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a b s t r a c t

The preliminary fluid dynamic design of turbomachinery operating with non-standard working fluids and
unusual operating conditions and specifications can be very challenging because of the lack of know-how
and guidelines. Examples are the design of turbomachinery for small-capacity organic Rankine cycle and
supercritical CO2 cycle power plants, whereby the efficiency of turbomachinery components has also a
strong influence on the net conversion efficiency of the system. These machines operate with the fluid
in thermodynamic states which, for part of the process, largely deviate from those obeying to the ideal
gas law. This in turn implies the presence of so-called non-ideal compressible fluid dynamics effects.
Active subspaces, a model reduction technique, is at the basis of the methodology presented here,

which is aimed at the optimal meanline design of unconventional turbomachinery. The resulting surro-
gate model depends on a very small set of non-physical variables, called active variables. The procedure
integrates into a single constrained optimization framework the selection of the working fluid, the ther-
modynamic cycle calculation and the preliminary sizing of the turbomachinery component.
As a demonstration of the advantages of the proposed approach, the design of a 10 kW mini organic

Rankine cycle turbine with a turbine inlet temperature of 240 �C is illustrated. In this case, approximately
the same maximum efficiency is estimated for three dissimilar turbines operating with different working
fluids and rather different thermodynamic cycles. The use of active subspaces allows the seamless eval-
uation of the sensitivity of results to input parameters, both those related to the machine and the working
fluid. The novel design procedure is compared in terms of computational efficiency to a conventional
approach based on the coupling of a genetic algorithm directly with a meanline code. Results show that
the calculation based on the use of surrogate models is more than two orders of magnitude faster. The
surrogate can be used to solve any design problem within the specified boundaries of the design enve-
lope. Results are affected by uncertainty on the estimation of losses and of non-ideal compressible fluid
dynamics effects, which, in turn, do not affect the applicability of the method, which will become quan-
titatively accurate once this information will be available. Work to this end is underway in various
laboratories.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The increasing need for renewable energy conversion has
boosted the development of power technologies based on thermo-
dynamic cycles operating with unconventional fluids, e.g., the
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Nomenclature

Symbols
_m mass flow rate [kg/s]
_W power [kW]
ĉP non-dimensional ideal gas heat capacity at constant

pressure
a coefficients of the ideal gas heat capacity at constant

pressure
a EoS parameter
b blade height [mm]
cP ideal gas heat capacity at constant pressure [kJ/kmol K]
D diameter [mm]
h specific enthalpy [kJ/kg]
P pressure [bar]
R Universal gas constant [kJ/kmol K]
r radius [mm]
s entropy [kJ/kg K]
T temperature [�C]
t time [h]
tcl tip clearance thickness [mm]
tte trailing edge thickness [mm]
U blade peripheral speed [m/s]
w relative flow velocity [m/s]
xac active variables

Subscripts
0::3 turbine stage stations relative to Fig. 3
cn condensation
cr critical
ev evaporation
in inlet
m meridional

out outlet
r reduced
s isentropic
sh superheating
sv saturated vapor
ts total-to-static

Greek Letter
a1;ge stator outlet blade angle [�]
b3;ge rotor outlet blade angle [�]
v molecular mass [kg/kmol]
D drop
� error [%]
g efficiency [%]
c EoS parameter [m3/kmol]
X rotational speed [rpm]
x acentric factor
Xe specific speed
U pressure ratio
/ flow coefficient
r molecular complexity
s EoS parameter
t molar volume [m3/kmol]
e EoS parameter
u0 design parameter: radius ratio of the rotor outlet hub to

shroud
#0 design parameter: radius ratio of rotor outlet shroud to

rotor inlet
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organic Rankine cycle (ORC) and the supercritical CO2 cycle (sCO2)
[1]. In particular, R&D activities on mini ORC systems
ðmORC; 3—50 kWÞ are considerably raising, because they are envi-
sioned to play a relevant role in the decentralized energy genera-
tion scenario, and as waste heat recovery (WHR) systems for
mobile engines, e.g., on board of long-haul trucks, ships, or aircraft
[2–5].

