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A Method for Embodied Co-Learning in Interdependent
Human-Robot Teams

Hugo Veldman-Loopik
supervised by Emma van Zoelen, David A. Abbink and Luka Peternel

Abstract— This paper addresses the research question: “How
can a human-robot team achieve co-learning, and interdepen-
dence in physically embodied tasks?”. A method has been
developed that enables a human-robot team to co-learn the
handover of an object from the robot to the human. Five
design requirements were composed to address the challenges
of human-robot co-learning in physically embodied environ-
ments. The method is based on a Q-learning algorithm that
was adapted and extended to meet these requirements. An
experiment was conducted with six participants. For every
human-robot team, each design requirement was qualitatively
evaluated. Interdependent co-learning was identified in three of
the six teams. The limitation of the design, and how this method
can be improved further, was discussed. The method, presented
in this paper, demonstrates how human-robot co-learning and
interdependence can be enabled in physically embodied tasks.

I. INTRODUCTION

Human-robot interaction has rapidly evolved in the last
decade [1], [2]. Robots are being used in various industries
such as manufacturing [3], [4], healthcare [5], and transporta-
tion [6], [7]. The latest developments in this area involve the
addition of machine learning to collaborative robotic systems
[8]. One of the key challenges in this field is to enable self-
learning robots not only to improve their performance, but to
use learning to improve collaboration with humans [9]. Co-
learning is a collaborative learning process between humans
and robots, where they both learn simultaneously how to
collaborate effectively [10], [11]. Human-robot co-learning
can be used to improve performance and personalize the
robot behavior to the human [12]. Recent research shows
promising results in using co-learning to improve human-
robot fluency and interdependence in human-robot teams
[10], [11], [13], [9].

However, while this type of co-learning has been studied
in virtual [11] and in simulated environments [10], there is
still limited research in co-learning in physically embodied
environments. This gap is due to the complexity of the phys-
ical environment, which involves real-world interactions and
unpredictability that cannot be fully replicated in simulations
[14].

The development of co-learning in physically embodied
environments can have significant implications in the field
of human-robot interaction. It could lead to the creation of
robots that are better able to adapt to their human team
members and the environment, so that they can assist humans
in complex tasks in a more personalized way. Additionally,
co-learning could enable robots to learn with their human
partners in real-time, leading to a more natural and efficient
interaction.

Fig. 1: Experiment setup for the human-robot co-learning of an object
handover task. The robot consists of the KUKA iiwa7 LBR800 robotic arm
with the qb-softhand attached. The Optitrack motion tracking system is used
to track the pose of the human hand via a sensorized glove. The human is
also performing a secondary task, as explained in subsubsection III-B.2.
The experiment and the setup are explained in more detail in section IV.

A. Research question and Scope

This paper addresses the outlined research gap by explor-
ing the challenges and opportunities of co-learning in phys-
ically embodied environments. Specifically, we will investi-
gate the following research question: “How can a human-
robot team achieve Co-Learning, and interdependence in
physically embodied tasks?”

In this research, we narrow our focus to the specific
context of human-robot teams that involve one human and
one robot. Secondly, we focus only on reinforcement learning
(RL) techniques to enable robot learning and do not con-
sider direct learning from demonstration since it limits self-
exploration. This was further narrowed down to Q-learning
specifically. Lastly, we focus our investigation on a handover
task, which involves the transfer of an object from the robot
to the human. This task is a good use case since it requires
both spatial and temporal coordination between two agents
and has many ways to perform it, thus offering a large
learning space to explore.

B. Challenges of exploring co-learning

In co-learning, team members learn together how to col-
laborate effectively, by finding strategies that work for them
as a team [10], [11], [9]. This means that both agents learn



Fig. 2: A schematic demonstration of how different strategies can lead to the
same outcome, and how joint activity is only achieved when the individual
strategies of the agents are congruent. Congruent strategies are visualized
as arrows of the same color.

simultaneously which strategies allow them to collaborate
as one interdependent, symbiotic unit [13], [15]. Take for
instance a hand-over task (Figure 1) where a robotic arm
has to hand over an object to its human team member. The
robot can choose the strategy of dropping the object above
the hand of the human, trusting that the human will catch
it. Alternatively, the robot can hold the object close to the
human, allowing the human to just seize it. The human, on
the other hand, also has to choose a strategy: they could hold
their hand up, hoping the robot will drop the object in their
hand, or the human could assume the robot will hold the
object until they seize the object. If the robot chooses the
first strategy, while the human chooses the latter, the object
will fall on the ground. Hence, for effective collaboration,
the human and robot have to pick congruent strategies. In
Figure 2 it is visualized how the team members can use
different strategies to reach the same goal. Some strategies
have a congruent counterpart, shown in the same color. Only
if both agents execute a congruent strategy, the task can
succeed.

To achieve co-learning, the team must be able to explore
different strategies and learn what strategy works for them as
a team. Thus, joint activity can be achieved in various ways,
making co-learning an open-ended process with multiple
possible ways that result in similar outcomes. Therefore,
the outcome alone, will not provide enough information to
identify whether a team was co-learning. Co-learning can
even appear without an immediate performance increase, as
the essence of co-learning is improving the collaboration
in the team. The improvement of performance is only a
consequence of co-learning. Therefore, there is not a single
metric that can identify co-learning in human-robot teams.
Instead, the team dynamics have to be assessed by quantita-
tive analyses of the development of strategies and interaction
patterns [11] in the team. In other words, co-learning can
only be identified with qualitative, case-by-case, analysis of
collaboration in human-robot teams.

C. Structure of the paper

To answer the research question, we developed a method
for co-learning an embodied task, and examined this method
qualitatively on six human-robot teams. This way we ex-
plored the effects of specific design aspects of the method
and how these aspects enable co-learning and interdepen-
dence. Hence, the main research question is answered in two
steps.

The first step was to develop a new method that consists of
two physically embodied parts: a collaborative human-robot
task and a RL technique for the robot. To do so, five design
requirements were composed. This was done based on prior
literature research [16] which is recapitulated in section II.
How these design requirements were composed and how the
developed method was designed is elaborated in section III.

The second step is to qualitatively examine our newly
developed method, and explore how the design requirements
contribute to co-learning and interdependence within the
human-robot team. We did this by conducting an experiment
where six participants performed the developed task in
collaboration with our RL agent. The experimental design
is explained in section IV. The results are displayed and
interpreted in section V. These results are qualitatively inter-
preted for each human-robot team to examine which design
aspects did and did not contribute to the interdependence in
that team. Then, in section VI, we reflect on the method, the
experiment, and our findings to gain a deeper understanding
of how embodied co-learning can be achieved in human-
robot teams. In this section, we also give potential im-
provements for the method and recommendations for future
research. Finally, in section VII, we conclude this research
by recapitulating the answer to the research question.

II. BACKGROUND

In this section, the relevant parts of a prior literature review
[16] are summarized, to provide background information
on how interdependence can be achieved using RL and on
how standard Q-learning works, as Q-learning forms the
foundation of the RL algorithm that we developed.

A. Co-learning and interdependence

The most important aspect for team members to collabo-
rate [15], [17], [13] and more specifically to co-learn is inter-
dependence [11], [10], [9], [18]. So in this section we explain
how an interdependent relationship between two agents can
emerge.Interdependence between two team members can be
seen as a symbiotic relationship, where the team members
allow themselves to depend on each other to increase task
performance and efficiency. The concept of interdependence
is often used in studies on team collaboration [15], collab-
orative performance [18], [15], team task design [13], [11]
and team learning [9], [10]. It is established by concepts like
responsibility and regular dependence.

Interdependence is an essential aspect of co-learning, as
co-learning is learning as a team rather than collaborating
agents learning individually. So, to be able to achieve this,



the team must learn how to operate as one interdependent
unit.

According to Tal [15], there are two main parts that
determine the level of interdependence: means and outcomes.
The means, in this context, consists of the capabilities and de-
pendencies described in subsubsection II-A.1. The outcomes
on the other hand are effected by how complementary the
group goals and rewards are. How the later can be achieved
is explained in subsubsection II-A.2.

1) Dependencies: Interdependence starts with depen-
dence. Team members are considered dependent, when their
individual capacity is not enough to complete a task, but
their combined capacity is [13]. In other words, they both
need each other in order to succeed. This type of dependence
is referred to as hard-dependence[13]. In an interdependent
team, however, there is also soft dependence[13]. Soft-
dependencies, or opportunistic dependencies, are dependen-
cies between team members that are not strictly needed to
achieve the group goal, but they arise from opportunities to
perform better as a team. Hence, the team chooses a strategy,
where the individual team members are dependent on each
other’s actions to complete a part of the task in a better way.

Soft dependencies are key to enable an interdependent
relationship [13]. Moreover, the emergence of soft depen-
dencies, recursively adds to the level of interdependence in
the team. Johnson [13] calls this the ”cascading effect”. So
when interdependence is established, and soft dependencies
can arise, retaining and strengthening the interdependent re-
lationship. This means that soft dependencies are most likely
to emerge when an interdependent relationship is already
established. Thus, this cascading effect must be kick-started
with some mutual hard-dependence [13], and enough room
for soft dependencies. In the example of the handover task
(Figure 1), there is mutual hard-dependence, as a handover
can not be accomplished alone. The soft dependencies in this
example can arise due to the multiple possible strategies that
allow completion, visualized in Figure 2. If the human for
instance chooses the red strategy, without first making sure
that the robot does this as well, they allow themself to be
dependent on the robot to choose the red strategy as well,
and therewith a soft dependency has emerged.

