

the empty set consisting of nodes in K . Instead of repeatedly saying that a statement holds for both a shortest

trail and a shortest trail consisting of nodes in a subset K and proving both cases, we establish the following

lemma.

Lemma 5.5. For a DAG G with no active cycles and interfering v-structures, for a trail

x0 ⇌ x1 ⇌ · · ·⇌ xn+1, (5.1)

let P1(x0, x1, . . . , xn+1) and P2(x0, x1, . . . , xn+1) be two statements. Assume that for any DAG G = (V ,E) with

no active cycles, nor interfering v-structures, for any x0, xn+1 ∈ V , and for any shortest trail (5.1) between x0

and xn+1 that satisfies P1, the property P2 holds.

Let G = (V ,E) be a DAG with no active cycles, nor interfering v-structures, let K ⊆ V . Then for any shortest

trail between x0 and xn+1 that satisfies P1 and that consists only of elements of K , the property P2 still holds.

Proof. Let x0 ⇌ x1 ⇌ · · ·⇌ xn+1 be a shortest trail between x0 and xn+1 that satisfies P1 and consists only

of elements of K . Consider the subgraph G∗ induced by {x0, xn+1}∪K . Note that this trail is a shortest trail

satisfying P1 between x0 and xn+1 in G∗. Therefore, by assumption, it must satisfy P2.

During later proofs we will often pick a shortest trail. In many occasions, the property of being a shortest trail

allows us to exclude the presence of certain chords. For instance, a shortest trail activated by the empty set

does not contain a chord.

Lemma 5.6. Let G be a DAG with no active cycles and let

x0 ⇌ x1 ⇌ . . .⇌ xn ⇌ xn+1 (5.2)



5.1. About trails with no converging connection 73

be a trail in G for some n ≥ 0. If this is the shortest trail between x0 and xn+1 activated by the empty set, then

(5.2) has no chords.

Proof. Let xm be the common ancestor among (5.2), see Definition 5.2.

The proof is completed by remarking that:

• xi → x j with i < j ≤ m results in a cycle.

• xi ← x j with i < j ≤ m results in a shorter trail.

• xi → x j with m ≤ i < j results in a shorter trail.

• xi ← x j with m ≤ i < j results in a cycle.

• xi → x j with i < m < j results in a shorter trail.

• xi ← x j with i < m < j results in a shorter trail.

The lemma below states that if G contains a shortest trail x0 ⇌ x1 ⇌ · · ·⇌ xn ⇌ xn+1 activated by the empty

set for which x0 → v and xn+1 → v for some node v ∈V , then for all i = 1, . . . ,n, xi → v .

Lemma 5.7. Let G be a DAG with no active cycles and let

x0 ⇌ x1 ⇌ · · ·⇌ xn ⇌ xn+1 (5.3)

be a trail in G for some n ≥ 0. If this is a shortest trail between x0 and xn+1 activated by the empty set, then

(i) ch(x0)∩ ch(xn+1) ⊆⋂n
i=1 ch(xi ),

(ii) ∀i = 1, . . . ,n, xi ∉ ch(x0)∩ ch(xn+1).

Proof. (ii) is a straightforward consequence of (i). We now prove (i). Let v ∈ ch(x0)∩ ch(xn+1). To prove this,

suppose that there exists an i such that v ∉ ch(xi ). We define the nodes xl and xr using the integers

l := max
{

j ∈ {0, . . . i −1}; v ∈ ch(x j )
}
,

r := min
{

j ∈ {i +1, . . . ,n +1}; v ∈ ch(x j )
}
.

With this notation, xl (respectively xr ) is the first node to the left (resp. right) of xi that is a parent of v . l

and r are well-defined since v ∈ ch(x0)∩ ch(xn+1). Now, G contains the graph displayed in Figure 5.1. Let us

consider the trail

v ← xl ⇌ · · ·⇌ xi ⇌ · · ·⇌ xr → v. (5.4)

Any chord of this trail must be either a chord of (5.3), an arc v → x j or an arc x j → v with j ∈ {l +1, . . . ,r −1}.

The first case is not possible by Lemma 5.6.

The second case is not possible because by Lemma 5.1 trail (5.3) contains at most one diverging connection,

and therefore trail (5.4) contains exactly one diverging connection. Consequently, any arc v → x j would result

in a cycle.



74 5. On the properties of restricted DAGs

The third case is not possible by definition of l and r . Therefore, we have shown that (5.4) does not contain

any chord. Thus, G contains the active cycle (5.4), which is a contradiction.

vx0 xn+1

x1 xn

xl xr

xi−1 xi+1xi

Figure 5.1: Subgraph in G with the active cycle coloured in red.

It should be noted that we cannot use Lemma 5.5 to generalize the lemma above. Because the properties

5.7(i,ii) do not only concern the nodes x0, x1, . . . , xn+1 but also their children. Therefore, we prove the gener-

alization in the corollary below.

Corollary 5.8. Let G be a DAG with no active cycles and let

x0 ⇌ x1 ⇌ · · ·⇌ xn ⇌ xn+1 (5.5)

be a trail in G for some n ≥ 0. If this is the shortest trail between x0 and xn+1 activated by the empty set

consisting of nodes in K ⊆V , then

(i) ch(x0)∩ ch(xn+1) ⊆⋂n
i=1 ch(xi );

(ii) ∀i = 1, . . . ,n, xi ∉ ch(x0)∩ ch(xn+1).

Proof. (ii) is a straightforward consequence of (i). We now prove (i). Trail 5.5 is a shortest trail activated by

the empty set consisting of nodes in K , therefore by combining Lemmas 5.5 and 5.6 it contains no chords.

Let G∗ = (V ∗,E∗) be the subgraph induced by

V ∗ = K ∪ {x0, xn+1}∪ (
ch(x0)∩ ch(xn+1)

)
.

By Lemma 5.7(ii), any shortest trail between x0 and xn+1 in G∗ activated by the empty set must not contain

a node in ch(x0)∩ ch(xn+1)∩K = ch(x0)∩ ch(xn+1). Therefore, any shortest trail between x0 and xn+1 in G∗

activated by the empty set consists of nodes in K .

Thus, trail (5.5) is a shortest trail in G∗ activated by the empty set. Now, we can apply Lemma 5.7 to trail (5.5)

in G∗ to find that indeed ch(x0)∩ ch(xn+1) ⊆ (∩n
i=1 ch(xi )∩K

)⊆∩n
i=1ch(xi ).

The lemma below states if v1 → v2 for some v1, v2 ∈ V , the existence of a trail between v1 and v2 activated

by the empty set and starting with an arc pointing to v1 implies the existence of a particular subgraph. This

lemma will be very useful in Section 5.3.
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Lemma 5.9. Let G be a DAG with no active cycles, nor interfering v-structures and let v1, v2 ∈ V such that

v1 → v2. Suppose that

v1 ← x1 ⇌ · · ·⇌ xn ⇌ v2

is a shortest trail trail activated by the empty set starting with an arc v1 ← x1. Assume that n ≥ 1. Then, for all

i ∈ {1, . . . ,n}, xi → xi+1 with the convention that xn+1 := v2 and for all i ∈ {2, . . . ,n} v1 → xi .

This means that G contains the subgraph below.

v1 v2

x2 xn−1x1 xn

Furthermore, the lemma also holds for shortest trails activated by the empty set and of the form

v1 ← x1 ⇌ · · ·⇌ xn → v2 (5.6)

with n ≥ 1.

Proof. Consider a shortest trail

v1 ← x1 ⇌ · · ·⇌ xn ⇌ v2 (5.7)

activated by the empty set with n ≥ 1.

Consider the case when n = 1. Here, the trail takes the form v1 ← x1 ⇌ v2 with v1 → v2. If x1 ← v2, then

we obtain the cycle v1 ← x1 ← v2 ← v1, and therefore a contradiction. Therefore, the arc x1 → v2 must be

present, giving us exactly the claimed subgraph, completing the proof.

Now, let us assume that n > 1. We first show that xn → v2. Suppose that v2 → xn , then the trail takes the form

v1 ← x1 ⇌ · · ·⇌ xn ← v2.

Since this trail is activated by the empty set it contains no converging connections (Lemma 5.1). Hence, the

trail must take the form

v1 ← x1 ←···← xn ← v2.

However, since v1 → v2, this results in a cycle, and therefore a contradiction. So, we get that xn → v2.

Because we must have xn → v2, the trails (5.6) and (5.7) coincide.

Let xm be the common ancestor among (5.7), see Definition 5.2. Now, G contains the subgraph below.

v1 v2

xmxm−1x2x1 xm+1 xn−1 xn

In this case, the subgraph above contains an undirected cycle with one converging connection (at v2). Since

G does not contain an active cycle, E must contain the appropriate chords.

Several group of chords can be excluded:
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• The trail x1 ⇌ · · ·⇌ xn → v2 is a shortest trail activated by the empty set, and therefore by Lemma 5.6 it

has no chords.

• v1 → x j with j ≤ m results in a cycle.

• x j → v1 with j ∈ {2, . . . ,m} results in a trail v1 ← x j ⇌ · · ·⇌ xn → v2 which would be shorter than the

shortest trail (5.7) (while still being activated by the empty set). This is a contradiction.

The only remaining chords are of the form v1 → xi with i ∈ {m +1, . . . ,n}. First, we show that the diverging

node xm must be the first node on trail (5.7), i.e. xm = x1. To see this, we consider the case where all possible

chords are present in E , giving us the subgraph below. This graph contains an undirected cycle, coloured in

red. Since there are no more chords which could be present, this undirected cycle is an active cycle, unless

it is of length strictly smaller than 4. The undirected cycle is made up of the nodes x1, . . . , xm+1 and v1; it is

therefore of length m + 2. This means that m + 2 ≤ 3; the only possibility is then that m = 1, and therefore

xm = x1.

v1 v2

xmxm−1x2x1 xm+1 xn−1 xn

Now, G contains the undirected cycle below. It is evident that all chords v1 → xi must be present for this

undirected cycle not to be an active cycle. Therefore, G must contain the subgraph as given by the lemma,

completing the proof.

v1 v2

x2 xn−1x1 xn

Similarly to the previous lemma, the lemma below states that under certain conditions the existence of a trail

between two nodes v1 and v2 activated by the empty set implies the existence of a specific subgraph. In this

case, the conditions state that v1 and v2 are both parents of another node v3 and the last arc along the trail

between v1 and v2 points towards v2. Moreover, no node on the trail can be a parent of v3. The lemma will

be particularly useful in Section 5.4.

Lemma 5.10. Let G be a DAG with no active cycles, nor interfering v-structures and let v1, v2, v3 ∈ V such

that v1, v2 ∈ pa(v3). Suppose that v1 and v2 are connected by a trail

v1 ⇌ x1 ⇌ · · ·⇌ xn → v2 (5.8)

activated by the empty set with {xi }n
i=1 ∩pa(v3) =; and n ≥ 1. If this is a shortest such trail, then G contains

the subgraph below, with the convention x0 := v1.
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xn−1

xn

v2

v3

Proof. Let us use the convention xn+1 = v2. Let xm be the common ancestor among 5.8, see Definition 5.2,

Then, G contains the subgraph below.

v3

v1 v2

xmxm−1x2x1 xm+1 xn−1 xn

.

The graph above is an undirected cycle with one converging connection (at v3). Since G does not contain an

active cycle, E must contain the appropriate chords. Several chords can be excluded:

• The trail v1 ⇌ x1 ⇌ · · ·⇌ xn is a shortest trail activated by the empty set, and therefore it has no chords

by Lemma 5.6.

• v1 → v2 results in a shorter trail of the form (5.8).

• xi → v2 results in a shorter trail of the form (5.8).

• v2 → xi with i ≥ m results in a cycle.

• v3 → xi with i = 1, . . . ,n results in a cycle.

• xi → v3 with i = 1, . . . ,n cannot be present by the assumptions of the lemma.

Hence, the only possible chords are arcs of the form v2 → v1 and v2 → xi with i ∈ {1, . . . ,m −1}.

First, we show that the common ancestor must be the last node along the trail, i.e. xm = xn . Consider the

case where all possible chords are present in E , giving us the subgraph below. This subgraph contains an

undirected cycle with one converging connection (at xm−1), coloured in red. Since G does not contain an

active cycle, and there are no more arcs which could act as a chord, it must be of length strictly smaller

than than 4. This undirected cycle is made up of the nodes xm−1, xm . . . , xn and v2. It is therefore of length

n − (m −2)+1 = n −m +3. Therefore, n −m +3 ≤ 3 so m = n, and therefore xm := xn .

v3

v1 v2

xmxm−1x2x1 xm+1 xn−1 xn
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Now, G contains the undirected cycle below. It is evident that all remaining chords discussed above must

be included in E . Otherwise, this undirected cycle would be an active cycle which is a contradiction. In

particular, G contains the subgraph given by the lemma, completing the proof.

v3

v1 v2

x2x1 xn−1 xn
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5.2. Properties of B-sets and possible candidates
Throughout this section we will repeatedly need the same assumptions, and therefore we formalize them

below.

Assumption 5.11. Let G = (V ,E) be a DAG. The following conditions are assumed to be satisfied:

1. G does not contain any active cycles, nor interfering v-structures.

2. < is a well-ordering corresponding to G

3. v is a node in V with | pa(v) |> 0.

4. All previous orders, i.e. <w with w < v , have already been determined by our algorithm.

5. Ok
v is a partial order determined by our algorithm with k < ∣∣pa(v)

∣∣.
Informally, the lemma below states that two nodes in a B-set Bq are either d-separated given the empty set or

any shortest trail activated by the empty set between them must be contained in Bq .

Lemma 5.12. Let G be a DAG with no active cycles nor interfering v-structures, and let v ∈ V . Let q ∈
{1, . . . ,Q(v)+1} and let w1, w2 ∈ Bq (v). Then, d − sepG

(
w1, w2

∣∣;)
or any shortest trail activated by the empty

set joining w1 and w2 must consist entirely of nodes contained in Bq .

Proof. If d − sepG

(
w1, w2

∣∣;)
, or if w1 = w2, then the proof of this lemma is completed. Therefore we can

assume that they are not independent and different from each other. Thus����d − sepG

(
w1, w2

∣∣;)
; let

w1 ⇌ x1 ⇌ · · ·⇌ xn ⇌ w2 (5.9)

be a shortest trail between w1 and w2 which is activated by the empty set. First, we assume that q ≤Q(v). Let

x0 := w1, xn+1 := w2, and bq be a node corresponding to Bq (v), see Definition 3.18. Because w1, w2 ∈ Bq (v),

we know that v,bq ∈ ch(w1)∩ch(w2). By Lemma 5.7, for all i = 1, . . . ,n, we have v,bq ∈ ch(xi ) and xi ∈ Bq (v) =
pa(v)∩pa(bq ).

If q =Q(v)+1, we are at the last stage of the algorithm and there is no bq , but the same reasoning shows that

for i = 1, . . . ,n, xi ∈ Bq (v) = pa(v). This concludes the proof.

We cannot apply Lemma 5.5 to Lemma 5.12, because the property that for all i = 1, . . . ,n, xi ∈ Bq (v) concerns

a node v which is not on the trail. Therefore, we prove the generalization to a subset K ⊆ V in the corollary

hereunder.

Corollary 5.13. Let G be a DAG with no active cycles nor interfering v-structures, and let v ∈ V . Let q ∈
{1, . . . ,Q(v)+1} and let w1, w2 ∈ Bq (v). Let K be a set included in V . Then, w1 and w2 are either independent

or for any shortest trail activated by the empty set joining w1 and w2 consisting of nodes in K must consist

entirely of nodes contained in Bq .

Proof. First, we assume that q ≤ Bq (v). Let bq be a node corresponding to Bq . Let G∗ = (V ∗,E∗) be the

subgraph induced by the nodes in V ∗ := {v, w1, w2,bq }∪K . Note that v and bq are children of both w1 and

w2 in G∗. Therefore, by Lemma 5.7(ii), any shortest trail between w1 and w2 in G∗ activated by the empty

set must not contain v nor bq . This means that any shortest trail between w1 and w2 in G∗ activated by the

empty set must consist only of elements of K .
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Consider a shortest trail in G

w1 ⇌ x1 ⇌ · · ·⇌ xn ⇌ w2 (5.10)

consisting of nodes in K , i.e. {xi }n
i=1 ⊆ K . Therefore, it is a shortest trail activated by the empty set between

w1 and w2 in G∗. We now apply Lemma 5.12, since w1 and w2 belong to the B-set Bq ∩V ∗ corresponding to

v in the graph G∗. Therefore, for all i = 1, . . . ,n, xi ∈ Bq , completing the proof.

