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S U M M A R Y
Point-mass inversion is widely employed in GRACE level-2 data processing. Conventionally,
the spherical harmonic (SH) coefficients are used indirectly: a set of pseudo measurements is
generated first using the SH coefficients through SH synthesis; then the point-mass inversion
is done with these pseudo measurements. To be statistically optimal, the covariance matrix
of pseudo measurements should be calculated and used to appropriately weigh the parameter
estimation. In this work, we propose a statistically optimal point-mass inversion scheme
by directly using the SH coefficients as measurements. We prove the equivalence between
this direct approach and the conventional indirect approaches. We also demonstrated their
comparable performance through both simulation and real GRACE data processing. Choosing
and calculating pseudo measurements, propagating covariance matrix and potentially dealing
with the singularity of the covariance matrix involved in the conventional indirect approaches
are avoided in the proposed direct approach. This statistically optimal direct approach can
readily be employed in mascon inversion of GRACE data and other radial basis functions-
based approaches in regional gravity modeling.

Key words: Global change from geodesy; GRACE; Mass anomaly; Satellite gravity; Time
variable gravity.

1 I N T RO D U C T I O N

Mass redistributions inferred from GRACE data find wide applications in geoscientific studies (Tapley et al. 2019). For calculating surface
mass anomalies from GRACE level-2 products, i.e. the spherical harmonic (SH) or Stokes coefficients, there can be three different approaches.
The first is a conversion, in which a simple SH synthesis can directly produce surface mass anomalies (Wahr et al. 1998). However, this
approach requires preprocessed filtering or smoothing, leading to decreased spatial resolution and signal leakage of mass anomalies. The
second and the third are point-mass inversion (Baur & Sneeuw 2011) and mascon inversion (Schrama & Wouters 2011), respectively. In the
point-mass approach, the surface mass anomalies are assumed to be concentrated on some discrete points; while in the mascon approach,
they are uniformly distributed within different surface patches. Both point-mass and mascon approaches can produce well-localized and
high-resolution estimates and do not need any filtering and smoothing, though their calculations are more complex than SH conversion
(Wouters et al. 2014). In this study, we mainly focus on point-mass inversion, with a brief discussion on the mascon inversion.

In recent years, point-mass inversion found wide applications, (see e.g. Baur & Sneeuw 2011; Barletta et al. 2013; Forsberg et al.
2017; Sørensen et al. 2017; Richter et al. 2019; Su et al. 2019; Ferreira et al. 2020a,b). This inversion links the pseudo measurements
(calculated using SH coefficients) situated at GRACE-orbit height to the point-mass on the Earth surface. There are many choices for pseudo
measurements, such as potential, geoid height, gravity anomaly and gravity disturbances and the number and the distribution of pseudo
measurements are not unique either. With synthesized pseudo measurements, one can do a weighted least-squares estimation with the help
of their covariance matrix, which is propagated from the covariance information of the original SH coefficients. This is statistically optimal
and promoted recently in Ran et al. (2018a,b). Note that statistically optimal treatment of the pseudo measurements is proposed for mascons
in Ran et al. (2018a,b); however, it can be readily applicable in a point-mass inversion. To summarize, when using the conventional inversion
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Optimal estimation of surface mass anomalies 1787

approaches, one needs to choose which type of pseudo measurements is to use, determine how many pseudo measurements are to generate,
define how they are distributed and finally deal with the (potential) singularity of the covariance matrix of pseudo measurements.

In this study, we propose to directly use the SH coefficients as measurements, without making the above choices and calculating
pseudo measurements. It will be proven that the same statistical optimality can also be achieved: we need only weigh the measurements
(SH coefficients) with the inverse of the corresponding covariance matrix. Thereby, covariance matrix propagation and dealing with the
potential singularity of the propagated covariance matrix involved in conventional inversion approaches will be avoided. We will also prove
and demonstrate the validity of the proposed approach and its equivalence to the conventional approaches theoretically and experimentally.
For easy citing, we call the proposed approach the ‘Direct Approach’ (DA) and the conventional ones ‘Indirect Approaches’ (IAs) in the
following.

