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Abstract

The main objective of the thesis is to analyze the potential for improving the aero-
dynamic efficiency of Siemens SGT5-2000E turbine section by optimizing the blade
shapes. An adjoint-based shape optimization is implemented at the mid-span of the
axial turbine. The optimization is performed, for the stator and the rotor individually,
to reduce the entropy generation (objective function) with mass flow rate as the con-
straint.

The design optimization methodology is implemented using 𝑆𝑈2, an open-source com-
putational fluid dynamics (CFD) tool coupled with the adjoint-based optimization tech-
nique. The 𝑆𝑈2 optimizer algorithm begins by computing the objective function of the
existing design by using the flow solver. The flow simulation is performed by solving
the RANS equations and SST turbulence model. The discrete adjoint solver utilizes
the objective function and constraints to evaluate the gradients of the objective func-
tion with respect to the design variables. Each of the design variables is altered to
improve the shape and the gradients are used to find an optimal search direction. The
algorithm is structured to iterate until an optimal shape is determined.

The optimization methodology is implemented for the existing stator to reduce the
entropy generation and an optimal shape is determined. Then, the rotor is optimized
with the outlet conditions of the optimized stator as the inlet conditions. The optimized
stator and rotor resulted in a significant decrease in entropy generation of about
16% and 24% respectively. Finally, with the optimized blades the stage simulation is
performed which resulted in 1.4% increase in the total-to-total efficiency compared
to the baseline stage.
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1
Introduction

Shape optimization is the predominant technique and it is essential in many fields
including the field of turbomachinery. Designing aerodynamically efficient, turbine or
compressor, blades have a greater value in the gas turbine market. Any improvement
in the performance of the turbomachine translates directly to the reduction of losses.
It is not only the aerodynamics that affects the efficiency, but also other factors like
stability, structural analysis etc. The present work mainly focuses on optimizing the
turbine blades to improve the aerodynamic efficiency. Advancements in the field of
computational fluid dynamics (CFD), producing solutions at high accuracy accompa-
nied by the increase in the computational power, provides room for combining the
optimization algorithms which results in an automatic design framework. An opti-
mal shape can be achieved with the help of this design framework by minimizing the
objective functions (eg: profile loss, entropy generation, etc.). In certain cases, the
proposed optimal shape should also satisfy either the geometric constraints (eg: blade
thickness, axial chord length etc.) or the flow constraints (eg: mass flow rate, flow
angle, etc.), or both. Usually, the optimized design will not be very different from
the baseline design. A sensitivity analysis1 is done to identify the consequences of
shape change in the baseline design and then the optimization is executed to improve
the performance. In this thesis work, a gradient-based method is used which has
the required improvements in terms of computational power and design space. This
method is capable of finding the optimal shape within a few design steps, provided an
efficient gradient calculation method is used. As evaluating the gradients are often the
expensive step in the optimization framework, using an efficient way that accurately
determines the sensitivities is very important.

1.1. Need for the adjoint method
The gradient-based techniques are efficient at locating local minimum for high dimen-
sional, non-linearly constrained and complex problems. It can attain an optimal solu-
tion in a few iterations. Nevertheless, this approach involves not only the evaluation
of objective function but also requires an expensive numerical method for calculating

1 The calculation of the derivatives of one or more quantities (objective functions) with respect to one
or more independent variables (design variables)

1



2 1. Introduction

the gradients of the objective function with respect to the design variables. In order
to evaluate the gradients in an efficient way, the adjoint approach is implemented in
the gradient-based method. The gradient evaluation, in the adjoint method, is inde-
pendent of the number of design variables and, the cost of its evaluation is of the
same order of magnitude of the objective function. For instance, if the problem re-
quires a large number of design variables, it is ineffective to choose the conventional
gradient-based methods like finite difference method or linearized method ([10], [11],
[12], [13]), because the computation of the gradients is very costly in these meth-
ods. Therefore, the adjoint method is the best alternative for the gradient-based
optimization with features of fast, exact gradient evaluation, and minimal computa-
tional resource requirements ([14], [15]).

An open-source optimization routine is used for this project. Therefore, the litera-
ture study is mainly focused on understanding the application of different techniques
and which is more suitable for the successful implementation of the adjoint based
shape optimization. The following questions are answered based on the literature
study,

1. Either to use the discrete or continuous adjoint method?

2. How to parameterize the design space?

3. How to implement the geometric and flow constraints?

The answers to these questions will be discussed in the following passages.

1.2. Advancements of optimization techniques.
In aerodynamic design, the first set of the adjoint equations were derived and imple-
mented by Jameson (1995) [16] for transonic flow problems. The author combined the
adjoint method and the computational fluid dynamics (CFD) procedures and thereby
developed an optimization design tool. He explained both discrete and continuous
adjoint method but in his work he employed the latter because of its simplicity in im-
plementation. In the continuous adjoint method, the nonlinear flow equations which
are in partial differential equation form are linearized with respect to design variables
and then from this linearized equations, the adjoint equation is obtained, followed
by discretization. In the discrete adjoint method, the flow equations are discretized
first and then they are linearized and the adjoint formulation is then obtained. Both
these methods have their own pros and cons. The continuous method has a simple
formulation and easy to implement but the discrete method is composed of a large
system of coupled equations. The discrete approach sustains consistency between
the solution of the flow equations and the gradients. The gradients evaluated by
the discrete method can be equivalent to the one obtained from the finite difference
method. Whereas, the gradients computed through the continuous approach will be
inappropriate with the exact gradients evaluated by the finite difference method. This
is because of the dissimilarity in the discretization of equations which might fail to
converge when the solution is close to the local minimum. The implementation of
the discrete adjoint method is complex because of the enormous requirement of the
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computational power. Giles et al. (2000) [17] suggested methods to simplify the ex-
ecution of the discrete approach by using the Automatic Differentiation (AD) (answer
to the first question).

The solution to the second question depends on which type of parameterization
technique is chosen. Jameson [18], in one of his initial works, defined that the po-
sition of each of the mesh nodes as a discrete design variable. The optimization
execution would become tedious because of tens of thousands of design variables
and it might be much more complicated for three-dimensional design. Later, he used
the steepest descent method [16] which had the advantage of tolerating the errors
in the gradient evaluation and supported stronger coupling of the flow solver, the ad-
joint solver and the design optimization to quickly converge the overall design process.
The application of the individual surface mesh node as the design variable initiated
high-frequency noises in the gradients and collapsed the steepest descent method.
This issue was addressed by many researchers where the design surface was param-
eterized by employing the smooth functions that changed the initial geometry. The
parameterization approach facilitates the use of lesser number of design variables
(compared to the mesh nodes) and, removes the high-frequency noises without the
necessity of smoothing the changes in the design. Hicks and Henne et al. (1978) [19]
suggested analytic perturbation functions that were distributed over the design sur-
face and provided a reasonable parameterization of the design span. Variation to the
shape could be performed to a particular section by specific choice of design variables
keeping remaining geometry left unperturbed [20]. The control points of the B-spline
curves could also be specified as the design variables.

Figure 1.1: Blade parameterization by using non-uniform B-Spline [1]

B-spline works similar to the Hicks-Henne function as it mitigates the number of de-
sign variables required and provides local control for improving the shape with higher-
order optimization methods like quasi-Newtons procedures [21]. Compared to Hicks-
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Henne’s approach, B-spline method provided more space for the movement of the
given design variables and it required smoothing procedure to eliminate the high fre-
quencies which could be encountered during the gradient calculation.

In addition to these two methods, Free Form Deformation (FFD) could also be used
to specify the design variables. This technique employs a FFD box that completely
encloses the geometry to be modified (refer Figure 1.2). The control points in the FFD
box are chosen as the design variables [2]. By moving the control points, variation to
the surface is generated and the perturbation is propagated through the mesh based
on the linear elasticity theory [22]. FFD control points provided more flexibility as the
span-wise spacing of the control points are sufficiently large and local control of the
design variables are also possible. Compared to the B-spline, FFD approach is consid-
ered more efficient for complex geometries and it is well suited for the adaptive and
the progressive geometry strategies [23]. The application of any of these parameter-
ization techniques had shown significant advancement in optimization by accelerating
the convergence and coupling the individual elements of the design process.

Figure 1.2: Local FFD (left) and Global FFD (right) [2].

The automated optimization design tool aims at attaining a target design using
iterative modifications to the shape. Salvatore et al. (2017) [23] used an optimiza-
tion platform to perform the design optimization for a transonic cascade to minimize
the entropy generation rate by imposing a constraint on the flow outlet angle which
eventually resulted in the reduction of the profile losses. Therefore, the geometric
and flow constraints are mainly imposed based on the required result.

In the aerodynamic design optimization, usually the considered design space is
smooth and the optimization algorithms are used to find the optimal shapes. The
design procedure begins by computing the required parameters of the initial design.
These values of the baseline design will be preserved for the gradient calculation in
the future. The optimization techniques utilize the objective function and the con-
straints to evaluate the gradients. Each of the design variables is altered to improve
the baseline shape and the gradients are used to decide the optimal shape search
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direction. The algorithm will be structured to iterate until an optimized shape is found
where there is no further room for improvement.

1.3. Stanford University Unstructured (𝑆𝑈2)
𝑆𝑈2 is an open-source platform written in C++ and Python for the analysis of partial
differential equations (PDEs) and constrained optimization problems with state-of-
the-art numerical methods. These high-level programming languages in 𝑆𝑈2 have
provided the ability to ensure code reuse and flexibility to modify the existing tool
for the new and different purpose. It is an industry standard tool with a state-of-
the-art adjoint based optimization technology. The performance of this software has
been validated by many researchers [23], [24], [25]. For this project, the design and
optimization environment of 𝑆𝑈2 is used. The tools for performing the flow simulation,
determining the gradients by projecting sensitivities on to the design space, mesh
deformation and an optimizer with search algorithm are available in the 𝑆𝑈2 suite
[26]. With these coupled capacities, accurate gradients can be calculated to find
the optimal design for specific objective function and constraints. To gain a deep
understanding of how 𝑆𝑈2 works, refer Palacios et al. (2013) [8] .

1.4. Research aim
With the aforementioned knowledge, the adjoint-based shape optimization is im-
plemented. The study is focused on the turbine section of the Siemens STG-2000
(V94.2(3)) series gas turbine. This gas turbine is taken as a reference for feasible
study to improve the aerodynamic efficiency of the turbine. During the course of the
thesis work, a detailed two-dimensional computational fluid dynamic analysis is done
at the mid-section of the turbine to analyze the factors affecting the performance of
the stage. The shape optimization for the stator and the rotor blades are implemented
to reduce the entropy generation.

The aim of this thesis is to reduce the entropy generation of the axial turbine at
mid-span by performing the adjoint-based blade shape optimization. This eventually
improves the aerodynamic efficiency of the turbine. The shape optimization for the
stator and the rotor are done individually as stage optimization features in 𝑆𝑈2 are
not yet developed.

1.5. Outline of the report
In the second chapter, the concepts of the turbomachinery, the flow pattern around
blades and the reasons for the entropy generation in a transonic cascade are ex-
plained. In the third chapter, the numerical modelling of the flow equations, turbu-
lence models and boundary conditions implemented in the flow solver are described.
In the fourth chapter, the adjoint method is analytically formulated and the working
of the automatic differentiation is presented. In the fifth chapter, coupling of the flow
solver, the adjoint solver along with the optimization tool is explained. The results
and discussions section report the flow characteristics of the optimized blades and
the performance of the baseline stage configuration is compared with the optimized
stage. Conclusions and recommendations are presented in the last chapter.





2
Turbomachinery : Concepts and

Principles

The main purpose of this chapter is to highlight the components of a turbine, their
functions and performance. The explanation is mainly focused on the fluid flow pattern
around the turbine blades. As the objective of this thesis is to reduce the entropy, the
causes of its generation is also outlined in this chapter.

2.1. Gas turbine
The open cycle gas turbine is an internal combustion engine that extracts the chemical
energy from the fuel and converts it into mechanical energy to generate power. It
is composed of four sections: Inlet, compressor, combustion chamber and turbine
(Figure 2.1).

• Inlet section: It is the section which sucks the air from the atmosphere and
properly directs the air on to the compressor section.

• Compressor section: In this section, the air is pressurized and then it is fed
to the combustion chamber.

• Combustion section: The combustion chamber consist of fuel injectors that
inject atomized fuel and mixes with the pressurized air. The air-fuel mixture is
burned to generate the high temperature and high pressure gas stream and it
is then expanded through the turbine section.

• Turbine section: The turbine is composed of alternate stationary and rotat-
ing airfoil-shaped blades. The high pressure and high temperature gas from
the combustion chamber expands through the stationary blades and whirls the
rotating blades. The rotating blade drives the compressor to draw more pres-
surized air into the combustion chamber, and they operate the generator to
produce power.

The turbine section of the gas turbine model, Siemens SGT5-2000E is considered for
analysis (Figure 2.1). It is an axial turbine composed of four stages. In this thesis,
the mid-span section of the first stage of the turbine is focused.

7
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Figure 2.1: Sections of gas turbine (Siemens SGT5-2000E).

2.2. Axial turbine stage
The turbine extracts the energy by expanding the high temperature and high pressure
gas to low temperature and low pressure gas. Each stage of the turbine is composed of
two rows of blades. The first row is composed of stationary blades which are referred
either stator or nozzle. The stator form a converging duct that accelerates the hot
gas. It directs the high velocity gas to flow at an optimum angle over the rotor and
subsequently rotates the rotor. Thus, the velocity of the gas is increased in the stator
and the kinetic energy of the fluid is converted to mechanical energy to rotate the rotor.
The pressure and temperature of the gas drop gradually through the turbine stages.
To generate the required shaft power, the fluid properties (temperature, pressure and
velocity) are traded off.

Figure 2.2: Mid-span region.