If q =Q(v)+1, then the proof is analogous to the previous case, but then with V ∗ := (v, w1, w2)∪K .

Informally, the lemma below states that if the set Poss.C andInd (Ok
v ) is empty, then there is a node in B(Ok

v ) \

Ok
v which is adjacent to a node in the set Ok

v .

Lemma 5.14. Under Assumption 5.11, let w ∈ B(Ok
v )\Ok

v such that����d − sepG

(
w,Ok

v

∣∣;)
, i.e. w ∉ Poss.C andInd (Ok

v ).

Then, ad(Ok
v )∩B(Ok

v ) ̸= ;, where ad(Ok
v ) is the adjacency set of Ok

v defined in Definition 2.14.

Proof. By assumption, we have ����d − sepG

(
w,Ok

v

∣∣;)
. Therefore w must be connected to Ok

v by some trail

activated by the empty set. We pick a shortest trail from w to Ok
v given the empty set, as

w ⇌ x1 ⇌ · · ·⇌ xn ⇌ o (5.11)

where o ∈Ok
v .

If n = 0, then w ∈ B(Ok
v ) \Ok

v is adjacent to o and thus w ∈ ad(Ok
v )∩B(Ok

v ).

Now, assume that n > 0. We will prove that xn ∈ ad(Ok
v )∩B(Ok

v ). Since we have a shortest trail between two

nodes (w and o) in B(Ok
v ) with no chords, Lemma 5.12 implies that all xi ∈ B(Ok

v ). As a particular case, we

have xn ∈ B(Ok
v ).

If xn ∈Ok
v , then the trail w ⇌ x1 ⇌ · · ·⇌ xn would be a shorter trail from w to Ok

v than the trail in (5.11). This

is a contradiction, proving that xn ∉ Ok
v . Therefore xn ∈ B(Ok

v ) \ Ok
v . Note that xn is adjacent to o, and thus

xn ∈ ad(Ok
v )∩B(Ok

v ). This concludes the proof.

By Definition 4.4, we know that a node w is not a possible candidate for partial order Ok
v , if����d − sepG

(
w,Ok

v

∣∣;)
(w ∉ Poss.C andInd (Ok

v )) and w and Ok
v are not adjacent (w ∉ Poss.C andIn(Ok

v )⊔Poss.C andOut (Ok
v )). We

will now prove an even stronger claim. That is, a node w is not a possible candidate to be added to a partial

order Ok
v , if there exists an o in Ok

v such that:

• w and o are not adjacent.

• There exists a trail between w and o activated by the empty set which does not contain any nodes in

Ok
v .

The lemma below provides a clear intuition into how the algorithm grows a partial order. For example, con-

sider the a trail

o ⇌ w1 ⇌ w2 ⇌ · · ·⇌ wn ,

with no converging connections where o ∈Ok
v and {wi }n

i=1 ⊆ pa(v) \Ok
v . In this case, we cannot add the node

wi to Ok
v for any i ∈ {2, . . . ,n} since it is connected to o by an active trail o ⇌ w1 ⇌ · · · ⇌ wi consisting of

nodes in V \ Ok
v . Consequently, we must add node w1 before adding node wi . If w1 is added to Ok

v , then the

same argument applies to the trail w1 ⇌ w2 ⇌ · · ·⇌ wn , i.e. we must add w2 next. The recursion is clear; any

node wi can only be added after w1, . . . , wi−1 have been added. So, the algorithm “walks” over trails with no

converging connections, adding them one node at a time, and it is only allowed to make “jumps” whenever a

node is independent from the current partial order.
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Lemma 5.15. Under Assumption 5.11, let o ∈Ok
v and w ∈ Poss.C and(Ok

v ). If there exists a trail

o ⇌ x1 ⇌ · · ·⇌ xn ⇌ w, (5.12)

with no converging connection such that ∀i = 1, . . . ,n, xi ∈V \Ok
v , then w and o are adjacent.

Proof. We will employ an inductive argument, assuming that the lemma holds for all previous partial orders

determined by the algorithm. By “previous partial orders” we mean all partial orders Op
w with w < v and

p ∈ {1, . . . , |pa(w)|−1}, and Op
v with p ∈ {1, . . . ,k −1}.

Without loss of generality we can assume that the trail (5.12) is a shortest trail between o and w with no con-

verging connection and satisfying ∀i = 1, . . . ,n, xi ∈V \Ok
v . Because o and w are parents of v by construction,

G contains the subgraph below.

o x1

v

xn w

Because (5.12) has no converging connection, we know that����d − sepG

(
w,Ok

v

∣∣;)
. Thus, if w ∈ Poss.C and(Ok

v ),

then we must have w ∈ Poss.C andIn(Ok
v ) or w ∈ Poss.C andOut (Ok

v ).

In the base case where k = 1 and
∣∣Ok

v

∣∣= 1, we know that Ok
v = {o}. Therefore we directly know that w and o are

adjacent (because w ∈ Poss.C andIn(Ok
v ) or w ∈ Poss.C andOut (Ok

v ), so w must be connected to some node

in Ok
v , and this must be o).

We now prove the induction step. If n = 0, then w and o are adjacent, which concludes the proof. We

now assume n > 0. For this, we consider both cases depending on whether w ∈ Poss.C andIn(Ok
v ) or w ∈

Poss.C andOut (Ok
v ).

Case 1: w ∈ Poss.C andIn(Ok
v ). By definition of Poss.C andIn(Ok

v ) (Definition 4.4), there exists an õ ∈Ok
v such

that w → õ satisfying the following restrictions:

1. pa(õ ↓ w) ⊆Ok
v .

2. d − sepG

(
w,Ok

v \ pa(õ ↓ w)
∣∣pa(õ ↓ w)

)
.

First, note that if õ = o, then o and w are adjacent, completing the proof. Thus, we assume that õ ̸= o.

To satisfy the second restriction above, any trail between w and Ok
v \ pa(õ ↓ w) must be blocked by pa(õ ↓

w). If we assume that o ∈ Ok
v \ pa(õ ↓ w), then the trail (5.12) must be blocked by pa(õ ↓ w). Since this

trail (5.12) contains no converging connections, there must be an xk ∈ pa(õ ↓ w) for some k ∈ {1, . . . ,n}. The

first restriction combined with the definition of õ implies that pa(õ ↓ w) := pa(õ ↓ w)⊔ {õ} ⊆ Ok
v , and thus

xk ∈ pa(õ ↓ w) ⊆ Ok
v which contradicts the assumption of Lemma 5.15 that xi belongs to V \ Ok

v for every

i = 1, . . . ,n.

In the previous paragraph, we have proved that o ∉ Ok
v \ pa(õ ↓ w). Since o ∈ Ok

v , this implies that o ∈ pa(õ ↓
w). Moreover, we assumed that o ̸= õ, and therefore o ∈ pa(õ ↓ w) which means that o → õ and o <õ w .

We have õ ∈ ch(o) and õ ∈ ch(w). Therefore, by Lemma 5.7(i), õ ∈ ch(xi ) for all i ∈ {1, . . . ,n}. Therefore, all xi

must belong to pa(õ) = pa(õ ↓ w)⊔ {w}⊔pa(õ ↑ w). None of them is equal to w since (5.12) is a shortest trail.
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By assumption, none of the xi belong to Ok
v ; the first restriction states that pa(õ ↓ w) ⊆ Ok

v ; therefore all xi

belong to pa(õ ↑ w). This means that w <õ xi for all i = 1, . . . ,n.

Now, we have o <õ w <õ xi for all i ∈ {1, . . . ,n}. This means that during the construction of <õ in the algo-

rithm we had w ∈ Poss.C and(Oõ) for a partial order Oõ which contains o but not {xi }n
i=1. Therefore, by the

induction hypothesis we obtain that w and o are adjacent, which finishes the proof for this case.

Case 2: w ∈ Poss.C andOut (Ok
v ). By Definition of Poss.C andOut (Ok

v ) (Definition 4.4), there exists an õ ∈ Ok
v

such that õ → w satisfying the following conditions:

1. pa(w ↓ õ) ⊆Ok
v .

2. d − sepG

(
w,Ok

v \ pa(w ↓ õ)
∣∣pa(w ↓ õ)

)
.

If õ = o the proof is complete. We now assume õ ̸= o.

If o ∉ pa(w ↓ õ), then o ∈Ok
v \ pa(w ↓ õ) and therefore (5.12) is a trail from w to Ok

v \ pa(w ↓ õ). By the second

restriction above, this trail must be blocked by pa(w ↓ õ). Because this trail has no converging connection

there must be an i ∈ {1, . . . ,n} such that xi ∈ pa(w ↓ õ) = pa(w ↓ õ)⊔ {õ} ⊆ Ok
v by the first restriction and the

definition of õ. This is a contradiction since by the assumption of the lemma xi is in V \Ok
v .

Therefore we have shown that o ∈ pa(w ↓ õ), which implies (by definition of this set) that o and w are adja-

cent, proving the lemma.

Lemma 5.15 immediately implies a very useful property of partial orders generated by our algorithm, which

is proven in the corollary below. This corollary will play an important role in the proofs in Section 5.3.

Corollary 5.16. Under Assumption 5.11, let oi ,o j ∈Ok
v , such that oi (respectively o j ) is the i -th node (respec-

tively j -th node) in the partial order Ok
v and i ̸= j . If there exists a trail

oi ⇌ x1 ⇌ · · ·⇌ xn ⇌ o j , (5.13)

with no converging connection such that ∀m = 1, . . . ,n, xm ∈V \Ok
v , then oi and o j are adjacent.

Proof. Without loss of generality, we can assume that i < j . This means that o j ∈ Poss.C and(O j−1
v ), with

oi ∈ O j−1
v . Remark that O j−1

v ⊆ Ok
v . Therefore, for all m = 1, . . . ,n, xm ∈ V \ O j−1

v . Hence, by Lemma 5.15, oi

and o j are adjacent.

By Lemma 3.20 a parental order <v must abide to the B-sets in the sense of Definition 3.19 to prevent inte-

gration. All orders generated by our algorithm abide to the B-sets, as proven by the lemma below.

Lemma 5.17. All parental orders determined by the algorithm abide by the B-sets, in the sense of Defini-

tion 3.19.

Proof. When constructing the parental order for an arbitrary node v in V , the algorithm expands a partial

order starting from the empty set. Each node added to the partial order must have been a possible candidate

to a partial order Ok
v . By the definition of the set of possible candidates (Definition 4.4), a possible candidate of

Ok
v must be in the smallest B-set B(Ok

v ) which is strictly larger than Ok
v (Definition 4.2). Since the construction

of <v starts with O0
v =;, this means that we can never add a node in Bq before we have added all nodes from

Bq−1.
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Indeed, the smallest B-set which is strictly larger than the empty set is B1. Hence, to start, we must add a node

from B1 to O0
v . We will then continue adding nodes from B1 until we reach a partial order Ok

v which is not

strictly smaller than B1. In this case we have exhausted the set B1, i.e. Ok
v = B1. This means that B(Ok

v ) = B2

(if it exists), and we add nodes from this set until it is exhausted as well.

Therefore, the proof is completed by a straightforward recursion, showing that <v abides by the B-sets.

We now prove a lemma which states that sets which are d-separated cannot be adjacent. It is quite trivial but

it will be useful in Lemma 5.19.

Lemma 5.18. Let G = (V ,E) be a DAG and X , Y , Z subsets of V such that d − sepG

(
X ,Y

∣∣ Z
)
. Then X and Y

cannot be adjacent, in the sense that ∀x, y ∈ X ×Y , x ⇌/ y .

Proof. Let x ∈ X and y ∈ V such that x ⇌ y . y is adjacent to x ∈ X so the trail x ⇌ y is active given Z . This

shows that����d − sepG

(
X , {y}

∣∣ Z
)
. Hence, y cannot be in Y .

The lemma below states that under certain conditions an arc between a node w ∈ B(Ok
v ) \ Ok

v and a node

oi ∈Ok
v implies the existence of another node õ ∈Ok

v such that w → õ ∈ E and oi → õ ∈ E .

Lemma 5.19. Following Definition 4.1, let us write the partial order Ok
v as Ok

v = (o1, . . . ,ok ). Under Assump-

tion 5.11, let i ∈ {1, . . . ,k} and w ∈ B(Ok
v ) \ Ok

v . If w → oi and pa(oi ↑ w)∩Ok
v ̸= ;, then there exists an õ ∈ Ok

v

such that õ ̸= oi and G contains the subgraph below.

w

oi õ

Proof. Note that w ∈ pa(oi ) = pa(oi ↓ w)⊔{w}⊔pa(oi ↑ w). Since pa(oi ↑ w)∩Ok
v ̸= ;, let o j be its maximum

element according to <oi . Consequently, o j → oi and w <oi o j .

Assume that there exists an õ ∈ Ok
v such that G contains the v-structure oi → õ ← o j . Thus, G contains the

subgraph below.

w

oi

o j

õ

Observe that o j ∈ pa(oi ) and o j ∈ pa(õ); by definition of the B-sets, o j ∈ B(oi , õ) = pa(oi )∩pa(õ). Because

the parental order <oi abides (see Definition 3.19) by the B-sets by Lemma 5.17, we can combine the facts

that w <oi o j and o j ∈ B(oi , õ) to obtain w ∈ B(oi , õ). Therefore w → õ ∈ E , giving us the desired subgraph

and finishing the proof under the assumption of existence of õ.

There remains to prove the existence of such an õ. We consider two cases; when i < j and j < i .

Case 1: i < j . In this case, since o j → v , o j was added at the step j − 1, and by the induction hypothesis

(Assumption 5.11), we must have o j ∈ Poss.C and(O j−1
v ). Because i < j , we obtain oi ∈ O j−1

v . Therefore,
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����d − sepG

(
o j ,O j−1

v

∣∣;)
because of the arc o j → oi . Hence, o j ∉ Poss.C andInd (O j−1

v ), and therefore o j must be

in Poss.C andIn(O j−1
v ) or Poss.C andOut (O j−1

v ). We consider both cases.

• o j ∈ Poss.C andIn(O j−1
v ): By Definition 4.4 there must be a node õ ∈ O j−1

v such that o j → õ satisfying

following restrictions:

1. pa(õ ↓ o j ) ⊆O j−1
v .

2. d − sepG

(
o j ,O j−1

v \ pa(õ ↓ o j )
∣∣pa(õ ↓ o j )

)
.

Remark that w ∈ pa(oi ↓ o j ) and w ∉ Ok
v ⊇ O j−1

v , and thus pa(oi ↓ o j ) ⊈ O j−1
v . This shows that õ ̸= oi

otherwise the first restriction could not be satisfied.

By combining Lemma 5.18 and the second restriction, no point in O j−1
v \ pa(õ ↓ o j ) can be adjacent to

o j . Because we have the arc o j → oi we can deduce that oi ∉O j−1
v \ pa(õ ↓ o j ).

Since oi ∈O j−1
v , this means that oi ∈ pa(õ ↓ o j ), and therefore oi → õ. Now, we have o j → õ and oi → õ

which is the desired v-structure.

• o j ∈ Poss.C andOut (O j−1
v ): By Definition 4.4 there must be a node õ ∈ O j−1

v such that õ → o j and the

following restrictions are satisfied:

1. pa(o j ↓ õ) ⊆O j−1
v .

2. d − sepG

(
o j ,O j−1

v \ pa(o j ↓ õ)
∣∣pa(o j ↓ õ)

)
.

If õ = oi , then G contains the cycle oi → o j → oi , which is a contradiction, and thus õ ̸= oi .

By combining Lemma 5.18 and the second restriction, no point in O j−1
v \ pa(o j ↓ õ) can be adjacent to

o j . Because we have the arc o j → oi we can deduce that oi ∉O j−1
v \ pa(o j ↓ õ).

Since oi ∈ O j−1
v , this means that oi ∈ pa(o j ↓ õ), and therefore oi → o j . This provides the cycle oi →

o j → oi . This is a contradiction, showing that this case cannot happen: o j cannot be in Poss.C andOut (O j−1
v ).

Case 2: j < i . In this case, since oi → v , oi was added at the step i − 1, and by the induction hypothesis

(Assumption 5.11), we must have oi ∈ Poss.C and(Oi−1
v ). Because j < i , we obtain o j ∈ Oi−1

v . Therefore,

����d − sepG

(
oi ,Oi−1

v

∣∣;)
because of the arc o j → oi . Hence, oi ∉ Poss.C andInd (Oi−1

v ). Thus, oi must be in

Poss.C andIn(Oi−1
v ) or Poss.C andOut (Oi−1

v ). We consider both cases.

• oi ∈ Poss.C andIn(Oi−1
v ): By Definition 4.4 there must be a node õ ∈Oi−1

v such that oi → õ satisfying:

1. pa(õ ↓ oi ) ⊆Oi−1
v .

