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CEAP-360VR: A Continuous Physiological and
Behavioral Emotion Annotation

Dataset for 360◦ VR Videos
Tong Xue , Student Member, IEEE, Abdallah El Ali , Member, IEEE, Tianyi Zhang , Member, IEEE,

Gangyi Ding, Member, IEEE, and Pablo Cesar , Senior Member, IEEE

Abstract—Watching 360◦ videos using Virtual Reality (VR)
head-mounted displays (HMDs) provides interactive and
immersive experiences, where videos can evoke different emotions.
Existing emotion self-report techniques within VR however
are either retrospective or interrupt the immersive experience.
To address this, we introduce the Continuous Physiological
and Behavioral Emotion Annotation Dataset for 360◦ Videos
(CEAP-360VR). We conducted a controlled study (N=32) where
participants used a Vive Pro Eye HMD to watch eight validated
affective 360◦ video clips, and annotated their valence and arousal
(V-A) continuously. We collected (a) behavioral (head and eye
movements; pupillometry) signals (b) physiological (heart rate,
skin temperature, electrodermal activity) responses (c) momentary
emotion self-reports (d) within-VR discrete emotion ratings (e)
motion sickness, presence, and workload. We show the consistency
of continuous annotation trajectories and verify their mean V-A
annotations. We find high consistency between viewed 360◦ video
regions across subjects, with higher consistency for eye than
head movements. We furthermore run baseline classification
experiments, where Random Forest classifiers with 2s segments
show good accuracies for subject-independent models: 66.80% (V)
and 64.26% (A) for binary classification; 49.92% (V) and 52.20%
(A) for 3-class classification. Our open dataset allows further
experiments with continuous emotion self-reports collected in
360◦ VR environments, which can enable automatic assessment of
immersive Quality of Experience (QoE) and momentary affective
states.
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I. INTRODUCTION

W ITH the rapid development of VR technologies and in-
creasing availability of commercial HMDs, 360◦ video

has been flooding into our daily life and drawing great atten-
tion [3], [4]. As a new multimedia type, 360◦ video can provide
virtual and immersive experiences by occupying the entire vision
of the viewer. While watching 360◦ videos, viewers are allowed
to freely rotate their head and focus on objects and regions of
interest, which enables more immersive and interactive experi-
ences [3], by contrast to desktop video. One key aspect is the ca-
pacity of VR to evoke a wide range of emotions in users [5], [6].
Example research areas include inducing emotional responses
for educational purposes [7], tourism experiences [8], or for de-
veloping emotion recognition and adaptive systems [6] within
immersive experiences. For such research, it is necessary to not
only measure user experiences using a wide range of behavioral
and physiological sensing devices, but also to collect accurate
and precise emotion labels (i.e., ground truth).

To better understand users’ emotion in virtual environments,
recent research has measured user emotion states by collect-
ing quantifiable user behavioral and physiological signals [9]–
[11]. Common physiological measurements include Electroen-
cephalography (EEG), Heart Rate Variability (HRV), and Elec-
trodermal Activity (EDA). These are used in Quality of Ex-
perience (QoE) studies [12], Affective Virtual Reality Sys-
tems (AVRS) aimed at immersive emotion induction [13], and
sensor-based affect data collection [6]. An important aspect of
such virtual experiences is that individuals interact differently
across emotion induction scenarios. In this respect, prior work
has revealed a significant relationship between viewing behav-
ior such as head movement (HM) and eye movement (EM) and
dimensional emotion aspects of valence and arousal [14], [15].
However, emotions can be subjective and constructed (cf., fa-
cial emotion expressions [16]), where user behavior within VR
can exhibit high variance across individuals. This means that for
some emotional states, we do not always observe a clear overt
behavioral manifestation, or what we observe may not repre-
sent the users’ true emotion state. Given this, user self-reports
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Fig. 1. (a) A participant in our experiment watching a 360◦ video using the HTC VIVE Pro Eye HMD and annotating her emotional state using a Joy-Con
controller, while wearing an Empatica E4 Wristband on the non-dominant hand. (b) The system schematic shows various aspects of the experiment set-up and data
acquisition. (c) Valence-Arousal model space based on Russell’s Circumplex model [1]. In our annotation system, four distinct colors are selected across quadrants
(HEX values = #eecdac, #7fc087, #879af0, #f4978e for quadrants one to four clock-wise, respectively, which has been shown to be intuitive and easy for users to
understand [2]).

are essential to assessing whether a VR experience results in a
dominant emotion.

Widely used emotion annotation methods are typically done
post-stimuli (i.e., retrospectively after the experience), like Self-
Assessment Manikin (SAM) [17], which divide human emo-
tions into discrete basic emotion categories. Considering the
time-varying nature of emotion [18], [19], there has been work
on continuous emotion annotation systems which enable collect-
ing more precise ground truth labels, and continuously through
the duration of an experience [20]–[22]. As Toet et al. [23]
pointed out, existing methods of collecting emotion data for 360◦

videos are either time consuming, require significant cognitive
effort and task explanations, or are performed outside the VR en-
vironment [23], which interrupts the immersive experience. This
requires new techniques and approaches for collecting continu-
ous emotion ground truth data within a VR environment, with
minimal interruption of user engagement while immersed in a
VR experience.

Within the 360◦ video research, there have been several public
datasets focused on the study of visual attention patterns [24],
[25], visual quality assessment [26], or user viewing behav-
ior [14]. For viewing behavior, this includes HM data and
post-stimuli SAM ratings to explore the possible links between
HM and valence/arousal. To further enable advances in emo-
tion within VR environments, there is a need to create a high
quality multi-modal dataset that contains HM/EM, physiolog-
ical signals and corresponding continuous and precise ground
truth emotion labels collected during immersive, virtual experi-
ences. Our work offers two primary contributions:

1) Dataset: We conducted a controlled user study with 32
participants where each watched eight one-minute 360◦ video
clips (as shown in Fig. 1(a)), and publicly make available the
Continuous Physiological and Behavioral Annotation Dataset
for 360◦ VR Videos CEAP-360VR Dataset. Our multi-modal
360◦ video dataset features precise and continuous emotion
annotations alongside measured behavioral and physiologi-
cal signals. Our dataset is publicly available at https://github.
com/cwi-dis/CEAP-360VR-Dataset and https://www.dis.cwi.
nl/ceap-360vr-dataset.

2) Analysis: We performed statistical analyses to validate
our collected data, better understand affective states in 360◦

VR videos, and enable reproducibility and usage of our data
by subsequent work. By automatically classifying self-reported

affective states, we provide a means to assess the relation-
ship between physiological and behavioral measures, and the
moment-by-moment affective states during immersive 360◦ VR
video watching experiences. We tested our dataset with com-
mon baseline classification methods, including both classical
machine learning (ML) and deep learning (DL) classifiers. Re-
sults with a Random Forest classifier using a 2s segment length
show good classification accuracies: for a subject-dependent
model, 68.45% (V) and 71.33% (A) for binary classification,
and 60.42% (V) and 62.38% (A) for 3-class classification; for a
subject-independent model, 66.80% (V) and 64.26% (A) for bi-
nary classification, and 49.92% (V) and 52.20% (A) for 3-class
classification. Furthermore, results from an ablation study shows
that using only behavioral signals or only physiological data
can yield reasonable recognition accuracies, however using both
modalities improves classification performance.

Our dataset can be used for building more temporally pre-
cise emotion recognition models for 360◦ VR video watching.
This can additionally be used for further analysis on visual
attention modelling on 360◦ videos [4], [27], with considera-
tions of momentary emotion self-report states. Researchers can
also explore the relationship between HM/EM features and dis-
crete self-reported affective states based on our dataset [15],
[28]. Also, the diverse set of physiological signals collected can
be used to conduct implicit perceptual experience analyses in
HMD-based VR environments [29]. To summarize, our dataset
can further advance the HMD-based 360◦ video community’s
understanding of momentary (self-reported) emotion states, and
physiological and behavioral responses.

II. RELATED WORK

In this section, we provide a review of datasets related to
emotion recognition and 360◦ videos.

A. Datasets for Emotion Recognition in 2D Videos

There have been various datasets based on both explicit and
implicit modalities evoked by 2D video stimuli. Soleymani et
al. [30] presented work on emotion recognition where they an-
alyzed the physiological responses (Electrocardiograph (ECG),
EDA, EEG, Respiration (RESP), SKT) of 27 participants who
watched various stimuli including 34 videos and some images.
The proposed MAHNOB-HCI dataset contains face video, eye
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gaze data and discrete scale of valence dominance, predictability
as well as emotional keywords. The DEAP dataset [31] consists
of implicit tagging from EEG and peripheral physiological sig-
nals (Electrooculography (EOG), EDA, RESP, Blood Volume
Pulse (BVP), ECG, SKT) of 32 participants while watching
40 video clips. It includes a continuous scale of arousal, va-
lence, liking, dominance and discrete scale of familiarity. Sim-
ilarly, Abadi et al. [32] added Magnetoencephalogram (MEG)
and presented the DECAF dataset. It contains a discrete scale
of valence, arousal and dominance of 30 participants while
watching 40 videos and 36 movie clips. The dataset AMI-
GOS [33] is compiled to model multi-class emotional data in-
cluding EEG, ECG, EDA from 40 participants during the view-
ing of 20 short and long videos. It includes annotations of both
internal self-assessment (scale questionnaires) and external as-
sessment (frontal and full body videos) of affective levels. In the
ASCERTAIN dataset presented by Subramanian et al. [34], the
data recordings consist of physiological modalities (ECG, EDA,
EEG) and facial activity. Discrete scale of valence, arousal, lik-
ing, engagement, familiarity and Big Five personality are also
included. More recently, Sharma et al. [20] collected the CASE
dataset of 30 participants in responses to eight validated videos.
It includes synchronized recordings of physiological signals
(ECG, BVP, EDA, EMG, SKT, RESP) and continuous reporting
of valence and arousal. However, these datasets did not consider
studying participants’ emotions in virtual environments.