Figure 2.2 shows the mid-span section of the blade in a stage. The flow enters
the inlet at zero degree angle of incidence and the flow splits at the leading edge
(stagnation point) and moves along the suction and pressure side of the blade (Figure
2.3). The flow passing over the convex side also referred to as the suction side, is
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accelerated. On the concave surface (pressure side), the flow is decelerated. The
static pressure coefficient 𝐶፩ is defined as the difference between the blade surface
pressure and reference pressure at the inlet normalized by the inlet dynamic pressure.
The value of 𝐶፩ is lowest on the suction side at the location of the throat area where
the velocity is higher. Likewise, 𝐶፩ is higher at the stagnation point on the blade
section. On the suction side, the velocity gradually increases from the stagnation
point to the throat area and reduces when it experiences the adverse pressure gradient
downstream of the throat in a subsonic flow. The same flow pattern can be observed
in both the stator and the rotor.

Figure 2.3: Flow field around the stator and the rotor. (SS: suction side; PS:
Pressure side).

2.2.1. Velocity triangle
The fluid at the inlet strikes the stator at an absolute angle 𝛼ኻ with velocity 𝑐ኻ. The fluid
velocity and the angle at the inlet and outlet of the turbine can be decomposed into
two components : axial and tangential components. As in the case of the axial turbine,
the inlet flow angle is parallel to the positive x-direction and the fluid is accelerated
in the stator. The increased absolute velocity 𝑐ኼ at the outlet of the stator turns the
fluid in an optimum angle and strikes the rotor and stimulate the blades to rotate.
The relative frame of reference gives a better understanding of the flow field than the
absolute frame of reference as the rotor is a rotating body. The entire fluid properties
can be obtained analytically by assuming the flow to be isentropic. The blade velocity
of the rotor depends on the rotational speed (𝑁) and the mid-plane radius (𝑟፦።፝).

𝐵𝑙𝑎𝑑𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑈ᖣ = 2𝜋𝑁𝑟፦።፝
60 (2.1)

The rotor inlet and outlet relative velocities are obtained by vectorially solving the
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velocity triangle (Figure 2.4) by using the formula specified below.

Figure 2.4: Velocity diagram for the turbine stage [3].

Stator inlet Stator Outlet and rotor inlet Rotor outlet
𝑐ኻ = √𝑐ኼፚኻ + 𝑐ኼ፭ኻ 𝑐ኼ = √𝑐ኼፚኼ + 𝑐ኼ፭ኼ 𝑤፭ኽ = 𝑐፭ኽ + 𝑈ᖣ
𝛼 = 0 (assumed) 𝑤፭ኼ = 𝑐፭ኼ − 𝑈ᖣ 𝑤ፚኽ = 𝑐ፚኽ

𝑤ፚኼ = 𝑐ፚኼ 𝑤ኽ = √𝑤ኼፚኽ +𝑤ኼ፭ኽ
𝛼ኼ = 𝑡𝑎𝑛ዅኻ(𝑐፭ኼ/𝑐ፚኼ) 𝛼ኽ = 𝑡𝑎𝑛ዅኻ(𝑐፭ኽ/𝑐ፚኽ)
𝛽ኼ = 𝑡𝑎𝑛ዅኻ((𝑐፭ኼ − 𝑈ᖣ)/𝑐ፚኼ) 𝛽ኽ = 𝑡𝑎𝑛ዅኻ(𝑤፭ኽ/𝑐ፚኽ)

The suffix ’𝑎’ and ’𝑡’ represents the axial and tangential components, ’𝑐’ represents
the absolute velocity and ’𝑤’ represents the relative velocity. After determining the
flow velocities at the inlet, outlet and interface of the stator and rotor, the absolute
and relative flow angles can be computed. The thermodynamic properties at each
section can also be evaluated based on the expression mentioned below,

Stator inlet Stator outlet and rotor inlet Rotor outlet
𝑇ኻ = 𝑇ኺኻ − 𝑐ኼኻ/2𝑐፩ 𝑇ኺኻ = 𝑇ኺኼ 𝑇ኽ = 𝑇ኺኽ − 𝑐ኼኽ/2𝑐፩
𝑚 = 𝜌 ∗ 𝐴 ∗ 𝑐 𝑇ኼ = 𝑇ኺኼ − 𝑐ኼኼ/2𝑐፩ 𝜌ኽ = 𝑝ኽ/(𝑅ᖣ𝑇ኽ)
𝑝ኻ = 𝑝ኺኻ ∗ (𝑇ኻ/𝑇ኺኻ)ፚ 𝜌ኼ = 𝑝ኼ/(𝑅ᖣ𝑇ኼ) 𝑝ኺኽ = 𝑝ኽ ∗ (𝑇ኺኽ/𝑇ኽ)ፚ
𝜌ኻ = 𝑝ኻ/(𝑅ᖣ𝑇ኻ) 𝑝ኺኼ = 𝑝ኼ ∗ (𝑇ኺኼ/𝑇ኼ)ፚ

where 𝑎 is the adiabatic index and it is expressed as 𝑎 = ( ᎐
᎐ዅኻ), 𝛾 is the specific heat

ratio, 𝑅ᖣ is gas constant, 𝑇 is the temperature and 𝑝 is the pressure. The suffix ’1’,
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’2’, ’3’ indicates the static conditions at inlet, interface and outlet respectively and ’0’
represents the total conditions. Through this calculation, the flow properties can be
calculated even before performing the CFD simulations. In the following section, the
factors that affect the efficiency of the turbine is discussed.

2.3. Two-dimensional losses in turbomachinery
Enormous upgrades have been done to improve the efficiency of the turbomachines in
the past years. This has made these machines to operate at around 90% of total-to-
total efficiency. To acquire further improvements is very challenging and imposes the
necessity to understand the fluid dynamics and thermodynamics of the flow and, the
factors that affect the efficiency. In most cases, the loss is defined as any flow property
that affects the efficiency of a turbomachine. The mechanism of losses such as profile
loss, trailing edge, etc. are generated due to the combination of various factors and
they are hardly independent. According to Denton (1993) [5], in the two-dimensional
case, the factors that contribute to the losses are narrowed down to thermodynamic
irreversibilities. Any irreversible flow process in a domain generates entropy which
definitely reduces the efficiency. The measure of the entropy is independent of the
frame of reference. The entropy values remain constant irrespective of whether it
is measured in the stationary or the rotating blade row. Entropy is a function of
temperature and pressure and the change in entropy is expressed as,

Δ𝑠 = 𝑠 − 𝑠፫፞፟ = 𝑐፩ 𝑙𝑛(𝑇/𝑇፫፞፟) − 𝑅ᖣ 𝑙𝑛(𝑝/𝑝፫፞፟) (2.2)
= 𝑐፯ 𝑙𝑛(𝑇/𝑇፫፞፟) − 𝑅ᖣ 𝑙𝑛(𝜌/𝜌፫፞፟). (2.3)

The temperature (𝑇), pressure (𝑝), density (𝜌) mentioned in the above equation can
be substituted either all static or all stagnation values. In the stator, if the stagnation
flow properties are considered to determine the entropy change, then the Equation
(2.2) reduces to (the stagnation temperature remains constant),

Δ𝑠 = −𝑅ᖣ 𝑙𝑛(𝑝ኺኼ/𝑝ኺኻ). (2.4)

The entropy is continuously generated in the boundary layer of the blade surface
and in regions where shock waves are produced. It cannot be destroyed rather it is
diffused into the surrounding flow of the machine. The loss in efficiency is proportional
to the entropy generation.

2.3.1. Mechanisms of entropy generation
As the entropy generation by irreversibilities affects the efficiency, it is necessary to
understand how the entropy is generated. Usually, the entropy is generated due
to the friction either in the boundary layer or free shear layer and, also due to the
non-equilibrium processes such as shock waves or sudden expansion of the flow.

2.3.2. Blade boundary layer losses
When the fluid passes the blade surface, the fluid closer to the blade tends to stick
and slows down the flow. This forms the boundary layer which influences the velocity
to change from zero near the blade surface to free stream value away from the blade
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surface. The boundary layer can be either laminar or turbulent depending on the
Reynolds number of the fluid flow.

Figure 2.5: Laminar and turbulent boundary layer formation on the blade
surface.

The laminar boundary layer is formed at lower Reynolds number, where the stream-
wise velocity change is uniform, close to the leading edge. The laminar boundary layer
which is formed at the leading edge undergoes a high acceleration on the suction side.
According to Hosdson et al., (1987) [27] the over acceleration in the boundary layer
leads to a separation bubble close to the meeting point of the leading edge and the
suction side of the blade. After the reattachment behind the bubble on the suction side
(refer Figure 2.6), the laminar boundary layer continues to grow and separates at the
lowest suction pressure region because of the adverse pressure gradient and forms
another separation bubble. Due to the adverse pressure gradient, the probability of
the boundary layer separation is more at the rear end of the suction side.

Figure 2.6: Formation of bubble separation [4].

The boundary layer formed experiences transformation from the transition to tur-
bulent and it re-attaches behind the second bubble separation on the suction side.
The turbulent boundary layer continues to thicken and may detach again due to the
adverse pressure gradient near the trailing edge forming the trailing edge wake. It
should be noted that the location of the separation bubble depends on the inlet flow
angle and Reynolds number of the flow at the inlet. According to Denton (1993) [5],
the major amount of entropy is generated in the turbulent boundary layer and it is
highly focused in the inner part of the boundary layer. The formation of the boundary
layer at the trailing edge also forms a wake region which gives rise to the local drop
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in the stagnation pressure. The entropy generated behind the trailing edge is a direct
consequence of the mixing of the boundary layers. This is because of the viscous
dissipation in the wake region which is an inescapable effect of the boundary layer
formation on the blade surface. Hence, the thickness of the boundary layer is pro-
portional to the quantity of loss on the blade surface. The turbulent boundary layer
generally occurs in regions of high velocity gradient which is most likely on the suction
surface, both in the stator and the rotor blade surfaces. The entropy created due to
this factor can be minimized by maintaining the boundary layer laminar as long as
possible.

Figure 2.7: Flow visualization on the suction side [4].

2.3.3. Trailing edge losses

Figure 2.8: Trailing edge with separated boundary layer [5].

The next major part of the two-dimensional losses originates from the trailing edge of
the blade. Mee et al., (1992) [6] depicted that one-third of the total loss (Figure 2.9)
was due to the mixing losses for a blade which had 6.3% of the blockage at trailing
edge in subsonic flow. According to Denton and Xu (1990) [28], in the case of the
choked transonic turbine blades with nominal trailing edge thickness, the influence of
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the boundary layer losses were less compared to the trailing edge shock losses. This
analysis was made by assuming the flow to be inviscid.

Figure 2.9: Variation of losses with Mach number for turbine cascade [6].

2.3.4. Effect of Mach number
The losses in the turbine increases suddenly when the flow approaches the sonic
condition. Xu and Denton (1988) [7] made a detail study to understand the variation
of the losses with Mach number for varying tailing edge thickness for turbine blades
(Figure 2.10) which was in accordance with the results proposed by Mee et al., (1992)
[6].

Figure 2.10: Variation of loss with Mach number with varying trailing edge
thickness [7].

A correlation was proposed by Chen (1987) [29] to predict the variation of the
turbine profile loss with respect to the Mach number. He proposed that the losses
increase suddenly as Mach number reaches unity, decrease gradually between Mach
numbers 1 and 1.2 and again increases at Mach number more than 1.2. The reason
for the decrease in losses for a higher Mach number was explained by Denton and
Xu (1990) [28]. They stated that it is due to the expansion of flow from the sonic
condition at the throat region to the supersonic condition far downstream is similar
to the increase in the flow area at the trailing edge. It is also evident from the result
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produced by Mee et al., (1992) [6], that the shock losses were more for higher Mach
numbers. Most of the shock appears at downstream of the axial plane and it increases
the entropy at the exit of the cascade.





3
Numerical Modelling

In this chapter, the numerical modelling of the problem will be discussed with a specific
focus on the fluid dynamic solver.

3.1. Laws of conservation
Numerical modelling is considered as the backbone for any computational fluid dy-
namics (CFD) problem. A control volume is considered as an arbitrary domain (Ω)
through which the fluid flows. The specified domain can either be stationary, mov-
ing, rotating or deform during flow. Irrespective of the flow behaviour the problem is
computed by solving the laws of conservation of mass, momentum, and energy. The
differential form of these equations are given below.

3.1.1. Mass conservation
The mass of the system has to remain constant, as mass can neither be created nor
be destroyed. The law of conservation of mass states that the total quantity of mass
flow entering the domain (Ω) per unit time is equal to the total quantity of mass flow
leaving per unit time. The differential form of the above-mentioned statement is,

𝜕𝜌
𝜕𝑡 +

𝜕
𝜕𝑥፣

(𝜌𝑢፣) = 0. (3.1)

where 𝜌 is the density of the fluid, 𝑢 is the velocity of the fluid particle and, 𝑖 is the
index which depends on the two or three-dimensional flow field.

3.1.2. Momentum conservation
The conservation of momentum is discribed by Newton’s second law of motion. It
states that the rate of change of momentum of the fluid within a domain (Ω) is due
to the total flow of the momentum into the domain and the external forces (surface
and body forces) acting on the fluid within the domain. The differential form of the
momentum equation for the compressible fluid is expressed as,

𝜕
𝜕𝑡 (𝜌𝑢።) +

𝜕
𝜕𝑥፣

[𝜌𝑢።𝑢፣ + 𝑝𝛿።፣ − 𝜏፣።] = 0. (3.2)

17
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where 𝛿።፣ is the Kronecker delta function, the viscous stress is defined as, 𝜏።፣ =
2𝜇𝑆∗።፣ and the viscous strain-rate 𝑆∗።፣ is defined as,

𝑆∗።፣ =
1
2[
𝜕𝑢።
𝜕𝑥፣

+
𝜕𝑢፣
𝜕𝑥።

] − 13
𝜕𝑢፤
𝜕𝑥፤

𝛿።፣ .