2. d − sepG

(
oi ,Oi−1

v \ pa(õ ↓ oi )
∣∣pa(õ ↓ oi )

)
.

Note that õ = o j provides the cycle o j → oi → o j which is a contradiction, and thus õ ̸= o j .

As before, combining Lemma 5.18, the second restriction, and the arc o j → oi implies that o j ∉ Oi−1
v \

pa(õ ↓ oi ), and therefore o j ∈ pa(õ ↓ oi ) which means that o j → õ, giving us the desired v-structure.

• oi ∈ Poss.C andOut (Oi−1
v ): By Definition 4.4 there must be a node õ ∈Oi−1

v such that õ → oi satisfying:

1. pa(oi ↓ õ) ⊆Oi−1
v .
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2. d − sepG

(
oi ,Oi−1

v \ pa(oi ↓ õ)
∣∣pa(oi ↓ õ)

)
.

Remark that w ∈ pa(oi ↓ o j ) and w ∉ Ok
v ⊇ O j−1

v , and thus pa(oi ↓ o j ) ⊈ O j−1
v . This shows that õ ̸= o j

otherwise the first restriction could not be satisfied.

Combining Lemma 5.18, the second restriction, and the existence of the arc o j → oi implies that o j ∉
Oi−1

v \ pa(oi ↓ õ). Since o j ∈ Oi−1
v this means that o j ∈ pa(oi ↓ õ), and thus o j <oi õ. Therefore, õ ∈

pa(oi ↑ w) since w <oi o j . However, this is a contradiction since o j ̸= õ was chosen to be the maximum

element in pa(oi ↑ w)∩Ok
v . This shows that it cannot happen that oi is in Poss.C andOut (Oi−1

v ).
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5.3. Order and properties of trails that may have converging nodes
We start this section with introducing notation of general trails Hereafter, we prove Lemma 5.26. This lemma

will be especially useful in Section 5.4 where we establish that under certain conditions there must be a trail

between a node w ∈ B(Ok
v )\Ok

v and a subset of Ok
v without converging connections, see Lemmas 5.28 and 5.29.

These results play a crucial part in the proof in Section 4.2.3. It should be noted that Lemmas 5.28 and 5.29

convey the same intuition despite a different formulation. Indeed, they both state that there must be a trail

with no converging connections, however under different conditions. It will be beneficial to first establish a

general framework where we relax the conditions and consider a broader class of trails.

Throughout this section, we will denote by X , Y and Z three disjoint subsets of V . First, we define the set of

all trails from X to Y activated by Z in G .

Definition 5.20. Let X ,Y , Z ⊆ V be disjoint subsets of V . We define T R AI LS
(
X ,Y

∣∣ Z
)

to be the set of trails

from X to Y activated by Z .

Later we show that for a certain X , Y and Z , and some extra conditions, the set T R AI LS
(
X ,Y

∣∣ Z
)

contains

at least one trail with no converging connections. It will be convenient to define the set of all converging

connections on a trail T in T R AI LS
(
X ,Y

∣∣ Z
)
.

Definition 5.21. For a trail T ∈ T R AI LS
(
X ,Y

∣∣ Z
)
, we define ConvCon(T ) := (c1, . . . ,cC ) to be the ordered set

of nodes corresponding to converging connections in T , ordered by first appearance on the trail from X to Y .

Here, we mean that T is of the form

x ⇌ · · ·→ c1 ←···→ c2 ←··· · · · · · ·→ cC ←···⇌ y

with x ∈ X and y ∈ Y . The cardinality of the set ConvCon(T ) is denoted by C :=C (T ) = ∣∣ConvCon(T )
∣∣.

For a trail T to be activated by Z , we must have that for all i = 1, . . . ,C , ci is in Z , or one of its descendants is

in Z , see Definition 2.22. Later we will need to know if a node ci is in Z or not. If it is not in Z , then we also

require the node in Z that is its closest descendant.

Definition 5.22 (Closest descendant). Let T be a trail in T R AI LS
(
X ,Y

∣∣ Z
)

and i ∈ {1, . . . ,C (T )}. If ci ∉ Z , then

its closest descendant in Z is a node Z (ci ) ∈ Z such that there exist a shortest path

ci → d i
1 →···→ d i

nZ (i ) → Z (ci )

with d i
j ∉ Z for all j = 1, . . . ,nZ (i ).

Such a path is referred to as a descendant path of ci . Its nodes are denoted by the symbol “d” where a super-

script i indicates that d i
j lies on the descendant path of ci , and the subscript j indicates that it is the j -th node

on this path. The length of the descendant path is formally denoted by nZ (i ), but we will often simply write

n := nZ (i ). If ci ∈ Z , we also say that ci = Z (ci ). Finally, we use the conventions d i
0 := ci and d i

n+1 := Z (ci ).

A trail T in T R AI LS
(
X ,Y

∣∣ Z
)

can be seen as a concatenation of trails activated by the empty set. For instance,

consider the trail

x ⇌ · · ·→ c1 ←···→ c2 ←··· · · · · · ·→ cC ←···⇌ y,

then each trail ci ← ···→ ci+1 is a trail between two nodes activated by the empty set. Such trails are referred

to as subtrails.

Definition 5.23 (Subtrails). Let T be a trail in T R AI LS
(
X ,Y

∣∣ Z
)
. Suppose that T takes the form

x ⇌ t 0
1 ⇌ · · ·⇌ t 0

nt (0) → c1 ← t 1
1 ⇌ · · ·⇌ t 1

nt (1) → c2 ←··· · · · · · ·→ cC ← tC
1 ⇌ · · ·⇌ tC

nt (C ) ⇌ y.
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The following are referred to as the subtrails of T :

x ⇌ t 0
1 ⇌ · · ·⇌ t 0

nt (0) → c1,

ci ← t i
1 ⇌ · · ·⇌ t i

nt (i ) → ci+1, with i ∈ {1, . . . ,C −1},

cC ← tC
1 ⇌ · · ·⇌ tC

nt (C ) ⇌ y.

The nodes on the subtrails are denoted by the symbol “t” where a superscript i indicates that t i
j lies in be-

tween ci and ci+1 with the conventions c0 := x and cC+1 := y . The subscript indicates its location on the

subtrail. The length of a subtrail is formally denoted by nt (i ), but we will often simply write n := nt (i ).

Furthermore, we use the conventions c0 := x, cC+1 := y , t i
0 := ci and t i

n+1 := ci+1. Also, we denote the common

ancestor among a trail between ci and ci+1 by t i
m , see Definition 5.2.

In many previous lemmas we picked shortest trails, since this allowed us to exclude the existence of certain

arcs. Now, we will need to pick our trails under even stronger assumptions. Instead of picking a shorter trail

we will be picking a better trail.

Definition 5.24 (Better trail). Let T1 and T2 belong to T R AI LS
(
X ,Y

∣∣ Z
)
. We say that T1 is a better trail than

T2, denoted by T1 <T R AI L T2, if one of the following conditions is satisfied:

1.
∣∣ConvCon(T1) \ Z

∣∣< ∣∣ConvCon(T2) \ Z
∣∣.

2. 1) is an equality and
∣∣ConvCon(T1)

∣∣ :=C (T1) <C (T2) =:
∣∣ConvCon(T2)

∣∣.
3. 1) and 2) are equalities and

C (T1)∑
i=1

nZ (i )(T1) <
C (T2)∑

i=1
nZ (i )(T2).

4. 1), 2) and 3) are equalities and
C (T1)∑

i=0
nt (i )(T1) <

C (T2)∑
i=0

nt (i )(T2).

We remark that the order <T R AI L on the set T R AI LS
(
X ,Y

∣∣ Z
)

can be seen as induced by the alphabetical or-

der on the vector
(∣∣ConvCon(T ) \ Z

∣∣, ∣∣ConvCon(T )
∣∣, ∑C (T1)

i=1 nZ (i )(T ),
∑C (T1)

0=1 nt (i )(T )
)
, for T ∈ T R AI LS

(
X ,Y

∣∣ Z
)
.

Indeed, we first order trails by number of converging connections not in Z , then by number of converging

connections, then by total length of descendant paths and finally by total length of the subtrails. This means

that a better trail satisfies the following conditions.

C1. It is a trail from X to Y activated by Z .

C2. It contains a smaller number of converging nodes not contained in Z .

C3. Under the restrictions above, it contains less converging connections.

C4. Under the restrictions above, the paths from converging nodes not contained in Z to its closest descen-

dants are shorter.

C5. Under the restrictions above, it is a shorter such trail.

In Lemma 5.26, we will assume that the subset Y ⊔Z has a certain property A defined below. We remark that

in the proofs of Lemmas 5.28 and 5.29 the set Y ⊔Z will be equal to Ok
v , and the set Ok

v satisfies A as a direct

consequence of Corollary 5.16.

Definition 5.25. Let G be a DAG and K a subset of V . We say that K has the property A if ∀v1, v2 ∈ K such

that there exists a trail

v1 ⇌ x1 ⇌ · · ·⇌ xn ⇌ v2
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with xi ∉ K for all i = 1, . . . ,n and no converging connection, then v1 and v2 are adjacent.

We will now prove certain properties of a minimal trail in T R AI LS
(
X ,Y

∣∣ Z
)

according to <T R AI L .

Lemma 5.26. Let X ,Y , Z ⊆V be three disjoint subsets. Assume that T R AI LS
(
X ,Y

∣∣ Z
) ̸= ;. Let

x ⇌ · · ·→ c1 ←···→ c2 ←···→ cC ←···⇌ y (5.14)

be a minimal element of T R AI LS
(
X ,Y

∣∣ Z
)

for the order <T R AI L .

Then, the following properties hold.

(i) For all i , j , t i
j ∉ Y ⊔Z and d i

j ∉ Y ⊔Z .

(ii) For all i = 1, . . . ,C , the trails ci → d i
1 → ··· → d i

n → Z (ci ) and t i
1 ⇌ · · · ⇌ t i

n do not contain a chord.

Furthermore, the trails x ⇌ t 0
1 ⇌ · · ·⇌ t 0

n and tC
1 ⇌ · · ·⇌ tC

n ⇌ y do not contain a chord.

(iii) If ci → ci+1 and ci+1 ∈ Z , then ci ∈ Z .

(iv) If ci ← ci+1 and ci ∈ Z , then ci+1 ∈ Z .

(v) For all i = 1, . . . ,C − 1, the i -th subtrail is a shortest trail between ci and ci+1 starting with a leftward

pointing arrow, ending with rightward pointing arrow, consisting of nodes in V \Z and with no converg-

ing connection. The C -th subtrail is a shortest trail between cC and y starting with a leftward pointing

arrow, consisting of nodes in V \ Z and with no converging connection.

Furthermore, assume that Y ⊔Z has the property A. Then, the following hold.

(vi) The final converging node cC is in Z .

(vii) For all i = 1, . . . ,C −1, we have ci ∈ Z or ci+1 ∈ Z .

(viii) For all i = 1, . . . ,C , the nodes ci and ci+1 are adjacent.

(ix) If this trail contains a total of C > 0 converging connections, then G contains the subgraph below.

c1 c2 cC−1 cC yt 0
nt 0

1x

Here, the curved lines represent one of the following two subgraphs.

ci ci+1

t i
1 t i

n

t i
2 t i

n−1

ci ci+1

t i
1 t i

n

t i
2 t i

n−1

(x) For all i = 2, . . . ,C , the trail ci−1 ← ci → ci+1 can not be present in G .

(xi) If cC−1 → cC , then for all i = 1, . . . ,C , ci is in Z .
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(xii) If c1 ← c2 and c1 ∈ Z , then for all i = 1, . . . ,C , ci is in Z .

Proof. (i): We want to show that: for all i , j , t i
j ∉ Y ⊔Z and d i

j ∉ Y ⊔Z .

Assume that there exist i , j such that t i
j ∈ Y ⊔ Z . Remark first that t i

j ∉ Z , otherwise trail (5.14) would be

blocked by Z , since t i
j does not correspond to a converging connection, see Definition 2.22. Hence, t i

j must

be in Y . Now, x ⇌ · · ·⇌ t i
j is a trail from x to Y activated by Z that is better than (5.14), see Definition 5.24.

This is a contradiction with the definition of the minimal trail. We have shown that t i
j ∉ Y ⊔Z .

Now, suppose that there exist i , j such that d i
j ∈ Y ⊔Z . By Definition 5.22, this node cannot be in Z . Therefore,

d i
j must be in Y . If this is the case, then the trail

x ⇌ · · ·→ ci → d i
1 →···→ d i

j

would be a better trail in T R AI LS
(
X ,Y

∣∣ Z
)

than (5.14). Indeed, it contains at least one less converging node

in Z , since the node ci now corresponds to a diverging connection. This is a contradiction with the definition

of (5.14) which is a minimal trail.

This concluded the proof of (i).

(ii): We want to show that: for all i = 1, . . . ,C , the trails ci → d i
1 → ··· → d i

n → Z (ci ) and t i
1 ⇌ · · ·⇌ t i

n do not

contain a chord. Furthermore, the trails x ⇌ t 0
1 ⇌ · · ·⇌ t 0

n and tC
1 ⇌ · · ·⇌ tC

n ⇌ y do not contain a chord.

First, we consider a descendant path between ci and Z (ci ) with i ∈ {1, . . . ,C }. By Definition 5.22, this path is a

shortest trail of the form

ci → d1 →···→ dn → Z (ci )

consisting of nodes in V \ Z . By combining Lemmas 5.5 and 5.6 we know that this descendant path does not

contain a chord.

Now, let i ∈ {1, . . . ,C } and consider the subtrail

ci ← t1 ⇌ · · ·⇌ tn → ci+1.

Observe that the trail t1 ⇌ · · · ⇌ tn is a shortest trail between t1 and tn with no converging connections

consisting of nodes in V \
(
Z ⊔Y

)
. Indeed, if there would be a shorter such trail T ∗ between t1 and tn , then

replacing t1 ⇌ · · ·⇌ tn in (5.14) by T ∗ would result in a better trail than (5.14), and therefore a contradiction.

Now, we can apply Lemmas 5.5 and 5.6 to find that t1 ⇌ · · ·⇌ tn cannot contain a chord.

Consider the subtrail

x ⇌ t 0
1 ⇌ · · ·⇌ t 0

n → c1.

By similar argument as above, the trail x ⇌ t 0
1 ⇌ · · ·⇌ t 0

n is a shortest trail activated by the empty set consist-

ing of nodes in V \
(
Y ⊔Z

)
. Thus, we can apply Lemmas 5.5 and 5.6 to find that x ⇌ t 0

1 ⇌ · · ·⇌ t 0
n contains no

chords.

The last trail does not contain a chord by symmetry: switch the role of X and Y and apply this result. This

concludes the poof of (ii).

(iii): We want to prove that, if ci → ci+1 and ci+1 ∈ Z , then ci ∈ Z .

Consider the case when ci ∉ Z , then the trail x ⇌ · · · → ci → ci+1 ← ···⇌ y would be a better trail than (5.14)

as it contains one less converging connection. Because this is a contradiction, we must have ci ∈ Z .
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(iv): This is a direct consequence of (iii) obtained by switching the roles of X and Y .

(v): We must prove that for all i = 1, . . . ,C , the trail ci ← t i
1 ⇌ t i

2 ⇌ · · ·⇌ t i
n−1 ⇌ t i

n ⇌ ci+1 is a shortest such

trail.

This follows directly form the definition of (5.14). If there would be a shorter trail T ∗ between ci and ci+1,

then replacing the corresponding subtrail in (5.14) by T ∗ would result in a better trail, and therefore a contra-

diction.

(vi): We want to show that the final converging node cC is in Z .

Consider the case when cC ̸= Z (cC ). Then, G contains the trail

Z (cC ) ← dn ←···← d1 ← cC ← t1 ⇌ · · ·⇌ tn ⇌ y.

This is a trail between two nodes in Y ⊔ Z consisting of nodes not in Y ⊔ Z by (i). Since, the trail does not

contain any converging connections and Y ⊔Z satisfies propertyAwe find that Z (cC ) and y must be adjacent.

Assume that the arc Z (cc ) ← y is present. Consider the trail

x ⇌ · · · · · · · · ·→ cC → d1 →···→ dn → Z (cC ) ← y.