2) Reward and Shared goal: For interdependence to arise,
both team members must have interest in the same outcome
[10], [13], [15]. In other words, the team should have the
same goal. To achieve this in a human-robot team, to think
about how the robot could be rewarded.

Akalin and Loutfi [2] organize RL techniques in So-
cial Robotics into two relevant categories: interactive RL,
task performance driven techniques. The learning algorithms
from the first category (Interactive RL), are based on feed-
back from interaction with the human. Two well known
examples are: TAMER [19] and COACH [20]. Such interac-
tive RL-techniques, are based on an actor-critic relationship
where the human (critic) provides the reward or feedback to
the robot (actor). However, in order to create a good team,
team members should be equals without such a hierarchy
[17], [15]. Therefore, if such a technique is to be used for

co-learning, the robot should also provide feedback to the
human, to avoid unbalanced hierarchy.

Alternatively, a learning algorithm from the category task
performance driven techniques can be used. In this type of
RL, the robot is rewarded based on the performance of the
task. This category has a promising potential for co-learning,
as it would enable the human and robot to have a shared
goal. In other words, when the robot and the human are
both reward on the same collaborative performance, they
intrinsically are motivated to collaborate and work as a
team. Furthermore, rewarding the robot based on overall
performance would be most feasible for co-learning, since
the optimal policy of the robot is dependent on the behavior
of both team members [10]. For this reason, we focused
on task performance driven techniques, where the robot is
rewarded based on the collaborative performance of the team.
In subsubsection III-C.2 it is further elaborated how we
designed a reward function that ensures interest in the same
outcome for both agent.

B. Q-learning

In combination with the right reward function, Q-learning
is such a task performance driven technique. In the method
proposed in this paper, we choose to use a Q-learning based
RL algorithm as explained in more detail in subsection III-
C. In this subsection we provide background information on
how Q-learning works.

Q-learning is a fundamental reinforcement learning tech-
nique, rooted in dynamic programming [21]. It relies on the
concept of assigning a quality to each action in each state.
These qualities are represented by Q-values, and stored in a
Q-table, which serves as a basis for determining the optimal
action to take in each state. This table that stores a Q-value
for each state-action pair, is referred to as the Q-table, Q-
function or value function, and it describes the current a
policy of the agent. Initially, the Q-values are unknown and
need to be learned through the RL algorithm. To accomplish
this, all states are assigned a reward (R(s)), which reflects
the task at hand. By considering the reward of a reached
state (R(s′)) and potential future states, the quality of a state-
action pair (Q(s, a)) can be fully assessed.

To learn the Q-values, an iterative process is employed
using the Bellman equation (1). The future reward is es-
timated by considering the Q-values of future state-action
pairs, determined by the policy based on the current Q-
function. Essentially, when an action is taken, the Q-value
for that state-action pair (Q(s, a)) is updated by summing
the reward obtained upon entering the next state (R(s′)) and
the highest known Q-value for the next possible state-action
pair:

Q∗(s, a) = E[R(s′) + γmax
a′

Q∗(s
′, a′)] (1)

This maximum Q-value in the next state (max
a′

Q∗(s
′, a′))

represents the expected cumulative future reward, recursively
accounting for all future rewards. A discount factor (γ) is
applied to discount the expected future reward, ensuring that
each successive reward contributes proportionally less to the



Q-value as it extends into the future. This guarantees the con-
vergence of Q-values to a finite limit [21]. Through iterative
updates, the Q-values converge to the optimal Q-function,
Q∗(s, a) (1), indicating the attainment of an optimal policy.

The to be learned task, is often broken up into episodes. An
episode refers to a complete sequence of interactions between
an agent and its environment. It starts with the agent being
in an initial state and progresses through a series of actions,
transitions to subsequent states, and receiving corresponding
rewards. The episode concludes when the agent reaches
a terminal state or a predefined stopping condition. Each
episode provides an opportunity for the agent to learn from
its experiences and refine its decision-making process to
achieve optimal performance.

III. METHODS

This section describes the developed method for co-
learning a physically embodied task in a human-robot team.
This is done by introducing a set of design requirements
in subsection III-A. These requirements were used to pro-
vide guidance during the development of the method. Next,
subsection III-B describes, the specific task that is to be co-
learned in this method, and it explains why it is suitable
for an attempt at co-learning a physical embodied task in a
human-robot team. Lastly, subsection III-C explains how the
method and the learning algorithm is realized, as well as how
this makes the method meet the defined design requirements.

A. Design Requirements

To design our method, we defined five design require-
ments based on extensive literature research [16]. These
requirements are examined individually below. All five are
important with respect to achieving seamless co-learning,
as they outline the challenges of human-robot co-learning
in physically embodied tasks. Essentially, these design re-
quirements define the problem space to which the method
provides a solution, and cover all aspects of co-learning. In
other words, the design requirements are defined in such a
way that co-learning is present if they are met.

1) Dependencies: We aim to assure that an interdependent
relationship between the human and the robot is formed in
order to enable co-learning thought the cascading effect [13]
described in subsubsection II-A.1. This is done by ensuring
some hard dependencies between the human and the robot
and creating opportunities for soft dependencies to emerge
during the co-learning process, in order for interdependence
to grow. So the first requirement is:
R1 The method ensures hard dependencies and allows for

soft dependencies between the human and the robot, in
both directions.

2) Learning pace: Co-learning is most likely to succeed
when both agents learn at a similar pace, to avoid a dis-
balance in contribution over time. If one team member learns
faster than the other one, it might outperform it. This could
cause it to slowly lose its motivation for soft-dependencies,

as it is better off doing it alone than being dependent on its
inferior team member. It could also cause a hierarchy in the
team that could be harmful for the interdependence [15]. Our
second design requirement therefore states:

R2 The Robot has the ability to learn at the same pace as
the human team member.

3) Shared Goal: A design requirement that ensures that
both team members have the same goal [10], [13], [15] is
crucial to make sure that the agents converge to congruent
strategies as outlined by Figure 2. This can be done by
rewarding both team members based on their collaborative
performance.

Furthermore, to allow for the development of various
strategies and team dependencies throughout the learning
episodes, we avoided overly constraining the team’s learning
process by only rewarding the team at the end of each
episode and not giving any intermediate rewards. In other
words, giving the team complete freedom in their choice of
policies, and only rewarding the team based on their end re-
sult, encourages them to find strategies and soft dependencies
that work for them, contributing to their interdependence as
a team. We capture this in the design requirement:

R3 Both the human and the robot are rewarded similarly,
based on their collaborative performance.

4) Adaptability: In co-learning it is important that the
robot algorithm stays adaptable to change. This is because
the human team member also learns and might therefore
change its behavior later on, with the possible effect that
certain state-action pairs, that previously were discarded,
now should be preferred due to the change of policy by
the human. To enforce this, we defined a requirement that
ensures that the robot always keeps exploring, to maintain
its adaptability to changing human behavior.

R4 The RL algorithm can continuously adapt its behavior
during all stages of the learning process.

5) Observability: Lastly, observability should not be over-
looked, as it is one of the fundamentals for predictability
and directability [13], [9]. This requirement states that the
robot algorithm should be able to observe the state and
actions of the human team member. When looking from a
broader perspective, however, not only the RL agent should
have observability, but both team members should be able to
observe each other for co-learning to be possible.

Moreover, both agents should meet this criterion to a
similar extent to avoid hierarchical inequalities within the
team. For example, when the robot is barely able to observe
the human, but the human can fully observe the robot, an
imbalance might impair the equality in the team. This leads
to the fifth design requirement that facilitates communication
and avoids any hierarchical imbalances.

R5 The human and the robot must be able to observe each
other’s state and actions, and neither should have any
observability advantages.



B. The Task

To develop this co-learning method a suitable task had to
be designed first. We decided that a human-robot handover
task [22], [5] was most appropriate. Passing an object in-
volves multiple elements where soft dependencies can arise.
For instance, the position and orientation at which the object
is handed over need to be predicted or learned. As described
in section I, another example of a soft dependency that can
arise, is that the team can learn either of the following
strategies: a) the robot drops the object while the human
holds its hand up, or b) the robot conveys the object close
to the human until the humans seizes it.

To coordinate this specific moment, where the responsi-
bility of not dropping the object, switches from one to the
other agent, the agents must by definition collaborate, to
successfully complete the task. This ensures that, additional
to the soft dependencies that can arise here, a mutual hard de-
pendency is embedded in the task itself. This is what makes a
handover task stand out compared to other collaborative tasks
that are often seen in HRC, such as for instance polishing
[23], [24], sawing [25], and or assembly tasks [7], [26]. Thus,
handing over an object between a human and a robot very
suitable to meet R1.

Additionally, the task of handing over an object is rel-
atively short and can either succeed or fail. It is ideal for
rewarding the team based on their collaborative performance
(R3), and, as it is a short task, the team can rehearse the
task often in a short amount of time. Therefore, the robot gets
often rewarded, allowing it to update its policy regularly. This
contributes to requirement R2, as it improves the learning
pace of the robot.

