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ABSTRACT: This paper identifies and explains particular differences and properties of adjoint-free iterative ensemble
methods initially developed for parameter estimation in petroleum models. The aim is to demonstrate the methods’ poten-
tial for sequential data assimilation in coupled and multiscale unstable dynamical systems. For this study, we have intro-
duced a new nonlinear and coupled multiscale model based on two Kuramoto–Sivashinsky equations operating on
different scales where a coupling term relaxes the two model variables toward each other. This model provides a conve-
nient testbed for studying data assimilation in highly nonlinear and coupled multiscale systems. We show that the model
coupling leads to cross covariance between the two models’ variables, allowing for a combined update of both models. The
measurements of one model’s variable will also influence the other and contribute to a more consistent estimate. Second,
the new model allows us to examine the properties of iterative ensemble smoothers and assimilation updates over finite-
length assimilation windows. We discuss the impact of varying the assimilation windows’ length relative to the model’s
predictability time scale. Furthermore, we show that iterative ensemble smoothers significantly improve the solution’s accu-
racy compared to the standard ensemble Kalman filter update. Results and discussion provide an enhanced understanding
of the ensemble methods’ potential implementation and use in operational weather- and climate-prediction systems.
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1. Introduction

Numerical weather prediction at national and international
weather centers uses different data assimilation approaches to
initialize ocean and atmosphere models. de Rosnay et al.
(2022) and Laloyaux et al. (2016) describe the data assimila-
tion system at ECMWF, which combines the assimilation of
ocean observations using a 3DVAR scheme with the assimila-
tion of atmospheric observations using a 4DVAR method.
The updates are uncoupled during inner loops but weakly
coupled during the short forecast connecting successive assim-
ilation windows. While this approach is less optimal than pro-
viding a fully coupled update, it is a practical intermediate
step when using variational data assimilation methods with
different time windows. The reason for uncoupled inner loops
is a fundamental and unsolved problem related to the differ-
ent time scales of the ocean and atmosphere. An optimal time
window for an ocean model might be a week, while it could
be a day for the atmosphere at a similar resolution. Hence,
one must clarify the optimal window length in a 4DVAR sys-
tem containing both model components. Furthermore, data
latency is a problem because ocean observations tend to have
much larger latency than atmospheric observations, mainly
for historical reasons. The data latency is one of the reasons

that GFDL uses a two-step ensemble-based filtering algo-
rithm applied to a fully coupled climate model (Chang et al.
2013), and NCEP assimilates data into partially coupled Earth
system components using a 3DVAR-based scheme to incor-
porate land surface, atmosphere, ocean, and sea ice observa-
tions (Saha et al. 2010).

Penny et al. (2017) provide a comprehensive overview
of data assimilation in coupled ocean–atmosphere models.
While most operational approaches have a weak coupling be-
tween the two subsystems and so-called outer-loop coupling,
as mentioned above, more conceptual studies investigate the
effect of a strong coupling. For example, Luo and Hoteit
(2014) use a multiscale Lorenz-96 model to evaluate the per-
formance of a state-space estimation strategy that assimilates
data into each subsystem and correlated quantities from other
coupled subsystems. In a slightly more realistic setting, Han
et al. (2013) couple a Lorenz-63 model to a pycnocline ocean
model.

Penny et al. (2019) compare several data assimilation algo-
rithms on a single quasigeostrophic model for a coupled ocean
and atmosphere. Tondeur et al. (2020) used the same model
to study coupled data assimilation with the ensemble Kalman
filter (EnKF) for a system consisting of a slow ocean coupled
to a fast atmosphere. This study illustrates the mechanisms
behind information propagation between the system’s two
components and concludes that cross-component effects are
strong from the slow to the fast scale.

We can view the current study as an extension of Tondeur
et al. (2020), in which, on the one hand, we will study the in-
formation flow between two coupled systems more closely

Denotes content that is immediately available upon publica-
tion as open access.

Corresponding author: Geir Evensen, geev@norceresearch.no

DOI: 10.1175/MWR-D-23-0239.1

Ó 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding
reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

E V E N S E N E T AL . 1277JUNE 2024

Unauthenticated | Downloaded 07/15/24 07:44 AM UTC

mailto:geev@norceresearch.no
http://www.ametsoc.org/PUBSReuseLicenses


and, on the other hand, use more sophisticated data assimilation
techniques. To this end, we will use a simplified representation
of two coupled Earth system components to explore the infor-
mation propagation between model components with pre-
dominantly large and small spatial scales. The coupled model
uses the Kuramoto–Sivashinsky (KS) equations to describe
interactions between two systems: one with a longer spatial
scale (typically the atmosphere) and one with a shorter spatial
scale (typically the ocean). In addition, we evaluate the effi-
ciency of different adjoint-free data assimilation algorithms in
coupled data assimilation.

We describe the model in the following section. After that,
we introduce and discuss the data assimilation methods be-
fore we run multiple experiments to examine the impact and
value of coupled data assimilation and various sensitivities to
window lengths, number of iterations, etc.

2. Coupled multiscale Kuramoto–Sivashinsky model

We will now describe the nonlinear multiscale model used
to study the performance of our data assimilation methods for
the coupled data assimilation problem. We need a model with
specific properties, including unstable and near-chaotic dy-
namics with nonlinear saturation of the linear instabilities,
similar to oceanic and atmospheric behavior. For computa-
tional reasons and ease of interpretation, we search for a one-
dimensional and univariate equation for each component of
the coupled system. Finally, we require a model that can include
different spatial and temporal scales, as we wish to study the
assimilation of observations in coupled models with different
scales. The model system should resemble the behavior of
coupled climate models, where the ocean and atmospheric
components have vastly different spatial and temporal scales.

Our choice landed on a variant of the KS equation, from
which we derived two model configurations operating on dif-
ferent spatial scales and with a coupling term connecting the
two models. In the current study, we only include different
spatial scales between the model components, but it is possi-
ble to alter the temporal scale of the models in future studies.

The KS equation is a fourth-order partial differential equa-
tion initially used to describe diffusive thermal instabilities in
laminar flame fronts (Kuramoto 1978; Sivashinsky 1977, 1980).
The model can also describe the dynamics of fluid films on
inclines (Shlang and Sivashinsky 1982; Tilley et al. 1994), flow
in pipes (Chang 1986), and dynamics of chemical reactions.
Kuramoto (1978) described how the coupling of an oscillation
and a spatial inhomogeneity could produce spatiotemporal
chaos and how one can obtain a balance between phase insta-
bility and amplitude instability. The KS equation is

u
t

1 u
u
x

52
2u
x2

2
4u
x4

, (1)

which reduces to the inviscid Burgers equation if we ignore
the diffusion terms on the right-hand side. The nonlinear ad-
vection term uux transfers energy between large and small
scales and creates shocks. The harmonic diffusion term has a
negative sign and acts to enhance any small-scale feature in

the model solution. In contrast, the biharmonic diffusion term
with a negative sign is a small-scale selective positive diffusion,
thereby controlling any growing instabilities in the model.