B. Datasets for 360◦ Videos

Previous studies [3], [12] have presented comparisons of QoE
factors such as presence, engagement, usability and sickness
while watching 360◦ videos among HMD, CAVE-based and
2D-based display screen. The results indicated that users can
experience higher QoE ratings with an HMD. Recently, Qiao
et al. [35] proposed a novel visual saliency model to predict
viewport-dependent saliency on 360 videos considering both
head movements and eye fixations. Several datasets report HM
traces of users while watching 360◦ videos for visual attention
research. Corbillon et al. [24] captured viewport traces of 59
participants watching five 70s videos. In [36], six videos were
shown to 17 participants and the results of recorded scanpaths
and fixation points suggest that users’ attention is guided by
moving objects. In another study [37], the PVS-HM dataset is
created based on HM data of 58 subjects watching 76 videos.
Analysis of the dataset indicates that there is similarity and a
strong center bias across subjects. For 360◦ video, HM indi-
cates the position of the subjects’ viewport, while EM could
reflect where the subject fixates on [4]. The Salient360 dataset
constructed by David et al. [25] contains 19 immersive videos
and 57 subjects’ HM/EM data. The head+eye and head-only
saliency maps and scan-paths are also included. Li et al. [26]
proposed the VQA-OV, a 360◦ video dataset with HM, EM data
and subjective quality scores of the sequences to study the links
between user behavior and subjective evaluation on visual qual-
ity. Zhang et al. [38] presented a dataset including head and eye
fixations of 104 videos watched by 20+ subjects for better mod-
elling dynamic saliency. To explore HM/EM saliency prediction
in dynamic 360◦ immersive videos, Xu et al. [39] presented a

large-scale VR dataset including both HM and EM data of 31
participants watching 208 videos. Nguyen et al. [40] built a
saliency dataset and proposed PanoSalNet, a saliency detection
model.

Although human behavior in VR has been thoroughly inves-
tigated, few datasets have been developed using 360◦ videos for
emotion induction research. One of the first datasets is gathered
by Li et al. [14]. It contains HM data and corresponding ratings
of arousal and valence captured with 93 participants watching
73 videos, given the purpose of exploring links between HM
and emotions when viewing VR content. More recently, Tang et
al. [28] reported an eye tracking dataset with valence and arousal
scores from 19 participants watching 360◦ images to study the
influence of emotions on eye behavior in a virtual setting. Their
analysis showed that negative emotions have a significant impact
on fixation and saccade features, while positive and neutral con-
tent do not. In our prior work, we additionally analyzed HM/EM
features across fine-grained emotion labels from 360◦ video seg-
ments with varying lengths (5-60s) [15]. Our exploratory work
showed that standard deviation of HM yaw negatively corre-
lated with valence, HM pitch positively correlated with arousal,
while standard deviation of EM yaw negatively correlated with
valence, and EM pitch negatively correlated with arousal. Fur-
thermore, recent studies in 360◦ videos took advantage of the
relationship between physiological signals and users’ emotions.
Egan et al. [12] first took EDA and HR together to assess QoE
in VR content. Marã-n-Morales et al. [6] recognized subjects’
valence and arousal perceptions from EEG, HRV features and
embedded SAM ratings in virtual environments. The findings
validate that VR has the capacity to elicit emotional states and
allow emotion recognition from physiological responses as with
2D videos. However, most of the existing research are based on
authors’ own data collection, which leads to limited accessibil-
ity for other researchers to reproduce results [41]. In addition,
these studies pay attention to the user experience of VR and
ignore the viewing behavior, as well as continuous emotion re-
ports. To bridge these gaps, we propose the public CEAP-360VR
dataset for emotion recognition in virtual environments watch-
ing 360◦ videos, containing both physiological signals and the
corresponding viewing behavior data, as well as continuous
self-report emotion ratings.

III. EXPERIMENT PROTOCOL

In this section, we present our experiment protocol. This study
was carried out in accordance with the recommendations of the
Ethics Committee of our institute. Data collection was approved
by the board and all participants. Below we describe our exper-
iment setup and procedure.

A. Experiment Setup

We show the experiment architecture in Fig. 1(b), and each
part is described in detail below.

(1) Participants viewed the 360◦ video clips through HTC Vive
Pro Eye1 HMD (in Fig. 1(b1)), with a reported 0.5◦ accuracy and
frequency of 120 Hz Tobii Pro eye tracker integrated. The HMD

1[Online]. Available: https://enterprise.vive.com/us/product/vive-pro-eye/
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provides a resolution of 2880× 1600 pixels, a 110◦ field of view
and a refresh rate of 90 Hz. In parallel, the audio signal is sent
to the HMD. During the experiment, participants sat on a swivel
chair and were free to look in any direction. Correspondingly,
head rotation and eye gaze data from the headset were recorded
at 120 Hz.

(2) The joystick used was a generic wireless digital gaming
peripheral, called Joy-Con,2 as shown in Fig. 1(b2). With a re-
turn spring, the proprioceptive feedback could aid realigning to
center position under no force, which makes it suitable for con-
tinuous annotation while wearing an HMD. Also, we added a
11-mm heighten cap to extend the length of the joystick, thereby
helping to increase flexibility of operation. The movement of the
joystick head maps into a 2D Valence-Arousal space, in which
the x axis indicates valence while the y axis indicates arousal, as
shown in Fig. 1(b). Participants were instructed to annotate their
emotion experience by moving the joystick head into one of the
four quadrants. To increase the emotion intensity, participants
could move the joystick head further. The annotation data was
sampled at 10 Hz, in accordance with research on human motor
control [42].

(3) We also developed an on-demand helper function, so that
participants who forget what color maps to a quadrant with corre-
sponding emotions could use it for easy lookup. This on-demand
reference functionality is activated through a joystick button
press event. We show the helper function in Fig. 1(b3), where
we just include the most representative emotion keyword (by
contrast to several keywords in Fig. 1(c)).

(4) After each video, participants were asked to report their
emotional experience using a within-VR SAM rating. A SAM
rating [17] panel was embedded in VR to visualize the 9-point
scales of valence and arousal, which allows users to stay closer to
the context of an ongoing exposure than outside of the VR [43].
Arousal scale ranges from “calm” (1) to “excited” (9), while
valence ranges from “unhappy” (1) to “happy” (9), as shown in
Fig. 1(b4). Participants could gaze at one picture and use the X
button on the Joy-Con controller to indicate their self-assessment
level.

(5) We constructed a custom scene in Unity Engine3 (version
2018.4.1f1) to display 360◦ videos and audio and show the an-
notation feedback based on users’ continuous ratings. Equirect-
angular content was projected onto the skybox while the camera
was fixed into the center of the sphere. We integrated the To-
bii Pro SDK4 to collect data from HMD and eye tracker, along
with the SteamVR SDK5 which provides virtual reality support.
The project ran on a 2.2G Hz Intel i7 Alienware laptop with an
Nvidia RTX 2070 graphics card.

(6) We captured participants’ physiological signals through
the Empatica E4 wristband6 worn on the non-dominant
hand [44], as shown in Fig. 1(b6). This device can measure

2[Online]. Available: https://www.nintendo.com/switch/choose-your-joy-
con-color/

3[Online]. Available: https://unity.com/
4[Online]. Available: http://developer.tobiipro.com/unity/unity-getting-

started.html
5[Online]. Available: https://store.steampowered.com/app/250820/

SteamVR/
6[Online]. Available: https://www.empatica.com/en-int/research/e4/

BVP, EDA and SKT. It also contains a 3-axis accelerometer,
and a built-in application which calculates HR and IBI from
BVP.

(7) A mobile device (Nexus 5, 32GB, 5 inches, 1920-1080)
was used to collect data from the E4 band via Bluetooth. Times-
tamp of this device was set according to the clock of the exper-
iment laptop, synchronized via an NTP server.7

(8) Validated questionnaires for sense of presence, work-
load, and level of motion sickness are used as subjective mea-
sures. We chose a standardized Simulator Sickness Question-
naire (SSQ) [45] to measure the level of motion sickness, and
use the Igroup Presence Questionnaire (IPQ) [46] to evaluate
perceptions of VR videos. For perceived workload, we used the
NASA Task Load Index (NASA-TLX) questionnaire [47].