Moreover, this type of task allows for various implemen-
tations depending on the circumstances and context. This
gives it the opportunity to be shaped to meet the other
requirements, such as R5. In this subsection, explains how a
handover task is developed for achieving physical co-learning
in human-robot team.

To accommodate R1 even better, the task was designed
in a way that responsibilities are divided over both agents,
creating dependencies between the human and the robot.
Some of these responsibilities are given to a specific agent by
design, to ensure hard dependencies. Other responsibilities
will still have to be distributed by the agents themselves
during the learning process, creating the opportunity for
soft dependencies to arise. This was done by carefully
designing the capabilities of both agents during the task.
These capabilities include their possible actions and their
ability to observe the environment. The design of these
capabilities is based on all the design requirements. In this
subsection, the details of the handover task that the human-
robot team will learn in the developed method is explained.
First, subsubsection III-B.1 describes the capabilities of the
robot, which are determined by its state-action space. Next,
subsubsection III-B.2 explained how we established a fixed
set of capabilities for the human, by creating a secondary task

that limits the human ability to act as well as their ability to
observe the environment.

1) State-Action space (Robot): To meet R2, the state-
action space of the RL agent should be designed as such
that it enables a sufficient learning pace for the RL algorithm.
Foremost, we want to keep the state-action space as small
as possible. Since a Q-value has to be determined during the
learning process, for each possible state-action pair, in order
to learn which action to take given what state, as explained in
subsection II-B. This means that the amount of to be learned
Q-values is equivalent to the amount of possible actions times
the amount of possible states. Thus, by keeping the state-
action space small, we can reduce the amount of Q-values
that have to be learned and therewith, decreasing the amount
of trials needed to learn the value function, and increasing the
overall learning pace. Moreover, having less Q-values overall
increases adaptability, as fewer Q-values have to change in
order to change the policy. This contributes to R4.

We designed the capabilities of the robot as such, that
it has the minimum amount of states and actions needed
to complete the task. These actions are a set of seven
predetermined movements, and the states are a set of four
binary conditions, visualized in Figure 3. The states describe
the information about the human team member that is needed
for the robot to select its actions. In other words, the states
provide the robot with observability (R5). Furthermore, the
handover task is broken down into three distinct phases. In
each phase, the robot has different capabilities (states and
actions) as shown in Figure 3. The three phases and their
corresponding states and actions are described next.

The first phase describes the start of the handover. Here,
the robot needs to learn when to start handing over the object.
During this phase, the robot can only observe whether the
hand of the human team member is in the workspace of
the robot. Only when the human hand is in the workspace,
the human should be ready to receive the object. The robot
has two actions to choose from during this phase, it waits
until the state changes, or it can move the object towards
the human with the action Go to human. During this phase,
the first hard dependency is created: the robot must start the
handover process. It should, however, wait with doing this,
until the human is ready to receive the object. If the robot
starts the handover sequence too early, the human won’t be
able to take the object, resulting in a failed episode.

When the robot took the blue action (Go to human), it
switches to the second phase of the task. This is a short
phase, during which, the robot is moving towards the human.
While moving, it decides on the orientation it will use to
handover the object. The robot will base this decision on the
orientation of the human hand only. The robot can choose
between two predetermined orientations: it can provide the
object with the palm of the robot hand facing up (Serve),
so that the human can take it out, or it can do it with the
palm facing down (Drop), to drop the object into the human
hand. This phase allows for a soft dependency to arise, as



Fig. 3: A flow diagram that shows the capabilities of the robot throughout
its three phases. These capabilities include its binary states (shown as
rectangles) and its actions (shown as ellipsoids). Actions are red when
they do not affect the environment, and blue when they result in the robot
advancing its phase. The yellow action influences the yellow state, as shown
with the yellow dotted arrow.

this orientation is not crucial for a successful handover, but
it might make the collaboration more smooth. Furthermore,
either the human can adapt to whichever orientation the robot
prefers due to prior coincidence, or the robot can learn how
to adapt to the orientation of the human hand, for a smooth
handover. This creates an opportunity for predictability or
directability [9], [13] for either team member, accommo-
dating the interdependence in the team, as explained in
subsection II-A.

After either action in phase 2, the robot will move on to
phase 3. In this final phase of the task, the focus is on the
moment of handover itself. The robot needs to learn when
and how far to open its hand, while the human needs to grasp
or catch the object to prevent it from falling. The human can
influence the robot’s behavior by pulling on the object and
displacing the end-effector. Furthermore, an additional state
describes whether the robot has its hand still fully closed
or if it already opened its hand partially. This combination
of capabilities presents opportunities for multiple strategies
and soft dependencies to emerge. For example, the robot
can learn to wait until the end-effector is displaced before
opening its hand to ensure that the human is already holding
the object when the robot lets go. Alternatively, the robot
can learn to open its hand enough to allow the human to
take the object out without dropping it. A third interaction

pattern that can emerge, is that the robot learns to open its
hand first partially, before it fully lets go of the object. That
way, it can communicate that it is about to open its hand
fully, directing the human to catch the object.

Additionally, the robot always starts each episode in the
initial state and a final state. The initial state describes that
no state changes have been detected, in other words, nothing
has happened in jet. It ensures a steep learning pace at the
beginning of the learning process, as it makes gives the robot
the ability to learn that all actions except for Wait for state
change should not be taken when no changes are observed
in the environment. This initial state is observable though all
the phases, to help the robot make the connection between
failure at the end caused by errors made at the beginning. The
final state describes whether the handover was successful or
not.

2) Secondary task (Human): A secondary task was intro-
duced for the human to bridge the gap between the human
and robot capabilities, and to create a reason to get an object
handed over in the first place. The secondary task is an
engaging game-like task, that can only be completed if the
human has received the object in time. This secondary task
fulfills three functions:

Firstly, the secondary task has to give the human incentive
to complete the task. In other words, it should reward the
human for the collaborative performance, to ensure a shared
goal (R3).

Secondly, the secondary task creates a motive for the
human to get the object handed over from the robot. In other
words, the human must not be able to get the object themself,
so they need the robot to give it to them. This completes the
hard dependency (R1), that kick-starts the cascading effect
of soft dependencies described in subsubsection II-A.1.

Lastly, the secondary task should compensate for the su-
perior observability of the human, to prevent an observability
advantage (R5).

The human continuously needs one hand for the secondary
task to has to track an asteroid on a screen. To do this
correctly, they also can not look away from the screen. The
human is incited to deflect this asteroid to complete the
game, for this to be possible, however, they need a physical
object that serves as a projectile. They cannot get up and
get the object themself, as they need to keep tracking the
asteroid on the screen as well to not fail the task. During
the first part of the game, the human needs to keep its
second hand on a button, until a loading bar is filled (see
Figure 4a). As soon as this bar is full, the human can let
go of the button, and the human hears a timer starts to
tick down. This timer is visualized as a red bar, that slowly
decreases until it is empty (see Figure 4b). In this part of the
game, the human has 20 seconds to receive the object from
the robot, and it is still tracking the target on the screen
to compensate the human’s observability. When the team
succeeds, the human gets rewarded with the same score as the
robot, which is the amount of seconds left, +10 for success
(see Figure 4c). Otherwise, the human will, like the robot,



(a) Human needs two hands (b) 20 seconds to complete task

(c) Reward if success (d) Reward if failed

Fig. 4: A storyboard of the visualization of the secondary task

be rewarded negatively (see Figure 4d). Auditory feedback
is provided, in addition to the reward screens, to engage the
human even more. The reward function used to reward the
robot is explained in subsubsection III-C.2.

C. Robot RL Algorithm

After an extensive comparison of multiple RL algorithms
[2], [27], [28], and their suitability for embodied human-
robot co-learning applications in prior literature research,
we chose to extend and adapt a Q-learning algorithm [21],
because Q-learning is a robust RL technique, it is often used
in the domain of social robotics [29], [30], [31], and specif-
ically co-learning [10]. Furthermore, Q-learning can easily
be adapted and fitted to the task at hand. The Q-learning
based algorithm is adapted using decomposition techniques
based on MAXQ value decomposition [32] and extended
with eligibility traces [33] to specifically meet the design
requirements from subsection III-A. In this subsection, it is
explained how the algorithm that enables the robot to learn
works, and what design choices were made to make sure the
design requirements are met.

1) Decomposition: There are more ways to decrease the
amount of Q-values, without decreasing the amount of states
or actions. The hierarchical RL algorithm MAXQ value
decomposition [34], for instance, uses value decomposition
to decompose the learning problem into multiple smaller
problems with a hierarchical structure, resulting in faster
learning [35]. Furthermore, splitting the problem into smaller
problems can also increase adaptability [32], as the policy
of one phase of the learning problem can change without
affecting the policies of other phases.

