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Diabetic retinopathy (DR) is one of the most common complications of diabetes
mellitus that affects retinal blood vessels and can result in vision loss and even
blindness if not diagnosed and treated at early stage (see Figure 1.1). DR accounts
for 4.8% of the 37 million cases of blindness worldwide [1]. Given the increase in
the prevalence of diabetes, there is a greater risk for DR. In 2014, an estimated 422
million people worldwide are reported to have diabetes [2] and in The Netherlands
alone, the number of adults in 20-79 age range with diabetes is estimated about
973500 and an additional 367500 undiagnosed cases [3]. The global increase in
both diagnosed and undiagnosed diabetic population further exacerbated the risk
of DR related eye complications.

Several risk factors, such as the age of onset of diabetes and the duration of
diabetes, are associated with the development and progression of DR [2]. In pa-
tients who were below 30 years when they developed diabetes, the DR prevalence
of 17% and 97.5% was found with a diabetes duration of less than 5 years and 15
or more years, respectively [4]. For patients who developed diabetes after 30 or
more years for less than five years and 15 or more years, the DR prevalence varied
between 28.8% to 77.8%, respectively [5].

Diabetic patients may not notice the development of DR at the early stages or
until it causes vision problems. Thus, regular eye checkup for screening DR is nec-
essary in order to get timely and appropriate treatment measures to prevent vision
loss. DR screening can be done by a trained expert through inspection of the retina
for pathognomonic abnormalities. However, the global rise in the diabetic popula-
tion coupled with the required resource for diabetic eye care puts a burden on the
accessibility and efficiency of DR screening programs. Computer Aided Diagnosis
(CAD) of DR can be instrumental to address this burden by enabling automated
analysis and interpretation of digital retinal images for DR related abnormalities.
This thesis explores an automated system that analyzes a longitudinal series of
retinal images for a regular DR screening.

(a) (b)

Figure 1.1: An example of normal vision (left) and a distorted vision (right) due to advanced DR (image
courtesy of: NIH, National Eye Institute).
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1.1. Eye anatomy and fundus imaging
The eye is the light-sensing organ of our visual system that enables us to see. The
eye consists of several flexible structures that control the amount of light, the path
it travels through and the focus location. Light entering the eye through cornea
and pupil is focused by a lens onto the retina, the light sensitive tissue covering the
inner back-surface of the eye. The retina captures and converts light into a neural
signal and subsequently transmits it through optic nerve to the visual cortex for
further processing. Figure 1.2 shows a cross section of the eye with some labeled
structures.

Figure 1.2: Cross sectional view of the human eye model (image courtesy of: NIH, National Eye Institute)

A fundus camera is routinely used in ophthalmology to image the retina. Modern
fundus cameras were based on pioneering work by Helmholtz, but it was Gullstrand
who perfected the ophthalmoscope in 1910. His study of optical images and of the
refraction of light in the eye won him the Nobel Prize in Physiology or Medicine in
1911 [6]. Fundus imaging involves a specialized low power microscope with an
attached camera and a noninvasive procedure to capture the interior surface of the
eye including the retina, optic disc, macula, and retinal vasculature. In order to
facilitate acquisition of a better view of the retinal surface, a mydriatic eye drop
can be applied to dilate the pupil and allow more light to enter the eye. Figure 1.3
shows a digital fundus camera and a fundus image of a right eye.

The field of view of fundus cameras is constrained by the small size of the pupil;
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Figure 1.3: Left: A digital fundus camera. Right: fundus image of a right eye.

therefore, conventional approaches to capture a large field of view of the retina
involves acquisition of multiple field fundus images covering different retinal re-
gions (see Figure 1.4). Overlapping fundus fields can be registered onto a common
coordinate system to create a single mosaic of the retina.

Figure 1.4: Left to right: fundus image set of a right eye consisting of macula, optic nerve, superior,
and temporal retinal regions.

1.2. DR signs and screening
At early stages, DR causes microaneurysms, swelling in small blood vessels that
may leak blood into the retina causing retinal bleeding (hemorrhage) [7]. Figure
1.5 shows fundus image patches of early DR lesions. As the disease progresses,
more retinal blood vessels that nourish the retina start to leak lipids and proteins
(exudates). This results in a reduction of nutrient supplies to the retina and stim-
ulates neovascularization, i.e. the growth of new blood vessels. These abnormally
grown blood vessels are fragile, thus they may easily leak and cause bleedings.
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Since vision problems may not be noticed until more severe DR stages, diabetic pa-
tients should undergo periodic eye examination in order to monitor DR progression
and receive early treatment measures.