Protas et al. (2004) introduced the KS equation for an eval-
uation of 4DVAR data assimilation methods. Jardak et al.
(2010) and Chorin and Krause (2004) evaluated the perfor-
mance of Bayesian filters using the KS equation, Azouani and
Titi (2014) and Lunasin and Titi (2017) used the equations as
a testbed for the so-called continuous data assimilation tech-
nique, and Waller et al. (2014) applied it for correlated obser-
vation error estimation.

We refer to Lak (2023) for a discussion of the numerical im-
plementation and example codes. In short, we have used a
Crank–Nicolson/Adams–Bashforth (CNAB) scheme for time
stepping the model. The time-stepping method is second or-
der and implicit in time. We discretized space using a Fourier
decomposition as this approach renders the inverse matrices
in the scheme diagonal, allowing for a highly efficient imple-
mentation. Our FORTRAN-90 subroutine for the model inte-
gration is available from Evensen (2023b).

In our implementation, we have used two KS models, and
we refer to the two model solutions as Atmos and Ocean with
the symbols A and O referring to their respective variables.
The coupled model equations read
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1 vao(A 2 O): (3)

We couple the two equations through the coupling terms
aoa(O 2 A) and vao(A 2 O) where we used coupling coeffi-
cients of 0.003 in both equations in all the following experi-
ments, except for one uncoupled simulation where we set the
coefficients to zero. Additionally, we halved the biharmonic
damping of the Atmos variable to have more structures in the
solutions.

We defined two different physical lengths for the Ocean and
Atmos model domains to introduce different spatial scales in the
two models. We used a periodic model domain with 1024 grid
points but assumed a physical domain length of 32 for the
Atmos domain and 256 for the Ocean domain. Multiplying
the time derivative in one of the equations by a number not
equal to one would introduce different time scales in the two
model components.

Our multiscale coupled model is suitable for conceptualiz-
ing data assimilation in coupled systems. This paper will still
refer to the model as KS, although we have modified it from
the original KS model in Eq. (1). We can consider it a 1D ana-
log to the 2D Navier–Stokes equations. The model has a
unique solution given a set of initial conditions (Tadmor
1986), and it has chaotic behavior and a finite-dimensional
global attractor (Papageorgiou and Smyrlis 1991). The 1D KS
model simplifies the analysis and interpretation of results, and
we avoid using computationally expensive 2D or 3D models.

In nonlinear chaotic models, such as weather prediction
models, we can define the model’s predictability time relative to
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the initial uncertainty as how long we can integrate the model
before the model solution’s uncertainty reaches the climato-
logical variability level. Typically, nonlinear unstable ocean
and atmosphere models initially experience exponential error
growth before the errors saturate at the climatological variability
level due to nonlinear effects.

3. Data assimilation methods

We have adopted data assimilation methods, notation, and
formulations from our recent open-access textbook (Evensen
et al. 2022), where we split the time dimension into a se-
quence of assimilation time windows as illustrated in Fig. 1.
The definition of finite-length assimilation windows facilitates
assimilation of all data available within the window in one up-
date. It makes it possible to use iterative ensemble smoothers
to reduce the model nonlinearity’s impact and obtain superior
results compared to the standard EnKF solution (Bocquet
and Sakov 2013a,b). The three methods considered in this
paper are versions of the ensemble smoother (ES) that trace
back to the ES of van Leeuwen and Evensen (1996), the ES
with multiple data assimilation (ESMDA) proposed by Emer-
ick and Reynolds (2012), and the ensemble randomized maxi-
mum likelihood (EnRML) method by Chen and Oliver (2012,
2013). We are using the ensemble subspace implementation of
Evensen et al. (2019) for the EnRML, which we in the follo-
wing refer to as the iterative ES (IES). The term “randomized
maximum likelihood” is misleading; as we will see below, we
solve for a randomized ensemble of maximum a posteriori
solutions.

a. A theoretical basis for ensemble methods

The ensemble data assimilation methods attempt to sample
the posterior probability density function (pdf) f(z|d) for the
state z conditional on the measurements d, as defined by Bayes’s
theorem:

f (z|d) 5 f [d|g(z)] f (z)
f (d) : (4)

Here, f [d|g(z)] is the measurement’s likelihood function and
f(z) is the pdf for the prior estimate of the state z. We have in-
troduced the composite model and measurement operator g in

y 5 g(z), (5)

which maps the state vector z 2 <n to the predicted measure-
ments y 2 <m.

Kitanidis (1995) and Oliver et al. (1996) showed that for a
Gaussian prior and likelihood, minimization of an ensemble
of cost functions, one for each realization j,

J (zj) 5
1
2
(zj 2 z

f
j )TC21

zz (zj 2 z
f
j )

1
1
2
[g(zj) 2 dj]TC21

dd [g(zj) 2 dj], (6)

results in an approximate randomized sampling of the poste-
rior Bayesian pdf. This “RML” sampling is exact for a linear
model and measurement operator when using a Gaussian prior
and likelihood. The significance of the approximation depends
on the level of nonlinearity of the model in Eq. (5). The cost
functions are mutually independent for each realization j and
use the random samples z fj ;N (zf , Czz) for the prior state vec-
tor and dj ;N (d, Cdd) for the perturbed measurements to rep-
resent the uncertainties. The superscript f denotes first guess or
forecast. The covariances Czz and Cdd are the error covariances
for the prior state vector and the measurements. As shown in
van Leeuwen (2020), a more consistent interpretation is to per-
turb g(zj) instead of the observations, as observations are already
perturbed values from the true state, but because of the symme-
try in the Gaussian assumption, the results are independent of
the perturbation choice.

Note that to solve the assimilation problem for a particular
assimilation window, we must assume that measurements are
independent between the different windows and that the
model is a first-order Markov process. Additionally, we apply
a filtering assumption over time windows by only updating
the solution in the current assimilation window and ignoring
any updates of the past windows. We can easily relax this fil-
tering assumption, where we do not update previous windows,
by applying an ensemble Kalman smoother (EnKS) approach
to update the solution in previous windows (Evensen and van
Leeuwen 2000).

We derive the ensemble methods by setting the gradient of
the cost functions in Eq. (6) to zero:

C21
zz (zj 2 z

f
j ) 1 =zg(zj)C21

dd [g(zj) 2 dj] 5 0: (7)

This equation has no explicit solution in the case when the
model g(zj) is nonlinear. However, by introducing a lineariza-
tion of g(zj) around the prior estimate z fj , we obtain an ensem-
ble of Kalman filter update equations.

zaj 5 z
f
j 1 CzzG

T
j (GjCzzG

T
j 1 Cdd)21[dj 2 g(z fj )]: (8)

In the nonlinear case, these equations are only accurate for
modest updates when the linear approximation is valid (Bonavita
et al. 2018).

Alternatively, we can use the gradient expression from
Eq. (7) and the Hessian

=z=zJ (zj) ’ C21
zz 1 =zg(zj)C21

dd [=zg(zj)]T, (9)

in a Gauss–Newton iteration to minimize the ensemble of in-
dividual and uncoupled cost functions exactly. This approach
corresponds to an ensemble-4DVAR type method where we

FIG. 1. How we split time into discrete time windows is shown.
Within each time window l, we integrate a model K time steps and
assimilate the data dl into the state variable zl.
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could use, e.g., incremental 4DVAR methods to minimize each
independent cost-function realization. We refer to Evensen
(2019) for a complete derivation of the resulting iteration.