The three phases in our task (see Figure 3) are sequential
instead of hierarchical, meaning they can not be decomposed
using Diettrich’s [34] hierarchical value decomposition. The
idea, of decomposing the problem, is based on the concept
that not every state variable is important during every phase

of the task. As explained in subsubsection III-B.1, this
concept is very applicable in our sequential problem. So,
instead of using MAXQ value decomposition, we decom-
posed the learning problem into three sequential Q-learning
problems, each with its own Q-table, creating the same effect
of decreasing the amount of Q-values without affecting the
amount of actions and state variables. In other words, we
base the Q-values not only on state (s) and action (a) alone,
but also on phase (ϕ). Which mathematically looks like this:

Q∗(ϕ, s, a) = E[R(ϕ′, s′) + γmax
a′

Q∗(ϕ
′, s′, a′)] (2)

In our case, for instance, we decomposed the start of the
task into two steps. First, the robot has to decide when to
start the passing process, then it chooses in what orientation
it should provide the object to the human. The robot could
make this first decision based only on whether the human
is ready to receive the object. While in this second phase,
the robot could base the orientation at which it provides
the object, only on the orientation of the human’s hand. In
table Table I and Table II the shape of the Q-tables, and
the amount of Q-values in both scenarios are displayed. In
these scenarios, the robot can observe two binary states as
explained in subsubsection III-B.1: it can measure whether
the human hand is in the workspace, and if the human hand
palm is facing predominantly up or down. Based on these
states, the robot can effectively choose from three actions:
it can wait and do nothing until the state changes, or it
can provide an object near the human either in the Serve
orientation or in the Drop orientation. In the first scenario,
where the two phases are not decomposed, the state-action
space is covered by 12 Q-values as shown in Table I.
In the second scenario, the robot first decides whether it
should wait, or go towards the human, effectively starting the
passing process. During this movement, it can immediately
decide in what orientation it will provide the object, based
only on the orientation of the human hand. So, as shown
in Table II, even though an extra action was added, this
decomposition reduced the amount of Q-values to be learned
from 12 to 8.

TABLE I: Size of Q-table without decomposition of phase 1 and 2

Phase 1 + 2 In WS
Palm up

In WS
Palm down

Not in WS
Palm up

Not in WS
Palm down

Wait Q1 Q2 Q3 Q4

Orient. A Q5 Q6 Q7 Q8

Orient. B Q9 Q10 Q11 Q12

TABLE II: Size of Q-tables with decomposition of phase 1 and 2

Phase 1 In WS Not in WS
Wait Q1 Q2

Go Q3 Q4

Phase 2 Palm up Palm down
Ori. A Q5 Q6

Ori. B Q7 Q8

In other words, by decomposing the task, we provide the
robot with some information about which state variables are



important during each phase of the task. Without this decom-
position, the amount of Q-values would be 112, as there are
four binary states and seven actions (see Figure 3) and all
combinations needed to be accounted for. The decomposition
reduces this number to 20. This significantly decreases the
scale of the learning problem, increasing the overall learning
pace and adaptability of the RL agent, consolidating the
method to meet R2 and R4.

2) Reward function: Design requirement R3 states that
both agents get rewarded based on the performance of the
task and that both agents get rewarded similarly to ensure
they have the same goal. In the task of our method, this
goal is successfully completing the handover task without
dropping it. So, both agents receive either positive or negative
feedback at the end of the episode. This feedback is based on
whether the task was completed successfully as well as the
time that was left to do so. As explained in subsubsection III-
B.2, this time limit prevented the possibility for the team
to do nothing to avoid failure. So, to mimic this in the
reward function of our RL algorithm, it receives a positive
reward (+10) when the task is completed successfully, and
negative (−10) when the task fails. Additionally, when the
task succeeded, the amount of seconds left to complete the
task, was added to the positive reward. As the team was
given 20 seconds to do so, the positive reward would always
be between +10 and +30. To accommodate R3 even more,
the human would see this same reward as a score given for
the completion of the task. In Q-learning, however, the Q-
values get updated after each action, and not just when the
episode is completed. So, this function is extended with a
small punishment for each action. This prevents a policy
where the robot gets stuck in a loop, taking the same action
over and over again.

3) Eligibility traces: Rewarding our Q-learning algorithm
only at the end of each episode, however, creates two
problems that are both solved with eligibility traces [33],
which are described below.

The first problem is most actions will get a delayed reward
[36]. This means that because only the last state-action pair
before completion will get rewarded, only this Q-value is
associated with that reward. It would then take a new episode,
to reach the same final state, for the second-to-last Q-value to
get updated accordingly. This is because each Q-value gets
updated based on the reward received after the corresponding
action and the maximum Q-value of the reached state, the
cumulative future reward, as explained in subsection II-B and
shown in (1). This is a problem for both R2 and R4, as it
takes multiple episodes to learn the connection between the
received reward and earlier state-action pairs.

The second problem is that this cumulative reward is
calculated as the maximum Q-value of the reached state.
This causes a problem, because we decomposed the learning
problem, and a reached state is not necessarily influenced by
the previous state-action pair, when the last action causes the
agent to go to the next phase. For instance, when the robot
takes the action Go to human in phase 1, it goes to phase

2 (see Figure 3). Now, the reached state only describes the
orientation of the human hand, and tells the robot nothing
about whether the human is in the workspace. So, when
this action was wrongfully taken, when the human is not
in the workspace, this state-action pair can still be rewarded
positively, because any of the actions in the reached state
could have a great Q-value due to success in an earlier
episode.

Using eligibility traces [33], the algorithm keeps track of
all state-action pairs reached during the episode. At the end
of each episode it additionally updates all the corresponding
Q-values based on the reward received. This does not only
speed up the learning process, but it also makes sure that
mistakes made in early phases of the task also get rewarded
negatively in case of an unsuccessful episode [37].

An eligibility trace is a trace of all the previously visited
Q-values. These traces are stored in a table for each state-
action pair in each phase S(ϕ, s, a). All values for the
eligibility initiate as zero at the beginning of each episode.
Every time an action is taken, the corresponding value for
the eligibility of that phase-state-action combination is set to.
Then, all other values are reduced by the discount factor γ
(explain in subsection II-B) and the eligibility factor λ, that
determines how much previously visited Q-values should be
updated with respect to the last Q-value:

S(ϕ, s, a) = γλS(ϕ, s, a) ∀ S(ϕ, s, a) (3)

In Q-learning without eligibility traces only the last Q-
value is updated after a taken action. With eligibility-traces
however, all Q-values are updated after every action, based
on the eligibility S(ϕ, s, a). To do so, we first calculate what
would have been the updated Q-value for the last phase-
state-action combination Q̂(ϕ, s, a) shown in (4a), using to
the decomposed Bellmann equation (2). Then we use Q̂ to
calculated the update-value ∆Q (4b):

Q̂(ϕ, s, a) = R(ϕ′, s′) + γmax
a′

Q(ϕ, s′, a′) (4a)

∆Q = Q(ϕ, s, a)− Q̂(ϕ, s, a) (4b)

This update-value (∆Q) is then used to update all Q-values
based on their eligibility. As shown in (5):

Q(ϕ, s, a) = Q(ϕ, s, a) + α∆QS(ϕ, s, a) ∀ S(ϕ, s, a)
(5)

The learning rate α is a value between 1 and 0 and it is
used in the update equation, to determine to what extent new
experiences override what has been learned all ready.

4) Epsilon decay: The algorithm uses epsilon decay to
address the balance between exploration and exploitation,
or greediness. When the robot explores, it picks a random
action, while when exploiting, it takes the action that corre-
sponds to the highest Q-value as explained in subsection II-B.

A parameter ϵ portrays the chance that the agent explores.
By starting with a high ϵ, the algorithm explores fast at
first, after which a lower ϵ lets the algorithm explore more
around the higher Q-values. Normally, when the optimal



policy is found, ϵ could decay all the way to zero, so the
algorithm would only exploit its learned policy. When the
algorithm should however stay adaptable during all stages
of the learning process (R4), the system can never stop
exploring. Therefore, ϵ should never decay all the way to
zero.

It was iteratively found during multiple pilots that 20%
changes of exploration was low enough to stay adaptable,
while it also ensured predictable behavior. Note that because
the robot always has only two or three actions to choose
from, it would still have a significant probability of taking
the action with the highest Q-values when picking an action
at random.

Alternatively to ϵ-decay, there are other strategies to deter-
mine the greediness of the algorithm, such as the Boltzmann
strategy [38], or the frequency maximum Q-value (FMQ)
heuristic [39]. These strategies can outperform traditional ϵ-
decay on multiple aspects, as is shown by Kapetanakis et al.
[39]. However, all these alternatives are designed to converge
to a greedy policy after a while, which is not beneficial
for the adaptability in later stages of the learning process.
Rendering them unsuitable for our algorithm.

ϵ =

{
max(γϵϵ, 0.2) if R < 0 ∨ ϵ > 0.5

min( 1
γϵ
ϵ, 0.5) if R > 0

(6)

In (6) it is shown how are epsilon changes over the
episodes. R in these equations represents the reward at the
end of an episode that is either negative or positive and γϵ
represent the epsilon decay rate. Epsilon starts at a value
of 1, to guaranty exploration when no policy is learned yet.
Epsilon then slowly decays during the first seven episodes
until it reaches a 50% change of exploration (γϵ = 0.9).
Then, during the rest of the episodes, epsilon is changes in
such a way, that when the team has a high success rate,
the robot has a higher chance to exploit its current policy.
While when the team experiences more failure, the chance
of exploring grows.

After the initial decay ϵ changes in such a way, that when
the team has a high success rate, the robot has a higher
chance to exploit its current policy. While when the team
experiences more failure, the chance of exploring grows. (6)
ensures that 0.2 ≤ ϵ ≤ 0.5. The exploration rate was capped
at 50% to ensure predictable behavior, even when multiple
episodes failed in a row.