(a) (b) (c)

Figure 1.5: Examples of fundus image patches showing DR related retinal lesions.

The current eye care practice for screening DR involves examination of multiple
field fundus images for pathognomonic abnormalities by a trained expert. Depend-
ing on the observed retinal abnormalities at the time of the examination, diabetic
patients are either scheduled for a follow-up examination or referred for immediate
intervention. This procedure is time consuming, subjective [8], and does not exploit
fundus images from previous screening time points to monitor disease progression.
Over the past decades, automated DR screening has attracted many researchers
due to its potential to reduce the burden on the available health care. This is espe-
cially evident from the increase in the diabetic population worldwide. Unlike manual
examination, automated analysis of fundus images enables objective and quantita-
tive assessment of DR and also facilitates the resources needed to provide eye care
service for diabetic patients.

1.3. Challenges for screening of longitudinal data
Most of previous research on automated DR screening has focused on analyzing
fundus images from a single retinal examination to detect early stage lesions and
subsequently identify patients with and without referable DR [9, 10]. These systems
achieve a sensitivity comparable to human graders, but with a much lower specificity
than human graders. Although such approaches enable to identify DR related retinal
abnormalities at the time of examination, it does not give a complete insight into the
disease activity since the previous check-up, and thus not applicable for progression
assessment.

The development and progression of DR vary between individuals, so longitu-
dinal analysis of fundus images is crucial to understand the disease activity over
time. DR is a progressive disease that results in retinal changes due to appearance
and disappearance of associated lesions such as microaneurysms. Recent studies
suggest that in addition to the number of lesions at the time of examination, the dy-
namics of these lesions is found to be useful to monitor progression of DR [11, 12].
An automated system for making longitudinal analysis of a series of fundus photos
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(a) (b)

Figure 1.6: Fundus image pairs captured a year apart showing a region that changed between the two
time points due to appearance of DR lesions. Because of non-uniform illumination, the visibility of some
of the lesions and retinal features that are close to the rim is limited in the right image.

for DR can thus be instrumental to assess the disease progression for a proactive
and effective screening and intervention planning.

The main goal of this thesis is to develop an automated system for the detection
and classification of longitudinal retinal changes to objectively and quantitatively
monitor DR progression.

Automated detection of longitudinal retinal changes from a series of fundus
images is challenging for several reasons. Firstly, illumination variation between
fundus images captured during successive retinal examinations hampers identify-
ing clinically relevant changes. Acquisition of high quality fundus image requires
proper adjustment of the settings of the fundus camera parameters such as uni-
form illumination and focus. However, this is a delicate process and subjective,
thus color fundus images often suffer from intra- and inter-visit variation in lu-
minosity and contrast, especially around the rim (see Figure 1.6). This variation
poses challenges in matching identical retinal features for aligning overlapping fun-
dus images. In addition, illumination variation combined with the low visibility of
DR lesions against the retinal background makes it hard to compare retinal features
for the detection of longitudinal retinal change.

Secondly, detecting retinal changes due to small lesions, such as microaneurysms
and dot hemorrhages, over time requires very high registration accuracy. In order
to correctly register fundus images, the nonlinear spatial deformation caused by
the projection of the curved surface of the retina onto a planar image plane needs
to be accounted for. This is usually done by estimating image deformation param-
eters by matching retinal features between overlapping fundus image pairs. The
abundance and distribution of retinal features within overlapping regions are cru-
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cial to correctly estimate the deformation parameters. Because of the sparseness
of retinal features and their uneven distribution in the image, accurate registration
of fundus images is challenging.

Third, accurate detection and classification of longitudinal retinal changes re-
quires a robust algorithm to identify clinically relevant changes from those caused
by acquisition artefacts and noise. Developing such an algorithm is challenging due
to the subtle appearance of early DR lesions, even for expert graders. This also
causes variability in interrater agreement for establishing a benchmark dataset for
algorithm training. This thesis presents methods to address all of the aforemen-
tioned challenges.