However, in this paper, we will introduce another approxi-
mation that allows us to eliminate the model’s tangent linear
operator. We will represent the model sensitivity by an en-
semble-averaged sensitivity through the linear regression or
equivalently the least squares approximation:

=zg(zj)¢C21
zz Czy, (10)

where we replace all individual model sensitivities for the dif-
ferent realizations with a common averaged one. This approx-
imation implies that we no longer solve strictly for the minima
of the cost functions in Eq. (6).

The final approximation is to represent all covariances us-
ing an ensemble of realizations and we define the ensemble
matrix Z 2 <n3N as

Z 5 (z1, z2, …, zN): (11)

Furthermore, we define the matrixP 2 <n3N,

P 5 I 2
1
N
11T

( )/ ���������
N 2 1

√
, (12)

where 1 2 <N is a vector with all elements equal to one and
IN is the N-dimensional identity matrix. If we multiply an
ensemble matrix with the matrix P, this subtracts the mean
from the ensemble and divides the result by

��������
N2 1

√
.

We can then define the zero-mean and scaled ensemble-
anomaly matrix as

A 5 ZP, (13)

and the ensemble covariance is

Czz 5 AAT, (14)

where the “overbar” denotes that we have an ensemble-
covariance matrix.

Correspondingly, we can define an ensemble of perturbed
measurements, D 2 <m3N, when given the real measurement
vector, d 2 <m, as

D 5 d1T 1
���������
N 2 1

√
E, (15)

where E 2 <m3N is the centered measurement-perturbation
matrix whose columns are sampled from N (0, Cdd) and

FIG. 2. Exp. PRED-uncoupled: Uncoupled ensemble-prediction experiment without DA. The upper plots show the Atmos variable
with (left) the reference solution, (center) the prior ensemble mean, and (right) the ensemble-predicted standard deviation. The lower
plots are the corresponding results for the Ocean variable.
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divided by
��������
N2 1

√
. We define the ensemble covariance ma-

trix for the measurement perturbations as

Cdd 5 EET: (16)

The ensemble algorithms work both with a full-rank Cdd or
the ensemble version of the measurement covariance repre-
sented by the perturbations in E.

Finally, we define the ensemble of model-predicted mea-
surement anomalies

Y 5 g(Zf )P, (17)

where we have multiplied the model prediction by the matrix
P to subtract the ensemble mean and divide the resulting
anomalies by

��������
N2 1

√
.

FIG. 3. Exp. PRED-coupled: Coupled ensemble-prediction experiment without DA. See description in Fig. 2.

FIG. 4. The plots show the time evolution of the spatially averaged residuals (RMSE) of the prior ensemble-mean
predictions from the PRED-uncoupled and PRED-coupled experiments to the reference solution as the dark lines
and the ensemble-predicted RMSE as the light lines. We define the ensemble-predicted RMSE as the RMS of the
ensemble-predicted standard deviation where the mean is over the spatial coordinate.
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From Eq. (8), we then obtain the ensemble Kalman filter or
smoother update equation formulated entirely in terms of en-
semble matrices (Evensen 2003) as

Za 5 Zf 1 AfYT(YYT 1 EET)21[D 2 g(Zf )]
5 Zf 1 AfW

5 Zf (I 1 PW)
5 Zf I 1 W/

���������
N 2 1

√( )
? (18)

The update becomes a “weakly nonlinear” combination of the
prior ensemble anomalies, as W depends on the ensemble of
state vectors through the predicted measurements. Still, we will
use the notation “linear combination” in the remainder of this
paper as this fits well with the form of the update in Eq. (18).

Similarly to the EnKF update, we can write the IES equation
using the ensemble matrices. Still, a better alternative is to use the
EnRML’s ensemble subspace variant developed by Evensen et al.
(2019) and Raanes et al. (2019), and we have used the particular
ensemble subspace implementation from Evensen et al. (2019) in
this work. We refer to these papers and Evensen et al. (2022) for
an in-depth discussion of the subspace algorithm. We also remark
that the first step in the IES algorithm becomes identical to the
ES update if we choose an iteration steplength of one. Hence, we
can use the numerical IES implementation to compute the update
in ES and IES (and in the ESMDA approach discussed below).

b. Ensemble smoother

When formulated for a single data assimilation window, the
update computed by the ensemble smoother is a simple

FIG. 5. Exp. PRED-uncoupled: Correlations from an uncoupled ensemble prediction without assimilation of data.
The upper left plot shows the space–time correlation between a predicted Ocean measurement at the center of the
domain (open circle) and the Ocean variable. The upper-right plot shows the corresponding correlations for an Atmos
measurement with the Atmos variable. The lower-left plot shows the cross correlation between an Ocean observation
and the Atmos variable, and the lower-right plot shows the corresponding cross correlation between an Atmos mea-
surement and the Ocean variable. Note the difference in contour levels for the upper and lower plots.
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extension of the EnKF update by Evensen (1994) and Burgers
et al. (1998). In the standard form of EnKF, one updates the
model solution instantly when measurements are available.
The ES provides a framework where we can update the solution
at any or all time steps in an assimilation window, using simulta-
neously all measurements available within the window. When
measurements are only available at the end of the window,
the ES solution at the end of this window is identical to the
EnKF solution. Furthermore, the ES provides a means for us-
ing the EnKF formalism with measurements distributed over
the assimilation window and updates computed at the end of
the window. Thus, we can view the ES as an extension of the
EnKF that adds an update in the space–time domain with
measurements distributed in space and time over this domain.

c. Iterative ensemble smoother

While the ES computes one linear step in the gradient di-
rection to approximate the cost functions’ minima, the IES

uses Gauss–Newton iterations to search for the ensemble of
cost functions’ minima, which define the posterior ensemble.
If the cost functions do not contain local minima, the iterative
smoothers should converge to the global minimum of each
cost-function realization. But note that we are using the
ensemble-averaged model sensitivity from Eq. (10) that slightly
changes the gradient Eq. (7) for each realization. Additionally,
we use ensemble covariances, which constrain the posterior en-
semble to the ensemble subspace spanned by the prior ensem-
ble of realizations.

In its standard formulation, IES attempts to estimate the
initial conditions of the assimilation window. After updating
the initial conditions, we must reintegrate the ensemble of
model realizations over the window to compute the updated
gradient in each iteration. Realizing that the final converged
transition matrix defines the posterior ensemble solution as a
linear combination of the prior ensemble realizations and that
we do not need the gradient after the last update, we could

FIG. 6. Exp. PRED-coupled: Correlations from a coupled ensemble prediction without assimilation of data. See Fig. 5
for a figure description.
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use this final transition matrix to update the ensemble directly
over the whole assimilation window. These two strategies
would give identical results in the linear case without model
errors.

d. Ensemble smoother with multiple data assimilation

The ESMDA is an interesting alternative to IES, and it also
attempts to approximately sample the posterior from Bayes’s
theorem. When requiring that a finite number m of coeffi-
cients ai satisfy the condition

∑
m

i51

1
ai 5 1, (19)

we can write Bayes’s theorem as

f (z|d) ~ f [d|g(z)] f (z)

5 f [d|g(z)]
(
∑
m

i51

1
ai

)
f (z): (20)

This rewriting of the likelihood allows for a gradual introduc-
tion of the measurements over a predefined number of update
steps. For example, we could use two steps and set a1 5 a2 5 2,
which satisfies the condition in Eq. (19). In this case, we would
have to solve recursively the two updates

f1(z|d) ~ f [d|g(z)]1/2 f (z), (21)

FIG. 7. Exp. MDA5-w05-d2-O: Assimilation of Ocean data and updating the Ocean and Atmos variables. The upper plots show the At-
mos variable with (left) the reference solution, (center) the posterior ensemble mean, and (right) the ensemble-predicted posterior stan-
dard deviation. The lower plots are the corresponding results for the Ocean variable. The grid points indicate the location of measure-
ments used in the assimilation.