This paper is organized as follows: in Section 2, the methodology is detailed, including the introduction of DA and IA, the proof of their
equivalence and a brief extension for the case of mascon. Numerical experiments are presented in Section 3, including both simulation and
real GRACE data processing. The conclusions are followed in Section 4.

2 T H E O R E T I C A L P RO O F

In this section, the measurement models for a statistically optimal IA and the DA are presented in Sections 2.1 and 2.2, respectively. A
theoretical proof of the equivalence between the IA and the DA is given in Section 2.3. The mascon case is briefly discussed in Section 2.4.

2.1 Indirect approach

The computations for IA inversion can be split into the following two steps. First, a set of pseudo measurements at satellite altitude, taking
anomalous gravity potentials as an example, is generated using GRACE level-2 products. The i-th pseudo measurements T reads as follows:

T (xi ) = Gm0

R

M∑
l=1

(
R

|xi |
)l+1 l∑

m=−l

clmYlm (x̃i ) (1)

where Gm0 denotes the geocentric constant; R denotes the semi-major axis of the reference ellipsoid; M denotes the maximum degree; x
denotes the coordinate vector of the point at which gravity potential is to be evaluated; Clm represents the monthly SH coefficients with the
long-term mean or trend removed; Ylm denotes the fully normalized spherical harmonics. A vector with a tilde over denotes its corresponding
normalized vector.

The second step is to link the produced pseudo measurements at satellite altitude to point-masses on the Earth’s surface. This is based
on the point-mass radial basis representation of the anomalous gravity potential, expressed as follows:

T (x) = G
N∑

j=1

β j�
(
x, z j

)+ ε (2)

with,

� (x, z) = 1

|x − z| =
M∑

l=1

Rl

(2l + 1) |x|l+1

l∑
m=−l

Ylm (x̃) Ylm ( z̃) (3)

In eq. (2), the coordinate vector of the j-th point-mass is denoted as zj; there are totally N such point-masses in the above model;
the point-mass β j is to be estimated; ε is the measurement noise. Combining eqs (1)–(3) results in the functional model which relates
the pseudo measurements at satellite altitude to the point-masses on the Earth’s surface. Stacking all the pseudo measurements as z =
[ T (x1) T (x2) · · · T (xK ) ]

T
and all the point-masses as β = [ β1 β2 · · · βN ]

T
, the measurement model of IA inversion in vector-matrix form

is as follows:

z = Bβ + ε (4)

where B = G[

�(x1, z1) · · · �(x1, zN )
...

. . .
...

�(xK , z1) · · · �(xK , zN )

] denotes design matrix; ε represents measurement error vector. In this study, we assume that there

is only measurement error and no modeling error in ε. Finally, the statistically optimal estimate of the surface mass anomaly is defined as
follows:

β̂ = arg min
β

f (β) = arg min
β

[
(z − Bβ)TP−1 (z − Bβ) + g (β)

]
(5)

where g(β) denotes the other part of the cost function which may correspond to some constraints on β in a regularization inversion. For
regional gravity modeling, g(β) can also include the cost function concerning the fitting of other terrestrial data (Klees et al. 2018, 2019;
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1788 G. Chang, N. Qian and S. Bian

Slobbe et al. 2019). Let F = Gm0
R [

( R
|x1| )

1
Y00(x̃1) · · · ( R

|x1| )
M+1

YM M (x̃1)
...

. . .
...

( R
|xK | )

1
Y00(x̃K ) · · · ( R

|xK | )
M+1

YM M (x̃K )

]. Let y denote the vector of SH coefficients clm. From eq. (1), we

have{
z = F y
ε = Fe

(6)

where e denotes the measurement error vector of y, assumed to be Gaussian distributed. So, P = cov[ε] = Fcov[e]FT = FQFT, where Q is
the variance-covariance matrix of GRACE monthly solutions. This shows the clear linear relation between the pseudo measurement vector z
and the original measurement vector y and this linear relationship will be vital for our proof.