In this trail, cC is now not a converging node; but Z (cC ) is a converging node. Therefore, it has the same

amount of converging connections C , but one less converging node corresponding to a node not in Z than

(5.14). This is because cC ∉ Z while Z (cC ) ∈ Z . So, the trail above is better than (5.14). Since (5.14) is a minimal

trail, this is a contradiction, and therefore E must contain the arc Z (cC ) → y , giving us the subgraph below.

cC

d1

dn

Z (cC )

t1 tm−1 tm tm+1 tn y

The undirected cycle above has one converging connection (at y); therefore it is an active cycle, unless E

contains the appropriate chords. Several chords can be excluded:

• The trails cC → d1 →···→ dn → Z (cC ) and t1 ⇌ · · ·⇌ tn → y do not contain any chords by (ii).

• ∀ j = 0, . . . ,n +1, ∀l = 1, . . . ,m, d j → tl results in a cycle.

• ∀ j = 0, . . . ,n, ∀l = m +1, . . . ,n +1, d j → tl results in a trail with less converging connections.

• ∀ j = 1, . . . ,n, ∀l = 1, . . . ,n +1, tl → d j results in a trail with shorter descendant paths.

• ∀l = 2, . . . ,n +1, tl → cC results in a shorter trail.
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• ∀l = 1, . . . ,n, tl → Z (cC ) results in a trail with less converging nodes not in Z .

Therefore, the only allowed chords are arcs from the node Z (cC ) to nodes in {t j } j=m+1,...,n . The lack of any of

them would result in an active cycle; therefore they all have to be present, giving us the subgraph below.

cC

d1

dn

Z (cC )

t1 tm−1 tm tm+1 tn o

The undirected cycle displayed in red is an active cycle, unless it is of length smaller than 4. It consists of the

nodes cC , Z (cC ), d1, . . . ,dn and t1, . . . , tm+1 and is therefore of length 2+n+m+1 = n+m+3. This means that

n+m+3 ≤ 3, and therefore n+m = 0. However, this means that tm = t0 := cC , and therefore cC → t1. This is a

contradiction with the definition of cC since it is a converging node in (5.14).

Because the assumption that cC ∉ Z provided a contradiction, we now know that the node cC must be in Z ,

completing the proof of (vi).

(vii): We want to prove that: for all i ∈ {1, . . . ,C −1}, we have ci ∈ Z or ci+1 ∈ Z .

Assume that there exists an i ∈ {1, . . . ,C −1} such that ci ,ci+1 ∉ Z . Then, we have the descendant paths

ci → d i
1 →···→ d i

n → Z (ci ) and ci+1 → d i+1
1 →···→ d i+1

n → Z (ci+1).

Therefore, Z (ci ) and Z (ci+1) are two nodes in Y ⊔Z joined by a trail

Z (ci ) ←···← ci ←···→ ci+1 →···→ Z (ci+1)

which is activated by the empty set and contains no nodes in Y ⊔Z (by (i)). Because Y ⊔Z has the property A,

the nodes Z (ci ) and Z (ci+1) must be adjacent. Without loss of generality, we can assume that Z (ci ) → Z (ci+1),

otherwise we switch the roles of X and Y . Remark that G contains the subgraph below.

ci t1 tm−1 tm tm+1 tn ci+1

d i
1

d i
nZ (i )

Z (ci )

d i+1
1

d i+1
nZ (i+1)

Z (ci+1)

The undirected cycle above has one converging connection (at Z (ci+1); therefore it is an active cycle, unless

E contains the appropriate chords. Several chords can be excluded:
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• The trails ci → d i
1 → ··· → d i

n → Z (ci ), t1 ⇌ · · · ⇌ tn and ci+1 → d i+1
1 → ··· → d i+1

n → Z (ci+1) do not

contain no chords by (ii).

• ∀ j = 0, . . . ,nZ (i )+1, ∀l = 1, . . . ,m, d i
j → tl results in a cycle.

• ∀ j = 0, . . . ,nZ (i ), ∀l = m +1, . . . ,n +1, d i
j → tl results in a trail with less converging connections.

• ∀ j = 0, . . . ,nZ (i ), ∀l = 0, . . . ,nZ (i +1)+1, d i
j → d i+1

l results in a trail with less converging connections.

• ∀ j = 0, . . . ,nZ (i +1)+1, ∀l = m, . . . ,n, d i+1
j → tl results in a cycle.

• ∀ j = 0, . . . ,nZ (i +1), ∀l = 0, . . . ,m −1, d i+1
j → tl results in a trail with less converging connections.

• ∀ j = 0, . . . ,nZ (i +1), ∀l = 0, . . . ,nZ (i )+1, d i+1
j → d i

l results in a trail with less converging connections.

• ∀ j = 1, . . . ,nZ (i ), ∀l = 1, . . . ,n, tl → d i
j results in a trail with shorter descendant paths (because d i

j be-

comes the new converging connection instead of ci ).

• ∀ j = 1, . . . ,nZ (i + 1), ∀l = 1, . . . ,n, tl → d i+1
j results in a trail with shorter descendant paths (because

d i+1
j becomes the new converging connection instead of ci+1).

• ∀l = 1, . . . ,n, tl → Z (ci ) results in a trail with less converging nodes not in Z .

• ∀l = 1, . . . ,n, tl → Z (ci+1) results in a trail with less converging nodes not in Z .

• ∀l = 1, . . . ,n, tl → ci and tl → ci+1 result in a shorter trail (the arcs t1 → c1 and tn → ci+1 are not chords).

• ∀l = 0, . . . ,n +1, Z (ci+1) → tl results in a cycle.

• ∀ j = 0, . . . ,nZ (i )+1, Z (ci+1) → d i
j results in a cycle.

Therefore, the only allowed chords are of the form Z (ci ) → tl with l ∈ {m +1, . . . ,n +1} and Z (ci ) → d i+1
j with

j ∈ {0, . . . ,nZ (i +1)}. It is evident that all these arcs must be present to prevent an active cycle from occurring,

giving us the subgraph below.

ci t1 tm−1 tm tm+1 tn ci+1

d i
1

d i
nZ (i )

Z (ci )

d i+1
1

d i+1
nZ (i+1)

Z (ci+1)

This graph contains an undirected cycle with one converging connection (at tm+1), coloured in red. There are

no more chords which could be present. Therefore, this undirected cycle must be of length smaller than 4.

The undirected cycle is made up of the nodes ci , Z (ci ), d i
1, . . . ,d i

nZ (i ) and t1, . . . , tm+1; it is of length 2+nZ (i )+
m +1 = nZ (i )+m +3. This means that nZ (i )+m +3 ≤ 3, and therefore nZ (i ) = m = 0.

Thus, tm = t0 := ci must be the first diverging node on the subtrail between ci and ci+1. However, this means

that ci → t1. This is a contradiction with the definition of ci as it corresponds to a converging connection in
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(5.14).

(viii): We want to show that: for all i = 1, . . . ,C , the nodes ci and ci+1 are adjacent.

First, we consider the case when i =C . Here, cC is in Z by (vi), and cC+1 := y is in Y . Moreover, the nodes cC

and cC+1 are connected by the trail

cC ← t1 ⇌ · · ·⇌ tn ⇌ cC+1

with no converging connections and containing no nodes in Y ⊔Z by (i). Hence, we can apply property A to

find that they are adjacent, completing the proof for the case when i =C .

Now, we prove (viii) for i ∈ {1, . . . ,C −1}. Note that, by (vii), at least one of the nodes ci and ci+1 belongs to Z ,

giving us three cases.

Case 1: ci ∉ Z and ci+1 ∈ Z .

First, we remark that the arc ci → ci+1 is not possible by (iii). Therefore, we must show that ci ← ci+1. Suppose

that this arc is not present in E . This means that ci and ci+1 are not adjacent. Furthermore, G contains the

subgraph below.

ci

d1

dnZ (i )

Z (ci )

t1 tm−1 tm tm+1 tn ci+1

Thus, Z (ci ) and ci+1 ∈ Z are joined by a trail

Z (ci ) ← dnZ (i ) ←···← d1 ← ci ← t1 ⇌ · · ·⇌ tn → ci+1

which is activated by the empty set and consists of nodes not in Y ⊔ Z by (i), and hence they are adjacent,

since Y ⊔Z satisfies A. We consider both cases; when Z (ci ) → ci+1 and when Z (ci ) ← ci+1.
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First, let us assume that Z (ci ) → ci+1, giving us the subgraph below.

ci

d i
1

d i
nZ (i )

Z (ci )

t1 tm−1 tm tm+1 tn ci+1

This subgraph contains an undirected cycle with one converging connection (at ci+1), hence the appropriate

chords must be present. The same arcs which provided a contradiction in the proof of (vii) still do1. This

means that the only possible chords are Z (ci ) → tl with l ∈ {m +1, . . . ,n}. It is evident that all such arcs are

required to be present to prevent an active cycle, giving us the subgraph below.

ci

d1

dnz (i )

Z (ci )

t1 tm−1 tm tm+1 tn ci+1

This provides us with the same undirected cycle as displayed in the proof of (vii), and therefore we have a

contradiction in the same way.

Now, suppose that Z (ci ) ← ci+1, giving us the subgraph below.

ci

d i
1

d i
nZ (i )

Z (ci )

t1 tm−1 tm tm+1 tn ci+1

1This statement holds because ci+1 = Z (ci+1)
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This undirected cycle is an active cycle, unless the appropriate chords are present. We can exclude several

chords:

• The trails ci → d i
1 →···→ d i

nZ (i ) → Z (ci ) and t1 ←···→ tn do not contain chords by (ii).

• ∀ j = 0, . . . ,nZ (i )+1, ∀l = 1, . . . ,m, d i
j → tl results in a cycle.

• ∀ j = 0, . . . ,nZ (i ), ∀l = m +1, . . . ,n +1, d i
j → tl results in a trail with less converging connections.

• ∀ j = 1, . . . ,nZ (i ), ∀l = 1, . . . ,n, tl → d i
j results in a trail with shorter descendant paths (because d i

j be-

comes the new converging connection instead of ci ).

• ∀l = 1, . . . ,n, tl → ci and tl → ci+1 results in a shorter trail whenever these are chords.

• ∀l = 1, . . . ,n, tl → Z (ci ) result in a trail with less converging connections not in Z .

• ∀l = m, . . . ,n, Z (ci ) → tl results in a cycle.

• ∀l = m +1, . . . ,n, ci → tl results in a cycle.

Therefore, the only possible chords are ci+1 → d i
j with j ∈ {1, . . . ,nZ (i )}, ci+1 → tl with l ∈ {1, . . . ,m − 1} and

ci+1 → ci .

We will now show that the arc ci+1 → ci must be present to prevent the occurrence of an active cycle. Consider

the case where all possible chords are present except ci+1 → ci , giving us the subgraph below.

ci

d i
1

d i
nZ (i )

Z (ci )

t1 tm−1 tm tm+1 tn ci+1

This subgraph contains an undirected cycle with one converging connection (at d i
1). It is made up of the

nodes ci , ci+1, t1 and d i
1; therefore it is of length 4. To prevent the occurrence of an active cycle it must have a

chord. The only possible chord is the arc ci+1 → ci , and hence this arc must be present.

Case 2: ci ∈ Z and ci+1 ∉ Z .

This case is a direct consequence of the previous case by the symmetry of the set T R AI LS
(
X ,Y

∣∣ Z
)

with

respect to X and Y .

Case 3: ci ,ci+1 ∈ Z .
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The nodes ci and ci+1 are two nodes in Y ⊔Z joined by a trail

ci ← t1 ⇌ · · ·⇌ tn → ci+1

with no converging connections and containing no nodes in Y ⊔Z by (i). Because Y ⊔Z has the property A,

we know that ci and ci+1 are adjacent.

Thus, for each case we have found that ci and ci+1 must be adjacent, completing the proof of (viii).

(ix): We want to show that for all i = 1, . . . ,C , G contains one of the considered two subgraphs.

By (viii) we know that for all i = 1, . . . ,C , the nodes ci and ci+1 are adjacent. Moreover, by (v), the trails

ci ← t i
1 ⇌ · · ·⇌ t i

n ⇌ ci+1,

with t i
n → ci+1 if i < C , are shortest such trails consisting of nodes in V \ Z . Therefore, we can apply Lem-

mas 5.5 and 5.9 to find that G contains one of the two subgraphs below depending on the direction of the arc

between ci and ci+1.

ci ci+1

t i
1 t i

n

t i
2 t i

n−1

ci ci+1

t i
1 t i

n

t i
2 t i

n−1

We remark that if i =C , then the second subgraph reduces to the arc cC ← y .

(x): We want to prove that the trail ci−1 ← ci → ci+1 can not be present in G .

Suppose that there exists such a diverging connection. By (ix), G contains the subgraph below.

ci−1 ci ci+1

t i−1
1

t i−1
2

t i−1
n

t i−1
n−1

t i
1

t i
2

t i
n

t i
n−1

Remark that

t i−1
n ∈ B(ci , t i−1

n−1) = pa(ci )∩pa(t i−1
n−1),

t i
1 ∈ B(ci , t i

2) = pa(ci )∩pa(t i
2).

Since G does not contain any interfering v-structures, we must have t i
1 ∈ B(ci , t i−1

n−1) or t i−1
n ∈ B(ci , t i

2). This

means that t i
1 → t i−1

n−1 or t i−1
n → t i

2. However, both arcs result in the existence of trails between x and y that

have less converging connections than (5.14), and therefore better trails than (5.14). Because this is a contra-

diction, there cannot be a diverging connection ci−1 ← ci → ci+1, proving (x).
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(xi): We want to prove that: if cC−1 → cC , then for all i = 1, . . . ,C , ci is in Z .

By (viii), the graph contains the trail

c1 ⇌ c2 ⇌ · · ·⇌ cC−1 → cC .

This trail can not contain a diverging connection by (x), and therefore, it takes the form

c1 → c2 →···→ cC−1 → cC .

Node cC is in Z by (vi), and we have that ci → ci+1 for all i = 1, . . . ,C −1. Consequently, (iii) implies that ci ∈ Z

for all i = 1, . . . ,C . This concludes the proof of (xi).

(xii): If c1 ← c2 and c1 ∈ Z , then for all i = 1, . . . ,C , ci is in Z .

This claim follows by an analogous proof as for (xi).
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5.4. Lemmas to construct sequences of nodes
For the proof in Section 4.2.3, we use Lemma 4.6 and Lemma 4.8 to construct the sequences of nodes. In

both lemmas we assume that there exist a trail with no converging connections in a set T R AI LS
(
X ,Y

∣∣ Z
)

where X is equal to a single node w in B(Ok
v ) \ Ok

v and Y ⊔ Z ⊆ Ok
v . Lemma 5.28 shows that such a trail

exists under the conditions imposed in Lemma 4.6, and Lemma 5.29 establishes the same claim under the

conditions of Lemma 4.8. The proof of both lemmas will rely heavily on the properties we have proven in

Lemma 5.26.

But first, we establish another result which is required for the proof of Lemma 5.29.

Lemma 5.27. Under Assumption 5.11, let Y , Z be two subsets such that Y ⊔ Z =Ok
v , and let y ∈ Y . Consider

the subgraph below where:

• The trail

c1 ←···→ c2 ←··· · · · · · ·→ cC ←···⇌ y

has C converging connections corresponding to the nodes {ci }C
i=1 with C > 1.

• Each ci is either contained in Z or it has a closest descendant Z (ci ) in Z .

• All nodes on the trail and descendant paths not equal to y or Z (ci ) with i ∈ {1, . . . ,C } are in V \Ok
v .

c1 c2 cC y

Z (c1) Z (c2) Z (cC )

Then, there exists a node õ ∈ Ok
v such that y → õ and for all i = 1, . . . ,C , Z (ci ) → õ whenever this does not

result in the self-loop õ → õ. Indeed, the node õ may be equal to any node in Ok
v including y and Z (ci ) with

i ∈ {1, . . . ,C }.

Proof. Remark that ∀i = 1, . . . ,C , Z (ci ) ∈ Z ⊆ Ok
v , and the node y ∈ Y ⊆ Ok

v . Therefore, the set {Z (ci )}C
i=1 ∪ {y}

must have a highest node according to the ordered set Ok
v . This highest node omax must have been a possible

candidate to some partial order Õ ⊆Ok
v which contains all other nodes in the set, i.e.

[
{Z (ci )}C

i=1∪{y}
]

\{omax }.

For convenience of the proof we use the conventions cC+1 := y and Z (cC+1) := y .

Now, we pick j ∈ {1, . . . ,C + 1} such that Z (c j ) = omax . Consequently, the node Z (c j ) must be a possible

candidate to a set Õ ⊆Ok
v which contains {Z (ci )}C+1

i=1 \ {Z (c j )}. We now prove that it cannot be a candidate by

independence. Observe that at least one of the following trails exist:

Z (c j ) ←···← c j ←···→ c j+1 →···→ Z (c j+1),

Z (c j ) ←···← c j ←···→ c j+1 →···→ Z (c j−1).