3.1.3. Energy conservation
The conservation of energy can be defined in simple terms as the energy can neither
be created nor be destroyed but it can be transformed from one form to another. The
energy equation can be expressed as,

𝜕
𝜕𝑡 (𝜌𝑒ኺ) +

𝜕
𝜕𝑥፣

[𝜌𝑢፣𝑒ኺ + 𝑢፣𝑝 + 𝑞፣ − 𝑢።𝜏።፣] = 0. (3.3)

where 𝑒ኺ is the total internal energy and it is expressed as 𝑒ኺ = 𝑒 +
ኻ
ኼ𝑢

ኼ
፤ and the heat

flux (𝑞።) can be written in terms of temperature gradient based on Fouriers Law,

𝑞፣ = −(𝜅
𝜕𝑇
𝜕𝑥፣

). (3.4)

where 𝜅 is the thermal conductivity.

3.1.4. Reynolds-Averaged Navier-Stokes (RANS) equation
In order to obtain an average form of the governing equations, the continuity, mo-
mentum and energy equations are time-averaged (Equation (3.1) - (3.3)). A density
time average decomposition (Favre averaging) is implemented for 𝑢። and 𝑒ኺ, and a
standard time average decomposition (Reynolds averaging) is introduced for 𝜌 and 𝑝,

𝜕𝜌
𝜕𝑡 +

𝜕
𝜕𝑥።

[𝜌𝑢።] = 0, (3.5)

𝜕
𝜕𝑡 (𝜌𝑢።) +

𝜕
𝜕𝑥፣

[𝜌𝑢።𝑢፣ + 𝑝𝛿።፣ + 𝜌𝑢ᖥ። 𝑢ᖥ፣ − 𝜏፣።] = 0, (3.6)

𝜕
𝜕𝑡 (𝜌𝑒ኺ) +

𝜕
𝜕𝑥፣

[𝜌𝑢፣𝑒ኺ + 𝑢፣𝑝 + 𝑢ᖥ፣𝑝 + 𝜌𝑢ᖥ፣𝑒ᖥኺ + 𝑞፣ − 𝑢።𝜏።፣] = 0. (3.7)

The above-mentioned expressions are referred to as Reynolds-Averaged Navier-Stokes
(RANS) equation and are expressed in the differential form. As 𝑆𝑈2 is solving these
equations using a finite volume scheme, these equations are now written in integral
form as given below,

∫
጖ᑚ

𝜕𝑈
𝜕𝑡 𝑑Ω + ∑

፣∈ፍᑚ

(𝐹፜ᑚᑛ + 𝐹፯ᑚᑛ)Δ𝑆።፣ = 𝑄|Ω።|. (3.8)

The vectors of the state variables, 𝑈 = (𝜌, 𝜌𝑢ኻ, 𝜌𝑢ኼ, 𝜌𝑒ኺ)ፓ where 𝜌 is the density, 𝑒ኺ is
the total energy per unit mass and 𝑢 is the velocity in the two-dimensional flow field.
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𝐹፜ and 𝐹፯ are the convective and viscous fluxes respectively, Δ𝑆።፣ is the surface area
of the face related with edge 𝑖𝑗, Ω። is the volume of the control volume and 𝑁። is the
neighbouring nodes to node 𝑖. The convective and the viscous fluxes are defined as,

𝐹፜። = ⎛

⎝

𝜌 𝑢።
𝜌𝑢።𝑢ኻ + 𝑝𝛿።ኻ
𝜌𝑢።𝑢ኼ + 𝑝𝛿።ኼ

𝜌𝑢።𝐻

⎞

⎠

𝐹፯። = ⎛

⎝

−
𝜏።ኻ
𝜏።ኼ

𝑢።𝜏።፣ + 𝜇∗፭፨፭ 𝑐፩ 𝜕።𝑇

⎞

⎠

(3.9)

where 𝑖 = 1, 2 is the index, 𝑝 is the static pressure, 𝐻 is the fluid enthalpy, 𝛿።፣ is the
Kronecker delta function and 𝑇 is the temperature. The heat-flux (𝑞፣) can also be
expressed as,

𝑞፣ = −𝜅
𝜕𝑇
𝜕𝑥፣

≡ −𝑐፩
𝜇∗፭፨፭
𝑃𝑟

𝜕𝑇
𝜕𝑥፣

. (3.10)

In order to enclose the viscosity model in the system of equations, the dynamic
viscosity (𝜇፝፲፧) is assumed to satisfy Sutherland’s law and the turbulent viscosity is
estimated through the turbulence model,

𝜇፭፨፭ = 𝜇፭፮፫፛ + 𝜇፝፲፦ ; 𝜇∗፭፨፭ =
𝜇፝፲፧
𝑃𝑟 + 𝜇፭፮፫፛𝑃𝑟 . (3.11)

where 𝑃𝑟 and 𝑃𝑟፭ are the dynamic and turbulent Prandtl numbers, respectively [8].

3.1.5. Turbulence model
The turbulence model is implemented to close the RANS equations. There are many
methods to carry out the closure model, these are algebraic models with either one or
two equations. One of the most successful turbulence model used in the aerodynamic
performance analysis is the 𝑘−𝜔 model because of it accuracy and robustness. It is a
two-equation model - the first equation solves for the turbulent kinetic energy (𝑘) and
the second equation for the specific turbulent dissipation rate (𝜔). The advantages of
this model are that it performs better under adverse pressure gradient than the 𝑘 − 𝜖
model, the formulation in the viscous sub-layer is simple and has significant numerical
stability. However, 𝑘 − 𝜔 can over-predict the shear stresses of the adverse pressure
gradient, it is very sensitive to boundary conditions at the inlet and has difficulty in
convergence compared to 𝑘 − 𝜖 model.

Shear Stress Transport (SST) model is an improvement made to the 𝑘 −𝜔 model.
It addresses the particular imperfection of the standard 𝑘−𝜔 model. SST can predict
the flow separation and reattachment close to the wall, it can be imposed to the
viscous affected regions without any modification and it has superior performance in
simulating boundary layer with adverse pressure gradients. The detail explanation of
the SST model and it implementation in the RANS equation is provided in the paper
by Menter (1992) [30].

3.2. Numerical method
The partial differential equations (PDEs) are discretized by using a finite volume
method or finite element method in 𝑆𝑈2. It is implemented in an edge-based struc-
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ture on a dual grid with control volumes built employing a median-dual, vertex-based
scheme (Figure 3.1). The median-dual control volumes are created by attaching the
centroids, faces and edge-midpoints of all cells sharing the specific node.

3.2.1. Spatial discretization using FVM
The semi-discretized integral form of a typical PDE is given by,

∫
጖ᑚ

𝜕𝑈
𝜕𝑡 𝑑Ω + ∑

፣∈ፍᑚ

(𝐹፜ᑚᑛ + 𝐹፯ᑚᑛ)Δ𝑆።፣ − 𝑄|Ω።| = ∫጖ᑚ
𝜕𝑈
𝜕𝑡 𝑑Ω + 𝑅።(𝑈) = 0. (3.12)

where 𝑅። represents residual, 𝐹፜ and 𝐹፯ is the numerical approximation of convective
and viscous fluxes respectively.

Figure 3.1: Schematic of the primal mesh and the control volume on a dual
mesh (Taken from Palacios et al., [8]).

The fluxes are calculated at the midpoint of each edge. The fluxes are evaluated by
the numerical solvers which compute the fluxes at all the edges in the primal mesh.
These fluxes are combined to evaluate the residual (𝑅።) at each node.

Integration of convective fluxes
The discretization of convective fluxes can be performed either by the central or up-
wind methods. Several numerical schemes such as JST, Lax-Friedrich, Roe, AUSM,
HLLC, Roe-Turkel are available in 𝑆𝑈2, but this section will focus on the Roe scheme.
The flux-difference-splitting scheme proposed by Roe [31] calculates the convective
fluxes from flow which is reconstructed on both sides of the face from the values at
the neighbouring nodes,

𝐹፜።፣ = 𝐹(𝑈። , 𝑈፣) = [
𝐹፜ + 𝐹፯
2 ]𝑛⃗።,፣ + 𝑃|Λ|𝑃ዅኻ(𝑈። − 𝑈፣), (3.13)

where 𝑛⃗።,፣ is the unit normal pointing outwards related with the face between nodes 𝑖
and 𝑗, 𝑈። is the vector of the conserved variables at the point 𝑖 and 𝐹፜ is the convective
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flux at node 𝑖. P is the matrix of eigenvectors of the flux Jacobian matrix, constructed
using the Roe averaged variables and projected in the 𝑛⃗።፣ direction, and |Λ| is a
diagonal matrix with entries corresponding to the absolute value of the eigenvalues of
the flux Jacobian matrix. Second-order accuracy is achieved through reconstruction
of variables on the cell interfaces by using a Monotone Upstream-centered Schemes
for Conservation Laws (MUSCL) approach [32] with gradient limitation.

Integration of viscous fluxes
The viscous fluxes are evaluated by employing the finite volume method for which flow
quantities and their first derivatives are required at the faces of the control volumes. In
𝑆𝑈2, the quantities of flow variables, the velocity components, the dynamic viscosity
and the heat conduction coefficient are averaged at the cell faces. The weighted
least-squares method is used to calculate the gradients of the flow variables at the
nodes and then they are averaged at cell faces. The truncation errors of the scheme
are mitigated by including the correction equations.

Source term integration
Source terms (𝑄) are approximated by using piece-wise constant reconstruction within
each of the finite volume/finite element cells. The source term plays a basic role in
the formulation of the turbulence models.

3.3. Time integration
3.3.1. Steady simulation
Equation (3.12) must be valid for the whole time interval and 𝑅።(𝑈) can be evaluated
either with explicit methods (time, 𝑡፧) or implicit methods (time, 𝑡፧ዄኻ). 𝑆𝑈2 has both
Euler and Runge-Kutta explicit method and, Euler implicit method. Focusing on the
implicit Euler scheme to discretize the system which is expressed as,

∫
጖ᑚ

𝜕𝑈
𝜕𝑡 𝑑Ω + 𝑅።(𝑈) ≈ |Ω።|

𝑑𝑈።
𝑑𝑡 + 𝑅።(𝑈) = 0. (3.14)

The above equation can be further simplified as,

|Ω፧። |
Δ𝑡፧።

Δ𝑈፧። = −𝑅።(𝑈፧ዄኻ); 𝑤ℎ𝑒𝑟𝑒 Δ𝑈፧። = 𝑈፧ዄኻ። − 𝑈፧። . (3.15)

Yet the residuals at the time 𝑛+1 are unknown, and linearization about 𝑡፧ is required,

𝑅።(𝑈፧ዄኻ) = 𝑅።(𝑈፧) +
𝜕𝑅።(𝑈፧)
𝜕𝑡 Δ𝑡፧። + 𝑂(Δ𝑡ኼ), (3.16)

= 𝑅።(𝑈፧) + ∑
፣∈ፍ(።)

𝜕𝑅።(𝑈፧)
𝜕𝑈፣

Δ𝑈፧፣ + 𝑂(Δ𝑡ኼ). (3.17)

Eventually, the following linear system has to be solved to determine the solution
update (Δ𝑈፧። ),

(|Ω።|Δ𝑡፧።
𝛿።፣ +

𝜕𝑅።(𝑈፧)
𝜕𝑈፣

)Δ𝑈፧፣ = −𝑅።(𝑈፧). (3.18)
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Even though the implicit scheme is unconditionally stable, a certain value of Δ𝑡፧። is
necessary to relax the problem. 𝑆𝑈2 employs the local-time-stepping technique which
permits each cell in the mesh to move forward at a different time step and ultimately
accelerate the convergence to steady-state. The estimation of the time step needs
the value of the eigenvalues and 1፬፭ order approximations to the Jacobian at each
node 𝑖 as per the following equation,

Δ𝑡። = 𝑁ፂፅፋ𝑚𝑖𝑛(
|Ω።|
𝜆፜።
, |Ω።|𝜆፯።

), (3.19)

where 𝑁ፂፅፋ is the Courant-Friedrichs-Lewy (CFL) number, 𝜆፜። and 𝜆፯። are the convective
and viscous spectral radius respectively.

3.3.2. Linear solvers
The 𝑆𝑈2 suite has many linear solvers for computing the Equation (3.18), which in-
cludes Flexible Generalized Minimal Residual (FGMRES) and Biconjugate Gradient Sta-
bilized (BiCGSTAB) methods. Focusing on FGMRES, which is an iterative method for
the system of linear equations. This method approximates the solution by the vectors
in a Krylov subspace with minimal residual where the vector is determined by Arnoldi
iteration. The Lower-Upper Symmetric Gauss-Seidel (LU-SGS) scheme is used as a
pre-conditioner to enhance the efficiency of the FGMRES. The preconditioning is the
implementation of a transformation to the original system that makes acceptable for
the numerical solution.

3.4. Boundary conditions
The accuracy of the flow simulation mainly depends, in spite of an appropriate turbu-
lence model (closure model) for RANS equation and other properties of flow equation,
on the boundary conditions used. By considering many criteria, different boundary
conditions are used at different sections in the computational domain.

3.4.1. Wall boundary conditions
Adiabatic boundary condition
The adiabatic wall temperature refers to zero thermal conductivity of the blade wall
material and this leads to the absence of heat transfer due to conduction. There-
fore, the heat flux across the blade surfaces is considered to be zero which implicitly
indicates there is no heat loss on the blade wall.

No-slip boundary condition
By providing the no-slip condition for the viscous fluid, it is assumed that at a structural
boundary (blade), the fluid will have zero velocity relative to the wall boundary. The
velocity of the fluid at all the fluid–structure boundaries is equal to that of the solid
boundary. The normal velocity components are considered zero and the tangential
velocity components are considered to be equal to wall velocity. Therefore, the fluid
is assumed to be stuck to the blade surface and it moves with the same velocity as
the surface (if the blade is considered moving).
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3.4.2. Periodic boundary condition
The periodic boundary condition is utilized in the domains which have repeated pattern
in the flow distribution. For instance, let us consider a turbine with ’n’ number of
stator blades and ’n+m’ number of rotor blades. By imposing this boundary condition
it is self-understood that the flow phenomenon around one blade row considers the
influence of the remaining blades in the row. This reduces the computational cost and
time.