IV. EXPERIMENTAL DESIGN

We conducted an experiment to test whether the newly
developed meets the design requirements. Furthermore, our
aim was to gain new insights about their effects on the team
interdependence and co-learning. We tested our method by
trying to establish co-learning in six human-robot teams. To
learn how these different aspects of co-learning are related
to the design requirements, multiple scenarios should be
compared, as the development of different aspects of co-
learning can be different for every human-robot team. In
other words, we tested our method of co-learning in multiple

human-robot teams, to learn how interdependence and other
aspects of co-learning are achieved as an effect of the
composed design requirements.

A. Setup

The chosen hardware setup (shown in Figure 1) consists of
the KUKA iiwa7 LBR800 robotic arm and the qb-softhand,
which fostered a safe environment for the human participants
to engage in co-learning with the robot. This setup enabled
collaborative capabilities, such as the ability to measure
physical interactions, and force limitation for safety.

The KUKA iiwa7 LBR800 robotic arm was chosen as it is
designed to work alongside humans. It incorporates torque
sensors in each joint, allowing the robot to perceive external
forces, ensuring a save and responsive collaboration during
physical interactions between the human and the robot.

The qb-softhand is attached to the robotic arm, providing
a versatile grip. This hand allowed the robot to grasp and
manipulate objects effectively during the experiment.

To provide observability to the robot and measure human
actions, the OptiTrack motion tracking system was employed.
We attached reflective markers to a glove that is worn by
the human, which were tracked online by multiple cameras.
Specialized software uses triangulation to calculate the po-
sitions of these markers, and thus the pose of the hand of
the human participants, in 3D space in real-time. This pose
is then used to determine the state and actions of the human
team member, as can be seen in Figure 3.

Furthermore, the human uses a mouse and a keyboard to
perform the secondary task as explained in subsubsection III-
B.2 and is provided visual and auditory feedback from a PC.

The separate hardware systems, are each monitored and
controlled by separate scripts that run asynchronously on
multiple machines. A main script, running the learning
algorithm, controls these separate systems, using the publish-
subscribe model of ROS, integrating the whole system to-
gether as one RL agent.

B. Experiment

Before the experiment, we first explained to each partic-
ipant the goal of the task and the secondary task. Next, we
showed them how the robot moves. Each participant got the
chance to interact physically with the robot to get familiar
with the setup. This was done, to show that the chosen
hardware was safe to interact with, and to make the human
feel safe and at ease collaborating in the same workspace as
a strong robotic arm. During this familiarization, however,
the action space of the robot was purposely not shown, as
this was something that the human should learn during the
co-learning. Next, when the participant was asked to wear
the sensorized glove, it was shown that the cameras are used
to observe this hand, but similar to the action space, nothing
about how this observable pose was annotated as the state-
space of the robot was explained beforehand. In other words,
the human would have to learn during the experiment, what
movements of their hand could be used to communicate with
the robot.



Once the participant was familiar with the setup and un-
derstood the assignment, the experiment started. The human-
robot team were allowed to learn the task in four sets of 10
minutes. During the experiment we collected data such as
the task performance of each episode and the development
of the Q-values of the robot. After each set, the participants
filled in a questionnaire on human-robot fluency [40] to
capture their perception of performance and interdependence,
and how it changed over time. The whole experiment was
also recorded on video to be able to analyze certain events
or interaction patterns that occurred during the experiment.
At the end of the four sets the human was interviewed to
qualitatively capture their goal, strategies and understanding
of the behavior of the robot. The interview was also held
to better understand what was learned by the human and
to apprehend how certain aspects of the developed method
contributed to the interdependence of the team.

C. Metrics

To understand what happened during the experiment, and
to be able to visualize this data, we created six metrics:
Performance rate, Human perception, Strategies, Relative
liability, Action preference and The Interview. Each of them
is explained in the following subsubsections. Note there are
infinite many ways to co-learn, and that these metrics are
meant to be evaluated qualitatively. The results will have to
be interpreted and discussed case-by-case, in order to identify
whether co-learning, and interdependence was present in the
team.

1) Performance rate: The first metric is introduced to
describe the collaborative performance of the team over time.
This metric describes the success rate of the team during
each 10-minute session. It is expressed as the percentage
of successful episodes with respect to the total amount of
episodes during that session:

Performance rate =
Amount of successful episodes

Total amount of episodes
100%

(7)
This metric is used in Figure 6.

2) Perception of human-robot fluency: To describe how
the human experiences collaboration and performance, a
questionnaire on human-robot fluency [40] was filled in by
the participants after each 10-minute session. This question-
naire contained 15 questions related to the following six
categories:

1) Collaboration Fluency
2) Relative Contribution
3) Trust in the Robot
4) Positive Teammate Traits
5) Perception of Improvement
6) Perception of Shared Goal

Every question posed a statement, for instance: ”The human-
robot team improved over time”, on which the participants
used a seven-point Likert scale to indicate whether they
felt the statement was true. The scale went from strongly
disagree (1) to strongly agree (7). The overall metric for

the perception of human-robot fluency was obtained by an
average of these six sub-metrics. The complete questionnaire
is shown in appendix C. This metric is used in Figure 6.

3) Strategies: As described in section III the method is
designed such that multiple strategies could lead to success
and to encourage the emergence of soft dependencies. To
demonstrate this ability (R1) as well as the adaptability of
the robot (R4), we distinguish three strategies that can be
used by the team to determine the exact moment where the
object is transferred:
S1 The robot lets go of the object, trusting the human will

catch it.
S2 The human pulls on the object, letting the robot know

it can let go.
S3 The robot opens its hand partially, letting the human

take the object.
These strategies are identified, based on the state-action
combinations that the robot was provided in phase 3 (see
Figure 3)

In the first strategy (S1), the robot has no conformation,
that the human is ready to grasp the object. The robot just
opens its hand and depends on the human to catch the object.
In the second strategy (S2), the robot first confirms that the
human is holding the object before it releases the object. It
does this by measuring the displacement of the end effector,
so the human has to exert some force on the object to let
the robot know it can release the object. In the last strategy
(S3), the robot does never open its hand completely, as it has
learned that when it opens its hand partially the participant
will take the object out when they are ready.

In each successful handover, exactly one of these three
strategies must be chosen, as there are no other ways to
transfer the item. We distinguish this for each successful
handover using algorithm 1. In Figure 5 each successful
handover is allocated to one of the three strategies. The
strategy can be determined based on the last state-action pair
of each successful episode:

Algorithm 1 Distinguish strategy in phase 3
for episode, i ∈ Successful Episodes do

if last actioni ̸= Open Hand Fully then
strategyi ← S3

else
if last statei = End-effector displaced then

strategyi ← S2
else

strategyi ← S1
end

end
end

4) Relative liability: This metric describes the proportion
in which the team members caused the episodes to fail in
each 10-minute session. This metric visualizes the relative
learning pace of both agents, since when the learning pace



is similar, this proportion should stay the same over time.
If an agent learns faster than their team member, there is a
shift in relative liability because the proportion of mistakes
made by the superior agent goes down.

The relative liability is defined, by determining for each
failed episode which agent made the mistake that caused the
episode to fail. This is represented as a percentage of the
total amount of failed episodes in that 10-minute session.
This metric is used in Figure 7.

The robot is responsible for a failed episode when the
object was not passed within the allocated time, while the
human does try to signal the robot. Or when the robot
dropped the object without the human touching it. For other
reasons of failure, the human is said to be liable. These
reasons include mistakes made in the secondary task.

5) Action preference from Q-values: This metric describes
the specific policy of the robot in phase 2 of the task
(Figure 3). In this phase the robot can measure two possible
states: Palm up, Palm down, that describe the orientation of
the human hand. Based on the state, the robot can choose
between two actions that determine the orientation in which
it provides the object: Drop and Serve. This means, there are
four possible state-action pairs, as visualized in Table III.

TABLE III: Q-table in phase 2

Phase 2 Palm up Palm down
Drop Q(sup, adrop) Q(sdown, adrop)
Serve Q(sup, aserve) Q(sdown, aserve)

This Q-table describes the policy of the robot in phase
2. When Q(sup, adrop) is higher then Q(sup, aserve), for
example, the robot will choose action Drop when the state
is Palm up. To visualize this preference (Ps), for each state
over time, the difference between the Q-values for the two
actions is calculated for each state s, as shown in (8):

Ps = Q(s, adrop)−Q(s, aserve) (8)

When Ps is positive, the robot prefers the action Drop, and
when it is negative, it will choose Serve in state s. This
metric is used to indicate adaptability of the robot in team
A in Figure 8. In appendix B the same figure is displayed
for the other teams.

6) Interview: The last metric is a qualitative interview
that was held with each of the participants after the last
learning session. In this interview, we ask the three following
questions:
Q1 Please indicate what your objective was during the

learning process.
Q2 Describe the different strategies that you used, and how

did this change over time.
Q3 Did you rely on a specific strategy of the robot?

The first question was asked specifically to investigate
whether the goal of the human correspond to the goal of
the robot, so it could be indicated whether the team had a
shared goal R3.

The aim of the second question was to find if the human
explored different strategies during the learning process, and
more specifically whether it converged towards preferring
one strategy over other strategies.

Using the last question, we aimed to find whether the
human experienced soft dependencies, and therefore allowed
for interdependence to grow as explained in subsubsection II-
A.1.