B. Independent Variables

Drawing on the Circumplex model of emotion (shown in
Fig. 1(c)), there are four types of videos depending on valence
and arousal scores, namely high valence / high arousal (HVHA),
high valence / low arousal (HVLA), low valence / low arousal
(LVLA), low valence / high arousal (LVHA). We follow a 4
(Video Type: HVHA, HVLA, LVHA, LVLA) X 2 (Peripheral
Feedback: HaloLight vs DotSize) study design approach.

1) Stimuli Selection: We selected two sample 360◦ videos
to represent each emotion type (as listed in Table I) from the
database provided by Li et al. [14], which contains mean valence
and arousal ratings (mean V-A ratings) from 95 subjects. We
used youtube-dl8 to download the contents from YouTube with
4K in resolution (3840 × 1920 pixels), equirectangular format.
The videos come in different lengths and most are longer than
2 minutes, so we extracted a 60s segment from each of them
with no scene cuts. A pilot study with 12 researchers from our
institute indicated that clipped 60s videos still provided the same
V-A ratings, and valence and arousal were rated similarly across
participants, as shown in previous work [27].

In addition, we computed the Spatial Perceptual Information
(SpI) and Temporal Perceptual Information (TpI) for eight se-
lected videos in equirectangular format [48] to depict spatial and
temporal complexity. SpI indicates the amount of spatial detail
and is higher for more spatially complex scenes. TpI indicates
the amount of temporal changes and is higher for high motion
sequences. We did a two-way consistency intra-class correla-
tion (ICC) analysis between valence/arousal labels from origi-
nal dataset and SpI / TpI and the results show that there is no
correlation (p > 0.05). This is not surprising, as our videos were
selected on the basis of their emotion ratings, rather than other
features such as spatial and temporal complexity. However, the
low correlations do suggest that these features do not provide
a confound with our emotion labels. Furthermore, the video at-
tributes indicate some high-level semantic attributes such as in-
door/outdoor, video category and objects of interests. The audio
categories including background music (bgm), ambient sound
(ambience), dialog and voice-over. Links and start time offset as
well as valence and arousal scores are also presented in Table I.

7[Online]. Available: android.pool.ntp.org/
8[Online]. Available: https://github.com/ytdl-org/youtube-dl

Authorized licensed use limited to: TU Delft Library. Downloaded on February 15,2023 at 07:47:28 UTC from IEEE Xplore.  Restrictions apply. 

https://www.nintendo.com/switch/choose-your-joy-con-color/
https://www.nintendo.com/switch/choose-your-joy-con-color/
https://unity.com/
http://developer.tobiipro.com/unity/unity-getting-started.html
http://developer.tobiipro.com/unity/unity-getting-started.html
https://store.steampowered.com/app/250820/SteamVR/
https://store.steampowered.com/app/250820/SteamVR/
https://www.empatica.com/en-int/research/e4/
android.pool.ntp.org/
https://github.com/ytdl-org/youtube-dl


XUE et al.: CEAP-360VR: A CONTINUOUS PHYSIOLOGICAL AND BEHAVIORAL EMOTION ANNOTATION DATASET FOR 360◦ VR VIDEOS 247

TABLE I
DESCRIPTION OF 360◦ VIDEOS USED IN OUR EXPERIMENT. V = MEAN VALENCE RATING; A = MEAN AROUSAL RATING

Fig. 2. The experiment procedure.

Fig. 3. Two peripheral visualization feedback methods.

2) Peripheral Feedback: Since users need to annotate their
emotions in real-time while watching 360◦ videos, this will lead
to divided attention. We contributed HaloLight and DotSize
methods to provide peripheral feedback and minimize work-
load [49]. As shown in Fig. 3, HaloLight is a shaded halo arc in
bottom-right viewport, which varies in transparency with emo-
tion intensity. DotSize is a circle dot in bottom-right viewport,
which varies in size with emotion intensity.

C. Participants

32 participants between the ages of 18 and 33 (M=25,
SD=4.0) from different culture backgrounds participated in our

data collection experiment. They were recruited by posters from
near universities. All participants reported normal or corrected-
to-normal vision and were not color-blind. They received mone-
tary compensation for their participation. 50% of the participants
are female and 27 participants have used VR devices less than
five times before.

D. Experiment Procedure

We show the experiment procedure in Fig. 2. Duration of the
entire session lasted around 50 minutes.

(1) Prior to commencing the experiment, we asked the par-
ticipant to carefully read and sign the consent form and fill in
a background information sheet. Then we gave a general ex-
planation about the experiment steps and tasks, including the
2D Circumplex model (Fig. 1(c)) and how to annotate with the
joystick. After all the questions about the experiment were ad-
dressed, we asked the participant to finish a pre-study SSQ.

(2) During the eye-tracker calibration session, we first helped
the participant measure their Inter-Pupillary Distance (IPD).
Then the participant sat in a swivel chair and put on E4 wristband
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and HMD. The embedded eye tracker was calibrated following
the VIVE Pro Eye instruction.9 The calibration of eye tracker
was performed every time the user put on the HMD, namely,
before Block 1 and before Block 2.

(3) During the training session, we showed a documentary
360◦ video. The participant was orally instructed to get familiar
with continuous emotion annotation method and visualization
feedback, as well as 360◦ video viewing experience by moving
their head and rotating the chair. This session took place before
each block.

(4) Our main experiment consists of two blocks. In each block
we fixed the peripheral feedback, and let participants watch four
representative videos from each of the four quadrants. To coun-
terbalance the effect of HaloLight and DotSize, half participants
experienced HaloLight in the first block and then DotSize in the
second block. For the other 16 participants, we showed Dot-
Size in the first block and then HaloLight in the second block.
Furthermore, we applied fractional factorial design [50] to coun-
terbalance the effect of different videos within each block. To
unify participants’ starting position, before each video played,
there was a black scene displayed in the HMD. We asked par-
ticipants to find a white cube placed in the scene and then gaze
at it. The cube would be highlighted in red while the partici-
pant gazed at it. If the cube is highlighted for five seconds, the
cube disappears and the video immediately starts playing. In our
early tests, we tried other mechanisms like marking the position
of the swivel chair, however the advantage of showing a cube is
that we can unify users’ fixation consistency in the HMD. We
introduced this step to participants during the pre-study session.

(5) While a participant viewed a 360◦ video, they rated emo-
tional states (valence and arousal) continuously using the joy-
stick. The HMD recorded the HM and EM data continuously,
as well as the E4 wristband logged the physiological data con-
tinuously during the study period. To avoid carry over effects of
one emotion to another and reduce the fatigue of viewing 360◦

video, a delay of 15 seconds was enforced between two videos.
We also ensured a time gap of 5 minutes between two blocks
following prior work [14], [51].

(6) At the end of each video, the participant submitted a SAM
rating using the Within-VR SAM rating panel. At the end of
each block, we helped the participant remove the HMD and fill
in the SSQ, IPQ, NASA-TLX forms and then a semi-structured
interview with five questions about user experience after the two
blocks.

IV. DATA VALIDATION AND DISCUSSION

In a previous study [27], we conducted a controlled usability
evaluation and found no significant differences between Halo-
Light and DotSize concerning motion sickness, presence or men-
tal workload, and both techniques do not result in high sickness,
workload, nor break presence. Thus in this section, we combined
the collected annotations and behavioral data from HaloLight
and DotSize and show the results of descriptive statistics.

9[Online]. Available: https://www.vive.com/us/support/vive-pro-
eye/category_howto/calibrating-eye-tracking.html

A. Continuous Annotation Analysis

We combined 32 participants’ annotation data by calculating
the mean V-A ratings at each frame for each video. The gener-
ated eight trajectories are shown in Fig. 4(a). It can be seen that
the results of continuous annotations are consistent with the in-
tended emotional experiences of the stimuli videos. Two videos
pertaining to the same emotion type span the same quadrant, thus
exhibiting agreement in subjective ratings. For different videos
annotated across participants, 68.4% of annotation sequences
appear in more than two emotion quadrants. The mean of dif-
ference between the maximum and minimum values from eight
videos annotated by all participants for valence ranged from
[2.475, 6.157](M = 4.637, SD = 0.859), for arousal ranged
from [2.678, 6.532](M = 4.831, SD = 1.074), indicating that
for certain video types, participants used a wide range for anno-
tating, and were not limited to annotating one dimension only.