The success of these technologies strongly depends on the real-
ization of high-efficiency turbomachinery. In this respect, its pre-
liminary design is key and particularly challenging, because the
machine is bound to be unconventional, and its feasibility and
manufacturability are not guaranteed. The fluid dynamic design
strongly depends on the working fluid and on the cycle operating
parameters, and is constrained by a considerable number of
parameters related to feasibility, e.g., rotational speed, tip clear-
ance, blade height, etc. For instance, for a turbine operating in a
high-temperature mORC turbogenerator, the maximum pressure
ratio, and thus the cycle thermal efficiency, might be constrained
by the minimum blade height at the first-stage rotor inlet; this
blade height is ultimately determined by a combination of factors
like the fluid volumetric flow, the turbine degree of reaction, and
the inlet diameter [6]. Moreover, for WHR systems on board of
transportation vehicles, additional features to be considered are
the weight and volume of the heat exchangers. Although critical
for mORC systems, some of these challenges affect, to some extent,
also the design of other more conventional ORC and scCO2 systems.
Here, emphasis is given to the optimal meanline design of mini-
ORC turbines, but the methodology is applicable to a large variety
of turbine and compressors whenever working fluids and operating
conditions do not allow the use of an experience-based approach.
Generally, the preliminary fluid dynamic design stage is accom-
plished by following two sequential (or independent) procedures.
First, the isentropic efficiency of the machine is estimated by
means of similarity parameters taking into account the character-
istics of the fluid process occurring in an ORC turbine: large volu-
metric expansion ratio, compressibility effects, and, in case of a
small power output, scaling effects [7,8]. These similarity parame-
ters are a function of the fluid thermodynamic conditions at tur-
bine inlet and outlet. As such, they have been widely used in the
design of ORC systems, see, e.g., Refs. [9–11]. Once the best work-
ing fluids are selected, the geometry of the machine is determined
by means of an automated optimization process based on a mean-
line turbine model, which is properly initialized using the outcome
of the first step. The set of equations constituting the meanline tur-
bine model is equivalent to a highly non-linear multidimensional
function, that might exhibit discontinuities. Consequently, and in
order to enhance the robustness of the optimization, a gradient-
free optimizer is commonly adopted, see, e.g., Refs. [12–14].

This design process is time-consuming and it can lead to subop-
timal results, because it is made of subsequent procedures which
have to be performed for each considered working fluid, for differ-
ent turbine configurations and for a wide range of operating condi-
tion. For instance, for radial inflow turbines, the preliminary design
phase requires approximately 50% of the total design time (prelim-
inary and detailed) [15]. Furthermore, the design of mini ORC tur-
bines is particularly challenging, given that the machine geometry
and the operating conditions are mutually constrained variables,
hence hampering the definition of a feasible design space. Ulti-
mately, based on our experience, see, e.g.,Ref. [6], achieving an
optimum solution of the design problem might take from weeks
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to months. A further drawback follows from the use of a gradient-
free optimizer: the sensitivity of expander efficiency, or of any
other output of interest, to individual design inputs is lost. If avail-
able, this information can be used to gain physical understanding
of loss mechanisms already at preliminary design level.

The results of a previous study demonstrated that a reduced-
order model allows to overcome these disadvantages [16]. Follow-
ing such development, this paper presents an innovative design
methodology employing a reduced-order model which integrates
fluid selection, thermodynamic cycle calculation, and preliminary
fluid dynamic design of the corresponding ORC turbine.

The method is based on active subspaces, a parameter-
reduction strategy that utilizes the dominant directions of the gra-
dient of a scalar function to transform a multidimensional input
space into a lower-dimensional problem [17]. The obtained surro-
gate is computationally efficient and robust, which makes this
approach arguably preferable compared to the conventional design
procedure. In addition, the resulting surface can be used to analyze
the influence of the individual design inputs on the objective func-
tion. Finally, the selection of the working fluid is not limited to
existing substances, because a fluid is specified by several molecu-
lar parameters, thus optimal solutions may encompass parameters
that do not correspond to any available compound, but that might
guide to the synthesis of a new chemical. The benefits of this
approach have been demonstrated by applying it to the exemplary
design of a 10 kW ORC unit for exploitation of medium-
temperature thermal sources and adopting a single-stage radial
inflow turbine as expander. The results and the performance of
the design procedure are discussed and compared to those
obtained by employing a conventional approach in order to put
into evidence the main advantages.
2. Method

The design procedure integrating the thermodynamic cycle cal-
culation, the working fluid selection, and the turbine preliminary
design, consists of three steps. First, a turbine model is obtained
in such a way that it includes the parameters of an equation of
state model to predict the properties of the working fluid, as in

f ¼ f ðxÞ; x ¼ ½y; z�; x 2 ½�1;1�m; ð1Þ
where y and z are vectors containing the inputs for the fluid and
turbine models, respectively. Expression (1) is a scalar function to
compute any quantity of interest, like, for example, the turbine
total-to-static efficiency. Observe also that the inputs in x are cen-
tered and normalized, and that in order to construct the reduced-
Fig. 1. (a) Process flow diagram of an ORC system with regeneration. (b) Exemplary tem
MM, condensing temperature: 80 �C, evaporating pressure: 14 bar, degree of superheatin
efficiency: 80%.
order model, (1) needs to be smooth [17]. The second step consists

in approximating function (1) with a lower order function f̂ , i.e.,

f ðxÞ � f̂ ðxacÞ; xac 2 Rn; n < m; ð2Þ
where xac are the so-called active variables. The reduced-order
model is then used to obtain several response surfaces, namely
one for the turbine efficiency, and one each for the main turbine
operating and geometric parameters, e.g., the minimum blade
height. In the third step, the surrogate model is employed to per-
form the optimization. Sections 2.1, 2.4 describe these steps in
detail.

Eq. (1) shows that the method requires the definition of the
design space x. In order to better illustrate how x is defined, an
exemplary application of this design method is first introduced,
namely the preliminary design of a mORC unit (power capacity
< 20 kW) for the conversion of medium-temperature thermal
sources (maximum cycle temperature < 240 �C), and adopting a
single-stage radial inflow turbine. This design problem, representa-
tive of applications like waste heat recovery from long-haul truck
diesel engines [2], or solar power conversion in space [18,19], is
particularly challenging because the choice of system operating
conditions, working fluid, and components design, are mutually
constrained [16].