The proposed system for automated longitudinal retinal change detection con-
sists of multiple stages: normalization of intra and inter-visit illumination variation,
intra and inter-visit image registration, and clinically relevant change detection and
classification (see Figure 1.7). Illumination variation is addressed by normalizing
the green channel of each color fundus image for luminosity and contrast variation,
thereby improving the visibility of retinal features. Then, spatio-temporal retinal
changes are detected by a multi-scale image filtering technique. Finally, several
local intensity and shape descriptors were extracted from each retinal change lo-
cation and subsequently used by a support vector machine (SVM) to classify the
region as a change due to an early DR related retinal lesion or other type of change.
The detected retinal changes are then further explored to investigate the relation
between the disease activity and time-to-referral. The developed system can also
be used as a clinical tool to assist diabetic eye care experts to analyze and interpret
fundus images for longitudinal DR screening, for instance by highlighting DR-related
changes since the previous retinal exam.

Figure 1.7: An overview of the proposed automated system for the detection and classification of red
retinal lesions in longitudinal fundus images.

1.4. Thesis outline
The organization of this thesis is as follows:

Chapter 2 describes a method to normalize illumination and contrast variation
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in a series of fundus images, thereby producing uniform luminosity over the entire
field-of-view of the images and improving the visibility of smaller retinal structures.
In addition, this chapter presents a robust hierarchical coarse-to-fine approach that
makes use of the normalized intensity as well as structural information of the retinal
vasculature for registering intra- and inter-visit fundus images.

Chapter 3 describes a qualitative approach for accuracy assessment of the pro-
posed registration approach by DR screening experts and performance comparison
with two top-ranked state-of-the-art commercial fundus mosaicking programs. The
proposed approach facilitates visual inspection of the vasculature alignment in the
overlap region between registered intra and inter-visit normalized fundus image se-
ries by highlighting possible misalignments. Two expert graders who are involved
in a regular DR screening program graded the suitability of the registered fundus
images for further use.

Chapter 4 presents an automated method for a quantitative assessment of
the registration accuracy of fundus image pairs based on the vasculature in the
registered images. The method automatically assesses the registration accuracy
of fundus image pairs exploiting the intensity profiles across the vasculature and
their difference in the registered images. A new accuracy measure, relative vessel
misalignment energy (RVME), which exploits the even and odd signal property of
the 1D profile across the vessels in the difference image, is introduced and used to
quantify the registration accuracy.

Chapter 5 describes a multi-stage approach for the detection and classifica-
tion of longitudinal retinal changes due to early DR related retinal lesions such as
microaneurysms and dot hemorrhages, from registered fundus mosaics consisting
of four-fields. A relative blobness measure (RBM), which is defined as the abso-
lute scale-difference between the extremes of the multiscale blobness responses of
fundus images from two time-points, is proposed to detect spatio-temporal retinal
changes from longitudinal fundus mosaics. Several intensity and shape descriptors
were extracted from each candidate region and subsequently used by a classifier
to label the region as a red lesion or a non-red lesion related retinal change.

Chapter 6 presents a retrospective analysis of the red lesion turnover and clas-
sification of referable DR in diabetic eyes that have been regularly screened for
DR. The red lesion turnover between successive retinal examinations, quantified by
the multi-stage approach for the detection and classification of longitudinal retinal
changes, was explored as a potential biomarker for predicting referable DR devel-
opment.

Chapter 7 discusses the technical developments presented in this thesis, po-
tential clinical applications and future research directions for the fully automated
CAD system to be used in diabetic eye care.
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Abstract
Accurate registration of retinal fundus images is vital in computer aided di-
agnosis of retinal diseases. This paper presents a robust registration method
that makes use of the intensity as well as structural information of the reti-
nal vasculature. In order to correct for illumination variation between im-
ages, a normalized-convolution based luminosity and contrast normalization
technique is proposed. The normalized images are then aligned based on a
vasculature-weighted mean squared difference (MSD) similarity metric. To
increase robustness, we designed a multiresolution matching strategy cou-
pled with a hierarchical registration model. The latter employs a deforma-
tion model with increasing complexity to estimate the parameters of a global
second-order transformation model. The method was applied to combine 400
fundus images from 100 eyes, obtained from an ongoing diabetic retinopathy
screening program, into 100 mosaics. Accuracy assessment by experienced
clinical experts showed that 89 (out of 100) mosaics were either free of any
noticeable misalignment or have a misalignment smaller than the width of
the misaligned vessel.