These are trails with no converging connections between Z (c j ) and {Z (c j−1), Z (c j+1)} ⊆ Õ consisting of nodes

in V \Ok
v ⊆V \Õ. Therefore, we have that����d − sepG

(
Z (c j ),Õ

∣∣;)
, and therefore Z (c j ) ∉ Poss.C andInd (Õ), see
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Definition 4.4. This means that Z (c j ) must be in Poss.C andIn(Õ) or Poss.C andOut (Õ). We consider both

cases.

Case 1: Suppose that Z (c j ) ∈ Poss.C andIn(Õ). Then, by Definition 4.4 there exists an õ ∈ Õ such that Z (c j ) →
õ satisfying

1. pa(õ ↓ Z (c j )) ⊆ Õ,

2. d − sepG

(
Z (c j ),Õ \ pa(õ ↓ Z (c j ))

∣∣pa(õ ↓ Z (c j ))
)
.

We will show that this implies that for all i ̸= j , Z (ci ) ∈ pa(õ ↓ Z (c j )) := pa(õ ↓ Z (c j ))⊔ {õ}. This means that

each Z (ci ) with i ̸= j points towards õ or is equal to õ. Moreover, by the construction above we also know that

Z (c j ) → õ. This finishes the proof of Lemma 5.27.

Consider the nodes Z (c j−1) and Z (c j+1) (assuming that they exist). Suppose that the nodes Z (c j−1) and

Z (c j+1) are not in pa(õ ↓ Z (c j )). They are connected to Z (c j ) by the trails

Z (c j ) ←···← c j ←···→ c j+1 →···→ Z (c j+1),

Z (c j ) ←···← c j ←···→ c j−1 →···→ Z (c j−1),

which contain no converging connections nor nodes in pa(õ ↓ Z (c j )) ⊆ Õ ⊆ Ok
v . Therefore, these trails are

activated by pa(õ ↓ Z (c j )). Thus, they are trails from Z (c j ) to Õ \ pa(õ ↓ Z (c j )) activated by pa(õ ↓ Z (c j )).

This means that����d − sepG

(
Z (c j ),Õ \ pa(õ ↓ Z (c j ))

∣∣pa(õ ↓ Z (c j ))
)

which contradicts the assumption that the

second restriction is satisfied. Therefore, we must have Z (c j−1), Z (c j+1) ∈ pa(õ ↓ Z (c j )).

Now, the trails

Z (c j ) ←···← c j ←···→ c j+1 ←···→ c j+2 →···→ Z (c j+2),

Z (c j ) ←···← c j ←···→ c j−1 ←···→ c j−2 →···→ Z (c j−2)

are activated by pa(õ ↓ Z (c j )) since the converging connections at c j−1 and c j+1 have a descendant (Z (c j−1)

and Z (c j+1), respectively) in pa(õ ↓ Z (c j )). Thus, by the same argument Z (c j−2) and Z (c j+2) are in pa(õ ↓
Z (c j )).

We conclude this proof by induction. Indeed, the same argument can be repeated to show that for any k,

Z (c j+k ) ∈ pa(õ ↓ Z (c j )) (resp. Z (c j−k ) ∈ pa(õ ↓ Z (c j ))) whenever 1 ≤ j +k ≤ C +1 (resp. 1 ≤ j −k ≤ C +1).

Therefore, we have proved that for all i ̸= j , Z (ci ) ∈ pa(õ ↓ Z (c j )), which completes the proof in this case.

Case 2: Suppose that Z (c j ) ∈ Poss.C andOut (Õ). Then, there exists an õ ∈ Õ with õ → Z (c j ) satisfying

1. pa(Z (c j ) ↓ õ) ⊆ Õ,

2. d − sepG

(
Z (c j ),Õ \ pa(Z (c j ) ↓ õ)

∣∣pa(Z (c j ) ↓ õ)
)
.

We will show that for all i ̸= j , Z (ci ) ∈ pa(Z (c j ) ↓ õ). Therefore, i ̸= j , Z (ci ) → Z (c j ) ∈ Ok
v , so Z (c j ) is our

desired õ. This finishes the proof of 5.27 in this case.

First, consider the nodes Z (c j+1) and Z (c j−1) (assuming that they exist). If they are both in Õ \ pa(Z (c j ) ↓ o),

then

Z (c j ) ←···← c j ←···→ c j+1 ←···→ Z (c j+1),

Z (c j ) ←···← c j ←···→ c j−1 ←···→ Z (c j−1),
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contain no converging connections nor nodes in pa(Z (c j ) ↓ õ) ⊆Ok
v . Therefore, they are activated by pa(Z (c j ) ↓

õ). This means that����d − sepG

(
Z (c j ),Õ \ pa(Z (c j ) ↓ õ)

∣∣pa(Z (c j ) ↓ õ)
)

which contradicts the assumption that

the second restriction is satisfied. Therefore, we must have Z (c j−1), Z (c j+1) ∈ pa(Z (c j ) ↓ õ).

Now, the trails

Z (c j ) ←···← c j ←···→ c j+1 ←···→ c j+2 →···→ Z (c j+2),

Z (c j ) ←···← c j ←···→ c j−1 ←···→ c j−2 →···→ Z (c j−2),

are activated by pa(Z (c j ) ↓ õ). Thus, by the same argument Z (c j+2), Z (c j−2) ∈ pa(Z (c j ) ↓ õ).

Similarly as in the first case, the proof is finished by an induction argument, showing that for all i ̸= j , Z (ci ) ∈
pa(Z (c j ) ↓ õ), as claimed above.

We will now prove the existence of a trail with no converging connection in T R AI LS
(
w,Ok

v \ pa(o ↓ w)
∣∣pa(o ↓ w)

)
in the setting of Lemma 4.6.

Lemma 5.28. Under Assumption 5.11, let w ∈ B(Ok
v ) \Ok

v and o ∈Ok
v such that

• w → o ∈ E ,

• pa(o ↓ w) ⊆Ok
v ,

• pa(o ↑ w)∩Ok
v =;.

If w ∉ Poss.C andIn(Ok
v ), then there exists a trail from w to Ok

v \pa(o ↓ w) which is activated by pa(o ↓ w) and

contains no converging connections.

In particular we will show that for a minimal trail

w ⇌ · · ·→ c1 ←···→ c2 ←··· · · · · · ·→ cC ←···⇌ y

in the set T R AI LS
(
X ,Y

∣∣ Z
)

according to <T R AI L with X := {w}, Y := Ok
v \ pa(o ↓ w) and Z := pa(o ↓ w), the

following statements hold:

(i) If the node o is included in the trail, then it must be the first node, i.e. o := c1. If this is the case, then

w → o is the first subtrail.

(ii) If c1 ∈ Z := pa(o ↓ w) then G contains one of the three subgraphs below.

w c1 = o

(a)

t 0
n−1

t 0
n

c1

o

(b)

t 0
n

o

c1

(c)

Figure 5.4: Subgraphs for which one must be included in G in case that c1 ∈ Z .

(iii) If C > 1, then without loss of generality we can assume that cC−1 ← cC , in the sense that there exists a

minimal trail (for <T R AI L) in T R AI LS
(
X ,Y

∣∣ Z
)

such that cC−1 ← cC .
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(iv) The node y is not in pa(o).

(v) There exists a node ỹ ∈ Y :=Ok
v \ pa(o ↓ w) such that o → ỹ and ∀i = 1, . . . ,C , Z (ci ) → ỹ . Furthermore, if

ỹ ̸= y , then y → ỹ .

(vi) The total number of converging nodes C cannot be strictly larger than 1.

(vii) The trail has no converging connections, i.e. C = 0.

Remark that (vii) immediately implies that a minimal trail in T R AI LS
(
X ,Y

∣∣ Z
)

contains no converging con-

nections. This is equivalent to the first statement of the lemma if the set T R AI LS
(
X ,Y

∣∣ Z
)

is not empty, i.e.

there must be a trail in T R AI LS
(
X ,Y

∣∣ Z
)

containing no converging connections.

Proof. Since w ∉ Poss.C andIn(Ok
v ), w cannot be a possible candidate by the incoming arc w → o, see Defi-

nition 4.4. This means that one of the two restrictions must be violated:

1. pa(o ↓ w) ⊆Ok
v .

2. d − sepG

(
w,Ok

v \ pa(o ↓ w)
∣∣pa(o ↓ w)

)
.

The first restrictions is satisfied by the assumption of the lemma. Therefore, the second restrictions must be

violated, meaning that����d − sepG

(
w,Ok

v \ pa(o ↓ w)
∣∣pa(o ↓ w)

)
. Hence, the set T R AI LS

(
X ,Y

∣∣ Z
)

is not empty.

Consequently, there exists a minimal trail

w ⇌ · · ·→ c1 ←···→ c2 ←··· · · · · · ·→ cC ←···⇌ y (5.15)

in T R AI LS
(
X ,Y

∣∣ Z
)

according to <T R AI L with X := {w}, Y := Ok
v \ pa(o ↓ w) and Z := pa(o ↓ w). If this

trail contains no converging connections, then the proof of the main statement of the lemma is complete.

Therefore, we assume that it contains at least one converging connection. By Lemma 5.26, G contains the

subgraph below with y ∈ Y :=Ok
v \ pa(o ↓ w). Moreover, all properties proven in Lemma 5.26 hold for the trail

(5.15). This is because Y ⊔Z =Ok
v satisfies the property A by Corollary 5.16.

c1 c2 cC yt 0
nt 0

n−1t 0
1w

Z (c1) Z (c2) Z (cC )

(i): We must prove that if the node o is included in the trail (5.15), then it must be the first node, i.e. o := c1. If

this is the case, then w → o is the first subtrail.

Proof of (i). Naturally, if the trail (5.15) contains the node o ∈ Z := pa(o ↓ w), then it must correspond to a

converging connection. Otherwise, (5.15) would be blocked by Z .

Consider the case when a node ci with i ∈ {2, . . . ,C } is equal to o. Then, the trail

w → o ←···→ ci+1 ←··· · · · · · ·→ cC ←···⇌ y
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would be a better trail than (5.15) which is a contradiction. Hence, if o is located along the trail it must be

equal to c1.

In this case the subtrail

w ⇌ t 0
1 ⇌ · · ·⇌ t 0

n → o

takes the form w → o, since we picked a minimal trail. This concludes the proof of (i).

(ii): We show that if c1 ∈ Z := pa(o ↓ w) then G contains one of the three claimed subgraphs.

Proof of (ii). Consider the subtrail

w ⇌ t 0
1 ⇌ · · ·⇌ t 0

n → c1. (5.16)

If o is in trail (5.15), then by (i), it is the first node along the trail, i.e. G contains subgraph in Figure 5.4a.

Suppose that o is not located along the trail. If t 0
n is in pa(o), then we find the subgraph in Figure 5.4c.

We will now show that if t 0
n is not in pa(o) and o is not in (5.15), then G must contain the graph in Figure 5.4b.

First, we define an integer

p := max{i ∈ {1, . . . ,n}; t 0
i ∈ pa(o)}

such that t 0
p is the furthest node from w in trail (5.16) contained in the set pa(o). By Lemma 5.26(ii), the

subtrail

t 0
p ⇌ · · ·⇌ t 0

n → c1

contains no chords. Moreover, the nodes t 0
p and c1 are in pa(o), and the nodes t 0

p+1, . . . , t 0
n are not in pa(o).

Remark that t 0
p ⇌ · · · ⇌ t 0

n → c1 is a shortest trail activated by the empty set from t 0
p to c1 ending with a

rightward pointing arrow consisting of nodes in V \ Z . Therefore, we may apply Lemma 5.5 and Lemma 5.10

(with v1 = t 0
p , v2 = c1 and v3 = o in the notation of Lemma 5.10) to find that G contains the second subgraph.

(iii): To prove is that if C > 1, then without loss of generality we can assume that cC−1 ← cC , in the sense that

there exists a minimal trail (for <T R AI L) in T R AI LS
(
X ,Y

∣∣ Z
)

such that cC−1 ← cC .

Proof of (iii). By Lemma 5.26(viii), we know that cC−1 and cC are adjacent. Suppose that cC−1 → cC . Combining

Lemma 5.26(viii), (x) and (xi) we find that ∀i = 1, . . . ,C −1, ci → ci+1 and ci ∈ Z := pa(o ↓ w). In particular we

have that c1 → c2 where c1,c2 ∈ Z .

We will show that the arc c1 → c2 with c1,c2 ∈ Z leads to either a contradiction or the existence of another

minimal trail, that satisfies cC−1 ← cC . Since c1 ∈ Z we can apply (ii), to find that G contains one of three

subgraphs in Figure 5.4. We consider each case.

Case 1: Subgraph 5.4a.

In this case c1 = o. Since c1 → c2, we have that o → c2. Moreover, because c2 ∈ Z := pa(o ↓ w) ⊆ pa(o), we

know that c2 → o, and therefore we have the cycle c2 → o → c2 which is a contradiction.

Case 2: Subgraph 5.4b.
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In this case, by Lemma 5.26(ix), G contains the subgraph below.

t 0
n−1

t 0
n

c1 c2

t 1
1

t 1
2

t 1
n

t 1
n−1

o

Here, we have

t 1
1 ∈ B(c1, t 1

2 ),

t 0
n ∈ B(c1, t 0

n−1).

Since G does not contain any interfering v-structures, this means that t 0
n → t 1

2 or t 1
1 → t 0

n−1. These arcs provide

us with the following respective trails

w ⇌ · · ·⇌ t 0
n−1 ⇌ t 0

n → t 1
2 ⇌ · · · · · · · · ·⇌ y,

w ⇌ · · ·⇌ t 0
n−1 ← t 1

1 ⇌ t 1
2 ⇌ · · · · · · · · ·⇌ y,

which are both better than (5.15); indeed, (5.15) can be rewritten as

w ⇌ · · ·⇌ t 0
n−1 ⇌ t 0

n → c1 ← t 1
1 ⇌ t 1

2 ⇌ · · · · · · · · ·⇌ y.

We therefore get a contradiction, as claimed.

Case 3: Subgraph 5.4c.

In this case, by Lemma 5.26(ix), G contains the subgraph below, where c2 → o because c2 ∈ Z := pa(o ↓ w).

t 0
n c1 c2

t 1
1

t 1
2

t 1
n

t 1
n−1

o

Here, we have t 0
n ∈ B(c1,o) and t 1

1 ∈ B(c1, t 1
2 ). By the same argument as above, this means that t 0

n → t 1
2 or t 1

1 →
o. The former arc results in a trail from w to y , which is a better trail than (5.15), and therefore a contradiction.

Hence, we must have the arc t 1
1 → o. This arc provides us with the trail

w → o ← t 1
1 ⇌ · · · · · · · · ·⇌ y (5.17)
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which is better than the trail (5.15), that is

w ⇌ · · ·⇌ t 0
nt (0) → c1 ← t 1

1 ⇌ · · · · · · · · ·⇌ y,

unless nt (0) = 0. In this case, (5.17) is also a minimal trail in T R AI LS
(
X ,Y

∣∣ Z
)
.

Note that the converging connections of the trail (5.17) are o,c2, . . . ,cC . Combining the fact that o ← c2 with

Lemma 5.26(x) we must have

o ← c2 ← c3 ←···← cC .

So, we have proven that there exists a minimal trail in T R AI LS
(
X ,Y

∣∣ Z
)

containing an arc cC−1 ← cC , com-

pleting the proof of (iii).

(iv): We must show that the node y is not in pa(o).

Proof of (iv). By definition, y ∈ Y :=Ok
v \ pa(o ↓ w). Observe that

Y ∩pa(o) = (
Ok

v \ pa(o ↓ w)
)∩ (

pa(o ↓ w)⊔pa(o ↑ w)
)

= (
Ok

v \ pa(o ↓ w)
)∩pa(o ↑ w)

⊆Ok
v ∩pa(o ↑ w) =;,

by assumption of Lemma 5.28, hence y ∉ pa(o).

(v): To prove: There exists a node ỹ ∈ Y := Ok
v \ pa(o ↓ w) such that o → ỹ and ∀i = 1, . . . ,C , Z (ci ) → ỹ .

Furthermore, if ỹ ̸= y , then y → ỹ .

Proof of (v). First, we show that there exists an ỹ ∈Ok
v such that o → ỹ , y → ỹ and ∀i = 1, . . . ,C , Z (ci ) → ỹ .

Suppose that o is located on (5.15). By (i), this means that o = c1, and therefore G contains the trail

o ←···→ c2 ←··· · · · · · ·→ cC ←···⇌ y.

that satisfies all conditions for Lemma 5.27 (by applying Lemma 5.26(i)). If o ̸= c1, then the trail

o ← w ⇌ · · ·→ c1 ←···→ c2 ←··· · · · · · ·→ cC ←···⇌ y

also satisfies the conditions of Lemma 5.27 (by applying Lemma 5.26(i)).