The mean V-A ratings across 32 participants for eight videos
spanning four quadrants are shown in Fig. 4(b). We can find
that the mean V-A ratings of eight videos are consistent with the
video categories listed in Table I. For example, V1 and V5 belong
to HVHA and the mean V-A ratings are >5. To further test the
differences among these videos, we run inferential statistics. A
Shapiro-Wilk test showed both the mean of valence and arousal
are not normally distributed (p < 0.05). As we are comparing
eight groups within-subjects, we performed a Friedman rank
sum test on the mean of valence (χ2(7) = 146.44, p < 0.01)
and then on the mean of arousal (χ2(7) = 120.48, p < 0.01).
The results show significant effects of video emotions on V-A
ratings. A post-hoc test using Bonferroni pairwise comparisons
was performed to precisely determine whether the ratings of
any two videos are similar or different [20], [42], where the
results of these comparisons are presented in form of symmet-
ric matrix plots in Fig. 4(b) and (c). Effect sizes for signifi-
cant post-hoc pairwise comparisons between each video on va-
lence ranged from [0.943, 1.675], while for arousal ranged from
[0.815, 1.655]. Most of the cases are in line with our expecta-
tions, with no significant differences (p > 0.05) among videos
with the same emotion type, and high significant differences
(p < 0.001) among videos with the opposite emotion type. How-
ever, in some cases, as reported in the literature [52], [53], this
was not the case. We could find high significant differences
(p < 0.001) between HV (V1, V2, V5 and V6) and LV (V3,
V4, V7 and V8) videos. Beyond that, there are also significant
differences (0.001 < p < 0.05) between V4 and V8, as well as
V7 and V8, probably because V8 immersed users in the after-
math of the Nepal earthquake with lower valence value than
others. For arousal ratings, there are high significant differences
(p < 0.001) between HA (V3, V5 and V7) and LA (V2, V4, V6
and V8) videos. The significant differences (0.001 < p < 0.05)
between V1, a cute puppy video with V2, V4 and V8 are not
expected to be high. One reason is that more than 50% of partic-
ipants during the interview said they liked dogs very much, so
they were relatively relaxed while watching V1. In addition, V4
and V6 are also significantly different (p < 0.05), which may
be due to the very low arousal value of V6, with the theme of
Hawaiian sunrise.
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Fig. 4. (a) Combined annotation trajectories for eight selected videos from 32 participants. (b) Boxplots for mean ratings of valence and arousal. (c) Pairwise
comparisons of mean valence (left) and arousal (right) ratings across eight videos, with colors depicting different significance levels (p < 0.001, highly significant;
0.001 < p < 0.05, significant; p > 0.05, not significant).

Fig. 5. A sample thumbnail frame with its saliency map for each video from 32 participants.

Fig. 6. Boxplots for SAM ratings of valence and arousal.

B. Within-VR SAM Analysis

We show the results of within-VR SAM rating in Fig. 6, which
are consistent with expectations. By a two-way random, abso-
lute agreement, average-measures ICC, the results show excel-
lent reliability for the SAM valence (ICC = 0.984, p < 0.05)
and arousal (ICC = 0.951, p < 0.05) ratings, indicating that
the SAM valence and arousal were rated similarly across par-
ticipants [54]. Moreover, to assess the agreement of the two
rating methods (within-VR SAM rating and continuous anno-
tation), we performed a two-way mixed, absolute agreement,
average-measures ICC. The average resulting ICCs regarding
the eight videos suggest excellent reliability for the valence
score, total average ICC = 0.882, p < 0.05, and good reliabil-
ity for the arousal score, total average ICC = 0.714, p < 0.05.
Together they indicate that: (1) the within-VR SAM rating and
the continuous annotation methods have a high degree of agree-
ment and (2) valence and arousal are rated similarly across the
two rating methods.

TABLE II
THE MEAN AND STANDARD DEVIATIONS VALUES OF CC FOR HM AND EM

SALIENCY MAPS BETWEEN Group1 AND Group2 FOR EACH VIDEO

C. HM and EM Data Analysis

We first analyze whether viewing behavior among participants
is similar, which is an essential indicator of how robust our be-
havior data is [4]. To test the consistency among participants
while watching 360◦ videos, we follow Qiao and Xu et al.’s
work [35], [55] in our experiment. We divided participants into
two groupsGroup1 andGroup2 randomly and equally and then
generated the HM and EM saliency maps of the two groups for
each frame. Then Pearson’s linear correlation coefficient (CC)
score [56], [57] is calculated to evaluate similarity of saliency
maps, which ranges from -1 (perfectly inversely correlated) to 1
(perfectly correlated). Mean and standard deviations of CC are
reported in Table II, which show the correlations are sufficiently
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high (> 0.8) across different videos. This indicates that the vi-
sual attention behavior are highly consistent among participants
while watching the eight selected videos.

In Fig. 5, we show the EM saliency maps as equirectangular
representations for each video, as obtained from all collected
combined eye gaze sample points of 32 subjects, where the
Y -axis refers to the pitch and the X-axis the yaw values. Much
research [25], [37] has argued that there exists a strong equator
and front bias for human attention while viewing 360◦ videos.
In our study, the viewing directions of all participants were ini-
tialized at the center of the video. We can see from the Fig. 5
that most viewing attention falls into small regions in the front
and center region of the equator. In addition, note that other
than the center region, there still exists potential regions attract-
ing human attention depending on the video content [55], [58].
In V3, zombies constantly appear from different places, while
V7’s perspective is to follow a prisoner’s escape route. Thus
the participants’ long-term focus regions are not unique. For
V8 we could find an obvious left bias, one plausible reason is
that an embedded logo from the video creators is placed in the
right-bottom corner.

D. PD Data Analysis

Prior work indicated that PD changes can be used as an in-
dicator of arousal states [59], but also are largely affected by
the lighting conditions [60]. Recently, Pfleging et al. [61] and
Tarnowski et al. [62] modelled PD as the sum of two contributing
factors: (1) PD given lighting conditions, (2) PD given experi-
ences from task. In our study, since 360◦ videos were played
around and near to the eyes, there was no light source except for
the presentation of 360◦ videos. Thus for each participant p, PD
values affected by video v are calculated from:

PDp,v = PDp,average − PDp,light (1)

PDp,average is the average PD of both eyes recorded for partic-
ipant p, while PDp,light is the PD given luminance condition of
video v. Following Tarnowski et al.’s work [62], we used linear
regression method (coefficients k, b) to model the relationship
between PD and luminance of video v for participant p:⎡

⎢⎢⎢⎢⎣
PDp,1

PDp,2

...

PDp,n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
Lightv,1

Lightv,2
...

Lightv,n

⎤
⎥⎥⎥⎥⎦ ∗

[
k

b

]
(2)

where PD is the average PD values and Light is the luminance
values calculated by the V component in the HSV color space
for each frame from video v. Then, the estimated value of PD
was calculated from:

PDp,est = kp ∗ Lightv + bp (3)

The PDp,est is used to estimate the PDp,light in (1).
We calculated the mean and standard deviation of video af-

fected PD values (PDp,v) across each video, in which the
Z-score standardization across each participant was performed
to eliminate different inter-personal baselines. The results are
presented in Fig. 7(left). According to a Shapiro-Wilk normality

Fig. 7. Violin plot of the distribution for mean processed PD across eight
videos (left). Pairwise comparisons of mean processed PD across eight videos,
with colors depicting different significance levels (p < 0.001, highly significant;
0.001 < p < 0.05, significant; p > 0.05, not significant) (right).

Fig. 8. Violin plot of the distribution for the physiological features across eight
selected videos.

test, the gathered data was not normally distributed (p < 0.001).
A Friedman rank sum test revealed a significant effect of video
types on PD values (χ2(7) = 155.98, p < 0.001). Then we per-
formed a post-hoc test using Mann-Whitney tests with Bon-
ferroni correction and show the results in Fig. 7(right). The ef-
fect sizes for significant post-hoc pairwise comparisons between
each video ranged from [0.475, 0.859]. The influence of arousal
states on PD values are evident in our data. For instance, there
are significant differences (p < 0.05) between HA videos (V1,
V3, V7) and LA videos (V2, V4, V6) for PDp,v values. It is
worth noting that the results of LVLA videos were not as low
as expected, which indicates that compared with watching sad
videos, the arousal is not as low as watching relaxed videos.

E. Physiological Data Analysis

We first normalized the values of each physiological signal
after filtering out noise following previous work [63] for each
participant viewing each video and then selected one predomi-
nantly used feature for each signal. The mean of the first-order
differential of EDA signals during video playback was calcu-
lated as EDA changes, following previous research [11], [42].
We used the mean of SKT and HR values during each video to
describe the time domain variation [63], as mean SKT and mean
HR, respectively. The standard deviation of the duration of the
detected inter-beat interval was acquired for each video as IBI
changes [20]. Due to the lack of IBI data from P2 and P12, we
removed the two subjects and performed Z-score standardiza-
tion for other participants.