2.1. Introduction

2

13

2.1. Introduction
Registration of retinal fundus images plays a crucial role in computer-aided diagnosis
and screening of the human eye for various retinal diseases. Depending on the
targeted clinical application, fundus image registration can aid retinal examination in
three ways. Firstly, mosaicking creates a larger field-of-view by stitching individual
images. Such a mosaic facilitates comprehensive retinal examination at a single
glance. Secondly, multimodal registration spatially aligns images from different
modalities, thereby fusing complementary information into a single image. Thirdly,
longitudinal registration aligns a series of fundus images taken over time. This is
especially vital in screening or staging of progressive eye diseases such as age-
related macular degeneration (AMD) and diabetic retinopathy [1, 2].

The success of these clinical applications depends on the accuracy of the regis-
tration algorithm. Although several fundus image registration algorithms have been
proposed in the past decades [3–9], accurate and robust registration of retinal im-
ages still remains a challenge. This is mainly due to the sometimes very small
image overlap, severe illumination artifacts near the frame boundaries, and the
spatial distortion as a result of mapping the curved retinal surface onto the image
plane.

Depending on the image information used for matching, existing algorithms
can be grouped into intensity-based and feature-based methods. Intensity based
methods make use of the similarity between the intensity or RGB values of raw
or pre-processed images [3, 4]. Nicola et al. [3] used mutual information as a
similarity criterion to estimate the parameters of a global (rigid) affine model. In the
study by George et al. [4], the correlation between the binary vasculature masks of
segmented fundus image pairs is optimized. These intensity based methods ignore
the quadratic and higher order terms of the image distortion.

Feature-based methods [5–9] make use of saliency or landmark points, disre-
garding most of the structural information embedded in the local correlation of fun-
dus images. In the paper by Ali et al. [5], retinal vessel bifurcations and crossover
points are used as landmarks in a hierarchical optimization of a quadratic trans-
formation model. Stewart et al. [6] used vessel bifurcations for initialization of a
dual-bootstrap iterative closest point (ICP) algorithm to align the vessel centerlines
using a quadratic transformation model. Chanwimaluang et al. [7] used the vas-
culature tree for initialization and the quadratic model parameters are estimated
using the vessel bifurcation and crossover points. In study by Sangyeol et al. [8],
a radial distortion correction, estimated using vessel bifurcations, is applied prior to
registration in order to correct the distortion caused by the curved to planar sur-
face mapping. Recently, Jian et al. [9] proposed salient feature regions (SFR) as
landmark points of fundus images and local features extracted from these points
are subsequently matched.

In general, the accuracy and robustness of feature-based methods are highly
dependent on the feature detection method, the number of detected features, and
their distribution in the image. The latter two conditions are restrictive in registra-
tion of fundus images, because vessel branching and crossover points are sparsely
and unevenly distributed. Furthermore, this effect gets even worse if the region of
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Figure 2.1: Overview of the proposed registration framework. First, the green channels of the fun-
dus images are normalized for luminosity and contrast. Then, a hierarchical coarse-to-fine registration
method is applied to produce a mosaic.

overlap between the image pairs becomes smaller.
In this paper, a registration method is proposed that exploits the intensity as

well as the structural information of the retinal vasculature. We introduce a novel
technique to normalize the green fundus image channel for illumination and contrast
variation, thereby improving the visibility of the vasculature and hence the registra-
tion accuracy in these regions. The method then aligns retinal vessels based on the
normalized images. We designed a multiresolution matching strategy coupled with
a hierarchical registration model with a deformation model of increasing complexity
for robust optimization of a global second-order transformation model.

2.2. Methods
The proposed method, outlined in figure 2.1, starts by normalizing the image lu-
minosity and contrast, which vary greatly due to illumination conditions. Then
the images are spatially aligned by first estimating the lower order transformation
model parameters at a coarse resolution level and propagating the results to the
next finer resolution level, where higher order model parameters are introduced. To
guide the registration by vasculature regions, more weight was assigned to pixels
in these regions.