Fig. 1 shows the corresponding process flow diagram and an
exemplary thermodynamic cycle in the temperature-entropy
plane. Table 1 lists the fluids selected because they feature a criti-
cal temperature > 240 �C, and because of their high thermal stabil-
ity [19].

The turbine preliminary design is performed by means of a
meanline code, whose loss models are listed in Ref. [6]. These mod-
els have been developed for conventional turbomachinery operat-
ing with fluids in the ideal gas state, and featuring subsonic flows
and large Reynolds numbers. The meanline code has been com-
pared with the results of literature test cases presenting these
characteristics [23]. The code has not been validated yet for the
case of mORC turbines because experimental data are not available
yet. In this respect, work is in progress in order to be able to per-
form accurate measurements on mini ORC turbines [24]. Anyhow,
the validity of the procedure to create a reduced-order model is not
affected by the uncertainty in the loss correlations.

The preliminary design method has been implemented in a
general-purpose programming environment [25], and the code
can run in parallel on multiple cores. The high-order turbine model
consists of a meanline program for the preliminary design of turbo-
machinery [26], coupled with a library for fluid property estima-
tion, which has been extended with a fluid model especially
perature-entropy diagram of a superheated thermodynamic cycle. Working fluid:
g: 10 K, regenerator pinch temperature: 20 K, pressure loss: 0%, turbine isentropic



Table 1
Molecular mass ðvÞ, acentric factor ðxÞ, critical pressure ðPcrÞ, critical temperature ðTcrÞ, and molecular complexity r ¼ Tcr

R
@ssv
@T

� �
Tr¼0:7

� �
a for the selected working fluids [20,21].

v, kg=mol x, – Pcr, bar Tcr , �C r, –

Toluene C7H8 0.0921 0.2657 41.26 318.60 9.04
n-heptane C7H16 0.1002 0.3490 27.36 266.98 17.56
m-xylene C8H10 0.1062 0.3260 35.34 343.74 14.34
n-octane C8H18 0.1142 0.3590 24.97 296.17 23.50
Hexamethyldisiloxane (MM) C6H18OSi2 0.1624 0.4180 19.39 245.55 28.14
Octamethyltrisiloxane (MDM) C8H24O2Si3 0.2365 0.5290 14.15 290.94 48.44
Octamethylcyclotetrasiloxane (D4) C8H24O4Si4 0.2966 0.5920 13.32 313.34 51.89
Decamethyltetrasiloxane (MD2M) C10H30O3Si4 0.3107 0.6680 12.27 326.25 65.95
Decamethylcyclopentasiloxane (D5) C10H30O5Si5 0.3708 0.6580 11.61 346.08 73.37
Dodecamethylpentasiloxane (MD3M) C12H36O4Si5 0.3848 0.7220 9.45 355.21 92.31
Dodecamethylcyclohexasiloxane (D6) C12H36O6Si6 0.4449 0.7360 9.61 372.63 104.54
Tetradecamethylhexasiloxane (MD4M) C14H42O5Si6 0.4590 0.8250 8.77 380.05 106.39
Perfluorodecalin (PP5) C10F18 0.4620 0.4777 17.88 291.85 60.74
Perfluoro-2,4-dimethyl-3-ethylpentane (PP90) C9F20 0.4881 0.5621 16.00 256.85 50.93

a For a complete discussion on the molecular complexity see Ref. [22].

Fig. 2. (a) Non-dimensional ideal gas heat capacities for the fluids listed in Table 1
as a function of the molecular complexity and for five temperature levels:
ðHÞ T ¼ 240 �C, ðNÞ T ¼ 200 �C, ðrÞ T ¼ 180 �C, ðjÞ T ¼ 100 �C, ð�Þ T ¼ 80 �C. (- -)
Polynomial regressions for each temperature level. (b) Mean error of the approx-
imation of the heat capacity as a function of the molar mass and for the fluids listed
in Table 1.
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developed for the application of this method [21]. The results pre-
sented here have been obtained on a Windows 64-bit computer,
equipped with a 3.60 GHz processor with eight processors and
16 GB of RAM.

2.1. Working fluid model

The model must guarantee sufficiently accurate estimation of
the fluid thermodynamic properties for a wide range of operating
conditions and for different working fluids; yet it should feature
the lowest number of parameters in order to ease the construction
of the reduced-order model. Cubic equations of state (CEoS) pro-
vide a balance between these requirements [27]. Four models were
initially considered: van der Waals (VDW) [28], Redlich/Kwong
(RK) [29], Peng/Robinson (PR) [30], and Soave/Redlich/Kwong
(SRK) [31]. All these CEoS can be written in the general form

P ¼ RT
m� c

� aðTÞ
ðmþ ecÞðmþ scÞ ; ð3Þ

where P is the pressure, T is the temperature, m is the molar volume,
and R is the universal gas constant. Parameters aðTÞ, e; c, and s
depend on the cubic equation variant, and are a function of the tem-
perature, acentric factor, and critical properties [27,32].