2.2 Direct approach

In the DA, we directly treat SH coefficients as measurements. By comparing eq. (1) with eq. (2) and eq. (3), we can obtain the following
relationship between SH coefficients and point-masses (Schmidt et al. 2007; Wittwer 2009):

clm = 1

(2l + 1) m0

N∑
j=1

β j Ylm

(
z̃ j

)+ e (7)

where e is the measurement noise. Then based on eq. (7), we have the following measurement equation in vector-matrix form:

y = Aβ + e (8)

with,

A = 1

m0

⎡
⎢⎢⎣

Y00 ( z̃1) · · · Y00 ( z̃N )
...

. . .
...

1
2M+1 YM M ( z̃1) · · · 1

2M+1 YM M ( z̃N )

⎤
⎥⎥⎦ (9)

Note that eq. (8) is exactly the measurement model of the proposed DA inversion. The optimal estimate with this measurement model
is accordingly defined as follows:

β̂ = arg min
β

h (β) = arg min
β

[
(y − Aβ)TQ−1 (y − Aβ) + g (β)

]
(10)

The term g(β) in eq. (10) should be the same as that in eq. (5). This means that in the DA and IA, we are using the same terrestrial
data set or the same regularization (including both regularization matrix and regularization parameter). By doing this, we can make a fair
comparison between the two approaches: the differences between the two approaches, if any, are solely caused by different representation of
the gravity measurements, i.e. z in eq. (4) vs. y in eq. (8).

2.3 A theoretical proof of the equivalence between the indirect and the direct approaches

In eq. (6), it is possible to find a set of locations, which make the matrix F square and invertible. In order for F to be invertible in a numerically
stable manner, the locations should be globally distributed, rather than being confined to the target area and its buffer zone. Combining eq.
(6) with eq. (8), we get the following relation:

z = F y = F Aβ + Fe = F Aβ + ε (11)

The invertibility of F implies that the information in y is ideally coded in z without any information loss. Pseudo measurements
other than those in z are unnecessary because of this ideal coding. Any variable other than those in z must be a linear combination
of z. Augmenting this variable into z adds no new information in terms of estimating β; and this may further cause the singularity of
the covariance matrix. Following Schmidt et al. (2007), z with such an invertible matrix F can be called an admissible representation
of y.
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Optimal estimation of surface mass anomalies 1789

Let fi
T denote the i-th row of F. Let aj denote the j-th column of A. From eq. (1) and eq. (9), the element of the i-th row and j-th column

in FA is expressed as follows:

{FA}i j = fT
i a j

=
(

Gm0

R

[
R

|xi | Y00 (x̃i ) · · ·
(

R
|xi |
)M+1

YM M (x̃i )

])⎛⎜⎜⎝ 1

m0

⎡
⎢⎢⎣

Y00 ( z̃N )
...

1
2M+1 YM M ( z̃N )

⎤
⎥⎥⎦
⎞
⎟⎟⎠

= G
M∑

l=0

Rl

(2l + 1) |xi |l+1

l∑
m=−l

Ylm (x̃i ) Ylm

(
z̃ j

)
= G�

(
xi , z j

)
= {B}i j (12)

which is equivalent to the following in matrix form:

B = F A (13)

which clearly shows the relation between the design matrix of IA and that of DA. This relation is vital for our theoretical proof and will also
be validated experimentally in the following numerical studies.