3.4.3. Non-reflecting boundary condition
In the aerodynamic problems, the flow around an isolated airfoil/wing is simulated
with a far-field boundary condition by assuming a distance of many chords away from
the surface. But in the turbomachines, the far-field boundary is more or less one
chord distance away from the blade surface. If the far-field boundary condition is
implemented in the turbomachinery blades, it reflects several different unwanted in-
formation and which propagates indefinite shock waves. In order to overcome this
difficulty, Giles (1990) [33] proposed the non-reflecting boundary condition. The pur-
pose of this boundary condition is to bring the far-field boundary position closer to the
blades without affecting the flow field in the adjacent blades. This boundary condi-
tion makes the small computational domain more efficient and accurate for calculation
without non-physical boundary reflection.

At the inlet boundary, there will be a certain number of incoming modes and at the
outlet certain amount of outgoing modes. The average changes in the characteristic
of the incoming modes are evaluated to satisfy the user-specified average quanti-
ties. When the non-reflecting boundary condition is implemented at the inlet, the
average characteristics of the incoming modes are calculated by taking the difference
between the computed average quantities and the user-specified quantities to ensure
the solution is matching. Similarly, at the outlet condition, static pressure is specified.
In order to verify the outlet boundary condition, the characteristic of the average
outgoing quantities is evaluated in such a way that the exit static pressure is in ac-
cordance with the user-specified value at convergence. The spatial harmonics of the
incoming characteristics are imposed by the non-reflecting boundary condition (NRBC)
theory based on the amplitudes of the closely similar spatial harmonics of the outgo-
ing characteristics. The characteristic changes at the interface nodes are summed
to the equivalent average values, with which the flow equations are linearized at the
boundary. The averaging at the interface is done for averaging the flow quantities
consistently by using the mixing-out approach which is explained in the following sec-
tion. The updated values are employed to calculate the conservative variable at the
boundary and which is further employed to calculate the convective and the viscous
numerical fluxes in Equation (3.8).

3.4.4. Mixing plane approach
The mixing plane approach is implemented to average the fluid properties between
the stator outlet and rotor inlet (mixing interface). In the mixing plane approach [20],
the fluid domains are considered be to at steady-state even though the turbine is
composed of one row of stationary blades (stator) and another row of rotating blades
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(rotor). The information from one flow field is passed as the boundary condition to
the adjacent zones. The fluxes of mass, momentum and energy are averaged and
conserved across the interface. The mixing plane approach at the interface has great
significance in nullifying the sudden variations in fluid properties like shock waves,
wakes and flow separations that can arise due to the difference in the zone to zone
flow fields.



4
Principle of Adjoint Method

The purpose of using the adjoint method for the shape optimization is explained in
the first chapter. The types of adjoint method, derivation of discrete adjoint method
and its implementation in 𝑆𝑈2 is focused in this chapter.

4.1. Adjoint method
In the gradient-based shape optimization method, the aim is to minimize a required
objective function such as entropy generation, lift or drag, with respect to a set of
design variables. Minimization is done through an iterative process which needs the
computation of the gradients or sensitivity derivatives of the objective function with
respect to the design variables. The calculation of the sensitivity derivatives can be
efficiently and cost-effectively performed by the adjoint method. The adjoint method is
of two types - continuous and discrete method. In the continuous method, the adjoint
equations are obtained from the governing partial differential equations and then
eventually discretized. In the discrete approach, the adjoint equations are directly
acquired from the discretized governing equations.

4.1.1. Continuous Vs Discrete adjoint method
The continuous and discrete methods have different execution technique even though
they are used for the same purpose. Because of this, many users were held up with
a doubt - which method is more suitable for performing the design optimization. The
researchers have addressed this issue by comparing the performance of these two
methods for different scenarios. The following points to be noted:

• The discrete approach provides the exact values for the gradients of the objective
function by comparing with the finite difference method. While the continuous
approach provides a rough estimation of gradients based on approximate dis-
cretization. Therefore, the discrete adjoint method is the more efficient method.
The gradients evaluated by the discrete approach are beneficial for any optimizer
as the gradient information will be consistent with the evaluation of the objective
function.

• The code for the continuous approach is usually straightforward than the discrete
method in terms of computational time, memory storage and implementation.

25
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Nevertheless, the discrete method can be made more efficient by structuring
the code without explicit storage.

• It is very much complex to derive the continuous adjoint method for the turbu-
lence model with additional source term but the discrete adjoint method per-
forms well in this case.

The early works on aerodynamic shape optimization were based on the continuous
methods, while the development of Automatic Differential (AD) tool has provided the
sophistication of employing the discrete adjoint approach. Therefore, the discrete
adjoint-based shape optimization has been implemented to determine the gradient of
the objective function.

4.2. Discrete adjoint solver
Let ’𝐽’ be the objective function and the design variables is chosen based on the
Free Form Deformation (FFD) method, in which control points are assigned as the
geometric design points (𝛼፠). A detail explanation of the FFD method formulation
will be discussed in the next chapter. Based on the movement of the design variables
mapped on to the surface, the mesh deformation happens through linear elasticity
method which generates a new mesh ’𝑋’. Then the flow solver evaluates the flow
field 𝑈 and the objective function 𝐽. (The derivation given below is obtained from
Albring et al, (2015,2016) [25],[24]). The design optimization problem combining a
steady-state constraint could be expressed as,

𝑚𝑖𝑛ᎎᑘ 𝐽(𝑈(𝛼፠), 𝑋(𝛼፠)). (4.1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝑅(𝑈(𝛼፠), 𝑋(𝛼፠)) = 0. (4.2)

Note that 𝑅(𝑈) does not only include the residuals of flow but also the residuals of
the turbulence model. Because of this 𝑈 will also contain variables of the additional
equation.

∫
጖ᑚ

𝜕𝑈
𝜕𝑡 𝑑Ω + ∑

፣∈ፍᑚ

(𝐹፜ᑚᑛ + 𝐹፯ᑚᑛ)Δ𝑆።፣ − 𝑄|Ω።| = ∫጖ᑚ
𝜕𝑈
𝜕𝑡 𝑑Ω + 𝑅።(𝑈) = 0. (4.3)

The compressible RANS equations and the turbulence model are discretized as men-
tion in the previous chapter. The time integration is performed with the implicit Euler
scheme to obtain a linear system to solve for n iterations (refer section 3.3.1),

(𝐷፧።፣ +
𝜕𝑅(𝑈፧)
𝜕𝑈፧ )Δ𝑈፧ = −𝑅(𝑈፧). (4.4)

where 𝑅(𝑈፧) is the residual obtained from the spatial integration. The space integra-
tion is expressed as,

Δ𝑈፧። = 𝑈፧ዄኻ። − 𝑈፧። , (4.5)

𝐷፧።፣ ∶=
|Ω።|
Δ𝑡፧።

𝛿።፣; (
𝜕𝑅(𝑈፧)
𝜕𝑈፧ )

።፣
∶= 𝜕𝑅።(𝑈፧)

𝜕𝑈፧፣
. (4.6)
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where Ω። indicates the domain of the cells 𝑖 and Δ𝑡፧። is the time step which varies in
each cell due to time-stepping technique.

It is important to note that if Δ𝑡፧። → ∞ then 𝐷፧ will become zero. If so Equation
(4.4) would become identical to a step of Newton-Raphson’s method if the non-linear
system 𝑅(𝑈) is considered zero. Nevertheless, as the implicit Euler method is used
for discretization, a damped Newton’s method is obtained. Once the solution is con-
verged, the resulting solution (𝑈∗) depends on the residual 𝑅(𝑈) (right side of Equa-
tion (4.4)). The flow Jacobian (𝜕𝑅/𝜕𝑈) is the approximation of the left hand side of
Equation (4.4). The flow equation Equation (4.4) can be further transformed into a
fixed point equation 𝑈 = 𝐺(𝑈) and the feasible solution is evaluated by the iteration
process.

𝑈፧ዄኻ = 𝐺(𝑈፧) ∶= 𝑈፧ − 𝑃(𝑈፧)𝑅(𝑈፧). (4.7)

Equation (4.7) is the further simplification of the flow equation Equation (4.4) which
is expressed in Newton’s method. ’𝑃’ refers to the preconditioner and it is defined as,

𝑃(𝑈) ∶= [𝐷 + 𝜕𝑅̃(𝑈)𝜕𝑈 ]
ዅኻ

. (4.8)

The tilde over the residual represents that it might be an approximation of the exact
Jacobian. The flow solver iteration ’𝐺’ is assumed to be stationary only at the feasible
points that are,

𝑅(𝑈∗) = 0 ⇔ 𝑈∗ = 𝐺(𝑈∗). (4.9)

By implementing the Banach fixed-point theorem, Equation (4.7) converges only if
||ᎧፆᎧፔ || < 1. In 𝑆𝑈2 many approximations are made to mitigate the complexity of
solving.

• Application of first-order approximation of the implicit terms, even though higher
spatial discretization is implemented for solving the residuals (𝑅(𝑈)).

• Approximation of linear system (4.4) is only obtained.

• The linearized treatment of the boundary condition is neglected.

These approximations facilitate the efficient evaluation of the discrete adjoint solver.
But then these approximations are not applicable if a conventional implementation
of the adjoint method is done as mentioned in the section A. This is because, while
implementing in the traditional way, the resulting linear system contains the exact
flow Jacobian (𝜕𝑅/𝜕𝑈) to be solved for the adjoint variables. Korivi et al. (1992) [34]
suggested a method for solving the adjoint method which was similar to the iterative
flow solver and allows the use of approximate Jacobian. Albring et al. (2015) [24]
followed Korivi’s approach and combined it with the automatic differentiation for the
efficient evaluation of the gradients.

When a design optimization is implemented, it is obvious that the computational mesh
is subjected to deformation. Based on the movement of the design variables mapped
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on to the surface, the mesh deformation happens through linear elasticity method.
Nielsen and Park (2006) [35] proposed a method for deriving discrete formulation
of the sensitivity analysis that eliminates the necessity of explicit linearization of the
mesh movements with respect to geometric design variables (grid sensitivities). The
strategy introduced by them had a great impact on the mitigating the cost in linearizing
the mesh sensitivities. Albring et al. (2015) [24] also combined a similar methodology
to the discrete adjoint solver in 𝑆𝑈2. The mesh deformation routine in 𝑆𝑈2 creates
a new mesh with the new grid points (𝑋). The change in the computational mesh
domain predominantly depends on 𝑋. Because of this, an extra constraint is added to
the original optimization problem, 𝑀(𝛼፠) = 𝑋. Therefore, the optimization problem is
finally reframed as,

𝑚𝑖𝑛ᎎᑘ 𝐽(𝑈(𝛼፠, 𝑋(𝛼፠)). (4.10)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝑈(𝛼፠) = 𝐺(𝑈(𝛼፠), 𝑋(𝛼፠)), (4.11)

𝑋(𝛼፠) = 𝑀(𝛼፠). (4.12)

where 𝐽 represents the objective function to be minimized, 𝐺 is the flow solver itera-
tion and 𝑀 is surface and mesh deformation matrix.

The Lagrangian function (L) related to the problem is,

𝐿(𝛼፠, 𝑈, 𝑋, 𝑈, 𝑋) = 𝐽(𝑈, 𝑋) + [𝐺(𝑈, 𝑋) − 𝑈]ፓ 𝑈 + [𝑀(𝛼፠) − 𝑋]ፓ 𝑋, (4.13)

= 𝑁ᖣ(𝑈, 𝑈, 𝑋) − 𝑈ፓ𝑈 + [𝑀(𝛼፠) − 𝑋]ፓ 𝑋. (4.14)

where 𝑁ᖣ represents the shifted Lagrangian, 𝑈 and 𝑋 indicates flow adjoint vector
variable and mesh adjoint variable vector respectively.

𝑁ᖣ(𝑈, 𝑈, 𝑋) ∶= 𝐽(𝑈, 𝑋) + 𝐺ፓ (𝑈, 𝑋) 𝑈. (4.15)

The Lagrangian function (L) is differentiated with respect to geometric design variable
by employing the chain rule. The adjoint variables 𝑋 and 𝑈 are obtained by eliminating
the terms 𝜕𝑈/𝜕𝛼፠ and 𝜕𝑋/𝜕𝛼፠. The adjoint variables are defined as follows,

𝑈 = 𝜕
𝜕𝑈𝑁

ᖣ(𝑈, 𝑈, 𝑋) = 𝜕
𝜕𝑈𝐽

ፓ(𝑈, 𝑋) + 𝜕
𝜕𝑈𝐺

ፓ(𝑈, 𝑋)𝑈. (4.16)

𝑋 = 𝜕
𝜕𝑈𝑁

ᖣ(𝑈, 𝑈, 𝑋) = 𝜕
𝜕𝑋𝐽

ፓ(𝑈, 𝑋) + 𝜕
𝜕𝑋𝐺

ፓ(𝑈, 𝑋)𝑈. (4.17)

The flow vector adjoint equation (Equation (4.16)), is evaluated using the fixed point
iteration approach,

𝑈
፧ዄኻ

= 𝜕
𝜕𝑈𝑁(𝑈

∗, 𝑈፧, 𝑋). (4.18)

where 𝑈∗ is the numerical solution of the flow equations. After computing the adjoint
solution of 𝑈, sensitivity of the mesh node is computed by solving the Equation (4.17)
and the total derivative of the objective function (𝐽) with respect to the geometric
design variable (𝛼፠) which is also equivalent to the total derivative of the Lagrangian
and it is expressed as,

𝑑𝐽ፓ
𝑑𝛼፠

= 𝑑𝐿ፓ
𝑑𝛼፠

= 𝑑
𝑑𝛼፠

𝑀ፓ(𝛼፠)𝑋. (4.19)
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The derivation of the adjoint method is explained in this section clearly. The sensitivity
equation Equation (4.17) and Equation (4.16) can be effectively computed by using the
automatic differentiation (AD). The significance, types of AD and how it is implemented
in 𝑆𝑈2 will be explained in the following section.