2.2.1. Image Normalization
The main limitations of using the raw intensity values of fundus images for registra-
tion are the luminosity and contrast variations caused by non-uniform illumination
of the retina during image acquisition. In this work, this intra and inter image
variation is compensated for by applying an improved version of Foracchia’s lumi-
nosity and contrast normalization method [10] to the green channel (𝐼ፆ) of our
RGB fundus images. The method relies on the intensity distribution of the retinal
background (excluding vessels, optic disc, and lesions) to estimate local luminosity
(𝐿) and contrast (𝐶). To compensate for local variations, the normalized image 𝐼ፍ,
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becomes:
𝐼ፍ =

𝐼ፆ − 𝐿
𝐶 , (2.1)

where 𝐿 and 𝐶 are respectively the sample mean and standard deviation of the
background image in the neighborhood of each pixel. However, since the back-
ground image is locally masked by retinal features such as blood vessels, a local
signal approximation is required to handle this space-variant reliability map in neigh-
borhood operations. In this paper, a higher-order normalized convolution is used
to approximate the luminosity map. It takes into account missing or unreliable data
samples and gives a better estimate of linear and quadratic variations in the illu-
mination pattern [11, 12]. This is done by projecting each pixel and its neighbors
on a set of basis vectors, chosen from the second-order Taylor expansion of the
pixel around the neighbors, to create a new representation [12]. The contribution
of each neighbor pixel is controlled by a Gaussian applicability function combined
with a confidence measure, which encodes the presence or absence of background
pixel values.

In figure 2.2, a typical example of a pair of fundus images from the same eye
captured one year apart are shown before and after image normalization. The
normalized image pairs (figure 2.2c and 2.2f) appear much more similar than the
unprocessed image pairs (figure 2.2a and 2.2d). Moreover, the normalized convo-
lution approach provides a far better contrast of the fine vasculature compared to
the method described in [10] (figure 2.2b and 2.2e), especially around the border
of the images. This is very crucial in registration of fundus images. As most of the
overlap occurs around border regions, the registration accuracy depends on how
well the vasculatures in these regions are aligned.

2.2.2. Registration Initialization
Convergence and robustness of image registration requires a good starting point.
In this paper, we propose a robust initialization algorithm using overlap-corrected
cross-correlation, i.e. standard cross-correlation divided by the number of overlap-
ping pixels from which it is computed (see Eq. 2.2). This allows the cross-correlation
to be invariant to the overlap between images. In order to further handle rotation
between the image pairs (e.g. due to possible head, eye or camera motion between
consecutive image acquisitions), this is done at three rotation angles, 𝛼 = 0∘, ±5∘,
and at a very coarse scale, i.e. by blurring with a Gaussian filter of 𝜎 = 32 pixels
and downsampling by a factor of 𝑠 = 16.

𝐼ፂ̂ፂ(𝑢, 𝑣, 𝛼) =

ፌ
∑
፱ኻ

ፍ
∑
፲ኻ

𝐼 (𝑥, 𝑦)𝐼፦(𝑥ᖣ, 𝑦ᖣ)

ፌ
∑
፱ኻ

ፍ
∑
፲ኻ

Ω፟(𝑥, 𝑦)Ω፦(𝑥ᖣ, 𝑦ᖣ)
, (2.2)

where 𝐼ፂ̂ፂ is the overlap-corrected cross-correlation and 𝐼 and Ω፟ (𝐼፦ and Ω፦) are
the normalized image and field-of-view mask of the fixed (moving) image of size
𝑀×𝑁, respectively. (𝑥ᖣ, 𝑦ᖣ) = (𝑥 cos𝛼 − 𝑦 sin𝛼 + 𝑢, 𝑥 sin𝛼 + 𝑦 cos𝛼 + 𝑣) are the
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: An example of illumination normalization on a pair of fundus images. (a) and (d) Green
channel of fundus images. (b) and (e) Normalized fundus images using the method described in [10].
(c) and (f) Normalized fundus images using the proposed normalized convolution technique.

rotated and translated pixel coordinates. For each angle, the values of 𝑢 and 𝑣 that
maximize 𝐼ፂ̂ፂ are tentatively selected. The optimal angle (�̂�), and the corresponding
values for 𝑢 and 𝑣, are then selected by minimizing the mean squared difference
(MSD) of 𝐼 (𝑥, 𝑦) and 𝐼፦(𝑥ᖣ, 𝑦ᖣ). In our study, since the image pairs are represented
at a very coarse scale, the three angles (five degrees apart) are enough to find the
starting point for the registration.