TABLE 1. The coupled vs uncoupled data assimilation experiments.

Experiment Window length Num Ocean obs Num Atmos obs Dt Ocean obs Dt Atmos obs

MDA5-w05-d2-O 5 40 0 2 }

MDA5-w05-d2-Osep 5 40 0 2 }

MDA5-w05-d4-A 5 0 15 } 4
MDA5-w05-d4-Asep 5 0 15 } 4
MDA5-w05-d5 5 40 10 5 5
MDA5-w05-d5sep 5 40 10 5 5

MONTHLY WEATHER REV I EW VOLUME 1521284

Unauthenticated | Downloaded 07/15/24 07:44 AM UTC



f (z|d) ~ f [d|g(z)]1/2f1(z|d): (22)

The impact of raising a Gaussian likelihood to a power 1/a is
an inflation of the measurement error variance where the
error covariance matrix becomes multiplied by a. Consequently,
we can solve each update step using ES and Eq. (18) but with an
inflated measurement error covariance aCdd ’

��
a

√
E

��
a

√
ET. A

word of caution is that it is necessary to resample measure-
ment perturbations

��
a

√
E in each step to avoid introducing a

bias from using dependent samples. This step is easier to un-
derstand if we realize we are perturbing the model-predicted
observations and the model changes with each update. During
the stepwise updating, we must update the initial state of the
assimilation window and then reintegrate the model ensemble
over the window to obtain the “prior” ensemble of realiza-
tions for the next step.

The advantage of ESMDA over ES is that while ES computes
one large linear update, ESMDA computes a sequence of
small linear updates, reducing the impact of the lineariza-
tion in the ES scheme. We can view ESMDA as an Euler
pseudo-time-stepping in state space with a short step size
while ES computes the update over one large time step of
length one. ESMDA has become one of the most popular
data assimilation methods in the petroleum community,
and several companies use the method operationally for pa-
rameter estimation in large reservoir models (e.g., Zhao

et al. 2017; Emerick 2018). For linear dynamics and meas-
urements, ESMDA and ES will result in the same solution
with increasing ensemble size, independent of the number
of ESMDA steps.

When used in sequential data assimilation, ESMDA up-
dates the initial conditions of the assimilation window through
a finite number of ES steps. In each ESMDA step, we must
rerun the model ensemble over the assimilation window to
obtain the prior for the next update step. However, as for
IES, we can choose two strategies for the final step in
ESMDA. We can update the initial conditions of the assimila-
tion window and rerun the model ensemble to obtain the so-
lution over the window or update the ensemble directly over
the whole assimilation window using the ES algorithm with-
out rerunning the ensemble. Both these approaches are valid
and consistent as the ESMDA steps are independent ES
steps, and as for ES, we can freely choose the update strategy.
A critical remark is that the prior ensemble for the last
ESMDA step is the “nearly converged” ensemble from the
previous update step. In the experiments below, we will show
that, as for ES, it is an advantage to compute directly the final
ES update over the whole assimilation window, particularly
when the assimilation window becomes long compared to the
predictability time of the model.

There are fundamental differences between IES and ESMDA.
While IES is an iterative method, ESMDA computes a

FIG. 8. Exp. MDA5-w05-d2-Osep: As in Fig. 7, but with separate assimilation where the Ocean data only update the Ocean variable.
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predefined number of update steps. IES minimizes the ensem-
ble of initially defined RML cost functions, and ESMDA sol-
ves in each step for the minima of a new resampled ensemble
of cost functions using a linear ES update. However, although
the final ensemble solutions will be different using IES and
ESMDA, both methods consistently attempt to sample the
posterior pdf, and in the linear case with increasing ensemble
size, they converge to the same pdf.

4. Importance of coupled data assimilation

We will now demonstrate the importance of computing
fully coupled data assimilation updates. By the notation
“fully coupled,” we understand that measurements of one
model component will update all model components through
their cross covariances estimated from the ensemble of cou-
pled model realizations. We start in the following section by
examining the impact of the coupling term on the KS model
and the cross-covariance functions. After that, in section 4b,
we will compare coupled and uncoupled data assimilation
experiments.

a. Ensemble predictions and covariances

We now present two ensemble-prediction experiments to il-
lustrate some properties of the coupled KS models with our

choice of model parameters. Figure 2 shows the results from
the uncoupled prediction experiment, where we run an ensemble
of 1000 realizations of the two models in Eqs. (2) and (3) in an
uncoupled mode with aoa 5 vao 5 0. Hence, the two models
evolve independently of each other. We generate the initial
samples of smooth Gaussian pseudorandom one-dimensional
fields using an inverse fast Fourier transform from a Gaussian
spectrum in wave space with random phases for each wavenumber
(Evensen 2009, see chapter 11). Note that the realization’s smooth-
ness is not critical as the model quickly develops variability on its
inherent scale.

In Fig. 3, we present the coupled reference simulations
where aoa 5 vao 5 0.003. In both the PRED-uncoupled and
PRED-coupled experiments, we notice the apparent chaotic
behavior of the two model variables and the differences in
spatial scales between the Ocean and Atmos variables, as
shown in the left panels of the Figs. 2 and 3. While the two
models evolve independently in PRED-uncoupled experi-
ment, we observe a significant impact of the coupling in
PRED-coupled experiment, where the fine-scale Ocean fea-
tures follow the large-scale structures in the Atmos solution,
and the latter also changes compared to the uncoupled simu-
lation. The ensemble mean converges quickly toward zero for
both compartments in both experiments, as shown in the
center panels. Very importantly, the standard deviations

FIG. 9. Exp. MDA5-w05-d4-A: Assimilation of Atmos data and updating both the Ocean and Atmos. See Fig. 7 for further
explanation.
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shown in the right panels remain at the climatological level
of around 1.25 and 1.75 for the two model components but
appear to saturate at a slightly lower level in the coupled
simulation than in the uncoupled one, suggesting that the
coupling slightly stabilizes the model. The higher standard
deviation in the Atmos variable, as seen in both simula-
tions, is likely a result of the lower biharmonic diffusion
in this model and the difference in scales where the bihar-
monic diffusion has less effect on the Atmos variable’s larger
scales.

Figure 4 shows the time evolution of the root-mean-square
residuals between the ensemble mean and the reference solu-
tion as the dark lines. The light lines are the root-mean-square
of the ensemble standard deviations. We have averaged the
residuals over the spatial coordinate. With the current ensemble
initialization, the error growth saturates after an integration
time of about 10–20 units of time, approximately indicating the
model’s predictability time.