The violin plots in Fig. 8 report the distributions of the se-
lected features across eight different videos. Similar to Sharma
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TABLE III
COMPARISON OF THE PERFORMANCE USING RF CLASSIFIER, 1D-CNN, AND LSTM, FOR BOTH SD AND SI MODELS FOR 2S SEGMENT LENGTHS. ACC AND

WEIGHTED-F1 SCORES ARE FOR BINARY V-A, 3-CLASS, AND 5-CLASS CLASSIFICATION. HIGHEST ACCURACY IS SHOWN IN BOLD

TABLE IV
ABLATION STUDY ACROSS PHYSIOLOGICAL (EDA, IBI, HR, SKT, BVP) AND BEHAVIORAL SIGNALS (HM//EM) PLUS PD USING RF CLASSIFIER FOR BOTH SD

AND SI MODELS UNDER 2S SEGMENTS. ACC AND WEIGHTED-F1 SCORES ARE FOR BINARY V-A, 3-CLASS AND 5-CLASS CLASSIFICATION. HIGHEST ACCURACY IS

SHOWN IN BOLD

et al.’s [20] results, we did not find significant differences for the
selected physiological features across different types of videos.
One potential reason is that the length of our video stimuli is re-
stricted to one minute, which may be short in duration for clear
effects of physiological signals.10 One consideration is that it
is difficult to perform standardized data analysis for videos with
inconsistent lengths [31]. Furthermore, longer duration 360◦

videos can lead to higher motion sickness and workload [14],
[64] which can also influence physiological markers, so there is
a trade-off in what can be done. On the other hand, our findings
from Fig. 8 show that some features can characterize a specific
type of video. Prior work [65] indicated that EDA is known to be
highly correlated with user arousal. In our work, V3 (V=3.20,
A=5.60) and V7 (V=4.40, A=6.70) with high arousal labels re-
sult in higher values of EDA changes than other videos. For V4
(V=2.53, A=3.82) and V8 (V=2.73, A=3.80), the sad videos
(LVLA), the values of all four features are lower than others. We
provide these raw physiological time-series data in our dataset
that change over time, in which the peaks and drops are associ-
ated with video events [66]. Our data can further help the com-
munity to study the relationship between physiological signals
and 360◦ video content.

V. CLASSIFICATION EVALUATION

To further analyze the validity and reliability of our dataset,
in this section we provide baseline classification experiments
using common machine learning techniques.

A. Baseline Experiments

We draw on prior work [67], where we test three classification
tasks on our dataset: (1) Binary classification for low / high

10[Online]. Available: https://support.empatica.com/hc/en-us/sections/
200582445-E4-wristband-data

TABLE V
THE MAPPING BETWEEN CONTINUOUS V-A RATINGS AND DISCRETIZED

CLASSES.

levels of Valence and Arousal (V-A). (2) 3-class classification
for low / neutral / high levels of V-A. (3) 5-class classification
for the four quadrants of V-A space and neutral level. Mapping
between continuous V-A values and discretized classes is listed
in Table V.

Both classic ML and DL methods are proposed to classify
and predict the value of valence and arousal [67]. For ML
methods, we tested the following: Support Vector Machine
(SVM) [68], Random Forest (RF) [69], Gaussian Naive Bayes
(GaussianNB) [70], and k-Nearest Neighbor (k-NN) [71]. For
DL methods, we tested 1D-Convolutional Neural Network (1D-
CNN) [72] and sequential learning approach, Long Short-Term
Memory (LSTM) [73]. These are the two most basic and com-
monly used algorithms in affective computing [74]. Training and
evaluation were run on an NVIDIA 2080Ti GPU server.

1) Feature and Model Selection: We first pre-processed
HM/EM, PD and peripheral physiological signals (EDA, IBI,
HR, SKT, BVP) and then segmented them into 2-s length (sam-
ple size: 32 × 8 × 30 segments) for fine-grained emotion recog-
nition, following prior work [67]. To train ML methods, we
extracted mean, median, standard deviation for the pitch / yaw
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of HM/EM, PD and original, first and second differential of
physiological signals, as well as fixation number, mean, median,
standard deviation for fixation and saccade duration, and lastly
saccade amplitude. These are widely used features for behav-
ioral and physiological signals in the task of emotion recogni-
tion [28], [75], [76]. Aside from RF, we leave the default param-
eter settings for all classic ML classifiers. For subject-dependent
(SD) models, we kept the default parameters (max_depth = 2)
for RF. However for subject-independent (SI) models, given
that the amount and complexity of the training data are larger
for SD models, we increase the maximum depth of the tree
(max_depth = 4) to better learn the latent representation.

For DL methods, we tested 1D-CNN and LSTM on the pro-
cessed original data. The 1D-CNN model employs five 1D-
CNN layers whose filter numbers n and sizes s, (n, s) are
(4, 64), (16, 32), (64, 16), (128, 8), (128, 32), respectively. All
the five 1D-CNN layers are activated by a rectified linear acti-
vation function (ReLU). Then a 1D global max pooling layer is
followed to select the most salient features from the 1D-CNN
layers. A dense layer activated by the softmax function is put
as the last layer for classification. The LSTM model consists of
one LSTM layer with 100 units where we put the same dense
layer as 1D-CNN for classification. The two models are built
with keras and trained with RMSprop [77] optimizer.

2) Evaluation Metrics: We chose two widely used metrics
in machine learning [78] to evaluate classification performance:
(1) Accuracy (acc) for the percentage of correct predictions,
(2) Weighted F1-score (w-f1) for the harmonic mean of pre-
cision and recall for each label. We trained and tested each
classification method using both subject-dependent (SD) and
subject-independent (SI) models. SD models were tested using
10-fold cross validation and SI models were tested using Leave-
One-Subject-Out Cross Validation (LOSOCV). The results we
show are the mean accuracy and w-f1 of each fold/subject used
as testing data.

B. Results and Discussion

1) Classification Results: Among the classification methods
using default architectures, we found that RF outperforms SVM,
NB, and KNN methods, thus we only show RF results here and
use these results for subsequent analysis. However, we include
the results from the other classifiers in our dataset. We ran ex-
periments to investigate model performance using RF, 1D-CNN
and LSTM methods for both SD and SI models under 2s in-
stances. As shown in Table III, the accuracies for 3-class clas-
sification are lower than binary classification but higher than
5-class classification. Given that many instances (43.32% for
3-class and 27.06% for 5-class) are classified as neutral, the
data imbalance can pose problems when recognizing emotions
using fine-grained emotion labels (cf., [67]).

Compared with SI models, SD models achieve higher accura-
cies and w-f1 scores, especially for 3-class and 5-class classifica-
tion on our dataset. The comparable recognition accuracy of the
two models demonstrates that the data volume from one user is
sufficient to train a machine learning model for emotion recogni-
tion. This also lends support that the number of videos and video
lengths we chose for an individual user are sufficient for running

classification experiments. These results provide support that our
models can generalize across behavioral and physiological data
collected in 360◦ VR environments.

2) Ablation Study: To further analyze the effectiveness of
single modality in our dataset, we conducted an ablation study
to inspect the effects of: behavioral data (HM/EM and PD11) and
physiological data (EDA, BVP, HR, and SKT). The results of
binary classification evaluated using both SD and SI models are
shown in Table IV. We found that only behavioral data or only
physiological signals in our dataset can yield good recognition
accuracies. Additionally, the accuracies from combining phys-
iological signals with behavioral data are slightly higher than
using single modality.

VI. LIMITATIONS

First, we are limited in the selection of 360◦ video stimuli. The
different emotion types of videos used in our experiment have
perceptual differences, for example color or camera movement,
which could affect the user’s viewing experience. Participants’
personal preferences of the video content may also affect their
emotional assessment [79]. However, due to the lack of publicly
available 360◦ video databases with validated emotion labels,
these could not be explored further in this work. Furthermore,
the age of our participants ranges from 18-33 (M=25, SD=4.0),
recruited from our institute or nearby institutes, which may not
be well spread to other age groups like seniors. One consid-
eration is that since users need to report their emotional states
while watching 360◦ videos, we do not want age to be a dom-
inant factor. However, it is interesting to consider other pop-
ulation groups which may have greater difficulty in reporting
their emotion (e.g., Autism Spectrum Disorder [80]). Fourth,
we did not collect EEG because collecting stable, high-quality
EEG data is still a challenge [81], especially for immersive vir-
tual environments where users wear an HMD [82]. Finally, the
performance of the SI model can still be improved if data imbal-
ance is addressed (e.g., through data synthesis using Generative
Adversarial Networks [83]).

VII. CONCLUSION

The contributions of this paper focus on the provision of a pub-
lic multi-modal 360◦ dataset and statistical analyses and base-
line classification experiments. We first designed a protocol to
collect fine-grained, continuous emotion labels of valence and
arousal while users watching 360◦ videos in a VR setting. In our
experiment with 32 participants viewing eight videos, we gath-
ered continuous emotion annotation data, HM and EM behavior
data, as well as PD and peripheral physiological data (EDA, IBI,
HR, SKT, BVP).12

The primary insights of our analyses are: (1) Mean V-A rat-
ings from our dataset are reasonably consistent with the intended
attributes of the videos, and there exists high agreement between
continuous ratings and post-stimuli SAM ratings, indicating the

11PD can be considered as a physiological response, however since we extract
data directly from the HMD, we keep PD as part of the EM data.

12key steps in the stage of data acquisition and pre-processing are reported in
our dataset.
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reliability of our data following Sharma et al. [20]. (2) For all
eight videos, we find high correlations on viewing behavior (HM
and EM) among participants, and a center and front bias on
saliency maps, in line with [55], [58]. (3) Similar to [60], [61],
we found PD values are positively correlated with arousal levels,
where the ambient light of the video has an impact on arousal. (4)
Preliminary results for RF under 2s segments show good perfor-
mance on our dataset, and an ablation study shows using only
behavior data or only physiological signals can yield reason-
able recognition accuracies, however using both modalities is
better.