The ideal gas heat capacity at constant pressure is approxi-
mated as a function of the molecular complexity [22], defined as

r � Tcr

R
@ssv
@T

� �
Tr¼0:7

; ð4Þ

where ssv is the saturated-vapor entropy calculated at a reduced
temperature of 0.7. The molecular complexity parameter is used
because it is directly related to the molecular structure of the fluid,
therefore to its heat capacity [22]. Starting from the definition (4), it
is possible to demonstrate that r and the corresponding heat capac-
ity are proportional.

A fluid model can thus be expressed as a function of five param-
eters, i.e.,

fluid model ¼ f ðv;x; Pcr; Tcr;rÞ: ð5Þ
In order to choose the most accurate CEoS model, (3) was used

to compute the saturation pressure and vapor molar volume for
temperature values between 80 �C and 240 �C and for the fluids
listed in Table 1. The model outputs were then compared against
calculations performed with state-of-the-art fluid libraries imple-
menting reference equation of state models [21,20]. Values calcu-
lated with the VDW and RK models were too different from
those obtained with the reference models, and were thus dis-
carded. The computation of the property values with the SRK is
affected by a mean relative deviation from reference values that
is lower than 4% per fluid, while those performed with the PR
model yielded some deviations from reference values as high as
14%. SRK was therefore selected for implementation into the coded
procedure. The addition of complex transport property models to
the method is left for future developments. The viscosity employed
in the estimation of stator losses [16] is taken as a constant equal
to 10�5 Pa s.

The temperature dependence of the non-dimensional heat
capacity is commonly expressed as a polynomial, i.e.,

ĉP ¼ cP
R

¼ a½1 T T2 T3�0; a ¼ ½a1 a2 a3 a4�; ð6Þ

where cP is the molar heat capacity. The coefficients in a are fluid
dependent, and they are generally determined by experiments com-
bined with knowledge of the fluid molecular structure [27].

In order to approximate a as a function of r, five ĉP samples for
equidistant temperature levels between 80 �C and 240 �C are
obtained for each fluid by means of reference models [20,21];
Fig. 2a shows the values obtained with the accurate models and
their regression using

ĉPjT � f ðrÞ ð7Þ

for each temperature. For a given r, five ĉP samples can be esti-
mated by means of (7). These samples are then used to perform a
polynomial regression and obtain a. Fig. 2b presents the mean
relative error of the estimation of the heat capacity values within
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the selected temperature range, and as a function of the molecular
mass of the selected fluids.

2.2. Normalized input of the turbine model for preliminary design

A meanline code for the preliminary design of turbomachinery
[6,26] is coupled with the in-house computational fluid library [21]
in which fluid model (5) has been implemented. Among various
inputs, the design model requires the turbine rotational speed X,
the rotor inlet diameter D2, and the mass flow _m. The successful
application of the active subspaces method requires that the math-
ematical model is continuous and differentiable, therefore X; D2

and _m must be normalized, such that the input parameters are
fluid independent. To this purpose, the mass flow rate is computed
by means of the isentropic power _Ws, as in

_m ¼
_Ws

Dhs
; ð8Þ

where Dhs is the specific isentropic expansion work. Likewise, the
rotational speed is calculated with the isentropic specific speed
Xe;s, i.e.,

X ¼ Xe;sDh
3=4
s

_mvout;sð Þ1=2
; ð9Þ

where vout;s is the specific volume at the turbine outlet. The specific
speed is therefore a design choice; results from a previous study
suggest that the optimum value of Xe;s is in the range 0:5; 0:7½ � [8].

Finally, an optimal rotor inlet diameter is estimated by means of
conventional design guidelines for radial inflow turbines [33],
combined with a mass balance assuming an isentropic expansion,
which gives

D2 ¼ 2
_mvout;s

X/p#2
0 1�u2

0

� �
 !1=3

; ð10Þ

where #0 is the radius ratio of the rotor outlet shroud to rotor inlet
(rs;3=r2, see Fig. 3), and u0 is the radius ratio of the rotor outlet hub
Fig. 3. Inputs for the combined
to shroud (rh;3=rs;3, see Fig. 3). The subscript 0 indicates that these
variables are primarily inputs used to compute the rotor diameter;
the turbine model ultimately provides the design values of # and u.
Furthermore, (10) requires the flow coefficient

/ ¼ cm;3=U2; ð11Þ
which is taken equal to 0.3. In (11), cm;3 is the meridional flow veloc-
ity at rotor outlet, and U2 is the rotor peripheral speed.

Fig. 3 presents the meridional channel of a radial inflow turbine
stage and the inputs required by the combined meanline/fluid
model. Note that Tev; Tcn, and DTsh are used to determine the tur-
bine inlet temperature and inlet/outlet pressure values, thus con-
necting the turbine model with the thermodynamic cycle
calculation.