After each question, follow-up questions are asked to start
a conversation on the topic. This helped to create a more
complete answer to each of the questions.

V. RESULTS AND INTERPRETATION

In this section, we present the results of the experiment by
analyzing whether each design requirement is met for each
human-robot team. This is summarized in Table IV. Each
subsection represents a requirement

Note, that we take a qualitative instead of a statistical
approach. The motivation for this choice is that co-learning
is an open-ended process where the same aspects can man-
ifest in many different ways, due to the multiple possible
strategies that can be taken by the team. Therefore, case-
by-case qualitative analysis is required to identify and study
these particularities, which would otherwise not be visible in
statistical analysis.

TABLE IV: Overview of each requirement and whether it was met during
the experiment in each team. Additionally, the bottom row shows whether
the results indicate that co-learning took place during the experiment. The
content of the bottom row is discussed in section VI.

Teams A B C D E F

R1 - Dependencies D D D D - D
R2 - Learning pace D D - X D D
R3 - Shared Goal X D D - D D
R4 - Adaptability D D - D - D
R5 - Observability D D X - D D
Co-learning D D - - - D

A. Dependencies (R1)

Different individuals prefer different strategies. Figure 5
shows that the method enables different teams to learn dif-
ferent strategies. Team A, for instance, converges completely
to strategy S1, while teams B and D learned that this strategy
did not work for them.

Post-experiment interviews revealed some important un-
derlying insights about the development of the strategies
during co-learning. Participants A and C stated that they
did not want to take the object from the robot without its
permission in an attempt to maintain the trust of the robot.
This complies with the quantitative data that shows that
strategy S3 was not preferred in these teams. By actively
not choosing this strategy, the human depends on the robot
to open its hand completely for the task to be completed.
This clearly shows an establishment of a soft dependency
between the human and the robot that is beneficial for the
relationship of the team.



Fig. 5: The distribution of the three different strategies in phase 3 that could
lead to a successful handover. This figure shows how the preference for these
strategies changes over time. The three interaction patterns are as follows:
S1: The robot lets go of the object, trusting the human will catch it.
S2: The human pulls on the object, letting the robot know it can let go.
S3: The robot opens it hand partially, letting the human seize the object.

Similarly, all three strategies, are paired with soft depen-
dencies. This means that soft dependencies arise during the
learning process, when a team converges to preferring one
specific strategy. It can be seen in Figure 5 that in all teams
multiple strategies were explored. In teams A, B, D and F, it
is clear that there was convergence to one specific strategy
during the experiment. Thus, soft dependencies emerged in
these teams.

Team E is the only team which kept executing all strategies
until the end of the experiment. So both team members never
fully committed to being completely dependent on the other
one. Making it the only team where it is inconclusive whether
design requirement item R1 is met.

B. Learning pace (R2)

This design requirement prescribes that the robot should
be able to learn at a similar pace as the human. In Figure 7
it can be seen that in all teams except teams C and D, the
ratio of who was responsible for episodes to fail is constant
over time. This means that in these teams, the learning pace
of the human and the robot are similar. If one agent would,
for instance, learn faster than the other agent, we should see
a shift in this proportion over time, until the other agent is
responsible for almost all the mistakes.

This happened in team D during the first 3 sessions, where
the robot could not keep up with the learning pace of the
human. Hence, Table IV shows that this requirement was not
met in team D. Moreover, the learning pace of the human

Fig. 6: Overview of co-learning and performance. The red line shows the
collaborative performance of each team, which is objectively measured as
the success rate during each 10-minute session. The blue line shows the team
fluency perceived by the human, which is measured with a questionnaire
[40] after each session.

Fig. 7: The percentage of how many times each agent was responsible for
failing an episode during each 10-minute session is shown for each team.
The rate of failure of the robot can be read on the left axis, while the human
failure rate is displayed on the right axis

was still faster than the robot during the fourth session, even
though Figure 7 implies that the robot made a recovery. The
reason this proportion drops back towards 50%, however, is
that the human started to deliberately fail the task to actively
train the robot to prefer strategy S2 (see Figure 5), as they
mentioned in the interview. This can also be seen by the
sudden decrease in performance rate during this session in
Figure 6.

In team C, a significant shift in the proportion of liability
can be seen in Figure 7. The robot improved its policy, faster
than the human did. When we combine this information with



the fact that the team barely improved their performance
during the four sessions (see Figure 6), we can deduce that
the human did not improve its policy at all. Therefore, no
conclusion could be drawn about this requirement for this
team.

C. Shared Goal (R3)

This design requirement is met if both agents share the
same goal. As the robot gets rewarded based on collabo-
rative performance only, its mere goal, is to improve this
performance. One of the interview questions was specifi-
cally targeted to identifying what the goal of the human
was. Participants B, C, E and F indicated that their goal
was to complete each episode without dropping the object.
Participants B and F even indicated that they had a secondary
goal of improving the time in which they succeeded, to
optimize their score. Therefore, it is shown in Table IV that
requirement R3 is met in these teams.

Participants A and D, on the other hand, indicated that
their main goal was not necessarily to succeed at the task but
mainly to train the robot to follow their preferred strategy.

Participant A said that this was their main objective during
the whole experiment. For instance, they never let the task
succeed if the robot did not let go of the object. This is why
strategy S3 is never seen in team A in Figure 5. Additionally,
in Figure 6 it can be seen that the human perception is
constantly higher than the team’s actual performance. This
can be explained by the fact that the human met their
objective of influencing the robot’s behavior, at the expense
of the robot’s goal of succeeding at the task. Resulting in
both agents perceiving different rewards.

Participant D, on the other hand, indicated during the
interview that they changed their objective between the third
and fourth session. First it matched the objective of the robot,
while during the last session their goal was only to train
the robot to their preferred strategy. Their goal changed,
as participant D explained in the interview, because when
they realized that the robot used trail-and-error learning, they
knew they could influence the robot’s behavior by conse-
quently rewarding desired behavior and punishing undesired
behavior. At this moment, this participant suddenly changed
their behavior, resulting in the performance drop in the 4th
session (Figure 6) and the human deliberately failing the task
to train the robot (Figure 7). While this participant started
with the same goal as the robot, i.e., meeting requirement
R3, they changed their goal over time, resulting in the
requirement first being met and then not met, leaving R3
inconclusive in team D.

D. Adaptability (R4)

Requirement R4 is about the ability of the robot to adapt
its policy in all later stages of the learning process. In
Figure 5, it can clearly be seen that teams B, D and F made
a change in preferred strategy between the last two sessions
of the experiment. This shows that the RL algorithm was
able to adapt its policy as well to accommodate this switch
in strategy.

Fig. 8: The difference between the two Q-values for the actions Drop and
Serve is shown for team A. The value of this difference is plotted over
the episodes for the two states the robot can observe in phase 2. The two
actions determine the orientation in which the robot will convey the object,
and the states display the predominant orientation of the human hand, as
explained in subsubsection III-B.1. The difference between those two Q-
values shows which action is preferred during which state, as explained
in subsubsection IV-C.5 and (8). When this metric is negative, the robot
learned to choose the action Serve in that state, while above the gray null
line, it prefers the Drop orientation.

Adaptability of the robot in team A, is shown in Figure 8.
This figure is about phase 2 from Figure 3. The preference Ps

is positive for both states during the first two sessions of the
experiment. As explained in subsubsection IV-C.5 and (8),
this indicates that the robot has the strategy of dropping the
object in the hand of the human regardless of the orientation
of the human hand. However, just after the start of the third
session, this preference changed for the state where the hand
palm of the human is facing down (the orange state). This
shows that the requirement R4 was present in team A, as
the robot changed its policy during a later stadium of the
learning process.

In teams C and E, no specific adaption of the policy of
the robot occurred during the experiment. However, this does
not necessarily mean that the robot had no adaptability. That
adaptability did not show in this experiment, does not mean
that the robot is incapable of adapting to changing behavior
of the human. Therefore, these cells are left inconclusive in
Table IV.

E. Observability (R5)

The method allows both agents to observe each other
by design: The robot has multiple states that describe the
behavior of the human, as explained in subsubsection III-B.1
and Figure 3. A human naturally has the ability to observe
its environment, including the physical robot. Therefore, the
method enables observability for both agents by design. An
additional part of R5 is that both agents can observe each
other to a similar extent in order to prevent an imbalance in
the learning pace.

Figure 7 shows that there was no imbalance in learning
pace in teams A, B, E and F, as explained in subsection V-
B. The unequal learning pace in team C, however, was



caused by the fact that the human was not able to learn the
policy of the robot. This was a result of the human being
too occupied by the secondary task, resulting in non-similar
observability. There is, on the other hand, no evidence that
the unequal learning pace in team D was caused by non-
similar observability.

While the secondary task prevented visual observability,
as explained in subsubsection III-B.2, Figure 5 shows that
in teams B, D and F, the human preferred to rely on tactile
sensing to know where to grasp the object, as they do not
follow S1. Further investigation of the video recordings of
the experiment showed that participants A and E also relied
on tactile sensing to locate the object, they just did it subtle
enough to not displace the robot.

In short, in teams A, B, E, and F we can state that both
agents had observability, and that no unwanted imbalance
was caused. This means the requirement is met (see Ta-
ble IV). In team C the secondary task overcompensated the
observability of the human, causing this requirement not to
be met, while in team D the results are inconclusive.