4.3. Principle of Automatic Differentiation (AD)
Automatic differentiation also known as algorithmic differentiation (AD) is a recent
technique to analytically solve the derivative of a function particularized by the com-
puter program. The main objective of using these techniques is to solve complicated
equations (like PDEs) faster and without any errors. AD is considered to perform
more efficiently than the finite difference method and symbolic method. The finite
difference method produces the truncation error while discretization and cancellation.
Whereas the symbolic method is easily prone to error and it is quite difficult to convert
the computer code into a single equation. If both these methods are employed for
higher order derivatives, they are susceptible to increase the complexity and errors.
Also, these conventional methods become less efficient if it is used for the partial dif-
ferential equation with a large number of the inputs. AD works based on the principle
that the computer program executes the numerical problem by decomposing it into a
sequence of elementary arithmetic operators (addition, multiplication, etc.) and ele-
mentary functions (like sin, cos, log, etc.). The derivatives are automatically evaluated
by repeatedly implementing the chain rule. In the case of the gradient-based opti-
mization, AD efficiently evaluates the partial derivative of the function with respect to
many variations. AD is software dependent for solving these problems. In this thesis,
a open source AD tool CoDipack [36] which had been already implemented in the 𝑆𝑈2
[8] is used. Through this open source platform, AD tool could be easily applied for
non-linear equations like new turbulence models, transitions models, fluid models or
objective functions.

The main rule to implement AD is to decompose the differentials by using the chain
rule. A simple expression for better understanding is given as follows,

𝑦 = 𝑓(𝑔(ℎ(𝑥))) = 𝑓(𝑔(ℎ(𝑧ኺ))) = 𝑓(𝑔(𝑧ኻ)) = 𝑓(𝑧ኼ). (4.20)

Equation (4.20) can be further rewritten by using chain rule as follows,

𝜕𝑦
𝜕𝑥 =

𝜕𝑦
𝜕𝑧ኼ

𝜕𝑧ኼ
𝜕𝑧ኻ

𝜕𝑧ኻ
𝜕𝑥 . (4.21)

AD can be implemented by two methods namely forward/tangent and backward/re-
verse automatic differentiation. The forward mode first computes the Ꭷ፳Ꮃ

Ꭷ፱ , then
Ꭷ፳Ꮄ
Ꭷ፳Ꮃ

and lastly Ꭷ፲
Ꭷ፳Ꮄ
. As name indicates, the reserve mode computes the differential equa-

tion in a reverse order.

4.3.1. Forward Vs reverse automatic differentiation
The main difference between these methods is the propagating direction to perform
differentiation. Thus, in this section, how a program is decomposed into an elementary
sequence and initialization of derivatives based on chain rule is explained.
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Forward Mode
It computes the gradient through the forward propagation. In order to understand
the forward mode automatic differentiation, a simple example is considered.

𝑧 = 𝑥𝑦 + 𝑠𝑖𝑛(𝑥). (4.22)

In the above mentioned equation, 𝑥 and 𝑦 are the variables to be defined by the user.
The equation can be further decomposed into,

𝑎 = 𝑥𝑦, (4.23)
𝑏 = 𝑠𝑖𝑛(𝑥), (4.24)
𝑧 = 𝑎 + 𝑏. (4.25)

Let us assume a variable ᖣ𝑡ᖣ as yet-to-be given variable. The chain rule is expressed
as,

𝜕𝑤
𝜕𝑡 =∑

𝜕𝑤
𝜕𝑢።

𝜕𝑢።
𝜕𝑡 , (4.26)

= 𝜕𝑤
𝜕𝑢ኻ

𝜕𝑢ኻ
𝜕𝑡 +

𝜕𝑤
𝜕𝑢ኼ

𝜕𝑢ኼ
𝜕𝑡 + ... (4.27)

where 𝑤 is the output variable and 𝑢 represents the input variable that depends on
the output variable 𝑤. The decomposed equations are differentiated with respect to
yet-to-be given variable ’𝑡’ using the chain rule.

𝜕𝑥
𝜕𝑡 = ?, (4.28)

𝜕𝑦
𝜕𝑡 = ?, (4.29)

𝜕𝑎
𝜕𝑡 =

𝜕𝑥
𝜕𝑡 𝑦 +

𝜕𝑦
𝜕𝑡 𝑥, (4.30)

𝜕𝑏
𝜕𝑡 = 𝑐𝑜𝑠(𝑥)

𝜕𝑥
𝜕𝑡 , (4.31)

𝜕𝑧
𝜕𝑡 =

𝜕𝑎
𝜕𝑡 +

𝜕𝑏
𝜕𝑡 . (4.32)

The question marks for Equations (4.28) and (4.29) are supplied because the values
are unknown. By considering 𝑡 = 𝑥 the entire algorithm will solve for 𝜕𝑧/𝜕𝑥.

𝜕𝑥
𝜕𝑥 = 1, (4.33)

𝜕𝑦
𝜕𝑥 = 0, (4.34)

𝜕𝑎
𝜕𝑥 = 𝑦, (4.35)

𝜕𝑏
𝜕𝑡 = 𝑐𝑜𝑠(𝑥), (4.36)

𝜕𝑧
𝜕𝑥 =

𝜕𝑎
𝜕𝑥 +

𝜕𝑏
𝜕𝑥 . (4.37)
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Similarly, 𝑡 = 𝑦 is considered while solving for 𝜕𝑧/𝜕𝑦. Equations (4.28) and (4.29) are
referred to as the seed values because they are required to initialize the algorithm.
The simplicity of forward method has a disadvantage of running the entire algorithm
twice with different initial values. The forward mode performs more efficiently if it
is implemented for function 𝑓 ∶ ℝ፧ → ℝ፦ with 𝑚 >> 𝑛 where n is the number of
input variables and m is number of output variable. Therefore, the cost of the forward
mode depends linearly on the order of input variable 𝑂(𝑛).

Reverse Mode
In order to avoid running the entire the algorithm twice, it is ideal to frame a sequence
of the algorithm to compute the output derivative at one run. Let us recall the chain
rule employed in the forward mode, where two substitutions were required ( 𝑡 = 𝑥
and 𝑡 = 𝑦 ) to calculate the gradients. Since the chain rule is symmetric, let’s write
the chain rule by reversing the derivatives upside down. By doing so, the role of the
input and output is inverted.

𝜕𝑠
𝜕𝑢 =∑

𝜕𝑤
𝜕𝑢።

𝜕𝑢።
𝜕𝑠 , (4.38)

= 𝜕𝑤
𝜕𝑢ኻ

𝜕𝑢ኻ
𝜕𝑠 +

𝜕𝑤
𝜕𝑢ኼ

𝜕𝑢ኼ
𝜕𝑠 + ... (4.39)

The same naming convention is used where 𝑢 and 𝑤 are the input and output vari-
ables. The yet-to-be given variable 𝑡 is replaced with 𝑠 in this section to avoid confu-
sion. The chain rule should be implemented repeatedly to the input variables (Equa-
tions (4.23) - (4.25) ) in the backward direction to frame a program in which by
substituting some value for 𝑠, the derivative has to be determined in one run.

Figure 4.1: Variable graph (refer to Equation (4.23) - (4.25))

The differentiation has to be done by questioning which output variable will affect the
given input variable. This is the basis for the reverse mode where the chain rule is
applied in the backward direction. From the Figure 4.1, it is easy to say that variable
𝑎 depends on 𝑥 and 𝑦 or directly affects 𝑧, 𝑏 depends only on 𝑥 or directly affects
𝑧, 𝑧 depends on 𝑎 and 𝑏, variable 𝑥 can directly affect both 𝑎 and 𝑏 and, variable 𝑦
can directly affect 𝑎. By implementing this verbal strategy to the Equations (4.23) -
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(4.25), the following expressions are obtained.

𝜕𝑠
𝜕𝑧 = ?, (4.40)

𝜕𝑠
𝜕𝑏 =

𝜕𝑠
𝜕𝑧 , (4.41)

𝜕𝑠
𝜕𝑎 =

𝜕𝑠
𝜕𝑧 , (4.42)

𝜕𝑠
𝜕𝑦 = 𝑥

𝜕𝑠
𝜕𝑎 , (4.43)

𝜕𝑠
𝜕𝑥 = 𝑦

𝜕𝑠
𝜕𝑎 + 𝑐𝑜𝑠(𝑥)

𝜕𝑠
𝜕𝑏 , (4.44)

Just to give an idea on how the above equations are obtained. Consider the Equation
(4.44), where the variable 𝑥 is affected by both 𝑎 and 𝑏, the chain rule is expressed
as 𝜕𝑠/𝜕𝑥 = (𝜕𝑠/𝜕𝑎)(𝜕𝑎/𝜕𝑥) + (𝜕𝑠/𝜕𝑏)(𝜕𝑏/𝜕𝑥). If 𝑠 = 𝑧 is substituted in the above
equations, the gradients can be obtained from the last two equations. This is equiva-
lent to initializing the entire program by assuming (𝜕𝑠/𝜕𝑧) = 1. Thus, by performing
a repeated differentiation for input variables rather than the output variable, we can
obtain gradients in one run. If the gradient of different output variables has to be
calculated, then the program has to be re-run with different seed values. The cost of
the reverse mode depends on the order of the number of output variables.

Implementation in 𝑆𝑈2
𝑆𝑈2 is an open source integrated design tool for calculating the versatile problems
governed by the PDEs on the unstructured meshes written in C++. It is based on
object-oriented structure, in which the discrete adjoint solver can be implemented
using the Operator overloading approach along with the Expression Templates. This
approach provides flexible implementation and requires only the input or output vari-
ables of the solver. The data structure and optimization methods established through
the discrete adjoint solver is smoothly integrated with the existing framework of the
𝑆𝑈2. This implementation can generate the gradients automatically without any man-
ual modification during one evaluation of the flow solver iteration 𝐺 (refer Equation
(4.7)). The extended iteration can be expressed as,

(𝑉𝑊) = (
𝐺(𝑈, 𝑋)
𝐽(𝑈, 𝑋)) (4.45)

𝑉 and 𝑊 are the seed values. The above equation indicates one iteration of the flow
solver and the immediate execution of the objective function at an arbitrary flow field
𝑈. By applying the reverse AD to Equation (4.45),

(𝑈𝑋) = (
Ꭷፆ(ፔ, ፗ)ᑋ

Ꭷፔ
Ꭷፉ(ፔ, ፗ)ᑋ

Ꭷፔ
Ꭷፆ(ፔ, ፗ)ᑋ

Ꭷፗ
Ꭷፉ(ፔ, ፗ)ᑋ

Ꭷፗ

)(𝑉𝑊) (4.46)

By solving the above equation, the adjoint variables 𝑈 and 𝑋 can be determined, pro-
vided an arbitrary choice is made for 𝑉 and𝑊. As the discrete adjoint implementation
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in 𝑆𝑈2 is based on Albring et al., [24] work, similar values for the assumption is chosen
in this section. Hence, 𝑊 is assumed as 𝑊 ≡ 1.

(𝑈𝑋) = (
Ꭷፆ(ፔ, ፗ)ᑋ

Ꭷፔ
Ꭷፉ(ፔ, ፗ)ᑋ

Ꭷፔ
Ꭷፆ(ፔ, ፗ)ᑋ

Ꭷፗ
Ꭷፉ(ፔ, ፗ)ᑋ

Ꭷፗ

)(𝑉1) = (
Ꭷፆ(ፔ, ፗ)ᑋ

Ꭷፔ 𝑉 Ꭷፉ(ፔ, ፗ)ᑋ
Ꭷፔ

Ꭷፆ(ፔ, ፗ)ᑋ
Ꭷፗ 𝑉 Ꭷፉ(ፔ, ፗ)ᑋ

Ꭷፗ

) (4.47)

In Equation (4.47), matrix on the right hand represents the shifted Lagrangian (N)
(refer Equation (4.15)) determined at (𝑈, 𝑉, 𝑋). The information can be easily stored
by performing iteration of 𝐺(𝑈∗, 𝑋) starting from 𝑛 = 0 using the Expression template
approach. The succeeding iteration is initialized with some assumption (𝑈ኺ) and then
the stored information can be evaluated with the 𝑉 set to already existing adjoint
solution 𝑈፧ and𝑊 ≡ 1 in the Equation (4.46) to evaluate Ꭷፍ

Ꭷፔ (𝑈
∗, 𝑈፧, 𝑋). The iteration

is proceeded until ||𝑈፧|| is sufficiently small. The mesh sensitivity equation (Equation
(4.19)) is solved for the mesh deformation routine by applying the reverse automatic
differentiation.





5
Shape optimization methodology

Up to now the framework of the flow and discrete adjoint solvers were explained in
detail. In this chapter, the approach for the geometric and mesh deformation will be
discussed. A detailed explanation of the fully automated shape optimization algorithm
in 𝑆𝑈2 is presented.

5.1. Surface parameterization
The variation of the objective function (𝐽) with respect to the shape deformations
in the direction normal to the surface is computed by applying the discrete adjoint
method. The choice of design variable has to be made in such a way that it will
not affect the computation time and other complexities. It is even possible to select
each of the surface nodes in the computational mesh as a design variable, but this
methodology cannot be implemented for three-dimensional structures because the fi-
nal count of design variable will be hundreds of thousands. A more practical approach
is to determine the surface sensitivities at each of the mesh nodes on the surface to
be designed. This information is further projected on to the design space composed
of design variables. The surface sensitivities are evaluated in a repeated fashion by
following the above-mentioned procedure in order to march the design towards an
optimum shape through gradient-based optimization method.