2.2.3. Hierarchical Coarse-to-Fine Registration
Since the image pairs are normalized for luminosity and contrast, the MSD can
be used as similarity metric. The registration is further guided by the vasculature
regions as they provide the main distinctive structures of fundus images, thereby re-
stricting the effect of intensity change in the background region due to factors such
as disease progression and artifacts. This is achieved by weighting the contribution
of each pixel to the similarity metric using a measure for vesselness 𝑉(𝑥, 𝑦) ∈ [0, 1].
The vesselness-weighted cost function to minimize is:

𝜀 = 1
|Ω| ∑

(፱,፲)∈
𝑉ኼ(𝑥, 𝑦) ⋅ [𝐼 (𝑥, 𝑦) − 𝐼፦(𝑇(𝑥, 𝑦; Θ))]

ኼ
, (2.3)

where 𝑇(⋅) is the transformation model parameterized by Θ, 𝐼 and 𝐼፦ are the
normalized values of the fixed (anchor) and moving (floating) image, respectively,
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Table 2.1: Transformation model and parameters at each pyramid level of the proposed hierarchical
coarse-to-fine registration approach.  and ፬ are the Gaussian blurring scale and subsampling factor,
respectively. The deformation model parameters at each level are optimized using Eqs 2.3 and 2.4. Note
that ᎎ̂ is a fixed angle optimized at the initialization stage (section 2.2.2).

Level Transformation Parameters 𝜎 (pixels) 𝑠

1 Translation (0 0 0 cos �̂� − sin �̂� 𝜃ኻ
0 0 0 sin �̂� cos �̂� 𝜃ኼ) 16 8

2 Similarity (0 0 0 cos𝛼 − sin𝛼 𝜃ኻ
0 0 0 sin𝛼 cos𝛼 𝜃ኼ) 8 4

3 Affine (0 0 0 𝜃ኻ 𝜃ኼ 𝜃ኽ
0 0 0 𝜃ኾ 𝜃 𝜃ዀ) 4 2

4a Simplified
Quadratic (𝜃ኻ 𝜃ኻ 0 𝜃ኼ 𝜃ኽ 𝜃ኾ

𝜃 𝜃 0 𝜃ዀ 𝜃 𝜃ዂ) 2 2

4b Quadratic (𝜃ኻ 𝜃ኼ 𝜃ኽ 𝜃ኾ 𝜃 𝜃ዀ
𝜃 𝜃ዂ 𝜃ዃ 𝜃ኻኺ 𝜃ኻኻ 𝜃ኻኼ) 1 1

and Ω is the set of all overlapping pixels in the image pairs. The vesselness maps
of both normalized images were computed from the multi-scale (𝜎 ∈ [1, 9] pixels),
second-order local image structure [13]. The pixelwise maximum of the two maps
was then dilated by a disk structuring element of 25 pixels radius and used as a
weight.

As fundus imaging involves mapping the curved retinal surface onto a flat image
plane, a transformation model of at least second-order is required to accurately align
images. In this work, a global 12 parameter quadratic transformation model is used
[5]:

𝑇(𝑥, 𝑦; Θ) = (𝑥
ᖣ

𝑦ᖣ) = (
𝜃ኻ 𝜃ኼ 𝜃ኽ 𝜃ኾ 𝜃 𝜃ዀ
𝜃 𝜃ዂ 𝜃ዃ 𝜃ኻኺ 𝜃ኻኻ 𝜃ኻኼ) (

𝑥ኼ 𝑦ኼ 𝑥𝑦 𝑥 𝑦 1)ፓ , (2.4)

where (𝑥ᖣ, 𝑦ᖣ) are the transformed pixel coordinates and 𝜃። is an element of the
transformation matrix Θ.

In order to improve the robustness in estimating the parameters of the trans-
formation model, a hierarchical multiresolution method is applied. The method
employs a four level coarse-to-fine Gaussian pyramid, in which the complexity of
the deformation model increases with every step downwards in the pyramid: first
translation-only at the top level, second translation and rotation, third an affine
transform followed by a simplified quadratic model (4a) and finally a full quadratic
model (4b). The simplified quadratic model assumes an isotropic second-order de-
formation along both 𝑥 and 𝑦 dimensions. Each level of the Gaussian pyramid is
formed by blurring and downsampling. Table 2.1 summarizes the transformation
models, the blurring scale, and subsampling factors.