2.3. Reduced-order model with active subspaces

Ref. [17] provides a thorough review of the active subspaces
method; the goal of this method is to transform the scalar function
(1),

f ¼ f ðxÞ; x ¼ x1; x2; . . . ; xm½ �0; x 2 ½�1;1�m;
into (2), a lower-dimension approximation,

f ðxÞ � f̂ ðxacÞ; xac 2 Rn; n < m;

The input space of f̂ ; xac, is constituted by active variables, i.e., linear
combinations of the input variables

xac ¼ Bx; ð12Þ
where B is a n�m matrix. The active subspaces method provides a
strategy to compute B. The procedure is based on the study of
matrix C,

C ¼ E ðrxf Þðrxf Þ0
� 	 ¼ Z ðrxf Þðrxf Þ0qdx; ð13Þ

where E denotes the expectancy, q is a probability density function,
and rxf is the column vector of partial derivatives of f, namely,
turbine and fluid model.
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rxf ¼ @f
@x1

;
@f
@x2

; . . . ;
@f
@xm


 �
0: ð14Þ

The expectancy of a random variable x is the weighted average
of all values x can take; C can be interpreted as the uncentered
covariance of rx f . As such, its eigenvectors determine the direc-
tions on which f changes the most, on average [34].

If multidimensional integration is not feasible, C can be approx-
imated by sampling as

Ĉ ¼ 1
M

XM
j¼1

ðrx f Þðrx f Þ0; ð15Þ

whereM is the number of samples. The sampling strategy and num-
ber of samples might affect the accuracy of this approximation; this
is discussed in detail in Ref. [17]. In this case, leveraging the results
of a previous study [16], the sampling was performed with a latin
hypercube combined with sparse grid. The derivatives in (15) can

be computed by means of finite differences. Alternatively, Ĉ can
be determined with local linear models [17] and these have been
utilized in this work.

Ĉ can be transformed by means of a real eigenvalue decomposi-
tion, because it is real and symmetric. The transformation reads

Ĉ ¼ ŴK̂Ŵ0; ð16Þ

where K̂ is a diagonal matrix containing the eigenvalues, and Ŵ is a
matrix containing the eigenvectors. The eigenvalues represent the
magnitude of the variance of rx f along their eigenvectors orienta-
tion. It follows that large gaps between eigenvalues indicate direc-
tions where f changes the most. Subsequently, these matrices can
be separated in two subsets denominated active (ac) and inactive
(ic), namely,

Ŵ ¼ Ŵac Ŵic

h i
; K̂ ¼ K̂ac K̂ic

h i
: ð17Þ

K̂ac contains the largest eigenvalues separated from K̂ic by a large

gap; Ŵac contains the corresponding eigenvectors. The input space

is then geometrically transformed and aligned with Ŵac, in order to
‘‘hide” the directions where the function variability is small. This
transformation leads to a lower-order input space formed by the
active variables,

xac ¼ Ŵ0
acx: ð18Þ

B in (12) is therefore the active-eigenvector matrix Ŵ0
ac.

Because of the sampling required to approximate Ĉ, there are M

transformations in the active subspace f̂ : xac ! f
� �

. These samples

could be used to obtain the reduced-order model by means of a
regression based on any functional form. Alternatively, additional
Fig. 4. Exemplary process to obtain a reduced-order model. (a) Surface plot of (19) produ
represented by arrows, and with the corresponding active ðŴacÞ and inactive ðŴicÞ eigen
functional form (20) (–). Example adapted from Ref. [17].
sampling might be required to cover regions with a low number
of solutions.

Consider the following function as an illustrative exercise
(adapted from Ref. [17]),

f ¼ 0:7x1 þ 0:3x2ð Þ2 þ 1: ð19Þ
Fig. 4a presents a surface plot of (19) generated with one hun-

dred samples. Fig. 4b shows the surface top view, with the sample
gradients represented by arrows, andwith the corresponding active
and inactive eigenvectors. The sample gradients are prominently

aligned with a single orientation given by Ŵac; the function vari-
ability has thus one dominant direction. Subsequently, the input

space is rotated and aligned with Ŵac, ‘‘hiding” the directions of
low function variability, and reducing the number of model inputs
to a single active variable, see Fig. 4c. Finally, by means of the avail-
able samples, a polynomial regression is realized in the active sub-
space, and the reduced-order model takes the functional form

f̂ ¼ 0:6x2ac þ 1: ð20Þ
2.4. Optimization

Fig. 5 shows a plot of the exemplary reduced-order model (19).
The minimum function value is located between xac ¼ �0:2 and
xac ¼ 0:2. Next, the active variables in this region are transformed
into inputs. This problem is undetermined because

xac;1 ¼ a1x1 þ a2x2

is the only equation, but the unknowns are two, namely, x1 and x2.
Alternatively, this system of equations can be solved by performing
a random search in x, until solutions within the region
�0:2 6 xac;1 6 0:2 are found. This procedure is computationally
cheap, because each transformation Bx takes only few milliseconds
to compute.
ced with one hundred samples ð�Þ. (b) Surface top view, with the sample gradients
vectors. (c) Reduced-order model in the active subspace, function samples ð�Þ, and



Table 2
Design space, constant parameters, and model outputs employed for the construction of the active subspace model.

x, – v, kg=mol Pcr, bar Tcr, �C r, – Tev, �C Rs, – age;1, � bge;3, � r0=r1, – r1=r2, – _Wtr;s, kW Xe;s, –

Minimum 0.2657 0.0921 8.77 245.55 9.04 180 0.4 65 40 1.2 1.04 10 0.5
Maximum 0.8250 0.4881 41.26 380.05 106.39 240 0.5 80 60 1.5 1.10 20 0.7