Therefore, in both cases we can apply Lemma 5.27 to find that there exists an ỹ in Ok
v such that o → ỹ , y → ỹ

and for all i = 1, . . . ,C , Z (ci ) → ỹ ; as before if ỹ is equal to one of them (o, y or Z (ci )), then the self-loop is not

present. It remains to show that this node ỹ is in Y := Ok
v \ pa(o ↓ w), i.e. that ỹ cannot be in pa(o ↓ w) :=

pa(o ↓ w)⊔ {o}.

If ỹ = o, then G contains the arc y → o. This is in contradiction with (iv) which states that y ∉ pa(o). If

ỹ ∈ pa(o ↓ w) then ỹ → o, and hence G contains the cycle ỹ → o → ỹ which is a contradiction (because we

showed above that o → ỹ). Therefore, ỹ must be in Y :=Ok
v \ pa(o ↓ w) which concludes the proof of (v).

(vi): We have to prove that the total number of converging nodes C cannot be strictly larger than 1.

Proof of (vi). Assume that (5.15) has C > 1 converging connection. The end of the trail can have several

different types of structures. By (iii) we can assume that cC−1 ← cC without loss of generality. If cC → y , we

obtain a contradiction by Lemma 5.26(x). Therefore cC ← y .
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Remark that by Lemma 5.26(vi) the node cC is in the set Z := pa(o ↓ w), and therefore cC → o. Consequently,

the graph contains the trail y → cC → o. This means that the node ỹ ∈ Y from (v) cannot be equal to y . Indeed,

this would lead to the cycle y → cC → o → y which is a contradiction.

Furthermore, cC ∈ Z , therefore Z (cC ) = cC → ỹ by (v). Combining the previous results with Lemma 5.26(ix)

gives the subgraph below.

cC−1 cC y

ỹ
o

tC−1
1

tC−1
2

tC−1
n

tC−1
n−1

Here, we have tC−1
n ∈ B(cC , tC−1

n−1 ) and y ∈ B(cC , ỹ). Since G does not contain interfering v-structures, we must

have tC−1
n → ỹ or y → tC−1

n−1 . Both arcs provide a trail from w to a node in Y :=Ok
v \ pa(o ↓ w) which is a better

trail than (5.15). Indeed, the trails

w ⇌ · · · · · · · · ·← tC−1
n → ỹ ,

w ⇌ · · · · · · · · ·← tC−1
n−1 ← y,

contain one fewer converging connection than (5.15) which is

w ⇌ · · · · · · · · ·← tC−1
n → cC ← y

We obtain a contradiction because (5.15) was assumed to be a minimal trail. This finishes the proof of (vi).

(vii): We show that the trail has 0 converging connections, i.e. C = 0.

Proof of (vii). By (vi), the trail (5.15) has either 0 or 1 converging connection. If it has zero converging

connection, then the existence of this trail completes the proof of Lemma 5.28. Therefore we assume that

(5.15) has exactly one converging connection, i.e. C = 1. Furthermore, by Lemma 5.26(vi) we know that

cC = c1 ∈ Z := pa(o ↓ w). This means that we can apply (ii) to find that G contains one of the three sub-

graphs in Figure 5.4. We consider each subgraph separately. Furthermore, for each case we will consider two

sub-cases; when c1 → y and when c1 ← y , since c1 and y are adjacent by Lemma 5.26(viii).

Case 1: Subgraph 5.4a.

In this case the node c1 is equal to o. Since y ∉ pa(o) by (iv), the arc c1 ← y cannot be present. Therefore, we

have c1 → y . Thus, by Lemma 5.26(ix) we know that G contains the subgraph below.
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o y

t 0
1

t 0
2

t 0
n

t 0
n−1

The node t 0
1 is in V \ Ok

v by Lemma 5.26(i), and it is also in pa(o). This means that t 0
1 ∈ pa(o) \ Ok

v . By the

assumptions of the lemma we have that pa(o ↓ w) ⊆ Ok
v and o ∈ Ok

v , and thus pa(o) \ Ok
v ⊆ pa(o ↑ w). So,

t 0
1 ∈ pa(o ↑ w), and therefore w <o t 0

1 .

Because the parental order<o has been determined by our algorithm, it abides by the B-sets, see Lemma 5.17.

Therefore, any B-set corresponding to the node o which contains t 0
1 must also contain w . Remark that t 0

1 ∈
B(o, t 0

2 ). Consequently, we have that w ∈ B(o, t 0
2 ). This means that w → t 0

2 which provides us with the trail

w → t 0
2 →···→ t 0

n → y

with contains no converging connections. Thus, this trail is better than the trail (5.15) which is a contradic-

tion.

Case 2: Subgraph 5.4b.

Remember that we must consider the cases when c1 → y and when y → c1. For both cases we have that

c1 ∈ Z := pa(o ↓ w), and therefore c1 → o. First, let us assume that c1 → y , then by Lemma 5.26(ix) we know

that G contains the subgraph below.

o

c1

t 0
n

t 0
n−1

y

t 1
1

t 1
2

t 1
n

t 1
n−1

Here, we have that t 0
n ∈ B(c1, t 0

n−1) and t 1
1 ∈ B(c1, t 1

2 ). Since G does not contain any interfering v-structures,

we must have t 0
n → t 1

2 or t 1
1 → t 0

n−1. Both arcs result in a trail from w to Y without converging connections,

and therefore contradictions. Indeed, we find the trails

w ⇌ · · ·⇌ t 0
n → t 1

2 ⇌ · · ·⇌ y,

w ⇌ · · ·⇌ t 0
n−1 ← t 1

1 ⇌ · · ·⇌ y,

which are better than (5.15).

Because the arc c1 → y leads to a contradiction, we can assume that c1 ← y . In this case the ỹ whose existence

has been established from (v) cannot be equal to y since this would provide the cycle o → y → c1 → o, and
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therefore a contradiction. Thus, G contains the subgraph below.

o

c1

t 0
n

t 0
n−1

y

ỹ

Here, we have t 0
n ∈ B(c1, t 0

n−1) and y ∈ B(c1, ỹ). By the same argument this means that t 0
n → ỹ or y → t 0

n−1.

Both arcs result in a trail from w to Y without converging connections, and therefore contradictions. Indeed,

we find the trails

w ⇌ · · ·⇌ t 0
n → ỹ ,

w ⇌ · · ·⇌ t 0
n−1 ← y,

where the node ỹ is in Y by (v). This gives us the existence of the trail as claimed.

Case 3: Subgraph 5.4c.

We must consider the two cases c1 ← y and c1 → y . First, let us assume that c1 ← y , giving us the subgraph

below. Again, ỹ cannot be equal to y , since this would provide a cycle. Therefore, G contains the subgraph

below.

o

c1t 0
n

y

ỹ

Here, we have t 0
n ∈ B(c1,o) and y ∈ B(c1, ỹ). Therefore, E must contain t 0

n → ỹ or y → o. The former arc results

in a trail

w ⇌ · · ·⇌ t 0
n → ỹ

from w to Y without converging connections (and therefore a better trail than (5.15)) and the latter is in

contradiction with y ∉ pa(o) ((iv)). Since both are contradictions, we can assume that c1 → y . Therefore, by

combining subgraph 5.4c with Lemma 5.26(ix) we obtain the subgraph below.

o

c1t 0
n

y

t 1
1

t 1
2

t 1
n

t 1
n−1

Here, we have t 0
n ∈ B(c1,o) and t 1

1 ∈ B(c1, t 1
2 ). Therefore, we have t 0

n → t 1
2 or t 1

1 → o. The arc t 0
n → t 1

2 provides

the trail

w ⇌ · · ·⇌ t 0
n → t 1

2 ⇌ · · ·⇌ y
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between w and Y without converging connections, and thus a contradiction with the definition of (5.15). The

arc t 1
1 → o provides us with the trail

w → o ← t 1
1 ⇌ · · ·⇌ t 1

n → y (5.18)

which is better than the trail (5.15) according to <T R AI L , unless nt (0) = 0. In that case, (5.18) is also a minimal

trail in T R AI LS
(
X ,Y

∣∣ Z
)

with one converging node which is equal to o. Therefore, we can apply the same

argument as in Case 1 to the trail (5.18), which leads to a contradiction.

In the setting of Lemma 4.8, we will now prove the existence of a trail with no converging connection in the

set T R AI LS
(
w,Ok

v \ pa(w ↓ o)
∣∣pa(w ↓ o)

)
.

Lemma 5.29. Under Assumption 5.11, let w ∈ B(Ok
v ) \Ok

v and o ∈Ok
v such that

• o → w .

• pa(w ↓ o) \Ok
v =;.

• There is no arc from B(Ok
v ) \Ok

v to Ok
v .

If w ∉ Poss.C andOut (Ok
v ), then there exists a trail from w to a node in Ok

v \ pa(w ↓ o) which is activated by

pa(w ↓ o) and contains no converging connections.

In particular we will show that for a minimal trail

w ⇌ · · ·→ c1 ←··· · · · · · ·→ cC ←···⇌ y

in the set T R AI LS
(
X ,Y

∣∣ Z
)

with X := {w}, Y := Ok
v \ pa(w ↓ o) and Z := pa(w ↓ o), the following statements

hold:

(i) c1 = Z (c1).

(ii) The graph contains the subgraph below.

w c1

t 0
1

t 0
2

t 0
n

t 0
n−1

(iii) c1 ← c2.

(iv) For all i = 1, . . . ,C , we have that ci = Z (ci ) and ci ← ci+1.

(v) The number of converging connections is equal to zero, i.e. C = 0.

Remark that (v) is equivalent to the first statement of the lemma if the set T R AI LS
(
X ,Y

∣∣ Z
)

is not empty.

Proof. By assumption we have w ∉ Poss.C andOut (Ok
v ). Therefore, w is not a possible candidate by the out-

going arc o → w . By Definition 4.4, this means that one of the following conditions must be violated.
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1. pa(w ↓ o) ⊆Ok
v .

2. d − sepG

(
w,Ok

v \ pa(w ↓ o)
∣∣pa(w ↓ o)

)
.

The first condition is satisfied, because pa(w ↓ o) \ Ok
v =; by the assumptions of the lemma. Therefore, the

second restriction must be violated, i.e. ����d − sepG

(
w,Ok

v \ pa(w ↓ o)
∣∣pa(w ↓ o)

)
. This means that there exists

a trail from w to Ok
v \ pa(w ↓ o) activated by pa(w ↓ o).

Consequently, the set T R AI LS
(
X ,Y

∣∣ Z
)

with X := {w}, Y := Ok
v \ pa(w ↓ o) and Z := pa(w ↓ o) is not empty,

and thus we can pick a minimal trail in this set:

w ⇌ · · ·→ c1 ←··· · · · · · ·→ cC ←···⇌ y. (5.19)

If this trail contains no converging connections, then the proof is complete. Therefore, we assume that it

contains at least one converging connection, that is C ≥ 1. By Lemma 5.26, G contains the subgraph below,

and all properties in Lemma 5.26 hold. This lemma can be applied because Y ⊔Z =Ok
v satisfies the property

A by Corollary 5.16.

c1 c2 cC yt 0
nt 0

n−1t 0
1w

Z (c1) Z (c2) Z (cC )

(i): To prove: c1 = Z (c1).

Proof of (i). Let us assume that c1 ̸= Z (c1). Since Z := pa(w ↓ o), we have that Z (ci ) → w for all i = 1, . . . ,C . In

particular, we get that Z (c1) → w , and therefore G contains the subgraph below.

c1t 0
nt

t 0
m+1t 0

mt 0
m−1t 0

1w

d 1
1

d 1
nZ

Z (c1)

The undirected cycle above is an active cycle, unless the appropriate chords are present in G . Several chords

can be excluded:

• The trails c1 → d1 →···→ dnt → Z (c1) and w ⇌ t 0
1 ⇌ · · ·⇌ t 0

nt
do not contain any chords by Lemma 5.26(ii).
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• ∀l = 0, . . . ,nt −1, t 0
l → c1 results in a shorter trail (and t 0

nt
→ c1 is not a chord).

• ∀l = 1, . . . ,nt , t 0
l → Z (c1) results in a trail with less converging connections not in Z .

• ∀ j = 1, . . . ,nZ , ∀l = 1, . . . ,nt , t 0
l → d 1

j results in a trail with shorter descendant paths.

• ∀ j = 0, . . . ,nZ +1, ∀l = m, . . . ,nt , d 1
j → t 0

l results in a cycle.

• ∀ j = 0, . . . ,nZ , ∀l = 0, . . . ,m −1, d 1
j → t 0

l result in a trail with less converging connections.

• ∀ j = 1, . . . ,nZ , w → d 1
j results in a cycle.

• ∀l = 0, . . . ,m −1, c1 → t 0
l results in a trail with less converging connections.

Therefore, the only remaining chords are Z (c1) → t 0
l with l = 1, . . . ,m −1. It is evident that all such arcs must

be present to prevent the appearance of an active cycle in G , giving us the subgraph below.

c1t 0
nt

t 0
m+1t 0

mt 0
m−1t 0

1w

d 1
1

d 1
nZ

Z (c1)

The subgraph above contains an undirected cycle with one converging connection (at t 0
m−1), coloured in red.

Because there are no more chords which could be present, this undirected cycle must be of length smaller

than 4, see Definition 3.9. The undirected cycle consists of the nodes c1, Z (c1), t 0
m−1, t 0

m , . . . , t 0
nt

and d 1
1 , . . . ,d 1

nZ
;

therefore it is of length 2+nt − (m −1)+1+nZ = nZ +nt −m +4. This means that nZ +nt −m +4 ≤ 3, and

therefore nZ +nt −m ≤−1. The equality can only hold if nZ = 0 and m = nt +1. This is not possible because

t 0
nt+1 = c1 is a converging connection, and therefore t 0

nt
→ c1.

So, if c1 ̸= Z (c1), we have shown that G contains an active cycle, and therefore we have proven that c1 must be

in Z .

(ii): To prove is that the graph contains the subgraph as claimed.

Proof of (ii). We know that G contains the trail

w ⇌ t 0
1 ⇌ · · ·⇌ t 0

n → c1.

By (i), c1 ∈ Z = pa(w ↓ o) Because this is a shortest trail activated by the empty set ending with a rightward

arrow (t 0
n → c1) consisting of nodes in V \ Z and c1 = Z (c1) → w by definition of the set Z , we can apply

Lemma 5.5 and Lemma 5.9 (with v1 = c1 and v2 = w in the notation of Lemma 5.9) to find that G contains the

subgraph as claimed.

Furthermore, the length n of this trail must be strictly larger than zero. If it were of length zero, then it would

simply be the arc w → c1. However, this would result in a cycle, as we have shown that the arc c1 → w must
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be present.

(iii): We must prove that c1 ← c2.

Proof of (iii). By Lemma 5.26(viii), we know that c1 and c2 are adjacent. Therefore, it suffices to show that

c1 ↛ c2.

Suppose that c1 → c2. Combining (ii) with Lemma 5.26(ix) tells us that G contains the subgraph below.

w c1 c2

t 0
1

t 0
2

t 0
n

t 0
n−1

t 1
1

t 1
2

t 1
n

t 1
n−1

Here, we have that t 0
n ∈ B(ci , t 0

n−1) and t 1
1 ∈ B(c1, t 1

2 ). Since G does not contain any interfering v-structures, we

must have t 1
1 → t 0

n−1 or t 0
n → t 1

2 . However, both these arcs result in a better trail than (5.19). Indeed, the trails

w ←···← t 0
n−1 ← t 1

1 ⇌ · · · · · · · · · y,

w ←···← t 0
n → t 1

2 →··· · · · · · ·⇌ y,

contain one fewer converging connection than (5.19), which gives a contradiction as claimed.

(iv): We must show that or all i = 1, . . . ,C , we have that ci = Z (ci ) and ci ← ci+1.

Proof of (iv). If C = 1, then the statement follows immediately by (i) and (iii). If C > 1, by (i) and (iii), we have

that c1 = Z (c1) and c1 ← c2. Consequently, we can apply 5.26(xii) to find that for all i ∈ {1, . . . ,C }, ci ← ci+1 and

ci = Z (ci ).

(v): We must prove that the number of converging connections is equal to zero, i.e. C = 0.

Proof of (v). By the facts established above and the properties in Lemma 5.26, we know that G contains the

subgraph below with the convention c0 := w in the case that C = 1.

cC−1 cC y

tC−1
1

tC−1
2

tC−1
n

tC−1
n−1

We consider two cases; when B(Ok
v ) ̸= pa(v) and when B(Ok

v ) = pa(v).