Furthermore, collecting continuous annotations can be used
to evaluate the performance of fine-grained emotion recogni-
tion algorithms (e.g., weakly supervised learning or regres-
sion). As mentioned by Romeo et al. [84], the lack of contin-
uous annotations is the reason why they failed to validate their
weakly-supervised algorithm for fine-grained emotion recogni-
tion. Moreover, if only discrete annotations are available, ML
algorithms can overfit because the discrete labels represent only
the most salient or recent emotion rather than the dynamic
emotional changes that may occur within video watching (cf.,
peak-end theory [85]). This can be reduced if training with con-
tinuous emotion labels, since the continuous labels allow the
algorithms to learn the precise mappings between the dynamic
emotional changes and input signals. To summarize, having
continuous annotations becomes essential for developing and
validating continuous or fine-grained emotion recognition algo-
rithms.

Our future work comprises different facets: First, it is impor-
tant to conduct further research on saliency models and atten-
tion using our dataset [35], [86], and explore how these corre-
late with continuous emotion labels. Second, our dataset could
be used in various application scenarios such as helping 360◦

video makers to understand the emotion and behavior of peo-
ple watching 360◦ videos. It can also serve as representative
moment-by-moment ground truth for developing machine learn-
ing algorithms to automatically recognize the user’s emotions in
360◦ VR environments. Third, our work leaves room for future
research to design new methods to capture real-time emotions
while watching volumetric videos. Fourth, we aim on further in-
vestigating automatic content analysis techniques to investigate
further how e.g., HM and EM vary specifically with respect to
content of video. To conclude, CEAP-360VR is the first public,
multi-modal dataset with continuous emotion annotation data,
behavior and physiological data, which can enable future re-
search on emotion understanding and prediction within 360◦ VR
environments.

VIII. SUPPLEMENTARY MATERIAL

Our dataset includes the raw and processed data from all 32
participants and eight selected videos, the processing and val-
idation scripts, along with dataset description and key steps in
the stage of data acquisition and pre-processing. All data were
saved in JavaScript Object Notation (JSON) [87], a well-known
file format that has native support by most programming lan-
guages. This makes the data accessible and easy to process.

Also, the scripts to prepare data and features for running ML
experiments are reported in our dataset.

The dataset and processing scripts are publicly available
on GitHub (https://github.com/cwi-dis/CEAP-360VR-Dataset),
under the following license: Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0) license. Our
dataset can be additionally retrieved on a dedicate webpage
(https://www.dis.cwi.nl/ceap-360vr-dataset).

ACKNOWLEDGMENT

The authors would like to thank all participants of our anno-
tation study and the main experiment, as well as our reviewers.

REFERENCES

[1] J. A. Russell, “A circumplex model of affect,” J. Pers. Social Psychol.,
vol. 39, no. 6, pp. 1161–1178, 1980.

[2] D. Handayani, A. Wahab, and H. Yaacob, “Recognition of emotions in
video clips: The self-assessment manikin validation,” Telkomnika, vol. 13,
no. 4, pp. 1343–1351, 2015.

[3] A. MacQuarrie and A. Steed, “Cinematic virtual reality: Evaluating the
effect of display type on the viewing experience for panoramic video,” in
Proc. IEEE Virtual Reality, 2017, pp. 45–54.

[4] M. Xu, C. Li, S. Zhang, and P. L. Callet, “State-of-the-art in 360◦
video/image processing: Perception, assessment and compression,” IEEE
J. Sel. Topics Signal Process., vol. 14, no. 1, pp. 5–26, Jan. 2020.

[5] M. Alcañiz, R. Baños, C. Botella, and B. Rey, “The EMMA project: Emo-
tions as a determinant of presence,” PsychNol. J., vol. 1, no. 2, pp. 141–150,
2003.

[6] J. Marín-Morales et al., “Affective computing in virtual reality: Emotion
recognition from brain and heartbeat dynamics using wearable sensors,”
Sci. Rep., vol. 8, no. 1, pp. 1–15, 2018.

[7] F. Assilmia, Y. S. Pai, K. Okawa, and K. Kunze, “IN360: A 360-degree-
video platform to change students preconceived notions on their career,”
in Proc. CHI Conf. Extended Abstr. Hum. Factors Comput. Syst., 2017,
pp. 2359–2365.

[8] J. Beck, M. Rainoldi, and R. Egger, “Virtual reality in tourism: A state-
of-the-art review,” Tourism Rev., pp. 586–612, 2019.

[9] A. Mollahosseini, B. Hasani, and M. H. Mahoor, “AffectNet: A database
for facial expression, valence, and arousal computing in the wild,” IEEE
Trans. Affect. Comput., vol. 10, no. 1, pp. 18–31, Jan.–Mar. 2019.

[10] F. Nasoz, K. Alvarez, C. L. Lisetti, and N. Finkelstein, “Emotion recogni-
tion from physiological signals using wireless sensors for presence tech-
nologies,” Cogn., Technol. Work, vol. 6, no. 1, pp. 4–14, 2004.

[11] J. Fleureau, P. Guillotel, and I. Orlac, “Affective benchmarking of movies
based on the physiological responses of a real audience,” in Proc. Humaine
Assoc. Conf. Affect. Comput. Intell. Interact., 2013, pp. 73–78.

[12] D. Egan, S. Brennan, J. Barrett, Y. Qiao, C. Timmerer, and N. Murray,
“An evaluation of heart rate and electrodermal activity as an objective qoe
evaluation method for immersive virtual reality environments,” in Proc.
8th Int. Conf. Qual. Multimedia Experience, 2016, pp. 1–6.

[13] D. Liao et al., “Design and evaluation of affective virtual reality system
based on multimodal physiological signals and self-assessment manikin,”
IEEE J. Electromagn., RF, Microw. Med. Biol., vol. 4, no. 3, pp. 216–224,
Sep. 2020.

[14] B. J. Li, J. N. Bailenson, A. Pines, W. J. Greenleaf, and L. M. Williams,
“A public database of immersive VR videos with corresponding ratings
of arousal, valence, and correlations between head movements and self
report measures,” Front. Psychol., vol. 8, pp. 1–10, 2017.

[15] T. Xue, A. E. Ali, G. Ding, and P. Cesar, “Investigating the relationship
between momentary emotion self-reports and head and eye movements in
HMD-based 360◦ VR video watching,” in Proc. CHI Conf. Hum. Factors
Comput. Syst., New York, NY, USA: Association for Computing Machin-
ery, 2021, pp. 1–6. [Online]. Available: https://doi.org/10.1145/3411763.
3451627

[16] L. F. Barrett, R. Adolphs, S. Marsella, A. M. Martinez, and S. D. Pol-
lak, “Emotional expressions reconsidered: Challenges to inferring emotion
from human facial movements,” Psychol. Sci. Public Int., vol. 20, no. 1,
pp. 1–68, 2019, PMID: 31313636. [Online]. Available: https://doi.org/10.
1177/1529100619832930

Authorized licensed use limited to: TU Delft Library. Downloaded on February 15,2023 at 07:47:28 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1145/3411763.3451627
https://doi.org/10.1145/3411763.3451627
https://doi.org/10.1177/1529100619832930
https://doi.org/10.1177/1529100619832930


254 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

[17] M. M. Bradley and P. J. Lang, “Measuring emotion: The self-assessment
manikin and the semantic differential,” J. Behav. Ther. Exp. Psychiatry,
vol. 25, no. 1, pp. 49–59, 1994.

[18] F. Nagel, R. Kopiez, O. Grewe, and E. Altenmüller, “EMuJoy: Software
for continuous measurement of perceived emotions in music,” Behav. Res.
Methods, vol. 39, no. 2, pp. 283–290, 2007.

[19] M. Soleymani, S. Asghari-Esfeden, Y. Fu, and M. Pantic, “Analysis of
EEG signals and facial expressions for continuous emotion detection,”
IEEE Trans. Affect. Comput., vol. 7, no. 1, pp. 17–28, Jan.–Mar. 2015.

[20] K. Sharma, C. Castellini, E. L. van den Broek, A. Albu-Schaeffer, and F.
Schwenker, “A dataset of continuous affect annotations and physiological
signals for emotion analysis,” Sci. Data, vol. 6, no. 1, pp. 1–13, 2019.

[21] J. M. Girard and A. G. Wright, “DARMA: Software for dual axis rating
and media annotation,” Behav. Res. Methods, vol. 50, no. 3, pp. 902–909,
2018.

[22] P. Lopes, G. N. Yannakakis, and A. Liapis, “RankTrace: Relative and
unbounded affect annotation,” in Proc. 7th Int. Conf. Affect. Comput. Intell.
Interact., 2017, pp. 158–163.

[23] A. Toet, F. Heijn, A.-M. Brouwer, T. Mioch, and J. B. van Erp, “The
emojiGrid as an immersive self-report tool for the affective assessment of
360 VR videos,” in Proc. Int. Conf. Virtual Reality Augmented Reality,
Springer, 2019, pp. 330–335.

[24] X. Corbillon, F. De Simone, and G. Simon, “360-degree video head
movement dataset,” in Proc. 8th ACM Multimedia Syst. Conf., 2017,
pp. 199–204.

[25] E. J. David, J. Gutiérrez, A. Coutrot, M. P. D. Silva, and P. L. Callet, “A
dataset of head and eye movements for 360◦ videos,” in Proc. 9th ACM
Multimedia Syst. Conf., 2018, pp. 432–437.