Tcn, �C DTsh, K tcl , mm tte, mm r2=r3, – /, – #0, – u0, –

Constants 80.0 10 0.2 0:1tto 2.0 0.3 0.7 0.4

Outputs gtr;ts # w3 a2 b3 b0

Fig. 6. (a) Eigenvalues of Ĉ associated with the total-to-static efficiency function
computed with the combined fluid/turbine model. The dotted lines correspond to a
95% bootstrap confidence interval computed with 10,000 samples. (b) First active
eigenvector. (c) Second active eigenvector. (d) Reduced-order response surface and
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2.4.1. Turbine constrained design
The meanline model is used to compute several outputs of

interest, e.g., the objective of the design optimization, typically
the total-to-static efficiency gtr;ts, together with geometrical con-
straints, e.g., the radius ratio of the rotor outlet shroud to rotor
inlet, rs;3=r2. Each output requires its own reduced-order model.
The turbine meanline model can thus be transformed into a system
of equations in the form

Turbine reduced-order model
ĝtr;ts ¼ f̂ xac;g

� �
;

/̂i ¼ ĝi xac;/;i
� �

; i 2 f1; . . . ;Ng;

(

ð21Þ
where ĝtr;ts is the active subspace model of the objective function,

and /̂i is the ith active subspace model corresponding to a con-
strained output. Finally, the optimization problem reads

Maximize ĝtr;ts;

subject to wmin;i 6 /̂i 6 wmax;i; i 2 f1; . . . ;Ng;

where wmin ;i and wmax ;i are the design constraints. The problem can
be solved by exploiting the random search approach, and by taking
into account that each transformation Bxmust concurrently respect
the imposed constraints; this is the method adopted in this work.
Alternatively, the optimization could be performed with a genetic
algorithm or a gradient-based search method, as described in Ref.
[16].
samples ð�Þ. See Ref. [17] for information on bootstrapping.
3. Exemplary application

Table 2 reports the design space, constant parameters, and
required model outputs for the generation of the active subspace
model. Note that the minimum and maximum values of the fluid
parameters are taken from Table 1. Additionally, the range of the
degree of reaction is selected in order to guarantee a feasible com-
bination of degree of reaction and specific speed, thus preventing
discontinuities in the objective function. The other parameters
are selected according to design practices for radial inflow
turbines.

3.1. Surrogate of the turbine efficiency function

Errors arising from the numerical solution of the complex sys-
tem of equations determine a certain scattering of the calculated
values of the objective function. Due to this, the determination of
the active eigenvectors is performed with an oversampling factor
of fifty, which is beyond the customary range (between two and
ten). Fig. 6 displays the results of the estimation of C associated
to the total-to-static efficiency function. As displayed in Fig. 6a,
the largest gap among eigenvalues is the first one, suggesting that
the reduced-order model might be generated with just a single
active variable. However, the second gap is comparatively quite
large, indicating the existence of another relevant direction of
function variability. The reduced-order function is then made
dependent on two active variables; Figs. 6b and c show the corre-
sponding eigenvectors, and Fig. 6d presents the corresponding
response surface.

The dotted lines in Figs. 6a-c are bootstrap intervals [17]; they
allow to assess the accuracy of the estimation of C. These intervals
suggest that the computation of the eigenvalues and the first
eigenvector are accurate. However, the estimation of the second
eigenvector is poor, for the error in the estimate is inversely pro-
portional to the size of the second, smaller, eigenvalue gap. Even-
tually, this inaccuracy increases the approximation error of the
reduced-order model.

Fig. 7a presents the contour plot of the surrogate for the effi-
ciency; Fig. 7b displays the corresponding standard deviation,
which includes the dispersion induced by the approximation of
the fluid model and the meanline code. These charts are obtained
with a minimum of ten samples per each region traced in Fig. 7b.

The sampling needed to determine Ĉ does not provide enough
samples in all the boxes in Fig. 7b; thus, additional sampling must
be performed wherever needed. The red areas indicate regions
where the surrogate is not valid, because either the meanline code
fails, or no active variables exist. The active subspace model
features good accuracy, except for few combinations of active



Fig. 7. (a) Contour plot of the reduced-order response surface corresponding to the
turbine total-to-static efficiency function. (b) Standard deviation of the surrogate.

Fig. 8. Total-to-static efficiency, and turbine-related normalized inputs as a
function of the first active variable, and taking the second active variable equal to
zero: (a) total-to-static efficiency, (b) stator aspect ratio, (c) rotor outlet blade angle,
(d) isentropic specific speed. The plots are obtained with 1000 random samples per
point.
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variables. The same procedure has been successfully applied to all
the outputs of interest listed in Table 2. The total time required to
generated the surrogate was five hours.
Fig. 9. Fluid-related inputs as a function of the first active variable, and taking the secon
factor. The plots are realized with 1000 random samples per point.
The reduced-order model depicted in Fig. 7a is a polynomial of
fourth degree,

ĝtr;ts ¼ �0:0057225x4ac;1 � 0:19081x3ac;1xac;2 þ 0:49523x3ac;1
� 1:2889x2ac;1x

2
ac;2 þ 2:5406x2ac;1xac;2 � 2:0352x2ac;1

� 0:85368xac;1x3ac;2 þ 3:9847xac;1x2ac;2 � 5:1624xac;1xac;2

þ 7:214xac;1 þ 0:14738x4ac;2 þ 1:7392x3ac;2 � 5:2157x2ac;2
� 1:1701xac;2 þ 76:078:

ð22Þ
The regression is realized with an automated tool [35]. The

large amount of terms allows the function to minimize the devia-
tion in all the active subspace regions.