The parameterization of the geometry is done by the Free-Form Deformation (FFD)
approach [2]. This technique has origins in the computer graphics industry. The FFD
box encapsulates the body (blade) that has to be redesigned and it is parameterized
as a Bezier solid. The FFD box bounding around the surface will create a mapping
between the mesh nodes and the control points (the intersection of the lines on the
outer box). The control points in the box control the shape of the geometry by per-
forming a smooth deformation. The variation in the surface due to the perturbation
of the FFD control points propagate through the mesh. Rather than regenerating the
entire mesh for each design variation, automatic mesh re-generator is in-built in the
mesh deformation routine. Because of automatic mesh generation, the initial infor-
mation of the geometry is preserved and it is an efficient and cost-effective method.
Therefore, the deformation of the mesh is propagated through the linear elasticity
method [22]. The group of control points which are defined on the surface of the
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box, depends on the Bernstein polynomials. The box is parameterized by following
the expression below,

𝑋(𝑢, 𝑣) =
፥

∑
።዆ኺ

፦

∑
፣዆ኺ
𝑃።,፣𝐵፥። (𝑢)𝐵፦፣ (𝑣) (5.1)

where l, m are the degree of the FFD function, 𝑢, 𝑣 are the parametric coordinates,
𝑃።,፣ are the coordinates of the control point (𝑖, 𝑗) and 𝐵፥። (𝑢)𝐵፦፣ (𝑣) are the Bernstein
polynomials. The Cartesian coordinates of the points on the surface of the object
are then changed to parametric coordinates within the Bezier box. The FFD boxes
provide more flexibility in deforming the shape and in order to avoid unfeasible shape,
the control points mapped on the computational domain can be locally controlled by
immobilizing.

5.2. Mesh deformation
The potential to deform the mesh simultaneously with the change in the geometry is
a prime tool in CFD. It is very essential in a shape optimization procedure. After each
design process the shape of the geometry will be deformed and the volume of the
mesh should also be altered accordingly to avoid negative volumes. The simplest way
to deal with moving boundaries is to completely regenerate a new mesh after each
design iteration. This method is very robust because the new mesh does not have to
take into account the properties of the previous mesh and therefore can handle very
large deformations. However, regeneration also has some serious drawbacks like loss
of physical conservation laws, because the physical quantities have to be interpolated
from the old to the new mesh in some way. Moreover, re-meshing is computationally
burdensome for complex geometries. Thus, an automatic mesh generation technique
is required to project the solution from the previous mesh to the new mesh. 𝑆𝑈2 uses
the linear elasticity method for automatic mesh regeneration and update. The linear
elasticity method is also referred to as the solid body elasticity approach assumes
the volume mesh to act as a solid body with linear elasticity [22]. The equation of
linear elasticity governs small displacements, 𝑉 = (𝑢ኻ, 𝑢ኼ, 𝑢ኽ)ፓ, of an elastic solid body
subject to body force and surface friction.

𝜕ኼ𝑉
𝜕𝑡ኼ − Δ𝜎 = 𝑓 𝑖𝑛 Ω, 𝑡 > 0, (5.2)

where 𝑓 represents the body force and 𝜎 is the stress tensor given in terms of the
strain tensor (𝜖) and it is written as follows based on the constitutive relation,

𝜎 = 𝜆𝑇𝑟(𝜖)𝐼 + 2𝜇𝜖, (5.3)

where Tr is the trace, 𝜆 and 𝜇 are the Lame constants, 𝐸 is the Young’s modulus,
and 𝑣 is Poisson’s ratio. 𝜆 and 𝜇 are expressed in terms of Young’s modulus 𝐸 and
Poisson’s ratio 𝑣 as,

𝜆 = 𝑣𝐸
(1 + 𝑣)(1 − 2𝑣), 𝜇 =

𝐸
2(1 + 𝑣), 𝜖 =

1
2(Δ𝑢 + Δ𝑢

ፓ). (5.4)
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Young’s modulus greater than zero (𝐸 > 0) indicates the stiffness of the material,
where a large value of 𝐸 indicates rigidity. Poisson’s ratio (𝑣), is a measure of how
much the material shrinks in the lateral direction as it extends in the axial direction.
The advantage of this method is that it produces high-quality grids.

5.3. Flow solver
The governing equations (steady-state RANS equations) are spatially discretized using
the finite volume method. The implicit Euler time integration scheme is implemented
to accelerate the local time-stepping and to obtain convergence to a steady-state
solution. The convective fluxes are computed by using Roe’s scheme with second
order accuracy and the oscillation near shocks are controlled by using van-Albada
type slope limiter. The viscous fluxes are evaluated by the weighted least square
method. Shear Stress Turbulence (SST) model is implemented for the turbulence
closure problem. Boundary conditions are implemented weakly by using the ghost cell
concept. The adiabatic and the no-slip boundary conditions are imposed for the blade
walls. Non reflecting boundary conditions are implemented for the subsonic inlet and
outlet boundary conditions. At the inlet of the domain, the stagnation temperature and
pressure is specified along with static pressure at the outlet. Further to mitigate the
computational cost, the periodic boundary conditions are applied to the circumferential
lateral walls from the suction and pressure side of the blade. The solver provides the
fully converged flow solution which is directly inherited by the adjoint solver.

5.4. Adjoint solver
The discrete adjoint method in the 𝑆𝑈2 constructs the required Jacobian matrix by mir-
roring the solution of the direct flow problem. The flow residual is evaluated by initially
looping over each of the edges to identify the contribution from up-wind discretization
and then looping over the boundary nodes to add the appropriate boundary condi-
tion contributions. Hence, in the discrete adjoint, the contributions to the Jacobian
matrix from the fluxes across edges are first estimated, followed by the contributions
from the boundary nodes. The derivatives of the fluxes, which is employed in both
edges and boundary conditions, are calculated by applying Automatic Differentiation.
The adjoint solver solves the PDEs to determine the surface sensitivities which are
the measure of change in objective function at each node on the surface due to the
variation of the design variable in local normal direction. The surface sensitivity value
is evaluated at each node of the numerical grid with negligible computational cost in
𝑆𝑈2.

5.5. Objective function and constraints
The main objective of this entire study is to increase the efficiency of the turbine at
mid-span by reducing the losses. The factors that affect the efficiency are discussed
already in chapter 2. Therefore, the entropy generation is considered as the objective
function. In addition to this, constraints are assigned to the optimization routine to
meet the design requirements and to avoid unfeasible designs. Therefore, the design
loop is structured to find the optimal shape with minimized objective function by sat-
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isfying the constraint. The constraint is imposed on the mass flow rate at the inlet and
outlet of the domain. An inequality constraint for mass flow rate is imposed by as-
suming a higher value than the reference mass flow rate at the inlet and outlet section.

The optimization problem is formulated as,

Minimize

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ≡ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑆) ≡ 𝑆፨፮፭ − 𝑆።፧𝑆።፧

Subject to

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡ኻ ≡ 𝑚̇።፧, ፞፬፭።፦ፚ፭፞፝ ፚ፭ ፞ፚ፜፡ ፝፞፬።፠፧ ፬፭፞፩ < 𝑚̇።፧, ፚ፬፬፮፦፞፝
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡ኼ ≡ 𝑚̇፨፮፭, ፞፬፭።፦ፚ፭፞፝ ፚ፭ ፞ፚ፜፡ ፝፞፬።፠፧ ፬፭፞፩ < 𝑚̇፨፮፭, ፚ፬፬፮፦፞፝

The constraints 1 and 2 are implemented at the inlet and outlet of the domain respec-
tively. With these constraints, the optimizer has the freedom to alter the shape by
reducing the entropy generation and maintain the mass flow rate within the tolerance
limit of +/- 0.5%.

5.6. Optimization framework
The procedure that is used to perform design optimization in 𝑆𝑈2 is showed in the form
of flow chart in Figure 5.1. In order to understand the design optimization procedure,
the tools required to perform this design loop is explained. The design methodology
discussed below is based on the progression of the flow chart.

• To begin with optimization procedure, two input data are required - 1. The
meshed geometry for which the aerodynamic shape optimization has to be im-
plemented. 2. The configuration file with boundary conditions, objective func-
tion, constraints and design variables.

• The design process is automated by an optimization algorithm. In 𝑆𝑈2, Sequen-
tial Least SQuare programming (SLSQP) algorithm is used. It is a minimization
routine of the python code (scipy.optimize). At the beginning of each design
iteration, the optimizer receives the flow variables and gradients of the objec-
tive function with respect to the design variables from the flow solver and the
adjoint solver respectively. Based on the sensitivity analysis, the optimal shape
search direction is determined by the optimizer and it computes a new set of
design variables.

• The new design variables are given as the input for the shape parameterization
module and it generates the displacements. The deformation of the geometry
is performed by the Free-Form Deformation (FFD) approach. The FFD boxes
encapsulate the geometry and create a mapping between the FFD control points
and mesh surface nodes. These control points are the design variables which
propagates the deformation smoothly as it varies.
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Figure 5.1: Shape optimization methodology. ( ᎎᑘ - vector of design
variables; ፉ - Objective functions /constraints )

• As the shape of the surface changes, the volume of the mesh should also be
deformed simultaneously to avoid the negative volumes and prevent the opti-
mization process from failing. 𝑆𝑈2 treats the mesh as an elastic solid and assigns
the non-uniform stiffnesses to all the elements in the mesh. The linear elasticity
equations are solved on the mesh to calculate the nodal displacements by using
the movement of the boundaries as input.

• With this updated geometry and mesh, flow simulation is done to analyze the
performance . The analysis is done by using the flow solver by the finite volume
method to evaluate the objective/constraint function(s).

• The sensitivity analysis is done by using the adjoint solver. The gradients of the
objective function with respect to the new set of design variables (FFD control
points) are determined.

The design optimization procedure is summarized as follows. Once the python
script is initiated, the gradient-based optimizer will coordinate the shape optimization
cycle consisting of the flow solver, adjoint solver and mesh deformation tools available
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in 𝑆𝑈2 platform. The optimizer continues to change the shape of the surface, deform
the mesh, compute the performance and the gradients until it converges to an optimal
value of the objective function (𝐽). The algorithm is structured to run until it reaches
the optimization criteria or a maximum number of iterations.

5.7. Alternative stage optimization methodology.
The main objective of this thesis is to perform shape optimization for the stage. As
the stage optimization feature is still not available in 𝑆𝑈2, an alternative method is
used.

Figure 5.2: Alternative stage optimization methodology.

The optimization methodology for the stator is performed as mentioned in Figure 5.1.
The outlet conditions (total temperature and total pressure) of the optimized stator
is used as the inlet operating conditions for the baseline rotor. The mixing-plane
approach is implemented for both the stator and the rotor. In this way, the two
individual optimized shapes are expected to result in the optimal shape as a stage.



6
Results and Discussions

The results of the baseline design and the optimized design will be presented in this
chapter. Firstly, the computational domain considered for optimization will be pre-
sented, followed by the simulation results of the baseline design. Furthermore, the
results of the optimized case will be discussed by comparing with the baseline design.

6.1. Computational domain

The stator and the rotor geometry of the first stage of the Siemens SGT5-2000E are
analyzed to understand the flow physics around the blades. The main objective is to
reduce the entropy generation by optimizing the shape of the blades and eventually
increasing the stage efficiency.

6.1.1. Two-dimensional computational domain

A mid-plane analysis is done for the stator and the rotor in this assignment. The
computational domain for the blades are constructed separately. The blade coordinate
points are extracted at mid-span from the 3D geometry and connected through spline
to form a surface. The inlet of the stator and the axial distance between stator and
rotor are the exact measure of the given 3D geometry. The periodic boundaries (Wall 1
and Wall 2 in Figure 6.2) for the blades are constructed from the midpoint of the blade,
by translating one half of the pitch distance up and down. Then periodic boundaries
are connected smoothly with the inlet and outlet of the blade.

41
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Figure 6.1: Geometry of the stator (left) and rotor (right).

6.1.2. Mesh description
The computational flow domain is divided into two regions: (i) structured quadrilateral
O-grid mesh body-fitted around the blade surface, (ii) unstructured triangular mesh in
the far field. The O-grid mesh encloses the surface close to the blade thereby forming
a structured boundary layer mesh. The structured mesh is then extended into un-
structured mesh till the far-field boundaries. The semi-unstructured mesh generally
allows more flexibility than the standard mesh (only quadrilateral or triangular mesh)
in terms of skewness minimization and convergence rate [37].

The boundary layer regime is discretized in the direction normal to the blade, in
such a way that the first wall distance from the blade is estimated based on the 𝑦ዄ. The
𝑦ዄ value is maintained less than unity to capture the wake as accurately as possible
and it implicitly predicts the shock and entropy generation regions. The structured
mesh is mapped on to the unstructured mesh for smooth propagation of the flow
information. Mesh independence test is carried out to check the accuracy of the CFD
solution. The simulation is performed for three different number of grid elements with
the same boundary conditions. The variation of the total-to-total efficiency is checked
for different meshes and the simulation is conducted in 12 cores.

Table 6.1: Mesh independence test.

Catogery Number of elements in
Computational time
in 12 cores (s) 𝜂፭፭ (%)

Stator Rotor Total
Coarse 9964 9128 19092 231.534 93.01
Medium 18366 17630 35996 527.16 93.18
Fine 22688 22642 45330 1132.59 93.21

The above table depicts the characteristics of three different meshes and it is evident
that the computational time depends on the number of grids. Therefore, the mesh
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with medium number of grids is considered for further simulation as the variation in
the number of elements does not have a greater impact on the total-to-total efficiency.

Figure 6.2: Mesh of the stator and rotor.

Note the mesh distribution at the leading and trailing of blades are shown in the
Figure B.1 and Figure B.2 respectively.