Case 1: Let us assume that B(Ok
v ) ̸= pa(v) and let bq be its corresponding node, see Definition 3.18. Remark

that the nodes cC and y are in Y ⊔ Z := Ok
v , and therefore they are in B(Ok

v ). Furthermore, if C > 1, then the
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node cC−1 is in Z ⊆ Ok
v ⊂ B(Ok

v ), and if C = 1, then cC−1 = c0 := w where w is in B(Ok
v ) by the assumptions of

the lemma.

By Definition 3.18, any node in B(Ok
v ) has an arc pointing towards both v and bq , giving us the subgraph

below.

cC−1 cC y

vbq

tC−1
1

tC−1
2

tC−1
n

tC−1
n−1

Here, we have that tC−1
n ∈ B(cC , tC−1

n−1 ), y ∈ B(cC , v) and y ∈ B(cC ,bq ). Since G does not contain any interfering

v-structures, we must have y → tC−1
n−1 , or both tC−1

n → v and tC−1
n → bq . The arc y → tC−1

n−1 results in a trail

w ⇌ · · ·⇌ tC−1
n−1 ← y

with less converging connections than (5.19). Since this is a contradiction, the arcs tC−1
n → v and tC−1

n → bq

must be present, and therefore tC−1
n ∈ pa(v)∩pa(bq ) = B(v,bq ) = Bq . Because Bq = B(Ok

v ), we obtain tC−1
n ∈

B(Ok
v ). Moreover, by Lemma 5.26(i) we know that tC−1

n ∉Ok
v , and thus tC−1

n ∈ B(Ok
v ) \Ok

v .

The arc tC−1
n → cC is now an arc from a node in B(Ok

v ) \ Ok
v to a node in Ok

v which is not possible by the

assumptions of Lemma 5.29. Therefore, this case provides us with a contradiction.

Case 2: If B(Ok
v ) = pa(v), then by a similar argument as for the first case we find that G must contain the

subgraph

cC−1 cC y

v

tC−1
1

tC−1
2

tC−1
n

tC−1
n−1

Remark that there are potential interfering v-structures at the nodes y and tC−1
n to cC . As in the previous

case, we find that the arc tC−1
n → v must be present. This means that tC−1

n ∈ pa(v) = B(Ok
v ), and therefore

by Lemma 5.26(i) we have that tC−1
n ∈ B(Ok

v ) \ Ok
v . Hence, we again find the arc tC−1

n → cC from a node in

B(Ok
v ) \Ok

v to a node in Ok
v which is a contradiction.

Thus, for both cases we find a contradiction when C > 0, completing the proof of Lemma 5.29.



6
Estimation and Structure learning

In this chapter we present the process of estimating and structure learning in the subclass restricted PCBNs

studied in Chapter 3 and Chapter 4. First, in Section 6.1, we establish how the estimation of the copulas and

their assignment has to be curried out, which is then followed by the construction of a structure learning

algorithm in Section 6.2. Both topics are complemented with a simulation study in Sections 6.1.1 and 6.2.1,

respectively.

6.1. Estimation
A PCBN is characterized by the (conditional) copulas attached to its arcs. Hence, estimating the “optimal”

density for given data involves determining the families and corresponding parameters of these copulas and

the order in which they are assigned.

Each copula takes the form cw v |pa(v↓w), where v ∈V and w ∈ pa(v). Under the simplifying assumption, such

copulas are characterized by a constant vector θw→v which specifies the family and parameters for the arc

w → v . The information of all these vectors is stored in a parameter vector denoted by θ1.

By Theorem 3.15, we know that a PCBN (G ,O ) with neither active cycles nor interfering v-structures does not

necessitate integration. Moreover, in Chapter 4 we have shown that to prevent integration the assignment of

copulas, O , must be determined by Algorithm 2. Therefore, we impose the both restrictions on the class of

PCBNs. Finally, we assume that we are modeling a random vector with uniform margins, giving us the model

below.

Definition 6.1 (Restricted PCBN model). Let (G ,O ) be a PCBN where G contains no active cycles and in-

terfering v-structures and O is chosen by Algorithm 2. Let P v→w = {
cw v |pa(v↓w);θw→v ; θw→v ∈ Θw→v

}
be a

collection of bivariate (conditional) pair-copula densities for each arc w → v ∈ E . Then, the collection of

densities

P = { ∏
v∈V

∏
w∈pa(v)

cθw→v ; cθw→v ∈P w→v
}

is a model corresponding to (G ,O ). The triplet (G ,O ,P ) is called a restricted PCBN model. To reduce heavy

notation, we will often simply write P = {cθ; θ ∈Θ}. Here, θ contains all information from the vectors in the

set
{
θw→v ∈ w → v ∈ E

}
. If it is clear from context that a PCBN model is restricted, we will simply say PCBN

model.

1Without the simplifying assumptions the vectors θw→v are functions θw→v (·) which take observations xpa(v↓w) as inputs.
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A joint density cθ corresponding to a PCBN model can be decomposed by

cθ(uV ) = ∏
v∈V

∏
w∈pa(v)

cw v |pa(v↓w)
(
uw |pa(v↓w),uv |pa(v↓w); θw→v

)
. (6.1)

Here, the terms uw |pa(v↓w) and uv |pa(v↓w) are computed with a recursion of h-functions, see Section 2.5.5

and Chapter 3. For example, computing a conditional margin u2|1 requires the copula c12, and therefore the

parameter vector θ1→2 (assuming that 1 → 2 ∈ E). Thus, formally we should write u2|1;θ1→2 in the joint density.

However, to simplify the equation, this is omitted.

Estimating a PCBN given data involves finding the graph, assignment of copulas and parameters. Since this is

a highly complicated procedure, we will first assume that the graphical structure and assignment of copulas

are known, hence we are tasked with estimating θ. Hereafter, we concern ourselves with the assignment of

copulas O whereas the estimation of G will be discussed in Section 6.2.

Similar as was done in Section 2.3, we introduce log-likelihood, AIC and BIC for PCBNs.

Definition 6.2 (Likelihood-based selection criteria for PCBNs). Let (G ,O ) be a PCBN with a corresponding

density fV and parameter vector θ. For a random sample D = (u(m)
V )m=1,...,M of size M , the log-likelihood is

defined by

ℓ(θ; G ,O ,D) = log
[ M∏

m=1
cθ

(
uV ; θ

)]
=

M∑
m=1

∑
v∈V

∑
w∈pa(v)

logcw v |pa(v↓w)
(
u(m)

w |pa(v↓w),u(m)
v |pa(v↓w); θw→v

)
.

Furthermore, the AIC and BIC are given by

AIC (θ;G ,O ,D) =−2 ·ℓ(θ; G ,O ,D)+2k,

B IC (θ;G ,O ,D) =−2 ·ℓ(θ; G ,O ,D)+ log(M)k,

where k is the number of parameters in θ.

Estimating the joint density is done by maximizing the log-likelihood, −AIC or −B IC . These functions can be

optimized efficiently, since they are the sum of smaller optimization problems. Indeed, maximizing the log-

likelihood reduces to maximizing the terms “
∑M

m=1 logcw v |pa(v↓w)
(
u(m)

w |pa(v↓w),u(m)
v |pa(v↓w); θw→v

)
”. Because the

arguments of one copula may depend on other copulas, these optimization problems are not independent.

However, by estimating the bivariate copulas in a specific order this problem is mitigated. For example, in

Figure 3.8b, the copula c34|2 takes the argument u4|2 which depends on c24. Therefore, we simply estimate c24

first, and then compute u4|2 using this copula.

Now that we have established how to estimate θ, we move on to the estimation of O . For larger graphs,

the number of possible orderings can be extremely large. Therefore, it would be beneficial to find a heuristic

which finds the best choice of O in an intelligent manor. However, we simply check every possible choice of O ,

and choose O such that it has the highest maximum likelihood or the lowest minimal AIC or B IC . The steps

described above provide us with the algorithm displayed below. The estimated assignment of copulas and

parameter vector are denoted by (θ̂ℓ, Ôℓ), (θ̂AIC , Ô AIC ) or (θ̂B IC , ÔB IC ) depending on the chosen selection

criterion.
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Algorithm 3 estimation of θ and O

Input: restricted DAG G , data D, selection criterion s()
Output: estimated set of orders and parameter vector (Ô , θ̂)

for each set of orders O found by Algorithm 2 do
θ(O ) ← argmax

θ

[
s
(
θ; G ,O ,D

)]
end for
Ô ← argmax

O

[
s
(
θ(O ); G ,O ,D

)]
θ̂← θ(Ô )
return (Ô , θ̂)



116 6. Estimation and Structure learning

6.1.1. Simulation study
In this section, we show that Algorithm 3 can accurately estimate the order and parameters given a data set

generated from a known PCBN. Moreover, we compare its performance against a GBN.

For this purpose we specify a restricted PCBN as defined in Definition 6.1 and simulate data according to the

process described in Appendix B. Naturally, this data set will have uniform margins. Since in applications the

true marginal distributions of the data are not known, we rank the margins with the function pobs() from the

VineCopula package ([24]) to obtain pseudo-observations.

Because the GBN requires normal margins, the pseudo-observations are then scaled to standard normal

margins. To this meta-Gaussian data we fit a GBN using the function bn.fit() from the bnlearn package

([32]).

As discussed in Section 2.5.2, the usual approach of fitting copulas is to apply a two-step process. First, we

re-estimate the margins of the meta-Gaussian data by normal distributions using the function fitdistr() from

the MASS package ([37]). Hereafter, the PCBN is fitted to the pseudo-observations. The log-likelihood, AIC

and BIC of the PCBN will be the criteria as in Definition 6.2 with the addition of the log-likelihood, AIC and

BIC of the estimated margins.

The main purpose of this simulation study is to see if the PCBN provides better results than the GBN when

applied to data with a non-Gaussian dependence structure. Hence, we will exclusively use non-Gaussian

copulas. Moreover, to reduce computational time, only a limited set of copulas is applied; Gumbel, Joe and

Frank.

It should be noted that the function BiCopSelect() from the VineCopula package is used to estimate all copu-

las. When provided with a set of copula families, this function fits all their rotations as well.

Thus, our simulation study follows the steps:

1. Simulate uniform data U from a PCBN.

2. Rank U to obtain the pseudo-observations Û.

3. Scale the margins of Û to standard normals to find the meta-Gaussian data X̂.

4. Fit margins to X̂, and fit a PCBN to Û.

5. Fit a GBN to X̂.

6. Compare the estimated PCBN to the true PCBN.

7. Compare the results of the estimated PCBN and GBN.

Consider a PCBN with graphical structure and assignment of copulas as in Figure 6.1 and parameters from

Table 6.1. From this model we generate 1000 data sets containing 1000 samples each. An example of a gener-

ated data set can be seen in Figure 6.2.
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U1

U3 U4

U2

U5

U6

U7

13

24 25

26
|35

34|2

36

37|6

46|235

56|3

67

Figure 6.1: PCBN used for the simulation studies.

Arc Copula Family Kendall’s τ
1 → 3 c13 Gumbel 0.6
2 → 4 c24 Joe 0.8
3 → 4 c34|2 Gumbel 0.6
2 → 5 c25 Frank 0.7
3 → 6 c36 Joe 0.9
5 → 6 c56|3 Frank 0.6
2 → 6 c26|35 Frank 0.85
4 → 6 c46|235 Gumbel 0.75
6 → 7 c67 Gumbel 0.65
3 → 7 c37|6 Joe 0.55

Table 6.1: The copula families and parameters of the PCBN in
Figure 6.1.

Figure 6.2: Uniform data simulated from the PCBN in Figure 6.1 with parameters from Table 6.1 consisting of 1000 samples.

We fit a PCBN and GBN to the 1000 data sets simulated from specified model above using the BIC as the

selection criterion. The PCBN was able to recover the correct order O for every replication, and for most

arcs it was able to estimate the correct copula reasonably well, see Table 6.2. Observe that the unconditional

copulas are accurately estimated. The more conditioning variables a copula has, the less accurate results

become. Indeed, for the copula c46|235 the family is not correctly estimated in most cases and the mean of the

estimated Kendall’s τ is significantly different to the true Kendall’s τ. However, this is to be expected as we are

propagating errors when computing conditional copulas.

The average Kendall’s τ estimated by the GBN is significantly less accurate than the estimation of the PCBN.

In particular for the conditional copulas, the differences are quite large.
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Arc Copula Correct family True τ Estimated τ PCBN Estimated τ GBN
1 → 3 c13 100% 0.6 0.601 ± 0.0132 0.581
2 → 4 c24 100% 0.8 0.798 ± 0.0078 0.723
3 → 4 c34|2 100% 0.6 0.585 ± 0.0139 0.435
2 → 5 c25 100% 0.7 0.7 ± 0.00903 0.634
3 → 6 c36 100% 0.9 0.898 ± 0.00404 0.815
5 → 6 c56|3 100% 0.6 0.578 ± 0.0128 0.352
2 → 6 c26|35 100% 0.85 0.731 ± 0.014 0.356
4 → 6 c46|235 12% 0.75 0.394 ± 0.0301 0.233
6 → 7 c67 100% 0.65 0.651 ± 0.0124 0.629
3 → 7 c37|6 98.3% 0.55 0.515 ± 0.0154 0.377

Table 6.2: Results of the estimated PCBN and GBN compared to the true model. The estimated Kendall’s τ by the PCBN is given as the
mean ± standard deviation for the 1000 replications. For the estimated Kendall’s τ by the GBN only the mean is given2.

Let us now compare the performance of the GBN and PCBN by investigating Table 6.3. Here, the Kullback

Leibler divergence of the two models with respect to the true distribution has been approximated by Monte

Carlo simulation with 10000 samples3. When comparing the GBN to the PCBN by the log-likelihood, AIC, BIC

and KL divergence, we find that on average the PCBN outperforms the GBN. Furthermore, for each replication

the PCBN was the preferred model by a significant margin. For example, the maximum found KL divergence

for the PCBN was 0.35, whereas the minimum value for the GBN was 3.11. Thus, the PCBN is clearly the more

accurate model. However, its computational time was significantly higher compared to the GBN.

Model Computation time (s) log-lik AIC BIC KL
PCBN 5.36 ± 0.358 -2226 ± 107 4499 ± 214 4547± 214 0.0707 ± 0.0946
GBN 0.00041 ± 0.0026 -4975 ± 92.1 10117±184 9999±184 3.44 ± 0.0997

Table 6.3: Performance metrics given as mean ± standard deviation for the 1000 replications. Here, the computation time is given in
seconds.

2The estimated Kendall’s τ for the GBN was a later addition to this thesis. Consequently, the necessary information to compute the
standard deviation was not stored.

3The sample size of 10000 was chosen because increasing the number of samples did not significantly affect the found result. Further-
more, computing the KL divergence with 10000 samples already took roughly 1.5 seconds per replication.
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6.2. Structure learning
The previous section explained the process of estimating the assignment of copulas and parameter vectors.

In this setting, the graph was assumed to be known. To estimate the graphical structure we apply a similar

approach as was described for the GBN in Section 2.4.

First, we define three likelihood-based score functions in the same fashion as was done in Definition 2.33.

Definition 6.3 (Likelihood-based score functions for PCBNs). Consider a data set D and a DAG G . We define

the following likelihood-based score functions

scor eℓ(G ; D) = Ôℓ(θ̂ℓ; G , Ôℓ,D),

scor e AIC (G ; D) = Ô AIC (θ̂AIC ; G , Ô AIC ,D),

scor eB IC (G ; D) = ÔB IC (θ̂B IC ; G , ÔB IC ,D).

Here, (θ̂ℓ, Ôℓ), (θ̂AIC , Ô AIC ), (θ̂B IC and ÔB IC ) are the estimators determined by Algorithm 3.

The conditional copulas assigned to the arcs take conditional margins as arguments which must be computed

with other copulas. For this reason, the score functions defined above are not decomposable. Furthermore,

the score functions are not score equivalent. Indeed, distinct but equivalent graphs can have a different

assignment of copulas. In this case, their scores will not be the same.

Remark 6.4. The score functions in Definition 6.3 are not decomposable nor score equivalent, see Sec-

tion 2.4.1.

Graphs whose distance as defined in Definition 2.35 is equal to zero will have an equal score. Because they

have the same v-structures and skeleton which means that they allow for the same assignment of copu-

las.

With the score functions in Definition 6.3 we can almost immediately apply the Hill climbing algorithm de-

fined in Algorithm 1. However, this algorithm traverses all possible DAGs. Therefore, we must make a slight

adjustment such that the algorithm only traverses DAGs without active cycles and interfering v-structures,

giving us the algorithm displayed below.