[26] C. Li, M. Xu, X. Du, and Z. Wang, “Bridge the gap between VQA and
human behavior on omnidirectional video: A large-scale dataset and a
deep learning model,” in Proc. 26th ACM Int. Conf. Multimedia, 2018,
pp. 932–940.

[27] T. Xue, A. El Ali, T. Zhang, G. Ding, and P. Cesar, “RCEA-360VR: Real-
time, continuous emotion annotation in 360◦ VR videos for collecting
precise viewport-dependent ground truth labels,” in Proc. CHI Conf. Hum.
Factors Comput. Syst., New York, NY, USA: Association for Computing
Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3411764.
3445487

[28] W. Tang, S. Wu, T. Vigier, and M. P. D. Silva, “Influence of emotions on
eye behavior in omnidirectional content,” in Proc. 12th Int. Conf. Qual.
Multimedia Experience, 2020, pp. 1–6.

[29] S. Moon and J. S. Lee, “Implicit analysis of perceptual multimedia experi-
ence based on physiological response,” IEEE Trans. Multimedia, vol. 19,
pp. 340–353, 2017.

[30] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A multimodal
database for affect recognition and implicit tagging,” IEEE Trans. Affect.
Comput., vol. 3, no. 1, pp. 42–55, Jan.–Mar. 2012.

[31] S. Koelstra et al., “DEAP: A database for emotion analysis; using phys-
iological signals,” IEEE Trans. Affect. Comput., vol. 3, no. 1, pp. 18–31,
Jan.–Mar. 2012.

[32] M. K. Abadi, R. Subramanian, S. M. Kia, P. Avesani, I. Patras, and N. Sebe,
“DECAF: MEG-based multimodal database for decoding affective physio-
logical responses,” IEEE Trans. Affect. Comput., vol. 6, no. 3, pp. 209–222,
Jul.–Sep. 2015.

[33] J. A. M. Correa, M. K. Abadi, N. Sebe, and I. Patras, “AMIGOS: A dataset
for affect, personality and mood research on individuals and groups,” IEEE
Trans. Affect. Comput., vol. 12, no. 2, pp. 479–493, Apr.–Jun. 2021.

[34] R. Subramanian, J. Wache, M. K. Abadi, R. L. Vieriu, S. Winkler, and
N. Sebe, “ASCERTAIN: Emotion and personality recognition using com-
mercial sensors,” IEEE Trans. Affect. Comput., vol. 9, no. 2, pp. 147–160,
Apr.–Jun. 2018.

[35] M. Qiao, M. Xu, Z. Wang, and A. Borji, “Viewport-dependent saliency
prediction in 360◦ video,” IEEE Trans. Multimedia, vol. 23, pp. 748–760,
2021, doi: 10.1109/TMM.2020.2987682.

[36] C. Ozcinar and A. Smolic, “Visual attention in omnidirectional video for
virtual reality applications,” in Proc. 10th Int. Conf. Qual. Multimedia
Experience, 2018, pp. 1–6.

[37] M. Xu, Y. Song, J. Wang, M. Qiao, L. Huo, and Z. Wang, “Predicting head
movement in panoramic video: A deep reinforcement learning approach,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 11, pp. 2693–2708,
Nov. 2019.

[38] Z. Zhang, Y. Xu, J. Yu, and S. Gao, “Saliency detection in 360◦ videos,”
in Proc. Eur. Conf. Comput. Vis., 2018, pp. 488–503.

[39] Y. Xu et al., “Gaze prediction in dynamic 360◦ immersive videos,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 5333–5342.

[40] A. Nguyen, Z. Yan, and K. Nahrstedt, “Your attention is unique: De-
tecting 360-degree video saliency in head-mounted display for head
movement prediction,” in Proc. 26th ACM Int. Conf. Multimedia, 2018,
pp. 1190–1198.

[41] J. Marín-Morales, C. Llinares, J. Guixeres, and M. Alcañiz, “Emotion
recognition in immersive virtual reality: From statistics to affective com-
puting,” Sensors, vol. 20, no. 18, pp. 1–25, 2020.

[42] T. Zhang, A. El Ali, C. Wang, A. Hanjalic, and P. Cesar, “RCEA: Real-
time, continuous emotion annotation for collecting precise mobile video
ground truth labels,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2020,
pp. 1–15.

[43] S. Putze, D. Alexandrovsky, F. Putze, S. Höffner, J. D. Smeddinck, and R.
Malaka, “Breaking the experience: Effects of questionnaires in VR user
studies,” in Proc. CHI Conf. Hum. Factors Comput. Syst., 2020, pp. 1–15.

[44] N. Milstein and I. Gordon, “Validating measures of electrodermal activity
and heart rate variability derived from the Empatica E4 utilized in research
settings that involve interactive dyadic states,” Front. Behav. Neurosci.,
pp. 1–13, 2020.

[45] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal, “Simula-
tor sickness questionnaire: An enhanced method for quantifying simulator
sickness,” Int. J. aviation Psychol., vol. 3, no. 3, pp. 203–220, 1993.

[46] T. Schubert, F. Friedmann, and H. Regenbrecht, “The experience of pres-
ence: Factor analytic insights,” Presence: Teleoperators Virtual Environ.,
vol. 10, no. 3, pp. 266–281, 2001.

[47] S. G. Hart, “Nasa-task load index (NASA-TLX); 20 years later,” in Proc.
Hum. Factors Ergonom. Soc. Annu. Meeting, Los Angeles, CA, USA: Sage
Publications Sage CA, 2006, vol. 50, no. 9, pp. 904–908.

[48] ITU-T Recommendation, “Subjective video quality assessment methods
for multimedia applications,” pp. 4–5, 1999.

[49] T. Xue, S. Ghosh, G. Ding, A. El Ali, and P. Cesar, “Designing real-time,
continuous emotion annotation techniques for 360◦ VR videos,” in Proc.
Extended Abstr. CHI Conf. Hum. Factors Comput. Syst. Extended Abstr.,
2020, pp. 1–9.

[50] R. F. Gunst and R. L. Mason, “Fractional factorial design,” Wiley Interdis-
cipl. Reviews: Comput. Statist., vol. 1, no. 2, pp. 234–244, 2009.

[51] A. Lutz, J. Brefczynski-Lewis, T. Johnstone, and R. J. Davidson, “Regula-
tion of the neural circuitry of emotion by compassion meditation: Effects
of meditative expertise,” PLoS One, vol. 3, no. 3, pp. 1–10, 2008.

[52] E. L. Van Den et al., “Affective man-machine interface: Unveiling human
emotions through biosignals,” in Proc. Int. Joint Conf. Biomed. Eng. Syst.
Technol., Springer, 2009, pp. 21–47.

[53] E. van den Broek, “Affective signal processing (ASP): Unraveling the
mystery of emotions,” Ph.D. dissertation, Univ. Twente, 2011, doi:
10.3990/1.9789036532433.

[54] D. V. Cicchetti, “Guidelines, criteria, and rules of thumb for evaluating
normed and standardized assessment instruments in psychology,” Psychol.
Assessment, vol. 6, no. 4, pp. 284–290, 1994.

[55] M. Xu, C. Li, Z. Chen, Z. Wang, and Z. Guan, “Assessing visual quality
of omnidirectional videos,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 29, no. 12, pp. 3516–3530, Dec. 2019.

[56] J. Li, C. Xia, Y. Song, S. Fang, and X. Chen, “A data-driven metric for
comprehensive evaluation of saliency models,” in Proc. IEEE Int. Conf.
Comput. Vis., 2015, pp. 190–198.

[57] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand, “What do
different evaluation metrics tell us about saliency models?” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 41, no. 3, pp. 740–757, Mar. 2019.

[58] V. Sitzmann et al., “Saliency in VR: How do people explore virtual
environments?,” IEEE Trans. Visual. Comput. Graph., vol. 24, no. 4,
pp. 1633–1642, Apr. 2018.

[59] M. M. Bradley, L. Miccoli, M. A. Escrig, and P. J. Lang, “The pupil as a
measure of emotional arousal and autonomic activation,” Psychophysiol-
ogy, vol. 45, no. 4, pp. 602–607, 2008.

[60] Z. Zhu, K. Fujimura, and Q. Ji, “Real-time eye detection and tracking
under various light conditions,” in Proc. Symp. Eye Tracking Res. Appl.,
2002, pp. 139–144.

[61] B. Pfleging, D. K. Fekety, A. Schmidt, and A. L. Kun, “A model relating
pupil diameter to mental workload and lighting conditions,” in Proc. CHI
Conf. Hum. Factors Comput. Syst., 2016, pp. 5776–5788.

[62] P. Tarnowski, M. Kołodziej, A. Majkowski, and R. J. Rak, “Eye-tracking
analysis for emotion recognition,” Comput. Intell. Neurosci., vol. 2020,
pp. 2909267–2909267, 2020.