In coupled data assimilation, we are interested in the multi-
variate ensemble correlations between a predicted observa-
tion of a model variable with all model variables in all grid
points. In Figs. 5 and 6, we show the space–time correlation
functions between an observation of either the Ocean or the
Atmos variables located in the center of the domain and the
respective model components. The correlation function of an

observation with the measured variable reflects the spatial
scales of the variable. However, we note that there is also a
correlation in time, which is essential when computing smoother
solutions over an assimilation window. We also notice that the
correlations from the uncoupled and coupled models differ
slightly due to the change in dynamics introduced by the coupling
term.

In the uncoupled case, the ensemble correlations between
the Atmos and Ocean variables are zero (within the sampling
errors). Hence, for an uncoupled model system, an Ocean ob-
servation will only influence the Ocean variable and similarly
for an Atmos observation. However, for the coupled model,
we obtain significant cross correlations between the variables,
as seen in Fig. 6. These cross correlations will cause the assim-
ilation of a measurement of one model variable to update the
other model variable. We notice that the Ocean observation
cross correlation with other Ocean variables has changed
compared to the uncoupled case, even at the observation lo-
cation, because the ocean takes up larger scales from the At-
mos variables due to the coupling.

The cross correlations indicate that an Ocean observation
will influence the Atmos variable predominantly in the past,
while an Atmos observation predominantly influences the
Ocean variable in the future. Also, with these cross correla-
tions, an Ocean observation will update the Atmos variable

FIG. 10. Exp. MDA5-w05-d4-Bsep: As in Fig. 9, but with separate assimilation where the Atmos data only update the Atmos
variable.
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on the Atmos variable’s spatial and time scale. In contrast,
an Atmos observation will update the Ocean variable on
multiple scales. That is, the update introduces a prominent
Atmos-scale feature and a finer Ocean-scale variability to
the Ocean variable. We conclude from studying the space–
time correlations that the Atmos model partly drives the
Ocean model, presumably due to the Atmos’ larger variabil-
ity amplitude.

b. Coupled data assimilation experiments

We adopt a general naming convention for the paper’s
experiments, starting with ES, IES, or MDA, indicating the
assimilation method used. For the IES and MDA, an integer
follows immediately after the method name and defines the
number of iterations in IES or steps in ESMDA. IES without
a number means we iterate to convergence. Then, the “w05”
tells us that the assimilation window length is five units of
time, and “d2” means that we have observations available
every Dt 5 2. Note that the first measurements become avail-
able at time t 5 50, and we assume uncorrelated measure-
ment errors with a standard deviation of 0.3 for all the
experiments.

We have ignored the impact of model errors in this study as
the model is highly nonlinear and unstable, and we will have

strong error variance growth between assimilation steps that likely
will dominate the impact of modest model errors. However, if
model errors are substantial, they should be included in the
data-assimilation problem as unknown forcing fields. In that
case, the methods would update the initial conditions and
these forcing fields. Evensen (2019, 2021) discussed how to
include model errors in iterative ensemble smoothers. The
state vector size used in the data assimilation would in-
crease, but depending on how we parameterize the model
error, including the model errors might still be feasible. In
general, we would argue for including model errors in the
data assimilation system, as the weak-constraint data assimi-
lation becomes more stable since observation information
can influence the solution at and around the observation
time such that the sensitivity to the initial conditions is
strongly reduced (see, e.g., Amezcua et al. 2017). Including
model errors will again result in a more Gaussian assimila-
tion problem. Hence, we expect all methods to perform bet-
ter in this case, and while the state-vector size increases, the
expected number of iterations decreases.

We have used a 1000-member ensemble in all the following
experiments to minimize the impact of sampling errors and to
avoid using localization and inflation. In an experiment with
localization, it was not possible to visually observe any differ-
ence between the global and local analysis. However, in a

FIG. 11. Exp. MDA5-w05-d5: Assimilation of Ocean and Atmos data and updating both the Ocean and Atmos. See Fig. 7 for further
explanation.

MONTHLY WEATHER REV I EW VOLUME 1521288

Unauthenticated | Downloaded 07/15/24 07:44 AM UTC



forthcoming manuscript, we will address localization in ex-
periments with smaller ensemble sizes.

In the experiments discussed in the current section, we use
ESMDA with five steps and assimilation windows having a
length of five units of time. We varied the spatial measurement
coverage to emphasize the results (see Table 1). We start by
testing the impact of coupled assimilation of only Ocean data
in Exp. MDA5-w05-d2-O and only Atmos data in Exp.
MDA5-w05-d2-A, and we present the results in Figs. 7 and 9.
Here, we jointly update the Ocean and Atmos variables when
we assimilate the Ocean or Atmos data. Complementary to
these experiments, we have run Exps. MDA5-w05-d2-Osep
and MDA5-w05-d2-Asep, using “uncoupled” data assimila-
tion, where we only update the Ocean variable using the
Ocean data and only the Atmos variable when conditioning
on the Atmos data (see Figs. 8 and 10).

Assimilation of only Ocean data in experiment MDA5-
w05-d2-O constrains the Ocean variable well, as seen in Fig. 7.
Interestingly, the information from the Ocean data also im-
proves the Atmos variable significantly. After a few data as-
similation updates, we have reduced the residuals for the
Atmos variable to a low value compared to what we started
with (see Fig. 13). Note that we have a relatively high density
of Ocean measurements in space to resolve the spatial scales
in the Ocean model variable. In this case, the Atmos solution’s
recovery results from the coupled data assimilation. In contrast,

the results of Exp. MDA5-w05-d2-Osep illustrate that when we
only update the Ocean variables when assimilating Ocean data,
we see hardly any impact on the Atmos variable, and we
also observe worsening Ocean results compared to the cou-
pled case. This result is significant, as it shows that if we im-
prove the atmosphere via ocean observations, the atmosphere
couples back to the ocean to improve the ocean simulation
further.

The situation differs for the alternative case, MDA5-w05-
d4-A, where we only assimilate Atmos data. We obtained
good convergence for the large-scale Atmos model, but with
the current spatial resolution in the data, we would need
more information to control the Ocean model. We see some
impact of the assimilation in the Ocean variable in Fig. 9
where we recover the Ocean’s “large-scale” structures and
somewhat reduce the domain-averaged estimated standard
deviation. However, compared with Exp. MDA5-w05-d4-Asep
in Fig. 10, this weak improvement in the Ocean variable is
primarily due to the model coupling and dynamic interaction be-
tween the Atmos and Ocean variables. Hence, in our problem
setting, the atmospheric observations do not directly update
the ocean. Still, the ocean variables benefit indirectly from bet-
ter atmospheric fields in the forecast stage. Interestingly, the
estimated standard deviation is large near sharp gradients in
the Ocean solution, for which the Atmos observations are too
course.