With an invertible F and according to eq. (13), we have the following:

f (β) = (z − Bβ)TP−1 (z − Bβ) + g (β)

= (Fy − FAβ)T(FQFT
)−1

(Fy − FAβ) + g (β)

= (y − Aβ)TFT
(
FQFT

)−1
F (y − Aβ) + g (β)

= (y − Aβ)TFTF−TQ−1F−1F (y − Aβ) + g (β)

= (y − Aβ)TQ−1 (y − Aβ) + g (β)

= h (β) (14)

This means that the cost function of the IA inversion in eq. (5) exactly equals to that of the DA inversion in eq. (10). So the point-mass
estimate defined in eq. (5) should be equal to that in eq. (10). This proves the equivalence between IA and DA. So with DA, we can directly
treat the SH coefficients as measurements for estimating point-masses in the same statistically optimal way as that in a statistically optimal
IA. In the DA, we do not need to choose or generate any pseudo measurements; and consequently, we do not either need to do covariance
propagation or (potentially) deal with the involved singularity.

2.4 Proof for the mascon case

For mascon inversion, the measurement model of IA can be the same form as in eq. (4), however with the design matrix defined as follows:

B = G

⎡
⎢⎢⎣
∫

�1
� (x1, z) dσz · · · ∫

�N
� (x1, z) dσz

...
. . .

...∫
�1

� (xK , z) dσz · · · ∫
�N

� (xK , z) dσz

⎤
⎥⎥⎦ (15)

In the above, �j denotes the region of the j-th mascon and dσ z denotes the surface area elements corresponding to the argument z.
Similarly, the measurement model of DA has the same form as in eq. (8), but with the design matrix defined as follows:

A = 1

m0

⎡
⎢⎢⎣

∫
�1

Y00 ( z̃1) dσz · · · ∫
�N

Y00 ( z̃N ) dσz

...
. . .

...
1

2M+1

∫
�1

YM M ( z̃1) dσz · · · 1
2M+1

∫
�N

YM M ( z̃N ) dσz

⎤
⎥⎥⎦ (16)
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1790 G. Chang, N. Qian and S. Bian

Figure 1. The simulated truths of mass anomaly signals in southeast Greenland in both spectral (a) and spatial (b) domains. Degree-0 and degree-1 terms are
not considered here.

Then eq. (12) can be modified accordingly for the mascon case as follows:

{FA}i j = fT
i a j

=
(

Gm0

R

[
R

|xi | Y00 (x̃i ) · · ·
(

R
|xi |
)M+1

YM M (x̃i )

])⎛⎜⎜⎝ 1

m0

⎡
⎢⎢⎣

∫
�N

Y00 ( z̃N ) dσz

...
1

2M+1

∫
�N

YM M ( z̃N ) dσz

⎤
⎥⎥⎦
⎞
⎟⎟⎠

= G
M∑

l=0

Rl

(2l + 1) |xi |l+1

l∑
m=−l

Ylm (x̃i )
∫

�N

Ylm

(
z̃ j

)
dσz

= G

∫
�N

[
M∑

l=0

Rl

(2l + 1) |xi |l+1

l∑
m=−l

Ylm (x̃i ) Ylm

(
z̃ j

)]
dσz

= G

∫
�N

�
(
xi , z j

)
dσz

= {B}i j (17)

For the mascon case, the same equation as in eq. (13) also holds. Finally, the same proof as in Section 2.3 holds for the mascon case.
Note that eq. (16) is exactly the design matrix of mascon inversion using GRACE level-2 data proposed in Jacob et al. (2012) and also

the right factor matrix of the design matrix in the mascon inversion using GRACE level-1b data, e.g. the L matrix in Croteau et al. (2020). The
design matrix of the IA in eq. (15) is exactly the design matrix of the so-called space-domain inversion approach proposed in Yi & Sun (2014),
in which the approach proposed in Jacob et al. (2012) is called a spectral-domain inversion approach. The DA and IA for the mascon case,
discussed in above, can be viewed as the statistically optimal version of the spectral- and spatial-domain inversions, respectively. Although
the statistically optimal versions are equivalent to each other as proved in the above, this does not necessarily apply to their original versions,
even when they do the same preprocessing of the SH coefficients before estimating the mascon parameters; because in general, independent
and identically distributed (iid) errors in the spectral domain will not result in iid errors in the spatial domain and vice versa (Klees et al.
2008).