VI. DISCUSSION

A. Identifying Co-learning

As explained in section I and shown in Figure 2 joint activ-
ity can be achieved in multiple different ways and co-learning
is an open-ended process with multiple possible ways that
can result in similar outcomes. Therefore, in section V, we
did a quantitative case-by-case analysis on the results and
development of strategies in each of the six human-robot
teams to identify each of five design requirements.

As explained in subsection III-A, the design requirements
are not only required to be met for co-learning to occur, but
they also represent the five aspects of co-learning. So, when it
can be shown that a team meets all the requirements, it can be
stated that the team was co-learning during the experiment.
Table IV shows that all the requirements are met in team B
and team F. Therefore, the results show that interdependence
and co-learning was present in these teams.

In team A, even though the human and the robot did not
have the same goal (R3), they still co-learned to improve
their collaboration and formed an interdependent relationship
in the process. Even though the requirement is strictly not
met, the aim of the requirement is still realized: As explained
in subsection III-A, having the same goal is important for
co-learning and the development of joint activity, because
in order to achieve joint activity, both agents must resort
to compatible strategies (as explained in Figure 2). The
reason R3 was not met in team A, is that the goal of
the human was to train the robot, while the goal of the
robot was to succeed at the task. In practice, however, these
goals overlap enough that there are still multiple strategies
congruent that reach both goals. Moreover, Figure 6 shows
an increase in performance over time, as well as a growth
in the participant’s perception of the fluency in the team.
These effects are both the result of the emergent of soft
dependencies, and development of joint activity that can be
interpreted from Figure 5 and Figure 8.

In team C, the human struggled to understand how to do
the task, and was not able to learn this within the given
time. Even though, the team was able to develop some
interaction patterns, and soft dependencies (R1). This still
resulted in multiple requirements that were not met. Making
it inconclusive whether this team was able to co-learn.

In team D, the human learned much faster than the
robot, which led to an imbalance in contribution over time
(Figure 7). Because of this, the human changed its motivation
over time. So even though co-learning might have been
present during the first sessions of the experiment, it did
not sustain during the last session. Thus, in team D multiple
design requirements were left inconclusive or were not met.
So we can not show that that interdependent co-learning was
present.

In Team E, we were not able to show that soft-
dependencies emerged during the experiment. Additionally,
Figure 6 does not show an increase in performance or
perception. Therefore, co-learning was not identified here.
However, changes in preferred interaction patterns over time,
can still be observed in Figure 5, even if they are not
substantial enough to prove that R1 or R4 were met, it does
not mean they are not met. Furthermore, Figure 7 shows a
balanced learning pace between the two agents. From this
we can conclude that the team was still learning after the
four sessions, and co-learning might have happened, while
the effects are not yet measurable.

In short, in three out of six teams, interdependent co-
learning could be identified by the results.

B. Limitations, and Future work

We can show that our developed method enables co-
learning. Figure 6 does however not show a significant in-
crease in performance for most teams. This can be explained
by the fact that the method is designed with the focus on
co-learning. The essence of co-learning is improving the
collaboration by creating an interdependence relationship
in the team. Improvement of performance is a result of
this. This means that co-learning can be present without
an immediate performance increase. We expect that when
the same experiment is done for a longer duration of time,
such an increase in performance should be measurable in the
teams where co-learning is identified. Therefore, in future
work, we will focus more on the long term effects of co-
learning in embodied human-robot teams.

Secondly, this method focuses mainly on enabling human-
robot co-learning by meeting theorized design aspects, as it
is the first step of conceptualizing embodied human-robot co-
learning. This means that, the individual effect and necessity
of each design requirement can not separately be shown with
this research. In team A we were for instance able to identify
co-learning despite R3 not being met, this suggests that this
design requirement might be less fundamental than the other
design requirements. Thus, quantitatively researching the
importance and impact of each of the design requirements,
is one of the next steps in understanding how co-learning
can be achieved.



Lastly, in the development of this method, we focused
mainly on creating an algorithm that allows a physically
embodied robot to co-learn, as humans already have inherent
capabilities that allow them to co-learn. However, in order
to better understand how co-learning between a human and
a robot can be achieved, it can be beneficial to explore how
the experience of the human affects the possibilities of co-
learning. For instance, exchanging the object for a fragile
wine glass or a heavy weight might increase the motivation
of the human to not drop the object. This could have
significant effects on the responsibilities and dependencies
that emerge in the team, or it could influence the amount
that the human explores new strategies. In other words, the
immersion and the context of the task can influence human
behavior. Therefore, we plan to research how immersion and
human experience affects the opportunities for human-robot
co-learning in physical environments.

VII. CONCLUSION

We answered the research question: “How can a human-
robot team achieve co-learning, and interdependence in
physically embodied tasks?” by successfully developing a
method, based on five design requirements that outline the
challenges of physical co-learning in human-robot teams. We
showed that our method enables co-learning and interdepen-
dence between human and robot in at least three out of the
six teams that performed the experiment.

To pursue the progress made in this research, future work
should be dedicated to quantitatively investigate the impact of
each design requirement on co-learning and interdependence.
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A
Visualization of all the episodes

The overview on the next page (Figure A.2) shows a visualization of all the learning episodes for all the
human-robot teams that participated in the experiment. This in done in six sub-figures with subtitles
below each one. Each dot represents an episode where the human and robot attempted a handover.
The dots are displayed in order over four rows respecting the four 10 minute learning sessions. The
gray dots represent failed handovers, while colored dots are succeeded handovers. The failed dots
are placed slightly lower than the succeeded episodes to make a clear distinction. The colors of the
successful dots correspond to the three colors used for the three distinct strategies from figure 5 in the
paper. The shades of gray shows which agents were responsible for failure (see Figure A.1). Figure A.1
shows a legend to Figure A.2.

Figure A.1: A Legend to the figure on the next page
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(a) Team A

(b) Team B

(c) Team C

(d) Team D

(e) Team E

(f) Team F

Figure A.2: A visualisation of all the episodes of all the teams.



B
Action preference in phase 2 for all

teams

In the paper the Action preference metric, is only displayed for team A (figure 8). In this appendix, we
show the same figure for the other teams as well. In these figures, the difference between the two Q-
values for the actions Drop and Serve are shown for a team. The value of this difference is plotted over
the episodes for the two states that the robot can observe in phase 2. The two actions determine the
orientation in which the robot will convey the object, and the state displays the predominant orientation
of the human hand, as explained in subsubsection III-B.1. The difference between those two Q-values
shows which action is preferred during which state, as explained in subsubsection IV-C.5 and (8). When
this metric is negative, the robot learned to choose the action Serve in that state, while above the gray
null line, it prefers the Drop orientation.

In the caption of each figure, a little bit of context of what can be seen in each figure is given.

Figure B.1: The difference between the two Q-values for the actions Drop and Serve in team A for the two states that the robot
can observe in phase 2. In the first two sessions, the robot preferred the Drop action regardless of the state. From the 3rd
sessions forward, the robot preferred Serve when the human hand palm was facing down, and Drop when the human hand

palm was facing up. This figure is further interpreted in the paper.
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Figure B.2: The difference between the two Q-values for the actions Drop and Serve in team B for the two states that the robot
can observe in phase 2. During all sessions, the robot preferred the Drop action regardless of the state. From the end of the
2nd sessions (around episode 45), the human did not hold their hand palm down anymore. This is why the Q-values for this

state do not change from this point forward.

Figure B.3: The difference between the two Q-values for the actions Drop and Serve in team C for the two states that the robot
can observe in phase 2. The human never held their hand palm down during the entire experiment. This is why the Q-values
for this state do not change at all, and the metric stays 0 during the experiment. It can also be seen that the robot started with a
preference for the Drop action, near the end this preference shifted to the Serve action. It can however not be said that this was

due to the adaptability of the robot, as this policy change was caused by many failed episodes instead of exploration.



22 B. Action preference in phase 2 for all teams

Figure B.4: The difference between the two Q-values for the actions Drop and Serve in team D for the two states that the robot
can observe in phase 2. During almost all episodes, the robot preferred the Drop action regardless of the state. There was a
brief moment between episode 35 and 50 in which the Serve action was preferred when the human held its hand up. This was

however swiftly unlearned. The human did not often hold its hand palm down, as the orange line stays horizontal for long
stretches of time. When the human did, however, the robot had a positive reinforcement to select the Drop action, as the line

makes great jumps away from the null line every time this happened.

Figure B.5: The difference between the two Q-values for the actions Drop and Serve in team E for the two states that the robot
can observe in phase 2. During the first few episodes, not much was learned by the robot in phase 2. This is explainable, by
the fact that the human failed the secondary task often during the first few episodes, meaning that the robot never got the

chance to visit phase 2. When the robot did visit this phase, the human had not yet changed any state, meaning that the robot
was still in the initial state. When the first few successes were booked, however, a clear distinction was formed directly, the

robot prefers Drop when the human hand is facing up, and it prefers Serve, when the human hand is facing down. Just before
episode 50, a series of failed episodes changes this steady collaboration, in the hand palm up state. This tactic was however

re-learned from episode 60 onwards.
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Figure B.6: The difference between the two Q-values for the actions Drop and Serve in team F for the two states that the robot
can observe in phase 2. During the first few episodes, not much was learned by the robot in phase 2. This is explainable, by
the fact that the human failed the secondary task often during the first few episodes, meaning that the robot never got the

chance to visit phase 2. When the robot did visit this phase, the human had not yet changed any state, meaning that the robot
was still in the initial state. When the first few successes were booked, however, a clear distinction was formed directly, the

robot prefers Drop when the human hand is facing up, and it prefers Serve, when the human hand is facing down. Just before
the 3rd session started, the human never held its hand palm up anymore, and the robot almost always still preferred the drop
action. The random behavior of the lines is explainable, by the fact that this participant was at some point not depending on the
robot’s actions anymore in this specific phase as they learned to swiftly adapted their hand position, after the robot chose an

action. In other words, no clear connection between success and the action in this phase could be made by the robot, as it was
independent.