FIG. 12. Exp. MDA5-w05-d5sep: As in Fig. 11, but with separate assimilation for the Ocean and Atmos variables.
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The difference between the coupled assimilation of Ocean
and Atmos data in experiment MDA5-w05-d5 and the separate
assimilation of Ocean and Atmos data in experiment MDA5-
w05-d5sep emphasizes the value of the coupled assimilation.
Exp. MDA5-w05-d5 presented in Fig. 11 converges after a few
assimilation windows, and we can control the further evolu-
tion of the model ensemble. Exp. MDA5-w05-d5sep shown
in Fig. 12 converges much slower, and the resulting estimate
has larger errors for the Ocean and Atmos variables. The
residual plots in Fig. 13 also support the conclusion that
combined assimilation of the Ocean and Atmos data cap-
tures the interaction between Ocean and Atmos more accu-
rately and can lead to an improvement in the state estimate
compared to the results of separate assimilation for the
Ocean and Atmos variables.

5. Sensitivity study for ensemble DA methods

We will now further examine the properties of the iterative
ensemble smoothers with our coupled model. The focus is not
on the coupling but, instead, on how to best configure the as-
similation setup for the different assimilation methods in
terms of the update strategy for the final iteration or step, the
length of the data assimilation window relative to the model’s
predictability time, the optimal number of steps in ESMDA,
and the required number of IES iterations. We will now ex-
amine ES, IES, and ESMDA in a recursive setting, where the
assimilation updates in future assimilation windows will

benefit from the updates from the previous assimilation steps
and, thereby, a reduced nonlinearity and a more Gaussian pdf
of the prior ensemble. We note that the current versions of
IES and ESMDA were previously only studied for parameter
estimation on a single window. Still, from the results reported
by Bocquet and Sakov (2013a,b), with their alternative itera-
tive smoother formulation, we expect a significant improve-
ment when using the iterative methods compared to what we
can get with EnKF or ES.

Before we discuss the experiments in more detail, we note
that ES allows for state updates over the whole assimilation
window, even when there are no model errors. The reason is
that the ensemble is present over the whole assimilation win-
dow, and Bayes’s theorem allows us to update the solution at
every time step within the window. Of course, there is a direct
advantage to updating the state at the end of the window
in a perfect model setting, as this will typically lead to a
better forecast than updating only at the beginning of the
assimilation window. This approach is impossible in strong-
constraint variational methods, which define the data assim-
ilation problem as finding the initial conditions that lead
to the model solution that minimizes a cost function. The
violation of the strong constraint model assumption in ES
might seem inconsistent. Still, it is similar to the inconsis-
tency in a strong-constraint 4DVAR over a sequence of as-
similation windows: we violate the perfect model assumption
at the start of each assimilation window. Van Leeuwen et al.
(2015, chapter 1) discussed the possible degradation of the

FIG. 13. The plots show the time evolution of the residuals for the MDA5-w05-d5 experiments listed in Table 1. The dark lines indicate
RMSE relative to the reference solution while the light lines are the ensemble-predicted RMSE. The upper plots show results from joint
updates of the (left) Ocean and Atmos variables using Ocean observations, (center) Atmos observations, and (right) Ocean and Atmos
observations. The lower plots show the corresponding results when we compute separate and independent updates of the Ocean
and Atmos variables.
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solution at the end of the assimilation window in a strong-
constraint 4DVAR.

a. Window update or model rerun

From section 3, we noticed that we can update the solution
at any instant over the assimilation window when using ES.
Furthermore, for an assimilation window, the update uses the
same linear combination of the prior ensemble realizations in-
dependently of the time step we are updating. Hence, for the
ES update, we can choose between two strategies: update the
solution over the whole window or update only the assimila-
tion window’s initial conditions and rerun the model to obtain
the solution over the window. We will see that these two
strategies lead to substantially different results for nonlinear

dynamical models. At the same time, in the limit of infinite
ensemble size, there would be no difference for linear models
without model errors.

For ES, it is always better to update the whole window and,
particularly, the end time of the window, as this estimate be-
comes the initial condition for the continued integration over
the following window. The importance of updating the whole
window depends on the length of the assimilation window
relative to the model’s predictability time. For short time
windows, the error growth caused by the nonlinear and un-
stable model dynamics will not have time to impact the pre-
diction significantly. In this case, whether we update the
window’s initial conditions or compute the linear ES update
over the whole window yields similar results. However, for

FIG. 14. Exp. ES-w06-d2: ES with an assimilation window with a length of six time units and a data-assimilation update of the final solution
over the assimilation window.

TABLE 2. The experiments used for testing whether to update initial conditions or the whole ensemble over the data assimilation
window. The experiment names ending with ini update the initial conditions of the data assimilation window and then rerun the
model ensemble to obtain the final solution over the window.

Experiment Window length Num Ocean obs Num Atmos obs Dt Ocean obs Dt Atmos obs

ES-w06-d2 6 40 10 2 2
MDA5-w12-d5 12 40 10 5 5
IES-w05-d2 5 40 10 2 2
ES-w06-d2ini 6 40 10 2 2
MDA5-w12-d5ini 12 40 10 5 5
IES-w05-d2ini 5 40 10 2 2
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longer time windows, the uncertainty at the end of the window
obtained by integrating the model ensemble from updated
initial conditions typically tends toward climatology, and the
ensemble prediction in the next assimilation window starts
all over again from a climatological level where the ensemble
has forgotten all information from previously assimilated data.

We will now illustrate the impact of updating either the
data assimilation window’s initial conditions followed by
an ensemble integration or updating the ensemble directly
over the whole window in the final iteration or step. We
have run the experiments listed in Table 2, where we chose
the window lengths in the different experiments to empha-
size the impact of using the two strategies with the different
ensemble smoothers.

In Figs. 14 and 15, we illustrate the difference between the
two update strategies when using ES for a case with window
lengths of six units of time and measurements every second
unit of time. We obtain a faster convergence and lower stan-
dard deviations when we update the ensemble over the whole
window. This case corresponds to computing an EnKS solu-
tion, where we have used measurements within an assimi-
lation window to update the ensemble at the end of the
assimilation window before continuing the integration.

ESMDA updates the assimilation window’s initial condi-
tions recursively, and following each update, we must rerun

the ensemble over the window to obtain the solution for the
current ESMDA step. This procedure increases the ensemble
spread and uncertainty over the window due to using a non-
linear and unstable model. However, we can control some
uncertainty growth at the final update step by calculating
the ESMDA update over the whole window. This approach
avoids the final ensemble integration. In the case of long
assimilation windows, we obtain a better estimate of the
solution at the end of the assimilation window and, thereby,
a better estimate of the initial conditions of the following
window. Figures 16 and 17 illustrate how computing the
solution over the whole window in the final ESMDA step
improves the estimate. In particular, we notice a faster
convergence for the Atmos variable, and we are better at
controlling the dynamic instabilities that develop while
integrating the model over the window. In an operational
weather or climate prediction setting, we would typically
update the solution at the end of the assimilation window at
the final ESMDA step before predicting the solution over
the following window.

The situation changes entirely in the IES as shown in
Figs. 18 and 19. Updating the solution over the whole
window in the final iteration significantly degrades the
estimate. When using IES, we should update the initial con-
dition of the assimilation window in the final integration.

FIG. 15. Exp. ES-w06-d2ini: As in Fig. 14, but with an update of the window’s initial condition.
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The reason ESMDA experiences an improvement while the
IES solution degrades, in this case, is the following. When
computing the last update in ESMDA, the solution is a linear
combination of the ensemble simulations of the previous
MDA step. On the other hand, in IES, the estimate is a linear
combination of the prior ensemble simulations. Each step in
ESMDA improves the initial conditions for the assimilation
window, leading to an improved ensemble prediction over
the assimilation window with lower uncertainty. Thus, the
prior ensemble is already close to the posterior solution in
the final update step.