As a final note, the spectral consistency issue considered in Ran et al. (2018b), that is, appropriately truncating the series of eq. (3), is
irrelevant in the DA. Or in other words, the DA is automatically spectrally consistent.

3 N U M E R I C A L S T U DY

We conduct both closed-loop simulation and real GRACE data analysis of IA and DA, with the results presented in the following Sections
3.1 and 3.2, respectively.
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Optimal estimation of surface mass anomalies 1791

Figure 2. The simulated noise of the SH coefficients. The noise is then added to the SH coefficients of true signals clm to generate measurements for IA and
DA. Degree-0 and degree-1 terms are not considered.

Table 1. The configuration of experimental schemes to be compared: DA and three IAs.

Approaches Observables No. of measurements Distribution of measurements

DA SH coefficients 3717 —
IA1 potentials 2000 randomly, locally
IA2 potentials 3717 randomly, locally
IA3 potentials 3717 randomly, globally

3.1 Simulation

The Greenland with a buffer zone of about 100 km is chosen as the target area. Similar to Baur & Sneeuw (2011), we first artificially define
some mass loss signals around the southeast coast through the following steps: a total of 5000 random values with standard derivation 20 cm
are first generated; all the positive values are turned into negative ones by adding a minus sign to simulate the mass loss in terms of equivalent
water height (the originally negative values keep unchanged); the mass anomaly values are then arranged in descending order from the
southeast coast to the northeast coast. Mass variations other than the target area are assumed all zeros. We do SH analysis with these 5000
samples and the zeros elsewhere and truncated at lmax = 60, with the SH coefficients denoted as c′

lm. These truncated SH coefficients are
treated as truth in the spectral domain. Note that for simplicity and without loss of generality, we do not consider the degree-0 and degree-1
terms here. Then the truth in the spatial domain, i.e. the true surface mass variation at any point, can be synthesized according to eq. (18). In
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1792 G. Chang, N. Qian and S. Bian

Figure 3. The distributions of pseudo measurements (i.e. disturbing potentials) at 500 km satellite altitude in the three IA approaches. (a) IA1: 2000
measurements distribute locally; (b) IA2: 3717 measurements distribute locally; (c) IA3: 3717 measurements distribute globally. Note the anomalous signals
out of the Greenland in Fig. 3(c) result from the added noise.

Fig. 1, we show the truths both in spectral and spatial domains.

m(x̃i ) =
60∑

l=2

l∑
m=−l

c′
lmYlm (x̃i ) (18)

The true SH coefficients of the gravity potential are calculated as clm = 3ρw

ρE

1+kl
2l+1 c′

lm , where kl denotes the loading Love number, ρw

denotes the water density 1000 kg m−3 and ρE represents the averaged Earth density 5517 kg m−3 (Qian et al. 2022). The noise of the true SH
coefficients clm are generated using the covariance matrix of CSR GRACE RL05 product in January 2008, denoted as �lm (Baur & Sneeuw
2011). So the input SH coefficients are simulated as c̃lm = clm + �lm . Fig. 2 shows the simulated noise in both spectral and spatial domains.

We treat the disturbing gravity potentials at 500 km height as pseudo measurements for IA. Three different IA schemes, IA1, IA2 and
IA3, with different distributions of pseudo measurements, are considered in this study, as shown in Table 1. In this table, 3717 is the total
number of SH coefficients of lmax = 60, with degree-0 and degree-1 terms excluded. We compare IA1 and IA2 to check if additional pseudo
measurements (2000 versus 3717) can provide new information for estimating point-masses and compare IA2 with IA3 to evaluate whether
the local or global distribution of pseudo measurements influences the final estimates. In addition, we compare DA with IA1, IA2 and IA3 to
test their difference and relationship. The three different pseudo measurement datasets in IA1, IA2 and IA3 are shown in Fig. 3.