3.1.1. Relevant design variables: response surface interpretation
The scalar values of the first eigenvector, shown in Fig. 6b, are

related to the global sensitivity of the efficiency to the design
inputs. The most important turbine design parameters are the ratio
of the stator inlet to outlet radii, the specific speed, and the rotor
outlet blade angle. The interpretation of the two-dimensional
response surface is facilitated by Fig. 8 which displays these vari-
ables, and the total-to-static efficiency, as a function of the first
active variable, and taking the second active variable equal to zero.
The coordinates in Fig. 8 are a result of averaging 1000 random
samples per point, hence they represent general trends in the
active subspace.

Fig. 8b shows the ratio of stator inlet to outlet radii. A lower
value positively affects the turbine efficiency, because it reduces
the end-wall area of the stator and the corresponding end-wall
losses. The trend of the specific speed features a similar explana-
tion (see Fig. 8c): a higher value increases the stator aspect ratio,
thus reducing secondary losses. A further advantage is the reduc-
tion of clearance losses. Finally, Fig. 8d shows that a large rotor
blade angle is beneficial, because it reduces the leaving swirl and
the corresponding rotor exit losses [8].

Fig. 9 presents the corresponding charts for the most influential
fluid model parameters: molar mass, acentric factor, and critical
temperature. A higher molar mass increases the mass flow rate,
the blade height, and the Reynolds number [36]. As a result, higher
values improve the turbine efficiency by reducing scaling effects,
see Fig. 9a.

Fig. 9b and c display the critical temperature and the acentric
factor, respectively; they feature similar trends which are
explained by analyzing the stator geometry. For given r0=r1 and
r1=r2, the stator aspect ratio can be calculated as

b0

r0 � r1
¼ 2

r0
r1

r1
r2

� r1
r2

� ��1 b0

D2
¼ K

b0

D2
; ð23Þ

where K is a constant. A lower critical temperature and acentric fac-
tor increase the saturation pressure and decrease the specific vol-
d active variable equal to zero: (a) molar mass, (b) critical temperature, (c) acentric



Fig. 10. Change in saturated vapor specific volume as a function of (a) the critical
temperature, and (b) the acentric factor, for three exemplary fluids. The specific
volume values are computed with a saturation temperature of 80 �C.

Fig. 11. Ratio of saturated vapor specific volume to critical volume as a function of
the reduced temperature, for three exemplary fluids.

Fig. 12. Solutions of the constrained optimization in (a) the multidimensional
space, and in (b) a contour plot of the active subspace. ðjÞ solution corresponding
to PP5.
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ume (e.g., see Fig. 10), thus reducing the blade height and the rotor
inlet diameter, which is computed with the volumetric flow at tur-
bine outlet _mvout;s, see (10). However, the diameter decreases more
rapidly, because the change of the specific volume vout;s is steeper at
lower pressures, see Fig. 11. Consequently, lower values of acentric
factor and critical temperature increase the stator aspect ratio and
decrease the secondary flows.

It can be concluded that the analysis of the response surface is
an effective alternative to the conventional orthogonal sensitivity
analysis, for the ranking of the impact of the design parameters
on the quantity of interest.

3.2. Application of the surrogate model: a test case

Table 3 shows the constraints employed in the exemplary
design optimization of a 10 kW turbine operating in a cycle with
an evaporating temperature of 240 �C. These restrictions originate
from know-how on the design of radial inflow turbines [33], and
from considerations on manufacturing capabilities regarding the
minimum blade height.

The optimization procedure explained in Section 2.4 yields sev-
eral solutions characterized by similar efficiency and power, but
employing different working fluids and leading to different turbine
Table 3
Optimization constraints and constant parameters

#, – u, – w3=w2, –

6 0:7 P 0:4 P 1:5
specifications. It follows that, as already discussed in Ref. [16], all
the multidimensional optima belong to a single active subspace
region. As an example, Fig. 12 presents the coordinates of three
optima in the multidimensional space (Fig. 12a), and in the active
subspace (Fig. 12b). Note that the surrogate provides not only the
efficiency of the turbine, but also the geometry of the machine and
the parameters of the working fluid CEoS.

Fig. 13 shows the main features of the optimal turbines. Since
the three solutions feature three different working fluids, the size
of the optimal turbines are different, as well as the rotational
speed, and their pressure ratio. As a result, the distribution of the
loss sources is different, yet the efficiency is the same because
the optimal solutions are found in a small active subspace region.