[63] B. Zhao, Z. Wang, Z. Yu, and B. Guo, “EmotionSense: Emotion recogni-
tion based on wearable wristband,” in Proc. IEEE SmartWorld, Ubiquitous
Intell. Comput., Adv. Trusted Comput., Scalable Comput. Commun., Cloud
Big Data Comput., Internet People Smart City Innov., 2018, pp. 346–355.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 15,2023 at 07:47:28 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1145/3411764.3445487
https://doi.org/10.1145/3411764.3445487
https://dx.doi.org/10.1109/TMM.2020.2987682
https://dx.doi.org/10.3990/1.9789036532433


XUE et al.: CEAP-360VR: A CONTINUOUS PHYSIOLOGICAL AND BEHAVIORAL EMOTION ANNOTATION DATASET FOR 360◦ VR VIDEOS 255

[64] M. V. d. Broeck, F. Kawsar, and J. Schöning, “It’s all around you: Exploring
360◦ video viewing experiences on mobile devices,” in Proc. 25th ACM
Int. Conf. Multimedia, 2017, pp. 762–768.

[65] W. Boucsein, Electrodermal Activity. Berlin, Germany: Springer, 2012.
[66] D. R. Bach, G. Flandin, K. J. Friston, and R. J. Dolan, “Modelling event-

related skin conductance responses,” Int. J. Psychophysiol., vol. 75, no. 3,
pp. 349–356, 2010.

[67] T. Zhang, A. El Ali, C. Wang, A. Hanjalic, and P. Cesar, “CorrNet:
Fine-grained emotion recognition for video watching using wearable phys-
iological sensors,” Sensors, vol. 21, no. 1, pp. 1–25, 2021.

[68] C. He, Y.-j. Yao, and X.-s. Ye, “An emotion recognition system based on
physiological signals obtained by wearable sensors,” Wearable Sensors
and Robots. Berlin, Germany: Springer, 2017, pp. 15–25.

[69] G. Rigas, C. D. Katsis, G. Ganiatsas, and D. I. Fotiadis, “A user indepen-
dent, biosignal based, emotion recognition method,” in Proc. Int. Conf.
User Model., Springer, 2007, pp. 314–318.

[70] D. S. Wickramasuriya and R. T. Faghih, “Online and offline anger detection
via electromyography analysis,” in Proc. IEEE Healthcare Innov. Point
Care Technol., 2017, pp. 52–55.

[71] L. Chen, M. Li, W. Su, M. Wu, K. Hirota, and W. Pedrycz, “Adaptive fea-
ture selection-based AdaBoost-KNN with direct optimization for dynamic
emotion recognition in human-robot interaction,” IEEE Trans. Emerg. Top-
ics Comput. Intell., vol. 5, no. 2, pp. 205–213, Apr. 2021.

[72] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Netw., vol. 61, pp. 85–117, 2015.

[73] J. Ma, H. Tang, W.-L. Zheng, and B.-L. Lu, “Emotion recognition us-
ing multimodal residual LSTM network,” in Proc. 27th ACM Int. Conf.
Multimedia, 2019, pp. 176–183.

[74] S. Zhao, S. Wang, M. Soleymani, D. Joshi, and Q. Ji, “Affective com-
puting for large-scale heterogeneous multimedia data: A survey,” ACM
Trans. Multimedia Comput., Commun., Appl., vol. 15, no. 3s, pp. 1–32,
2019.

[75] L. Shu et al., “A review of emotion recognition using physiological sig-
nals,” Sensors, vol. 18, no. 7, pp. 1–10, 2018.

[76] O. Kardan, M. G. Berman, G. Yourganov, J. Schmidt, and J. M. Henderson,
“Classifying mental states from eye movements during scene viewing,”
J. Exp. Psychol. Hum. Percep. Perform., vol. 41, no. 6, pp. 1502–1514,
2015.

[77] F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, “A sufficient condition for
convergences of Adam and RMSProp,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 11 127–11135.

[78] M. Fatourechi, R. K. Ward, S. G. Mason, J. Huggins, A. Schlögl, and G.
E. Birch, “Comparison of evaluation metrics in classification applications
with imbalanced datasets,” in Proc. 7th Int. Conf. Mach. Learn. Appl.,
2008, pp. 777–782.

[79] D. Z. Rodríguez, R. L. Rosa, E. A. Costa, J. Abrahão, and G. Bressan,
“Video quality assessment in video streaming services considering user
preference for video content,” IEEE Trans. Consum. Electron., vol. 60,
no. 3, pp. 436–444, Aug. 2014.

[80] M. Maskey, F. Warnell, J. R. Parr, A. L. Couteur, and H. McConachie,
“Emotional and behavioural problems in children with autism spectrum
disorder,” J. Autism Devlop. Disord., vol. 43, no. 4, pp. 851–859, 2013.

[81] J. Birjandtalab, D. Cogan, M. B. Pouyan, and M. Nourani, “A non-EEG
biosignals dataset for assessment and visualization of neurological status,”
in Proc. IEEE Int. Workshop Signal Process. Syst., 2016, pp. 110–114.

[82] L. He, H. Li, T. Xue, D. Sun, S. Zhu, and G. Ding, “Am I in the theater?
Usability study of live performance based virtual reality,” in Proc. 24th
ACM Symp. Virtual Reality Softw. Technol., 2018, pp. 1–11.

[83] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” 2014,
arXiv:1411.1784.

[84] L. Romeo, A. Cavallo, L. Pepa, N. Berthouze, and M. Pontil,
“Multiple instance learning for emotion recognition using physi-
ological signals,” IEEE Trans. Affect. Comput., to be published,
doi: 10.1109/TAFFC.2019.2954118.

[85] B. L. Fredrickson and D. Kahneman, “Duration neglect in retrospective
evaluations of affective episodes.” J. Pers. Social Psychol., vol. 65, no. 1,
p. 45, 1993.

[86] J. Wang, M. Xu, L. Jiang, and Y. Song, “Attention-based
deep reinforcement learning for virtual cinematography of 360◦
videos,” IEEE Trans. Multimedia, vol. 23, pp. 3227–3238, 2021,
doi: 10.1109/TMM.2020.3021984.

[87] E. T. Bray, “The Javascript object notation (JSON) data interchange for-
mat,” RFC 7159, Mar. 2014.

Tong Xue (Student Member, IEEE) received the B.E.
degree from the Communication University of China,
Beijing, China, in 2016. She is currently working
toward the Ph.D. degree with the School of Com-
puter Science and Technology, Beijing Institute of
Technology, Beijing, China. She is a joint Ph.D.
student with Distributed and Interactive Systems,
Centrum Wiskunde & Informatica, Amsterdam, The
Netherlands. Her research interests include human-
computer interaction and affective computing.

Abdallah El Ali (Member, IEEE) received the Ph.D.
degree from the University of Amsterdam, Amster-
dam, The Netherlands, in 2013. He is currently a
tenure-track Researcher with Centrum Wiskunde &
Informatica, Amsterdam, The Netherlands, with Dis-
tributed & Interactive Systems (DIS) Group. He is
leading human-computer interaction (HCI) research
with Affective Interactive Systems Research Area.
His interests include ground truth label acquisition
techniques, affective state visualization across envi-
ronments (mobile, wearable, XR), and bio-responsive

interactive prototypes.

Tianyi Zhang (Member, IEEE) is currently working
toward the Ph.D. degree with the Faculty of Electri-
cal Engineering, Mathematics & Computer Science,
Delft University of Technology, Delft, The Nether-
lands. He is associated with Distributed & Interac-
tive Systems (DIS) Group, Centrum Wiskunde &
Informatica, Amsterdam, The Netherlands, The Na-
tional Research Institute for Mathematics and Com-
puter Science, The Netherlands. His research inter-
ests include human-computer interaction and ma-
chine learning based affective computing.

Gangyi Ding (Member, IEEE) received the B.E. de-
gree from Peking University, Beijing, China, in 1988
and the Ph.D. degree from the Beijing Institute of
Technology, Beijing, China, in 1993. He is currently
a Professor with the School of Computer Science and
Technology, Beijing Institute of Technology. In 1993,
he joined the Faculty of the Beijing Institute of Tech-
nology. His research interests include computer simu-
lation, software engineering, and digital performance.

Pablo Cesar (Senior Member, IEEE) leads the Dis-
tributed and Interactive Systems Group, Centrum
Wiskunde & Infomartica (CWI), Amsterdam, The
Netherlands, and is a Professor with the Delft Uni-
versity of Technology, Delft, The Netherlands. His
research interests include human-computer interac-
tion and multimedia systems, and focuses on model-
ing and controlling complex collections of media ob-
jects, including real-time media and sensor data that
are distributed in time and space. He was recently the
recipient of the Prestigious 2020 Netherlands Prize

for ICT Research, because of his work on human-centered multimedia systems.
He is also the Principal Investigator from CWI on a number of projects on social
virtual reality and affective computing. He is a member of the Editorial Board
of the IEEE MULTIMEDIA, ACM Transactions on Multimedia, and IEEE TRANS-
ACTIONS OF MULTIMEDIA, among others. He has acted as an Invited Expert at
the European Commission’s Future Media Internet Architecture Think Tank.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 15,2023 at 07:47:28 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TAFFC.2019.2954118
https://dx.doi.org/10.1109/TMM.2020.3021984


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