In Example 2.34, it was noted that in the implementation of bnlearn the Hill climbing algorithm chooses

between equal arc operations based on the order of the columns in the data-frame. Therefore, for the sake of

comparison, we do the same.

Algorithm 4 Hill climbing for restricted PCBNs

Input: restricted DAG G , data D, score function scor e(G ; D)
Output: the DAG G max which locally maximizes scor e(G ; D)

G max ←G

Smax ← scor e(G ; D)
while Smax increases do

for each arc operation e on G max resulting in a restricted DAG G e do
compute the score delta ∆(e) = scor e(G e ; D)−Smax

end for
if max

{
∆(e)

}> 0 then
e∗ = argmax

e

{
∆(e)

}
G max ←G e∗

Smax ← Smax +∆(e∗)
end if

end while
return G max



120 6. Estimation and Structure learning

6.2.1. Simulation study
Again we consider data simulated from the PCBN in Figure 6.1. We apply Algorithm 4, starting with the empty

graph, to see if it finds the correct graphical structure or not. The same is done for the Hill climbing algorithm

for GBNs, using the function hc() from the bnlearn package ([32]). In similar fashion as in Section 6.1, the

function the function hc() is applied to the meta-Gaussian data and Algorithm 4 to the pseudo-observations.

Because of the high computational cost, the simulation study is performed with just 40 replications as this

already took roughly 24 hours. For each replication we randomly shuffle the columns of the data-frame for a

more realistic result, since the column order is used to break ties in both algorithms.

Furthermore, we also fit a PCBN to the found graph by the hc(). Naturally, this graph may contain an active

cycle or interfering v-structure. If this is the case, then we apply Algorithm 5 from Appendix C to transform

the graph into a restricted graph. The PCBN estimated with this graph is referred to as “PCBNtoGBN”.

Let us investigate the results displayed in Table 6.4. Here, the distance of two graphs is as in Definition 2.35.

Again, it is clear that the PCBN outperforms the GBN in terms of accuracy as its found distribution and graph

are closer to the true model.

Fitting a PCBN to the found GBN graph also provides us with more accurate results. The benefit of this ap-

proach is that it requires significantly less computational time. Another interesting observation is that al-

though on average PCBNtoGBN provided worse results than the PCBN, it did perform better 22.5% of the

times in terms of its KL divergence, see Table 6.5. Furthermore, the PCBN outperformed the GBN in 92.5% of

the cases whereas the PCBNtoGBN always did.

Model Computation time (s) log-lik AIC BIC KL Distance
PCBN 2065 ± 3027 -2347 ± 213 4747 ± 426 4807 ± 426 0.89 ± 1.13 10.3 ± 6.07
GBN 0.009 ± 0.009 -4852 ± 110 9884 ± 224 9756 ± 222 3.34 ± 0.0974 14.9 ± 4.28

PCBNtoGBN 78 ± 126 -2824 ± 486 5702 ± 970 5764 ± 971 1.03 ± 0.598 15 ± 4.74

Table 6.4: Performance metrics given as mean ± standard deviation for the 40 replications. Here, the computation time is in seconds.

Lower than PCBN KL Lower than GBN KL Lower than PCBNtoGBN KL
PCBN KL × 92.5 % 67.5 %
GBN KL 7.6 % × 0 %

PCBNtoGBN KL 22.5 % 100 % ×
Table 6.5: Percentage of the time where the KL divergence of one model was better than another for the 40 replications.
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Conclusion and future work

In this chapter, we commence by giving a comprehensive summary of the thesis, followed by its key conclu-

sions. Hereafter, we highlight some interesting topics for future research.

7.1. Summary
The main goal of this thesis was to define necessary and sufficient conditions a PCBN must satisfy such that

computations of likelihood and simulations do not require integration. It was found that presence of an

active cycle or interfering v-structures will necessitate integration, see Theorems 3.11 and 3.14. Furthermore,

it was shown that if neither structure is present, then the copulas can be assigned such that integration is

not required, see Theorem 3.15. However, this assignment must be chosen in a specific manner. Indeed, in

Theorem 4.5, it has been proven that an assignment of copulas will not lead to integration if and only if it is

determined by Algorithm 2.

Thus, we have developed a strict subclass of PCBNs for which computations are efficient. For this subclass,

estimation and sampling require relatively low computational cost. This has been one of the major drawbacks

of PCBNs so far, since the possible need for numerical integration makes them not scalable to larger graphs

and data sets.

The proof of Theorem 4.5 required a significant amount of work. We needed to establish a robust framework

and prove a long list of supporting lemmas, see Chapter 5. Most of the results established in this chapter hold

intrinsic value beyond their role in the proof of Theorem 4.5.

In Section 6.1, we have established how to fit a restricted PCBN to a data set given a fixed graph. This en-

compasses finding the optimal parameters and assignment of copulas. Here, we opted for a simple heuristic

to find the optimal copula assignment; simply try all of them. To evaluate the performance of the PCBN, we

simulated 1000 data sets from a PCBN model with a non-Gaussian dependence structure and fitted both the

restricted PCBN and a GBN to these data sets. The PCBN was able to find the correct parental orders for each

replication, and the parameters were estimated rather accurately. When comparing the results to the GBN,

the PCBN was the clear winner. However, it must be mentioned that the simulation study was performed for

only one structure. A more comprehensive study is needed before drawing a general conclusion.

In Section 6.2, we have shown how to apply a score-based structure learning algorithm to the restricted PCBN.

Here, we applied the Hill climbing algorithm which searched over the space of restricted DAGs, and used

likelihood-based score functions. To investigate the performance of the algorithm, we again simulated data

121
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from the same PCBN as was used in Section 6.1. This time only 40 data sets were simulated, as the high com-

putational time did not allow for more repetitions. It was found that the PCBN was better able to recover the

graphical structure than the GBN in most cases. In 92.5% of the replications the PCBN outperformed the GBN,

according to the log-likelihood, AIC, BIC an KL divergence. Furthermore, we fitted a PCBN to the graph found

by the GBN, after removing the active cycles and interfering v-structures, using Algorithm 5 in Appendix C.

The resulting PCBN was always more accurate than the GBN, which of course not surprising.

In both estimation and structure learning the PCBN that was found was a more accurate model, but it did so

in a significantly longer amount of time. Indeed, the estimation of the restricted PCBN took roughly 5 seconds

whereas the GBN is fitted nearly instantaneous; 0.00041 seconds on average. The Hill climbing algorithm for

PCBNs took an average of 2065 seconds to complete in contrast with the 0.009 seconds for the GBN. It should

be noted that our code has not been properly optimized yet. Although, the computational cost of the PCBN

will always be significantly higher than that of the GBN, we expect that the significant improvements in this

respect are possible. Furthermore, the simulation were run on a simple laptop with an “AMD Ryzen 7 4800HS

with Radeon Graphics” processor.

7.2. Conclusion
We have established a major theoretical result in the form of the restricted pair-copula Bayesian network. For

this subclass of PCBNs the joint density can be computed without integration, making the model scalable to

larger graphs and data sets. This is a notable advancement to the previously established PCBNs. Furthermore,

through two small simulation studies we have shown that the restricted PCBN is able to model non-Gaussian

more accurately than the Gaussian Bayesian network. Therefore, the restricted PCBN is certainly a viable

alternative for the GBN and general PCBN given a continuous data set.
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7.3. Future work
The main goal of this thesis was to develop a subclass of PCBNs which admit integration-free computations.

Although this goal has been achieved, there are many interesting questions left to answer. As the list is quite

extensive, we have divided them into several categories below.

Theoretical questions:

We have proven many results concerning properties of trails and d-separation, most of which in Chapter 5.

Some of these results are generally applicable. They do not hold only in the restricted graphs. For instance,

Lemma 5.6 can be applied for any DAG G . However, other lemmas require a very specific framework, e.g.

all lemmas concerning the B-sets and partial orders. It is unclear if these results can be of use elsewhere.

Furthermore, we consider the following points:

• The number of possible DAGs given a node set V is known, see [30]. It would be interesting to establish

a similar result for the restricted DAGs.

• We have seen that for a DAG, the assignment of copulas O must be chosen by Algorithm 2, to guarantee

integration-free computations. It is unknown how many suitable sets of orders O there are given a

restricted DAG G .

• We defined a heuristic which is able to remove the active cycles and interfering v-structures from a DAG

in Algorithm 5, see Appendix C. However, the construction of this algorithm received limited attention.

Therefore, it would be of interest to explore other heuristics.

• In Theorem 3.8, it is has been established that multitrees do not require integration for any choice of O .

This property is not exclusive to multitrees as one can easily find graphs for which the same is true, e.g.

the graph below. Therefore, it would be intriguing to find a more general subclass than the multitrees

satisfying this property.

X1

X3

X2

• In Lemma 5.26 we needed the propertyA to hold for the subset Y ⊔Z . Therefore, it would be interesting

to see which subsets of DAGs satisfy the property A from Definition 5.25.

We have shown that the PCBN provides an obvious benefit when compared to the widely used GBN. How-

ever, it is important to note that that there is still a major theoretical gap between the two models. Many

subjects which have been excessively investigated for the GBN have not been explored for the PCBN. For

instance:

• In GBNs, conditioning on evidences can be done analytically, the same is not possible for the restricted

PCBN. It is known that already for Gaussian PCBNs (PCBNs where all copulas are Gaussian) the condi-

tionalization has to be performed by sampling. This might be also a solution for restricted PCBNs.

• Mixed models allowing continuous and discrete data are available for GBNs. It would be interesting to

incorporate discrete random variables into the restricted PCBN.

Escaping local maxima:

A known issue of the Hill climbing algorithm is that it can get stuck in a local maximum (local maximal score).
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This problem certainly affects Algorithm 4. Furthermore, there could be cases where the best arc operation

results in an active cycle or interfering v-structures, hence we cannot escape the local maximum. Also, we

have seen that Algorithm 4 is susceptible to different column orders. We provide several possible solutions to

these problems:

• Try to escape the local maximum by using random restarts or the tabu search, see Section 2.4.4

• Whenever there is a choice to be made between arc operations resulting in equal score, the algorithm

can try both. That is, when for the current graph G we have arc operations e1 and e2 resulting in an

equal score delta, simply run the algorithm for both G e1 and G e2 as starting graphs.

• Use the output of a structure learning search for GBNs as a starting graph for the PCBN Hill climbing

algorithm.

• Use an alternative definition of the neighbouring graphs. For instance, the removal of an arc w → v may

not be allowed because it provides an active cycle. Perhaps it would be better to let the arc operation

be; remove the arc w → v and apply the minimum amount of arc operations which prevent the active

cycle from occurring. Idem for arc operations resulting in interfering v-structures.

• If it was possible to determine first the nodes which are most likely to be the member of a large v-

structure, then we could change the score function such that arcs pointing towards such nodes are

valued more than away pointing arcs.

Simulation studies:

Obvious improvements for future simulation studies are:

• Performing a much large simulation study with more replications, copula families, marginal distribu-

tions and larger graphs.

• Comparing the computational time between the restricted PCBN and the general PCBN.

Optimization of code:

The R code used to produce the results of the simulation studies has not been optimized properly. Some

measures have been taken to lower the computational cost. For example, any copula and conditional margin

which is computed is stored for later usage. However, there are still many improvements which could be

made. We note various improvements:

• In Algorithm 3, the optimal assignment of copulas given a graph was determined by simply trying every

possible order. Deciding upon a heuristic which estimates the order more intelligently would reduce

the computational cost significantly.

• The implementation which checks if a graph has active cycles or not is very much not optimized and

takes a significant amount of time for more complex graphs. Therefore, an efficient algorithm is war-

ranted.

• As mentioned before, the score functions for the PCBN in Definition 6.3 are not decomposable. Hence,

computing the score delta of an arc operation will not be as efficient as for the GBN. However, our

current implementation could still be improved.
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A
Possible candidates sets are disjoint

Lemma A.1. Let Ok
v be a partial order determined by Algorithm 2 with k < ∣∣pa(v)

∣∣. Then, the sets Poss.C andInd (Ok
v ),

Poss.C andIn(Ok
v ) and Poss.C andOut (Ok

v ) are mutually disjoint.

Proof. By Definition 4.4, the set Poss.C andInd (Ok
v ) must be disjoint from both sets Poss.C andIn(Ok

v ) and

Poss.C andOut (Ok
v ). Indeed, an element in w ∈ Poss.C andInd (Ok

v ) is d-separated from Ok
v given the empty

set, and therefore there cannot be an incoming arc w → o or outgoing arc o → w with o ∈Ok
v .

It remains to show that Poss.C andIn(Ok
v )∩Poss.C andOut (Ok

v ) = ;. Suppose that w ∈ Poss.C andIn(Ok
v )∩

Poss.C andOut (Ok
v ). Since w ∈ Poss.C andIn(Ok

v ), there must exist an o1 ∈Ok
v such that w → o1 satisfying:

1. pa(o1 ↓ w) ⊆Ok
v ,

2. d − sepG

(
w,Ok

v \ pa(o1 ↓ w)
∣∣pa(o1 ↓ w)

)
.

Furthermore, since w ∈ Poss.C andIn(Ok
v ), there must exist an o2 ∈Ok

v such that o2 → w satisfying:

(i) pa(w ↓ o2) ⊆Ok
v ,

(ii) d − sepG

(
w,Ok

v \ pa(w ↓ o2)
∣∣pa(w ↓ o2)

)
.

The two nodes o1 and o2 cannot be the same node. Indeed, this would provide the cycle w → o1 = o2 → w ,

and therefore a contradiction. Thus, we have o1 ̸= o2.

By combining (ii) with Lemma 5.18, we have that w cannot be adjacent to Ok
v \ pa(w ↓ o2). But, because

o1 ∈ Ok
v and w → o1, we know that o1 ∈ Ok

v \ pa(w) ⊆ Ok
v \ pa(w ↓ o2), and therefore the set Ok

v \ pa(w ↓
o2) is adjacent to w by the arc w → o1. Since this is a contradiction, the two sets Poss.C andIn(Ok

v ) and

Poss.C andOut (Ok
v ) are disjoint, proving the lemma.
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B
Simulating from a restricted PCBN

The sampling procedure for a PCBN is described in [21]. Given a restricted PCBN the sampling procedure

is rather straightforward. For a random vector UV , we sample in order of an arbitrary well-ordering. Each

realization uv is then sampled according to the conditional distribution Fv |pa(v).

Let us consider the PCBN below. First, let v1, v2, v3, v4 and v5 be realizations of independent uniform random

variables. A realization uV of UV can be obtained as follows.

• u1 = v1.

• u2 = v2.

• u3 =C−1
3|2;u2

(
v3

)
.

• u4 =C−1
4|1;u1

(
C−1

4|12;u2|1
(
C−1

4|123;u3|12

(
v4

)))
.

• u5 =C−1
5|1;u1

(
C−1

5|14;u4|1
(
v5

))
.

For general PCBNs, sampling may require integration, as is seen in the example given in [21]. However, for

restricted PCBNs all conditional margins needed as arguments for the inverse CDFs can be computed ana-

lytically (u2|1, u3|12 and u4|1 in the example above).

U1 U2 U3

U4

U5

14

24|1

34|1
2

15

45|1
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C
DAG to restricted DAG

To turn a general DAG into a restricted DAG, we must remove its active cycles and interfering v-structures.

This can be done by either removing or adding arcs. We opted to only add arcs in order to preserve the existing

dependence structures.

Consider an active cycle

v ← x1 ⇌ · · ·⇌ xn → v

with its converging connection at v . Removing the active cycle by adding arcs means adding the appropriate

chords. Naturally, we have many choices. We opt for the simplest solution; point an arc from each node xi to

v . This can create a large v-structure which may not be desirable.

In case the graph contains interfering v-structures, then there must be a node v for which two B-sets, B1(v)

and B2(v), are not contained in one another. Thus, we have w1 ∈ B1 and w2 ∈ B2 such that w1 ∉ B2 and

w2 ∉ B1. To fix this problem one can either add an arc from w1 to b2, from w2 to b1 or both. We decide to add

only one arc which will be chosen arbitrarily.

The steps described above provide the following algorithm.

Algorithm 5 DAG to restricted DAG

Input: DAG G

Output: restricted graph G∗
G∗ ←G

for each active cycle in G do
Add arcs from all nodes in the active cycle to its converging connection in G∗

end for
for each v in V do

for each pair of B-sets B1(v) and B2(v) do
if B1 ⊈B2 and B2 ⊈B1 then

Add the arcs from B1 \ B2 to b2 or add arcs from B2 \ B1 to b1 to G∗
end if

end for
end for
return G∗
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