The summary in Fig. 20 clearly illustrates the above
findings. The most surprising observation from this figure
is that the window length used for ESMDA significantly
exceeds the one used with IES. We will see in the following
section that the possibility of using a standard ES update for
the final ESMDA step makes ESMDA less sensitive to the
window length when used in sequential data assimilation.
ESMDA also tolerates more significant errors in the initial
conditions of the ensemble since we can partly correct these
errors in the final ES-type update step. Furthermore, while
ESMDA computes recursive linear regression updates, IES is
a gradient-descent method and becomes sensitive to sub-
stantial nonlinearities. We will elaborate more on these
topics in the following sections.

1) ENSEMBLE SMOOTHER SENSITIVITY EXPERIMENTS

We will now examine how the ensemble smoothers perform
when we vary the length of the assimilation windows. In the
case of ES, we repeat the experiments for window lengths
increasing from one to nine units of time, and the time in-
terval between the measurements is two for all the experi-
ments. We have 10 and 40 equally spaced measurements
of the Atmos and Ocean variables at each measurement
time. We denote the experiments ES-w0[1–9]-d2[ini], where ES
denotes the ensemble smoother, and the numbers 0[1–9] define
the length of the assimilation windows, and d2 tells us that we
have measurements available every second unit of time. Finally,
an “ini” at the end tells us we reran the model ensemble to ob-
tain the solution. In contrast, the experiments without the ini
computed the ES update over the whole window.

Note that the ES and the EnKF will always have identical
solutions at the end of the assimilation window; therefore, the
prior for the following window will also be the same. We have
already shown that we obtain better results from ES when we
update the solution at the end of the assimilation window
than when we update the window’s initial conditions and re-
run the ensemble over the window. From the upper plots in
Fig. 20, we notice that ES generally leads to more accurate
solutions when updating the solution over the window and
not rerunning the ensemble. Updating the window’s initial

FIG. 16. Exp. MDA5-w12-d5: ESMDAwith an assimilation window with a length of five time units and a data-assimilation update of the
final solution over the assimilation window.
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conditions results in poorer performance for all window
lengths, and we can conclude that the standard EnKF with up-
dates at the end of the assimilation window is the way to go
when the emphasis is on forecasting.

Regarding the length of the assimilation window, the ES
experiments perform well for a short window length of two
units of time. Still, the performance deteriorates rapidly for
longer assimilation windows. This worsening of the results
with increasing window length comes from the model’s non-
linearity, which results in a prior ensemble prediction over
the window that approaches climatology for long windows.
Then, the linear update computed by ES will break down,
as previously discussed by Evensen and van Leeuwen (2000)
in an example using the Lorenz-63 equations. From the upper
left plot in Fig. 20, we notice how the standard deviation over
the window grows until the simulation approaches climatology
with long windows. The net effect is that at the end of the as-
similation window, no predictive skill propagates forward into
the following window. So, when using ES and EnKF, we
should use short data assimilation windows and update the so-
lution at the end of, or the whole, window.

2) IES SENSITIVITY EXPERIMENTS

We now move on to examining IES in more detail. Simi-
larly to the ES experiments in the previous section, we use the

notation IES-w[01–15]-d2[ini] for the IES experiments. With
IES, we could extend the length of the assimilation win-
dow, and we have run experiments with assimilation win-
dow lengths up to 15 units of time. In all the experiments,
we used a maximum of 12 iterations, but in most cases,
we observed no improvement after about five to eight
iterations.

The plots in the second row of Fig. 20 summarize the re-
siduals from using IES with different assimilation window
lengths. IES performs equally well for window lengths of
two to seven units of time, as seen from the right plot in
the second row of Fig. 20, and the results are significantly
better than those obtained using ES (see upper left panel
in the figure). Thus, an iterative method benefits from a
more accurate estimate but comes at a higher computa-
tional cost.

As for ES, we repeated all 15 IES-w[01–15]-d2ini experi-
ments by a set of experiments IES-w[01–15]-d2 where we
used the IES transition matrix to update the whole window in
the final iteration. However, from the residuals in Fig. 20, it is
clear that for IES, in contrast to ES, we should rerun the
model ensemble in the final iteration. We explained in section 3
that IES computes the updated ensemble of initial conditions
as a linear combination of the prior ensemble initial con-
ditions. Furthermore, we recall that the linear combination

FIG. 17. Exp. MDA5-w12-d5ini: As in Fig. 16, but with an update of the window’s initial condition.
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defined by the transition matrix leads to a posterior ensemble
prediction that minimizes the ensemble of cost functions in
Eq. (6). Thus, we lose the effect of the model nonlinearity by
directly updating the posterior ensemble over the data assimi-
lation window. Note that the estimates would become identi-
cal when using a linear model.

3) ESMDA SENSITIVITY EXPERIMENTS

We now apply the ESMDA method in experiments MDA-
w[01–15]-d2[ini], similar to those from the previous section.
The ESMDA formulation for the recursive data assimila-
tion problem assumes that we update the initial state and
rerun the model ensemble in each step to recompute the
gradient. However, since ESMDA computes a sequence
of independent ES updates, we can choose whether to up-
date the initial conditions for the assimilation window or
the whole solution over the window in the final ESMDA
step.

From the plots in the bottom row of Fig. 20, we notice
that ESMDA performs significantly better than ES in both
the case with updating the whole window and when we re-
run the model ensemble over the window. We can extend
the window length significantly compared to when using
ES, and there are hardly any differences between the

ESMDA or IES solutions for window sizes up to six units
of time. We note, however, that the ESMDA residuals
diverge from the ensemble standard deviations for win-
dow lengths greater than 14 units of time in the MDAX
experiments.

We also note that computing an ES update of the whole
window in the final step stabilizes the solution for longer
windows and improves the estimate, particularly for long
window lengths. This strategy also saves one ensemble
integration.

To conclude, we are less impacted by the model’s non-
linearity when using ESMDA than when using ES, and
ESMDA has the added advantage of significantly extending
the data assimilation window length. We also obtained a
substantially better result with ESMDA than ES, although
at a higher computational cost for the same window length.

b. Sensitivity to number of MDA steps

The number of ESMDA steps can significantly impact the
solution (Evensen and Eikrem 2018; Evensen et al. 2021).
Ideally, we would like to use as few steps as possible to re-
duce computational cost since every step implies a simula-
tion of the whole ensemble. Using around four to eight
steps is common (Zhao et al. 2017; Evensen and Eikrem

FIG. 18. Exp. IES-w05-d2: IES with an assimilation window with a length of 12 time units and a data-assimilation update of the
final solution over the assimilation window.
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2018), but we currently lack a general rule for how many
steps we need to obtain the best estimate. We can only try
a different number of steps, and when the solution does
not change within the expected sampling errors, we can as-
sume we have converged.