As mentioned in Section 2.3, the theoretical proof of the equivalence between DA and IA depends on eq. (13). So it is necessary to
evaluate this equivalence numerically, namely to check the difference of the design matrix B in IA from the transformed design matrix FA in
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Optimal estimation of surface mass anomalies 1793

Figure 4. The absolute (left-hand panel) and relative (right-hand panel) difference distribution between the DA and three IAs in the level of design matrices:
B in three IAs versus FA in DA. Top: DA versus IA1; Middle: DA versus IA2; Bottom: DA versus IA3. The absolute difference of a point-mass is defined
as the L2-norm of the difference of the corresponding column in B and FA. The relative difference of a point-mass is defined as the corresponding absolute
difference divided by the L2-norm of the corresponding column of matrix B.

DA. Let the difference between the two sides of eq. (13) be denoted as [ c1 · · · cm+l ] = C = B − FA, with ci being the column vector of C,

corresponding to the i-th point-mass. Let ηi = ‖ci‖2 and η̄i = ‖ci‖2/‖bi‖2
(with bi being the column vector of B) be the absolute and relative

differences of i-th point-mass between B and FA. The distributions of these differences between DA and three IAs are shown in Fig. 4. It
is observed both the absolute and relative differences are at very low numerical levels. We mainly attribute such small differences to the
numerical round-off errors, explained as follows: in eqs (1), (3) and (7), the calculation of normalized associated Legendre function involved
in Ylm is numerical. In the IA, the pseudo measurements derived from level-2 products in eq. involve such numerical calculation once. The
design matrix of IA in eq. (3) involves such numerical calculations twice. As a comparison, in the DA, the measurements (SH coefficients)
do not involve such a numerical calculation. The design matrix of DA only involves such numerical calculation once. Considering these
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1794 G. Chang, N. Qian and S. Bian

Figure 5. The absolute (the left-hand panel) and relative (the right-hand panel) errors of the 3076 sampled gravity potentials at 5 km altitude of the point-masses
estimated from DA (the first row), IA1 (the second row), IA2 (the third row) and IA3 (the last row). The truth of sampled gravity potentials is produced by the
true mass anomalies presented in Fig. 1.
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Optimal estimation of surface mass anomalies 1795

Table 2. The error statistics of the gravity potentials for DA and three IAs (unit: 10−4 m2 s−2). The potential errors are calculated as the differences of
potentials at a 5-km altitude produced by estimated point-masses and true mass variations.

Maximum Minimum Mean RMS STD

Approaches Absolute Relative Absolute Relative Absolute Relative Absolute Absolute

DA 99.41 118.9 per cent −86.76 −123.7 per cent −1.40 7.1 per cent 29.35 29.32
IA1 104.48 116.3 per cent −95.64 −136.4 per cent −0.76 7.6 per cent 33.59 33.58
IA2 104.16 117.0 per cent −94.45 −139.5 per cent −0.72 7.2 per cent 33.58 33.57
IA3 99.50 118.9 per cent −86.03 −122.9 per cent −1.52 7.3 per cent 29.37 29.33

Table 3. The estimated (simulated) total mass anomalies of the entire Green-
land from DA and three IAs (Unit: Gt).

DA IA1 IA2 IA3

Total mass anomaly −309.25 −308.12 −308.11 −309.40

calculations are performed on MATLAB R2018b, whose numerical calculation accuracy is 16 significant digits, it is natural that the relative
difference in Fig. 4 is at the level of 10−15. Note this level of difference is the comprehensive impact of many (2000 or 3717) elements in a
column of B and FA. From this viewpoint, it is round-off errors that causes the differences between DA and IA. Since the relative difference
is rather small, it can be neglected. We suppose this proves that eq. (13) indeed holds.