6.1.3. Quality of the mesh
A high quality mesh is of higher-priority to trust the CFD results obtained. The kind of
mesh generated is prone to higher skewness than the aspect ratio. Hence, the quality
of the mesh is examined in GAMBIT and it is estimated based on the ’EquiAngle Skew
(𝑄ፄፀፒ)’ function. The EquiAngle Skew function is defined as,

𝑄ፄፀፒ = 𝑚𝑎𝑥[
𝜃፦ፚ፱ − 𝜃፞፪
180 − 𝜃፞፪

,
𝜃፞፪ − 𝜃፦።፧

𝜃፞፪
] (6.1)

where 𝜃፦ፚ፱ and 𝜃፦።፧ are the minimum and the maximum angles between the edge
of the elements and 𝜃፞፪ represents the characteristic angle corresponding to an equi-
lateral cell of similar form. As the mesh grids consist of quadrilateral and triangular
shapes, the characteristic angle (𝜃፞፪) also varies. For the triangular grid, 𝜃፞፪ value
considered in GAMBIT is 60 degrees and for the quadrilateral grid, 𝜃፞፪ value is 90 de-
grees. EquiAngle Skew values ranges between 0 and 1. If 𝑄ፄፀፒ =0 then it indicates
that elements in the mesh are equilateral and 𝑄ፄፀፒ =1 indicates completely degen-
erated mesh. The relationship between the EquiAngle Skew and the mesh quality is
shown in the table below,

Table 6.2: Equiangle skewness Vs mesh quality.

Qፄፀፒ 0 0-0.25 0.25 - 0.5 0.5-0.75 0.75-0.9 0.9-1 1
Quality Equilateral Excellent Good Fair Poor Very poor Degenrate

In the stator, 95.87% of the elements have the EquiAngle Skew value in the range of
0-0.1. Similarly, in the rotor, 96.02% of the elements have the EquiAngle Skew value
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in the range of 0-0.1. Based on the above mentioned Table 6.2, the stator and the
rotor mesh are of high quality [38]. Ideally, in a mesh, the maximum change in grid
spacing should not be greater than 20%. The change in grid size should be smooth
to avoid unreliability in the simulation results. In the stator and rotor mesh, around
88.40% and 89.25% of cells are having grid spacing less than 20%.

6.2. Modelling assumptions
In this section, the assumptions made for building the model are explained. The entire
simulation is performed for the first stage of the turbine section, of which the analysis
is focused only at the 50% span of the turbine blades. Further assumptions are listed
below:

• Fluid flow is modeled by using the steady-state RANS equation which implicitly
states that the fluid is viscous and turbulent.

• Turbulence is modeled based on the Shear Stress Turbulence (SST) model.

• The entire simulation is performed on a two-dimensional domain.

• The working fluid in the turbine is considered as the ideal gas. The explanation
for concluding with the ideal gas as the working medium is discussed in the
following section.

• The stator and the rotor blades are considered to have no heat loss (adiabatic).

6.3. Equation of state
The working fluid in the turbine enters at high temperature and pressure and it consists
of different gases. The mass fraction of each of the gases is given in the following
table.

Table 6.3: Gas composition.

Gas Mixture Mass fraction (%)
Argon 0.02
Carbon dioxide 0.085
Water 0.075
Nitrogen 0.715
Oxygen 0.105

From the mass fraction of given gases (Argon, carbon-di-oxide, water, nitrogen and
oxygen), the number of moles of each gas is calculated as follows,

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑔𝑎𝑠, 𝑛። =
𝑚።
𝑀።

(6.2)

where 𝑚። is mass (kg) and 𝑀። is the molecular mass (kg/kmol) of the 𝑖፭፡ gas compo-
nent.
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In order to estimate the total molecular mass (𝑀፭), the mole fraction (x) is determined.
The mole fraction is a ratio of the number of moles of 𝑖፭፡ gas and the total number of
the moles. The total molecular mass is calculated by summation of the mole fraction
and molecular mass of each component. From this, the gas constant of the mixture
(R) is estimated by using the following formula,

𝑅ᖣ = 𝑅፮
𝑀፭

= 294.34 𝐽/𝑘𝑔.𝐾 (6.3)

where 𝑅፮ is the Universal gas constant and 𝑀፭ is the total molecular mass.

From the specified gas composition, the specific heat capacity (𝑐፩) of the mixture is
estimated based on the NASA format [39]. As 𝑐፩ is a function of temperature, the
inlet temperature of the stage is considered as the temperature limit.

𝑐፩ = 𝑅ᖣ (𝑎ኻ + 𝑎ኼ𝑇 + 𝑎ኽ𝑇ኼ + 𝑎ኾ𝑇ኽ + 𝑎኿𝑇ኾ) =
𝛾 𝑅ᖣ
𝛾 − 1 (6.4)

From the above mentioned equation, 𝑐፩ for each component is determined and summed
to estimate the specific heat capacity of the mixture (𝑐፩ = 1301.932 J/kg.K). The spe-
cific heat ratio (𝛾) is calculated to be 1.293 by using the formula in Equation 6.4. The
critical temperature of the mixture (𝑇፜፭) is calculated by adding the product of mole
fraction (𝑥።) and critical temperature (𝑇፜) of each component. Similar procedure is
also followed for estimating the critical pressure (𝑝፜፭). The reduced temperature (𝑇፫)
and pressure (𝑝፫) are calculated as specified in the equation to identify the fluid model
from the compressibility chart.

𝑇፫ =
𝑇
𝑇፜፭

= 6.65; 𝑝፫ =
𝑝
𝑝፜፭

= 0.22 (6.5)

where 𝑇 and 𝑝 are the inlet temperature and pressure respectively.
If the value of compressibility factor (Z) is equal to 1, the fluid is considered to be-
have like an ideal gas. Based on the estimated values of 𝑇፜ and 𝑝፜, looking into the
compressiblity chart (Figure C.1), it is clear that compressibility factor (Z) is greater
than 1. This brings to the assumption that given gas mixture in the turbine behaves
like an ideal gas.

Table 6.4: Equation of state parameters for the ideal gas.

Parameters Values Units
𝑅ᖣ 294.34 𝐽/𝑘𝑔 𝐾
𝛾 1.293 −
𝑇፜፭ 200.1774 𝐾
𝑝፜፭ 5.984978 𝑀𝑃𝑎

6.4. CFD result of baseline stage
The main specification of the axial turbine is : The flow solver in 𝑆𝑈2 is used to solve
the steady-state Reynolds Averaged Navier-Stokes equations. The flow simulation for
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Table 6.5: Inlet and outlet boundary conditions.

Parameters Values Units
Inlet total pressure, 𝑝፭፨፭,።፧ 1.1 MPa
Inlet total temperature, 𝑇፭፨፭,።፧ 1333.15 K
Outlet static pressure, 𝑝፬,፨፮፭ 0.54 MPa
Working fluid Ideal gas -

the stage is marched in time using an implicit Euler scheme with the CFL number
equal to 10. The simulation is carried out until it satisfies the residual convergence
criteria of fifth order of magnitude (10ዅ኿). The results from the stage simulation are
discussed in the following passage.

The pressure distribution in the stage (Figure 6.3) shows that the high pressure
fluid enters the stator in the axial direction along the positive x-axis at zero degree
angle of incidence. The streamline of the fluid divides at the stagnation point which
corresponds to the leading edge of the blade with part of the fluid moving along the
suction side and remaining along the pressure side. The flow accelerates along the
suction side of the stator and it progresses through the rotor. A low pressure region
is encountered because of the high velocity gradient on the suction side in both the
blades.

Figure 6.3: Static pressure distribution in the stage.
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Figure 6.4: Temperature distribution in the stage.

Figure 6.5: Mach number distribution in the stage.

The temperature distribution in the stage is shown in the Figure 6.4. In the stator,
there is a sudden increase in the temperature on the suction side which implicitly
represents strong shock wave formation. Figure 6.5 shows the absolute Mach number
contours of the stator and rotor. The flow is subsonic at the inlet of the stator and at
the outlet of the rotor. The absolute Mach number on the suction surface of the stator
goes upto a maximum of 1.276 whereas in the rotor it reaches up to 1.704. As the
rotor is the moving body, the relative Mach number distribution is shown in the Figure
6.24. The velocity distribution around blades is shown in the Figure 6.6. The absolute
velocity is calculated for the stationary stator and the relative velocity is estimated for
the rotor to account for the translation motion.
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Figure 6.6: Velocity distribution in the stage

Figure 6.6 depicts that flow in the region of the leading edge is subjected to stagnation.
The laminar boundary layer, proceeding from the point of stagnation over the leading
edge, undergoes separation just downstream of the point of minimum pressure. A
small distance downstream of the separation point where the transition to turbulent
flow occurs in the free stream layer. The flow then reattaches to the blade surface by
forming a turbulent boundary layer that extends from the reattachment point to the
trailing edge. Depending on the thickness of boundary-layer, velocity increases with
the change in all flow properties and generates the entropy. Whenever the fluid is
subjected to the high rate of shear strain, entropy is generated because of the viscous
shear. A relatively high rate of shear occurs in the wake region and at the edges of
flow separation regions (Figure 6.7).

Figure 6.7: Entropy distribution in the stage.
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According to Denton (1993) [5], the entropy generation is dominant on the suction
side and the regions of higher velocity contribute to high amount of losses. This is
evident in the Figure 6.7, where the entropy generation is more on the suction side
of the blades. As the main aim of this thesis is to reduce the entropy generation, the
optimization is carried out to minimize the entropy generation in these regions.

6.5. Results of the optimized blade shapes
The optimization for the stator and the rotor are performed separately as 𝑆𝑈2 is yet
to develop the stage optimization feature. The optimization methodology is already
illustrated in the Figure 5.1. The same procedure is followed for both the blades. The
results of optimized blades are discussed in this section.

6.5.1. Optimization of the stator
The operating conditions for the stator are mentioned in the Table 6.6. The flow sim-
ulation around the stator shows (Figure 6.12) that the flow reaches a maximum Mach
number of 1.276 at around 80% of the axial chord length on the suction side. After
this region, a shock wave is generated causing a sudden increase in the boundary-
layer thickness at the rear end of the suction side, which consequently results in wake
formation. Therefore, to improve the performance of the stator, optimization is im-
plemented to reduce the entropy generation (objective function) with the mass flow
rate as the constraint. The calculated baseline mass flow rates at the inlet and outlet
of the stator are 439.86 kg/s and 439.86 kg/s respectively. As inequality constraint of
the mass flow rate is imposed at both the inlet and outlet of the stator, the optimiza-
tion is implemented for different constraints to find an optimal shape with a maximum
reduced entropy generation.
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Figure 6.8: Reduction in the entropy generation for different mass flow rates (kg/s) as constraint (’m’
indicate mass flow rate at the inlet and outlet).
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Table 6.6: The operating conditions of the stator and the rotor.

𝑝፭፨፭,።፧(𝑀𝑃𝑎) 𝑇፭፨፭,።፧(𝐾) 𝑝፬,፨፮፭(𝑀𝑃𝑎)
Stator 1.1 1333.15 0.63
Rotor 1.075 1332.7 0.54

It is evident from the Figure 6.8 that with the mass flow rate less than 490 kg/s,
the entropy generation is much reduced compared to the other cases. This particu-
lar optimization result is considered for further analysis. The design optimization is
performed with 25 FFD control points (Figure 6.9) and the control points are mapped
on the blade surface. Of the 25 control points (CPs), only 20 of them are considered
as the design variables. The remaining five points are fixed close to the trailing edge
to prevent an unfeasible shape. The added advantage of fixing these points ensure
acceptable blade thickness without imposing a geometrical constraint [23].

Figure 6.9: Free Form Deformation (FFD) box with 25 CPs (design variables) in the stator (left) and
the rotor (right); the fixed points are specified in yellow colour.

Figure 6.8 shows that the design optimization converges within 33 iterations with
around 16% decrease in the entropy generation with respect to the baseline value.
The change in mass flow rate at the inlet and outlet of the stator is around 0.2%
increase with respect to the baseline design and hence, the inequality constraint is
satisfied.
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Figure 6.10: Baseline and optimal geometry of the stator.
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Figure 6.11: Variation of mass flow rate of the optimal shape w.r.t baseline shape at each design
iteration.

The optimized blade shape is compared with the baseline shape in the Figure 6.10.
The point where the baseline and optimal blade shape coincides is the throat area
which determines the maximum mass flow rate. In this case, the assumed mass flow
rate is 12% more than the initial value but the optimized case results in just 0.2%
increase in the mass flow rate with respect to the initial value (Figure 6.11). This is
because, the optimizer has maintained the throat area constant to control the mass
flow rate and satisfy the constraint.
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Figure 6.12: Mach number distribution in the baseline design.

Figure 6.13: Mach number distribution in the optimal design.
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In the Mach number distribution (Figure 6.13) of the optimal geometry, the onset
of the supersonic flow is advanced compared to the baseline geometry. By taking a
closer look in the Figure 6.10, the increase in blade thickness in the optimized shape
after the leading edge has decreased the flow passage area which eventually makes
the flow to accelerate upstream. The decrease in the blade thickness after the throat
area leads to smoother flow deceleration by weakening the strength of the shock.
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Figure 6.14: Pressure distribution around the baseline and optimal geometry.

The pressure distribution around the baseline and optimal shape (Figure 6.14)
shows that the velocity peak on the suction side of the optimal design appears up-
stream with the gradual expansion of flow at rear-end of the suction side (after 80%
of the axial chord length of the stator). On comparing the entropy distribution in
the baseline and optimal shape, there is no significant change visible but the entropy
generation is reduced.