An issue is that every ESMDA step is an independent ES
update and introduces a new set of perturbed observations
with increasing perturbation magnitudes when using multiple
steps. Another problem is that using a limited ensemble size
introduces sampling errors. In the current experiments, we
have used 1000 realizations to minimize the impact of sam-
pling errors and data assimilation windows of 5, 10, and
15 units of time. We ran nine experiments using one to
nine steps, and we plot the residuals in Fig. 21, averaged over
the converged solution during the last 100 units of time. The
experiments using a single step are equivalent to running ES,
and it is clear that using more than one step improves the so-
lution. In the current example, using two MDA steps leads to
a significant improvement, and for a window length of five
units of time, we obtain nearly identical accuracy when using
ESMDA with two to nine update steps. In this case, using
more than two to three steps are useless. For the longer assimila-
tion windows of 10 and 15 units of time, we obtain the most con-
sistent solution using only three to seven MDA steps, all with
similar performance. We also note that additional steps lead to

divergence between the actual and estimated residuals. In the
case with an assimilation window of 15 units of time and nine
MDA steps, we experience substantial filter divergence.

Note that running experiments with a relatively small en-
semble size makes it useless to run additional ESMDA steps
if the method has already converged to a level lower than the
sampling errors resulting from the limited ensemble size. A
positive result from these experiments is that we can obtain
estimates with excellent accuracy using relatively few MDA
steps.

6. Comparative performance of ensemble smoothers

Which ensemble method should we use? We can apply the
ES with an update of the whole assimilation window or in a
pure EnKF setting with an update of the final time step of the
window. However, ESMDA and IES will improve upon the
ES results in cases with significant nonlinearity at an addi-
tional computational cost.

We like the consistency of the IES performance seen in the
middle right plot of Fig. 20, where the converged solution
shows consistency between actual and estimated residuals up
to a window length of eight units of time. On the other hand,
ESMDA converged in three to five steps for moderate assimi-
lation window lengths and may be more computationally

FIG. 19. Exp. IES-w05-d2ini: As in Fig. 18, but with an update of the window’s initial condition.
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efficient than IES. ESMDA also works well with longer win-
dow lengths due to the final MDA step, where we compute an
ES update over the whole window, which results in a higher
accuracy and lower uncertainty of the initial conditions for
the subsequent window.

In all the previous IES experiments, we ran a maximum
of 12 iterations, but in most cases, IES converged in fewer
iterations. In a sequential data assimilation system, the
prior for each successive assimilation window is typically
rather good, so we could reduce the number of iterations

in IES without sacrificing the quality of the results. We
also tested IES on the cases IES4-w[02–06]-d2ini using a
maximum of four iterations for each update, which in
computational cost corresponds to running ESMDA with
five steps since ESMDA avoids the final ensemble integra-
tion by updating the ensemble over the whole assimilation
window in the last step. We note that the final ES update
used in ESMDA helps control nonlinear instabilities and
leads to an improved initial condition for the following
window.

FIG. 20. The plots show the time-averaged residuals for the ES, ESMDA, and IES experiments listed in Table 2 as
a function of window length for the period 101–200. The dark lines indicate RMSE relative to the reference solution,
while the light lines are the ensemble-predicted RMSE.
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In Fig. 22, we compare the time series of residuals for the
IES (IES-w[02–06]-d2ini), IES with four iterations (IES4-
w[02–06]-d2ini), and the default case of ESMDA with five
steps (MDA5-w[02–06]-d2). We cannot conclude from these
plots that one configuration is significantly better or worse.
Figure 23 compares the residuals from the different cases
over the time interval 101–200, where the experiments have
reached a quasi-steady accuracy level following the initial
assimilation updates. Note that using a finite ensemble size
introduces a small uncertainty. We could have repeated the
experiments with different random seeds to obtain more
robust estimates and plotted all residuals with an uncer-
tainty estimate, but this becomes more relevant when using
smaller ensemble sizes than the 1000 realizations used in all
the experiments in this paper.

In addition to the actual performance issues, there could
also be preferences regarding the theoretical formulations of
the different techniques. Could we assume that ESMDA sol-
ves for minuscule ES updates that introduce Gaussianity into
the next window’s prior? The recursive-in-time updating pro-
cess in sequential data assimilation may also reduce the
RML sampling approximation.

The main cost of running the different ensemble smoothers
is associated with integrating the ensemble of model real-
izations in each update step. While the ES is the most cost
efficient as it only computes a single update, ESMDA and
IES improve the results but require a few, e.g., three to
four iterations to converge. We also note that the shorter
the assimilation window, the less nonlinear the problem be-
comes and the faster the convergence. It is good to realize
that ESMDA with, say, 50 localized ensemble members and
four iterations have costs similar to, or even less than, an
ensemble of 4DVARs. A rough estimate of the computa-
tional costs is the number of model runs needed, assuming
the actual assimilation update requires significantly less
computation than the model runs. In that case, the cost is
the number of ensemble members times the number of iter-
ations used.

Additional sensitivity studies could involve varying ensem-
ble sizes, but we have decided to exclude such a study in this

paper since it would also include using localization methods.
In future studies, we also want to examine the combined
impact of different temporal and spatial scales in the two
model components.

7. Summary

In this study, we have demonstrated the possibility of using
adjoint-free iterative ensemble methods for sequential data
assimilation. We defined a coupled multiscale model system
based on the nonlinear Kuramoto–Sivashinsky model. The
model system allows for examining data assimilation in multi-
scale dynamical systems and models with unstable dynamics.
An advantageous property of this model is its saturation of
prediction uncertainty at a climatologic level, similar to what
we observe in atmospheric and ocean models. In addition, the
model is one dimensional in space, allowing us to represent
spatial variability in the model. In addition to demonstrating
the importance and value of coupled data assimilation up-
dates, we have studied the properties of iterative ensemble
smoothers. The joint assimilation of data for a model operat-
ing at different physical scales and with collective updates of
both model components yields superior results compared to
treating the model components and data independently. In
particular, we demonstrated the importance of assimilating
measurements from the component with the small spatial scales
into the coupled system for reconstructing the component
with the large spatial scales. We also explained the similarity
between ensemble 4DVAR and our iterative smoothers. The
main differences include the replacement of the tangent-linear
operator with an ensemble-averaged model sensitivity, which
eliminates the construction of tangent-linear and adjoint
models. Additionally, we represent all covariance matrices
with an ensemble of model realizations. We demonstrated the
effectiveness and efficiency of ESMDA and IES in dealing
with nonlinearities in a coupled model. Furthermore, we illus-
trated the effect of updating over the assimilation window
versus updating the window’s initial conditions in ensemble
smoothers. We believe the methods and formulations, initially
developed for petroleum applications, will be valuable for

FIG. 21. The plots show time-averaged residuals for the ESMDA as a function of the number of MDA steps for three different window
lengths of 5, 10, and 15 units of time for the period 101–200 when we expect the assimilation cycle to have converged. The dark lines indi-
cate RMSE relative to the reference solution, while the light lines are the ensemble-predicted RMSE.
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FIG. 22. The plots show the time evolution of residuals for the ensemble prediction using different window lengths for a con-
verged IES, an IES using only four iterations (IES4), and an ESMDA with five steps (MDA5). The dark lines indicate RMSE
relative to the reference solution, while the light lines are the ensemble-predicted RMSE.
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future data assimilation systems for atmospheric, oceanic,
and other coupled Earth system models.
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