For both IA1 and IA2, the covariance matrix P involved in eq. (5) is singular. We replace the matrix inversion with pseudo inversion
(Ran et al. 2018b; Klees et al. 2019). A total of 376 point-masses, distributed on a 0.5◦ × 0.5◦ equiangular grid covering all of Greenland,
are to be estimated. For simplicity and without loss of generality, leakage error correction, e.g. by including auxiliary point-masses, is not
considered here. The term g(β) in eq. (5) and eq. (10) is chosen as a Tikhonov regularization term, with an identity regularization matrix
(Baur & Sneeuw 2011) and the regularization parameter is optimized using variance component estimation (VCE) approach (Koch & Kusche
2002). Specifically, the chosen regularization parameter is 1.14 × 10−26.

Considering the true mass variations, denoted in eq. (18), are continuously distributed on the Earth, there are no such things as the true
point-masses. So we cannot directly assess the inversion error for a specific point-mass estimate. Instead, an indirect assessment is performed
here. We compare the disturbing gravity potentials at 5-km height generated by the estimated point-masses with that generated by the true
mass variations clm. The absolute and relative (with respect to truth) gravity potential errors are shown in Fig. 5, respectively, with the error
statistics presented in Table 2. The error distributions of the four approaches are almost the same patterns. From Table 2, all approaches have
a systematic bias of ∼7 per cent and we attribute it to the added noise. In general, the four approaches perform comparably, with the DA and
the global IA3 being slightly superior to the other two. In our understanding, the measurements in DA, namely the SH coefficients, correspond
to the globe. These measurements code the information on the entire reference ellipsoid. In IA3, the pseudo measurements are just randomly
globally distributed. Therefore, there is a better agreement between DA and IA3. To summarize, in terms of the gravity potential error, the
DA and IA can be viewed as being practically equivalent to each other.

The total mass variations across Greenland estimated from the four approaches are shown in Table 3. The differences among the four
approaches are small, with the biggest difference between the DA and IAs being 1.14 Gt (between DA and IA2). The estimated point-masses
of DA and three IAs and their absolute and relative differences, defined in eq. (19), are shown in Fig. 6. In general, all the DA and IAs produce
the very similar estimates and DA and IA3 behave more closer than others, which is consistent with the results in Table 2. The maximum
absolute differences of each point-mass are approximately within 1 Gt. The large relative differences are mainly due to the small signal values
over there (comparing the left-hand panel with the right-hand panel in Fig. 6). In terms of the estimated point-masses, the DA and the IA can
be viewed as being practically equivalent to each other.⎧⎨
⎩

ξ
(abs.)
i = β̂

(DA)
i (k) − β̂

(IA)
i (k)

ξ
(rel.)
i = β̂

(DA)
i (k)−β̂

(IA)
i (k)

β̂
(DA)
i (k)

(19)

3.2 Real GRACE data analysis

The real data processed here is the monthly CSR GRACE RL05 SH coefficient solutions, with their full covariance matrices, ranging from
January 2003 to December 2012. The maximum SH degree is 60. The data in the following months are absent: June 2003, January 2011,
June 2011, May 2012 and October 2012. The following preprocessing steps are performed first for the monthly SH solutions. First, the
degree-1 coefficients are added (Sun et al. 2016) and the C20 coefficients derived by Satellite Laser Ranging are replaced (Loomis et al.
2020). Secondly, a glacial isostatic adjustment (GIA) correction is applied based on the ICE6G-D model (Peltier et al. 2018). Finally, the
2004.000–2009.999 mean baseline is removed. The residual SH coefficients are then directly treated as measurements in DA and transformed
into pseudo measurements (disturbing potentials) in IAs.