C
Questions of the questionnaire

Below, a list of all the questions in the questionnaire is given. The questions are a selection from the
40 questions of the human-robot fluency questionnaire from Hoffman [40]. Questions that did not fit
this project were removed. Behind each question, it is shown with a number to which subcategories
each question contributed. These numbers correspond to the numbers of the categories below. An (R)
behind a question indicates that the Likert scale is reversed before contributing to the average.

The categories:

(1) Collaboration Fluency (4) Positive Teammate Traits
(2) Relative Contribution (5) Perception of Improvement
(3) Trust in Robot (6) Perception of Shared Goal

The questionnaire:

1. The human-robot team improved over time (5)

2. The human-robot team worked fluently together (1)

3. The human-robot team’s fluency improved over time (1) (5)

4. The robot’s performance improved over time (5)

5. The robot contributed to the fluency of the interaction (1)

6. I trusted the robot to do the right thing at the right time (3)

7. The robot was intelligent. (4)

8. The robot was trustworthy (3) (4)

9. The robot was committed to the task (4)

10. I had to carry the weight to make the human-robot team better (R) (2)

11. The robot contributed equally to the team performance (2)

12. I was the most important team member on the team (R) (2)

13. The robot was the most important team member on the team (2)

14. The robot does not understand what I am trying to accomplish (R) (6)

15. The robot and I are working towards mutually agreed upon goals (6)
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D
Complete results of the questionnaire

Figure D.1: A Legend to the next figure (D.2)

Figure D.2: This figure displays the results from six individual categories of the questionnaire for each participant. The derived
average is that is shown in figure 6 in the paper is also displayed here. The legend is shown above.
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E
Overview of task selection process

A part of the selection process of the task that a human and a robot can co-learn together, we used
inspirations of human-robot collaborative tasks in relevant research [5],[7],[22],[23],[24],[25],[26]. We
narrowed this selection down to four types of task: Handover, Drilling, Welding and Sawing. Some
other task types were discarded as they are very similar to the tasks that were selected, i.e. Polishing
is very similar to Welding and Drilling.

In the prior literature review [16] we indicated multiple challenges and solutions in achieving em-
bodied co-learning and interdependence in human-robot teams. These challenges include giving the
robot observability, defining a small state-action space, and decomposing the task so that it can be
learned efficiently. The most important challenge is to design the task as such, that the human and the
robot have natural hard dependencies, while there is enough room for soft dependencies to grow. We
compared each of the four selected task to these challenges, and tried to formulate a solution to them.
We summarized this in an overview to compare them with each other. This overview is displayed on
the next page.

The final decision to select the handover task for this research, was made because of its natural
hard dependence between the agents. It is the only task that can only be done with two agents. The
other tasks in the comparison are not an inherent two-agent-task, but single-agent-tasks that were
extended for a human and a robot. For instance, you could saw, drill, weld or carry alone, but it is more
effective, faster, or takes less effort when it is done together.
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Welding Sawing

Short	description

Soft	dependencies

Hard	dependencies	

Action	space

State	space

Decomposition	

Performance	

The	objective	is	to	weld	along	a	line.	This	line	is	made	up	from	straight	parts,	
parts	with	a	constant	radius,	and	right	angles.	Welding	needs	to	happen	at	a	
constant	speed,	and	the	movement	should	be	as	smooth	as	possible.
The	human	can	push	and	pull	on	the	robot	arm	to
influence	the	to	be	chosen	path,	but	the	robot
keeps	moving	at	the	same	speed,	and	it	
chooses	the	actual	path.

Position	of	the	robot	arm

Goal	position	of	the	
robot	arm

Set	radius Straight Right	turn

Continues

Human	is	imprecise	
Robot	does	not	know	what	trajectory	to	follow

The	distance	to	the	to	be	followed	
line.	The	robot	can	not	see	the	line,	
and	when	the	line	changes	every	
time,	it	can	not	learn	it	by	itself.

Drilling

The	robot	and	the	human	saw	through	a	block	of	wood	together.	The	
robot	can	apply	different	forces	by	changing	the	vertical	and	
horizontal	stiffness,	Or	by	moving	its	reference	position	around.

It	might	use	te	muscle	activity	of	the	human	as	well	to	decide	wether	
it	should	exert	forces.

Position	of	the	robot	arm
(and)
Muscle	activity	

Stiffnesses	
and/or
Goal	position

They	both	control	the	same	movement	basically,	so	there	is	
lots	of	space	for	letting	go,	or	taking	over	by	for	instance	ONLY	
PULLING	or	by	keeping	the	vertical	position	stiff	so	that	the	
human	can	use	it	as	a	LEVER	point	while	it	can	mover	
horizontally.

Muscle	activity	of	the	human	should	be	
as	low	as	possible,	or	fatigue,	or	force	or	
something	like	that….

Robot	can	not	see	where	to	saw,	but	this	is	only	in	
the	place	face…	it	can	also	not	see	how	long	the	
saw	for	instance	is…	but	the	human	needs	to	be	
dependent	of	the	robot	as	well

As	drilling	is	similar	to	polishing,	except	there	is	
movement	is	all	three	dimensions	going	on,	so	there	are	
more	responsibilities	to	divide.	

especially	when	we	drill	in	uncontrollable		positions	such	
as	in	the	ceiling,	the	robot	can	take	over	responsibilities.	

The	specific	place	and	depth	of	the	hole	can	be	different,	
and	the	human	can	decide	on	that.

Human	can’t	exert	force	upwards,	and	it	can	not	keep	the	
drill	in	place	as	it	can	not	see	it	from	the	right	angle	
without	getting	dust	in	their	eyes/longs

Robot	can’t	place	the	bit	in	the	right	place	in	the	first	
place.	as	it	can’t	see	where	to	drill

What	will	be	learned

The	human	(for	instance	a	surgeon)	needs	an	object	and	the	robot	needs	to	
give	it	to	the	human.	The	human	shows	that	it	needs	the	object,
and	the	robot	the	reaches.	When	the	human
grabs	the	object,	the	robot	needs	to	let	go.
The	goal	is	to	complete	the	task	as	fast	as
possible,	without	the	object	being	dropped.

The	Optitrack	can	be	used	to	localize	the	
human	hand,	and	the	soft	hand	for	grasping	
and	especially	letting	go	at	the	right	time.

When	to	open	its	hand
When	to	move	towards	the	hand
What	orientation	to	pas	(2	or	3	options)

Robot:

Human: The	behavior	of	the	robot
How	to	make	the	robot	let	go

As	a	passing	task	is	a	2	agent	task,	the	participants	have	hard	
dependencies	inherent	to	this	task.	for	instance:	
				- When	the	robot	lets	go	to	early,	it	will	drop	the	object	failing	the	task.
				- When	the	human	does	not	make	clear	when	it	has	the	object,	the	
robot	could	never	learn	when	to	let	go.

This	is	interesting,	the	task	has	a	lot	of	possibilities	to	force	soft	dependencies,	
adapt	the	task	such	that	there	will	be	possibilities.	
If	the	human	would	be	a	surgeon,	it	would	be	doing	a	side	task,	which	
performance	would	decrease	if	the	human	was	looking	away.	Therefore	it	
creates	this	dependency	in	the	shared	action	space	where	the	robot	has	to	find	
the	human,	instead	of	the	other	way	around.
We	could	also	use	different	orientations	to	create	soft	dependencies	etc.

Move	around	(partially	shared	with	human)
open/close	hand
decide	on	2	or	3	different	possible	orientations

Optitrack,	location	of	the	human	hand	
(annotated)

position	of	the	end	effector	wrt.	the	goal	
position	(to	feel	forces)

Completion	time
Success	y/n	(did	the	object	drop	or	not)

Time

accuracy	

End	effector	of	the	robot
For	starting	or	stopping	
the	drilling:	

Stiffness,
End	effector	goal
force

Robot:	

Human:

When	to	start	drilling	(exhorting	force)
When	to	stop
When	to	switch	mode

multi	modal…

The	behavior	of	the	robot

This	is	very	useful,	since	different	state	variables	are
important	during	different	sub-tasks

makes	it	ideal	for	maxQ

Robot:	

Human:

What	mode	to	use
Robot:	

Human: How	to	make	the	robot	change	behavior	

When	the	human	saws,	and	when	it	does	place	the	saw

How	to	make	the	robot	change	behavior	

They	both	control	the	position,	which	is	the	state.	
This	is	their	overlapping	action	space	in	e	soft	
dependencies	can	arise.	But	how?:

They	both	control	the	position,	which	is	the	state.	
This	is	their	overlapping	action	space	in	e	soft	
dependencies	can	arise.	But	how?:

Handover
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