Figure 6.15: Entropy distribution in the baseline (left) and optimal (right) stator.
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6.5.2. Optimization of the rotor

The same shape optimization methodology is followed for the rotor, except the steady
state translation is considered to account for the rotation. The outlet conditions from
the optimized stator blade (total temperature, total pressure and inlet flow angle) is
considered as the inlet for the baseline rotor. With these operating conditions (refer
Table 6.6), flow simulation is conducted for the rotor. It is encountered that the flow
reaches a maximum Mach number of 1.704 after the leading edge on the suction
side (Figure 6.20). A sudden shock appears in this region causing an increase in
the boundary layer thickness which eventually leads to the flow separation. In order
to improve the performance of the rotor, optimization is performed to minimize the
entropy generation with the mass flow rate less than 490 kg/s as the constraint.
The same mass flow rate constraints are implemented for the stator and rotor to
maintain consistency in the solution. The evaluated baseline mass flow rates at the
inlet and outlet section are 439.28 kg/s and 439.99 kg/s respectively. The optimization
is performed with the FFD control points as the design variables (Figure 6.9). The
same pattern of the design variables, as explained in the stator optimization, are
chosen for this case.
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design iteration.
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Figure 6.17: Variation of mass flow rate of the optimal design w.r.t baseline at each design iteration.

The optimization process converges within 4 design iterations with approximately
24% decrease in the entropy generation (Figure 6.16). Furthermore, for the given
inequality constraints, there is about 0.4% decrease in the mass flow rate at the
inlet and outlet with respect to the baseline design. Thus, the imposed constraint is
satisfied.

Figure 6.18: Baseline and optimal geometry of the rotor
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Figure 6.19: Zoomed in view of the leading edge of the rotor - baseline (red) and optimal (blue).

The throat area of the optimal and baseline design of the rotor is maintained con-
stant to fulfill the constraints. In the baseline design (Figure 6.20), the flow simulation
shows that the flow is over accelerated immediately after the leading edge which leads
to strong shock formation and eventually leads to boundary layer separation.

Figure 6.20: Mach number distribution in the baseline geometry.
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Figure 6.21: Mach number distribution in the optimal geometry.

From the Figure 6.21, it is evident that the shock wave is reduced on the suction
side of the re-designed shape. The optimized shape has significantly reduced the
flow separation by decreasing the boundary layer thickness (Figure 6.22). Both the
baseline and the optimal configuration show similar flow behavior on pressure side
of the blade, this ensures the fact that most of the losses in the transonic cascade is
caused due to the adverse pressure gradient on the rear end of the suction side.

Figure 6.22: Boundary layer separation in the baseline (left) and optimal (right) geometry.
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Figure 6.23: Pressure distribution around the baseline and optimal geometry of the rotor.

The pressure distribution around the blades show that the velocity peak is reduced
in the optimal shape which leads to the decrease in the over acceleration after the
leading edge. The optimized shape provides much more uniform flow at the outlet.

Figure 6.24: Relative Mach number distribution in the baseline design.
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Figure 6.25: Relative Mach number distribution in the optimal design.

The relative Mach number distribution in the optimized blade shows decrease in
the shock wave on the suction side and also displays uniform flow by reducing the
boundary layer separation. The distribution of entropy in the baseline and optimized
shape of the rotor are shown in the Figure 6.26. The optimized rotor shows notable
decrease in the entropy on the suction side.

Figure 6.26: Entropy distribution in the baseline (left) and optimal (right) shape of the rotor.

6.6. Results of optimized blades - Stage simulation
The optimized stator and rotor are simulated together as a stage to analyze the overall
performance. The flow simulation for the optimized case is performed with the same
operating conditions specified in Table 6.5.
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Figure 6.27: Static pressure distribution in the optimized stage.

Figure 6.28: Total temperature distribution in the optimized stage.

Figure 6.29: Absolute Mach number distribution in the optimized stage.
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On comparing the outcomes of the baseline stage with the optimal stage (refer
Section 6.4), it is evident, from the temperature (Figure 6.28) and Mach number
(Figure 6.29) distribution contours of the optimized stage, that there is significant de-
crease in the intensity of shock and boundary layer separation.

The thermodynamic properties of the baseline and optimal stage at the inlet, outlet
and interface are obtained from the flow simulation results (refer Table 6.7 and Table
6.8). The inlet and outlet thermodynamic properties are almost constant because
these are the specified operating conditions in the flow solver. The blade shape varia-
tions have changed the interface condition compared to the baseline stage properties.
This variation has apparently improved the efficiency of the stage.

Table 6.7: Thermodynamic properties of the baseline stage.

𝑝፭፨፭ (MPa) 𝑇፭፨፭ (K) 𝑝፬ (MPa) 𝐻 (MJ)
Inlet 1.10 1333.09 1.06 1.72
Interface 1.07 1332.86 0.64 1.54
Outlet 0.61 1178.82 0.54 1.49

Table 6.8: Thermodynamic properties of the optimal stage.

𝑝፭፨፭ (MPa) 𝑇፭፨፭ (K) 𝑝፬ (MPa) 𝐻 (MJ)
Inlet 1.10 1333.09 1.06 1.72
Interface 1.08 1332.85 0.65 1.55
Outlet 0.62 1177.80 0.54 1.49

Table 6.9: Comparison of the baseline and the optimized stage.

𝜂፭፭(%) 𝜂፭፬ (%) S፠፞፧(%) DOR
Baseline 93.18 77.72 3.33 0.22
Optimal 94.49 78.20 2.67 0.26

By comparing the flow simulation results of the optimized stage with the baseline
stage in Table 6.9, it is obvious that the proposed design has reduced the losses
and eventually leads to the reduction of the entropy generation of about 20%. The
optimized blades have resulted in about 1.4% increase in the total-to-total efficiency
(𝜂፭፭) and consequently, the degree of reaction (DOR) is increased from 0.22 to 0.26.
The degree of reaction is defined as the ratio between the enthalpy drop in the rotor
and the enthalpy drop in the stage. For the stage simulation, there is around 0.1%
increase in the mass flow rate of the optimized stage compared to the baseline stage
(Figure D.1). Generally, the stator determines the mass flow rate of the stage. It is
anticipated that there should be 0.2% increase in the mass flow rate of the stage as
per the results shown in the Figure 6.11. On the contrary, there is only 0.1% increase
in stage. This is due to the variation in the interface condition of the optimized stage
compared to the baseline stage simulation. This discrepancy in the variation of flow
properties can be avoided, if the stator and rotor are optimized simultaneously.





7
Conclusions and Recommendations

The present work reports the adjoint-based aerodynamic shape optimization for an
axial turbine. The scope of the thesis is to optimize the Siemens SGT5-2000E turbine
section at the mid-span to improve the aerodynamic efficiency. This is done by per-
forming shape optimization to reduce the entropy generation with mass flow rate as
the constraint.

The gradient-based optimization method is used as it is efficient in terms of the
computational power and design space availability. This method is capable of deter-
mining the optimal shape in a few design iterations, provided an effective method
for gradient evaluation is used. Normally, the aerodynamic design in the turboma-
chinery involves a large number of design variables with an objective function to be
minimized. For these cases, the adjoint method is more suitable for evaluating the
gradients of the objective function with respect to design variables. The cost of the
gradient evaluation is of the same order of magnitude of the objective function and it
is independent of the number of design variables.

The design optimization is implemented in an open-source CFD software, Stanford
University Unstructured (𝑆𝑈2), with the state-of-the-art adjoint-based optimization
technique. The tools for performing the flow simulation, gradient evaluation, surface
parameterization, mesh deformation and an optimizer with search algorithm are avail-
able in 𝑆𝑈2. The optimization procedure starts by evaluating the objective function
(entropy generation) of the baseline design by using the flow solver. The adjoint
solver employs the objective function and the constraints to compute the gradients
with respect to the design variables. The Free-Form Deformation (FFD) approach is
used to parameterize the blade geometry. Each of the control points in the FFD box
is varied to improve the baseline shape and the gradients are utilized to determine an
optimal search direction. To avoid re-meshing at each design step, the mesh deforma-
tion tool with the linear elasticity method is used to propagate the surface deformation
to the entire mesh. The algorithm is structured to iterate until an optimized shape
with reduced entropy generation is found.

63
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Concluding remarks
The adjoint-based optimization for the stator and the rotor is implemented success-
fully. The above-mentioned optimization procedure is implemented for the stator.
The same optimization procedure is implemented for the rotor, except outlet total
conditions of the optimized stator are used as the inlet operating conditions of the ro-
tor. On comparing the results of the baseline and optimized design, it can be inferred
that:

• In the optimized stator, the intensity of shock waves are reduced and there is
a gradual expansion of flow on the suction side. The reduction in the entropy
generation in the stator is approximately 16%.

• In the optimized rotor, the boundary layer separation on the suction side is re-
duced and shock losses are minimized. The reduction in the entropy generation
of the rotor is approximately 24%.

• In the optimized stage, the entropy generation is reduced by 20%. This even-
tually leads to the increase in the efficiency of about 1.4%. Also, there is an
increase in the degree of reaction as a consequence of blade shape optimization.

7.1. Recommendations
The present work is still at the initial phase. The scope of the work can be further
improved by considering the following recommendations.

• It is suggested to perform the shape optimization for the stator and the rotor
simultaneously to maintain the consistency in the flow properties at the interface.
The stage optimization can be performed with two Free-Form Deformation boxes
on the stator and the rotor as mentioned in Albring et al. [40]. This can be
performed in 𝑆𝑈2 itself, when the stage optimization feature is updated.

• The shape optimization can be further implemented by increasing the number
of design variables for smoother deformation.



A
Adjoint method formulation

The analytical derivation of the discrete adjoint method and the grid deformation are
explained briefly in this section. The computation of the sensitive derivative of the
objective function will be solved on the unstructured mesh. The objective function to
be minimized is represented as 𝐽. The objective function depends on the flow variables
𝑈, grid points 𝑋 and the physical (𝛼፩) and geometrical (𝛼፠) design variables. The flow
variables (𝑈) depends on both the physical and geometrical variables but the grid
points (𝑋) depends only on the geometrical design variables. The objective function
𝐽 is expressed as,

𝐽 = 𝐽[𝛼፩, 𝑈(𝛼፩, 𝛼፠), 𝑋(𝛼፠)] (A.1)

The relationship between the flow variables and the design variables can be computed
by the nonlinear, steady-state governing equation and it is represented as follows,

𝑅[𝛼፩, 𝑈(𝛼፩, 𝛼፠), 𝑋(𝛼፠)] = 0 (A.2)

where the R is the residual of the discretized flow equations.

In the design process, usually the physical design variables (𝛼፩) are not considered
and hence, they are neglected. The gradient of objective function with respect to
geometrical design variable defined as,

𝑑𝐽
𝑑𝛼፠

= 𝜕𝐽
𝜕𝑈

𝜕𝑈
𝜕𝛼፠

+ 𝜕𝐽
𝜕𝑋

𝜕𝑋
𝜕𝛼፠

(A.3)

Similarly, the total derivative of the residual of the discretized flow equations with
respect to the geometrical design variables (𝛼፠) is,

𝑑𝑅
𝑑𝛼፠

= 𝜕𝑅
𝜕𝑈

𝜕𝑈
𝜕𝛼፠

+ 𝜕𝑅𝜕𝑋
𝜕𝑋
𝜕𝛼፠

= 0 (A.4)

The sensitivity derivative Ꭷፔ
Ꭷᎎᑘ

in the Equation (A.3) is obtained by further simplifying

Equation (A.4) and it is rewritten as,

𝜕𝑈
𝜕𝛼፠

= −(𝜕𝑅𝜕𝑈)
ዅኻ

[𝜕𝑅𝜕𝑋
𝜕𝑋
𝜕𝛼፠

] (A.5)
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66 A. Adjoint method formulation

Equation (A.4) implies that each design variable needs the linearized flow equation to
be solved every time. This makes it not advisable to use the finite difference as it will
consume lot of memory and computational time. The adjoint method are especially
architectured to deal with a large number of design variables as the influence of the
design variables on an objective function by the flow variables are decoupled. It
implicitly explains that the adjoint method is independent of the number of design
variables. The dependency of the objective function sensitivity on the flow variable
sensitivity (𝜕𝑈/𝜕𝛼፠) is eliminated by substituting the Equation (A.5) in Equation (A.3).
This is expressed as,

𝑑𝐽
𝑑𝛼፠

= − 𝜕𝐽𝜕𝑈(
𝜕𝑅
𝜕𝑈)

ዅኻ

[𝜕𝑅𝜕𝑋
𝜕𝑋
𝜕𝛼፠

] + [ 𝜕𝐽𝜕𝑋
𝜕𝑋
𝜕𝛼፠

] (A.6)

In the above equation, the term − Ꭷፉ
Ꭷፔ(

Ꭷፑ
Ꭷፔ)

ዅኻ

represents the adjoint variable vector.

The adjoint variables (𝜆) are consequently calculated from the solution of the adjoint
system and the equation is written as,

(𝜕𝑅𝜕𝑈)
ፓ

𝜆 = −( 𝜕𝐽𝜕𝑈)
ፓ

(A.7)

Equation (A.7) illustrates the discrete form of adjoint equation and it can be rewritten
as,

𝜆ፓ = −( 𝜕𝐽𝜕𝑈)(
𝜕𝑅
𝜕𝑈)

ዅኻ

(A.8)

Further above equation is substituted into Equation (A.6), the gradient of the objective
function with respect to the design variable is,

𝑑𝐽
𝑑𝛼፠

= 𝑑𝑋
𝑑𝛼፠

[ 𝜕𝐽𝜕𝑋 + 𝜆
ፓ𝜕𝑅
𝜕𝑋] (A.9)



B
Mesh around leading and trailing

edge.

Figure B.1: Zoomed in view of the leading edge of the stator
(left) and rotor (right).

Figure B.2: Zoomed in view of the trailing edge of the stator
(left) and rotor (right).
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C
Compressibility factor chart

Figure C.1: Compressibility factor chart [9].
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D
Variation in the mass flow rate

Figure D.1: Variation in the mass flow rate of the
optimized stage w.r.t baseline stage.
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