Taking the estimated point-masses in April 2004 as examples, Fig. 7 shows the estimates and their absolute and relative differences
between DA and three IAs, as defined in eq. (19). It is observed that most of the absolute differences are within 1 Gt. We also find the
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1796 G. Chang, N. Qian and S. Bian

Figure 6. The estimated simulated point-masses (the left-hand panel) and their absolute (the middle panel) and the relative (the right-hand panel) differences
between DA and IA1 (the second row), IA2 (the third row), IA3 (the last row). The extremely large relative differences in Figs. (h) and (i) are due to the weak
signals there as shown in Figs. (b) and (c).
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Optimal estimation of surface mass anomalies 1797

Figure 7. The estimated point-masses (the left-hand panel) and their absolute (the middle panel) and the relative (the right-hand panel) differences between
DA and IA1 (the second line), IA2 (the third line), IA3 (the last line) in April 2004. The extremely large relative differences in (h), (i) and (j) are due to the
weak signals there as shown in (b), (c) and (d).
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Figure 8. Time series of the total mass anomaly in Greenland from January 2003 to December 2012. (a): the estimated DA and three IAs point-mass solutions
and the CSR RL06 v02 mascon and JPL RL06 v02 mascon solutions; (b): the absolute differences of the total mass anomaly between DA and three IAs. All
the mass anomalies are respect to the 2004.000–2009.999 time mean baseline.

differences correlated with the magnitude of the mass signal. There are large absolute differences (∼1 Gt) on the southeast and west coast
of Greenland. However, the relative difference is small there. In central Greenland, the opposite is true. This is due to significant mass loss
along the southeast and west of Greenland, while there is no significant mass variation in central Greenland (Ran et al. 2018b).

The point-mass estimates of both DA and IAs are compared with the latest CSR RL06 v02 (Save et al. 2016) and the JPL RL06 v02
mascon products (Watkins et al. 2015). Note that both the released mascons and our estimated point-mass solutions use the same GIA
correction, namely ICE-6G D model (Peltier et al. 2018). Fig. 8(a) presents the time series of the estimated total mass anomaly across
Greenland of DA and three IAs, with those of CSR and JPL mascons for comparisons. The seasonal variation of these time series is consistent.
We also notice some deviations (especially after 2011) between CSR RL06 v02 solution and IA, DA solutions. However, considering both
IA and DA point-mass solutions agree well with JPL RL06 v02 mascon solutions, investigating the causes of the differences between the
in-house point-mass solutions and CSR mascon solutions is beyond the scope of this study. Fig. 8(b) shows the absolute differences of total
mass anomalies between DA and three IAs. The proposed DA again perform closer to IA3 as we found before. To conclude, the proposed
DA produces the comparable mass anomaly estimates as the other released mascons solutions, which again demonstrates the feasibility of
directly using GRACE level-2 SH coefficients as measurements for calculating surface mass variations.

4 C O N C LU D I N G R E M A R K S

In this study, we have shown how to carry out a statistically optimal point-mass inversion by directly using GRACE level-2 SH coefficients
as measurements. The statistical optimality is in the sense of appropriately weighing the measurements according to the data covariance
matrix. The validity of this direct approach and its equivalence to the conventional indirect approaches were both theoretically proven and
experimentally demonstrated through simulation and real data processing. Choosing and calculating pseudo measurements, propagating
covariance matrix and (potentially) dealing with the singularity of covariance matrix involved in indirect approaches can be avoided in the
direct approach.

The statistically optimal direct approach can be readily employed in mascon inversion of the GRACE data and other radial basis
functions-based approaches in regional gravity modeling. The performance of this approach in these applications will be investigated in future
studies.
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DATA AVA I L A B I L I T Y

The CSR GRACE RL05 products with both SH coefficients and their covariance matrices are downloaded at http://download.csr.utexas.ed
u/outgoing/grace/; The CSR GRACE RL06 v02 mascon products are download at https://www2.csr.utexas.edu/grace/RL06 mascons.html;
The JPL GRACE RL06 v02 mascons are download at https://grace.jpl.nasa.gov/data/get-data/jpl global mascons/.
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