Fig. 14 displays the corresponding thermodynamic cycles in the
temperature-entropy diagram of the working fluid associated with
the optimal turbine designs. The difference in the cycle thermal
efficiency is mostly determined by the values of the critical tem-
perature and molecular complexity of the working fluid [18]. In
this case, all design options might be feasible. The selection of a
particular design solution depends on aspects related to turbine
operation and geometry, and must also take into account other fea-
tures, e.g., thermal efficiency, evaporating and condensing pres-
sures, dimension and weight of the heat exchangers, etc.

One of the solutions in Figs. 12–14 corresponds to the selection
of PP5 as the working fluid. This substance is selected because its
fluid parameters are similar to those corresponding to an optimal
solution, thus proving that this method can be used to determine
parameters of a non-existing fluid and possibly guide towards
the synthesis of new chemicals, or to select existing ones. Alterna-
tively, as demonstrated in the following section, it is possible to
perform an optimization by predefining an already existing fluid
in the design space.
3.3. Performance of the surrogate model

Fig. 15 displays the results obtained with two different design
optimization procedures. In one case, the meanline code is coupled
with a genetic algorithm, while the other relies on the use of the
active subspace model. In order to perform a fair comparison, the
oversampling factor is taken equal to fifty for both methods. Addi-
tionally, PP90 is selected as the working fluid; the corresponding
fluid parameters are then predefined in the design space.
b0, mm _Wtr , kW Tev, �C

P 1:5 9:0 6 _Wtr 6 11:0 240:0



Fig. 13. Solutions of the exemplary constrained design optimization problem: (a) turbine meridional channel and velocity triangles. The number in parenthesis above the
velocity triangles correspond to the flow absolute Mach number at rotor inlet. (b) Turbine loss breakdown. Solution (2) is obtained with PP5 as the working fluid. Design (1)
and (3) correspond to turbines operating with non-existing fluids (fluid parameters can be obtained from Table 1.

Fig. 14. Solutions of the constrained optimization: temperature-entropy diagram of the thermodynamic cycle. Solution (2) is obtained with PP5 as the working fluid. The
regenerator pinch temperature is 20 K.

Fig. 15. (a) Optimization results using the active subspace model and PP90 as the working fluid: ð�Þ Tev ¼ 180 �C, ðjÞ Tev ¼ 200 �C, ðrÞ Tev ¼ 240 �C. (b) Deviation between
the results given by the surrogate and those given by the genetic algorithm. The deviation is computed like a relative error where the result of the genetic algorithm is the
reference. (c) Optimization time, without taking into account the sampling time.
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The optimization is performed for three different temperature
levels ð180 �C; 210 �C; 240 �CÞ, and with the constraints reported
in Table 3. Fig. 15a depicts the optima provided by the active sub-
space model. Fig. 15b illustrates the deviation between the results
given by the surrogate and the genetic algorithm. This deviation is
computed like a relative error where the result of the genetic algo-
rithm is the reference. The surrogate leads to accurate optimal
solutions, regardless the uncertainty introduced by the approxima-
tion of the thermodynamic model. Thus, it can be employed to
select the optimal working fluid, cycle specifications, and the tur-
bine geometry.

The comparison of the computational time is shown in Fig. 15c.
The time referring to the active subspace optimization does not
take into account the sampling. The optimization by means of
active subspaces is at least two orders of magnitude faster than
the conventional procedure based on the meanline code.
4. Concluding remarks

This paper describes a new method to efficiently perform the
integrated design of the turbine of power cycles operating with
unconventional fluids, and its assessment. The preliminary design
procedure integrates the selection of the working fluid, the calcu-
lation of the optimal thermodynamic cycle and the sizing of the
corresponding optimal turbine. Such a complex mathematical
problem has been solved with active subspaces, a mathematical
technique yielding a reduced order model that proved to be com-
putationally efficient and robust.

The benefits of the method are demonstrated by its application
to the design of a 10 kW mORC unit for the exploitation of
medium-temperature thermal sources, and adopting a single-
stage radial inflow turbine. The application of the active subspaces
to the turbine efficiency function leads to a reduced-order model
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constituted by two active variables. Similar results are also
obtained for the other outputs of interest (e.g., blade height). Other
advantages of the proposed method are:

� The method allows to restrict the search of the global optimum
to a small region in terms of active variables. These solutions
contain information regarding the turbine geometry, the work-
ing fluid parameters, and the thermodynamic cycle operating
conditions. If the molecular parameters of the fluid do not cor-
respond to an existing fluid, it can be speculated that further
investigation might tell if the molecule can be synthesized.

� The surrogate-based optimization outperforms the standard
design approach by providing optimal solutions with a compu-
tational cost which is at least two orders of magnitude lower.

� Once the surrogate is available, it can be used to solve any
design problem within the boundaries employed to construct
the surrogate. The surrogate requires negligible computational
effort.

� The response surface can be used to infer which parameters and
trends are dominant with respect to turbine performance. In the
described example, the most influential design inputs are the
stator inlet to outlet radius ratio, the specific speed, and the
rotor outlet geometric angle. Likewise, the most important fluid
model parameters are the molar mass, the critical temperature,
and the acentric factor.

Future developments will include the addition of the prelimi-
nary design of the heat exchangers to the procedure. Therefore, it
will be possible to evaluate other objective functions, e.g., system
cost, weight, volume, etc.
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