At each level of the pyramid, the model parameters which minimize the cost
function 𝜀, are optimized using Levenberg-Marquardt. In order to take into account
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the difference of the magnitude of each parameter’s search space, a scaling tech-
nique is employed. In addition, the parameters are orthogonalized with respect
to each other so as to mitigate intra-parameter correlation. Since the optimiza-
tion of each level is initialized by the results of the previous level, the risk of getting
stuck into a local minimum is greatly reduced. Moreover, the hierarchical coarse-to-
fine approach speeds up the convergence of the Levenberg-Marquardt algorithm
by providing an appropriate initial estimate of parameters at successive pyramid
levels.

2.3. Experiments and Results
2.3.1. Data Description
Data for this study was obtained from an ongoing diabetic retinopathy screening
program at the Rotterdam Eye Hospital. 70 diabetes patients who visited the hos-
pital in two consecutive years for diabetic retinopathy screening were included.
During each visit, four images of macula-centered, optic nerve-centered, superior,
and temporal regions of the retina were acquired from each eye. 400 images from
100 eyes, selected randomly from the first or the second year, were combined into
100 mosaics. At least one eye of each patient was included in this study.

2.3.2. Data Processing
For each eye, the image having the largest overlap with the remaining three images
was selected as the fixed image. Then, starting with the fixed image as intermediate
result, each of the three images were registered sequentially to the intermediate
result in order of decreasing overlap area with the fixed image. The overlap between
image pairs was as low as 14%, with an average of 48%. In total, 300 registrations
were accomplished to create the 100 mosaics.

After registration, instead of averaging the overlapping area, each mosaic was
constructed by overlaying the four individual images on top of each other. This
is particularly important to assess the registration accuracy of fine vasculatures as
combining by averaging conceals any misalignment or yields spurious blurring in
the overlap regions. By changing the order of overlay, each image appeared in the
top layer once, resulting in four mosaics. These mosaics were put together to form
a mosaic video which was then used for grading.

2.3.3. Fundus Mosaic Grading
Unlike the conventional approach where the centerline error between the aligned
vessels is used to quantify the accuracy of alignment, we let clinical experts do the
evaluation. Two experienced graders, which are involved in the diabetic retinopathy
screening program, independently assessed the accuracy of the normalized mosaic
images. Each of the graders evaluated the accuracy of the overall mosaic by as-
sessing how well the vasculatures in the overlap region were aligned and assigned
a grade to it. Mosaics were graded based on the region with the worst alignment.
The possible grades were:

• Off: an image is placed at an incorrect location.



2.3. Experiments and Results

2

19

Table 2.2: Evaluation results of ኻኺኺ mosaics from both graders. Each grader evaluated half of all the
data.

No. of mosaics

Grade Grader 1 Grader 2 Total

Off 2 2 4
Not Acceptable 21 3 24
Acceptable 76 37 113
Perfect 6 63 69

Figure 2.3: A fundus mosaic which was graded as ‘perfect’. The zoomed in and overlaid image patch
shows part of the mosaic in which three images overlapped.

• Not Acceptable: a misalignment larger than the width of a misaligned ves-
sel.

• Acceptable: a misalignment smaller than the width of a misaligned vessel.

• Perfect: no noticeable misalignment.

It should also be noted that in our evaluation a mosaic is considered as ‘not
acceptable’ even if the misalignment occurs in a very small fraction of the overlap
region between two images.

2.3.4. Results
The evaluation results from both graders are summarized in table 2.2. Figure 2.3
shows a mosaic image which was graded as ‘perfect’. A mosaic which was graded
as ‘not acceptable’ is shown in figure 2.4. The overlap regions in the mosaics of
figure 2.3 and 2.4 are constructed by averaging.
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Figure 2.4: A fundus mosaic which was graded as ‘not acceptable’. The arrows in the zoomed in and
overlaid image patch mark the misaligned micro-vessels, resulting in a blurred or double appearance of
the vessels. The image patch on the left shows accurately aligned fine vasculatures.

2.4. Discussion and Conclusion
In this paper, we present a robust hierarchical coarse-to-fine registration method
for fundus images. The intensity as well as the structural information of the retinal
vasculature are exploited to spatially align the four images. The method registers
retinal images after normalization for luminosity and contrast variation within and
between images. The alignment is done based on the vasculature-weighted MSD of
the normalized images, solving the inherent limitation of feature-based algorithms
of being dependent on the number and distribution of features. The robustness
benefited greatly from the multiresolution matching strategy. We coupled a hierar-
chical coarse-to-fine registration with a deformation model of increasing complexity
to estimate the parameters of a global second-order spatial transformation model.
Careful initialization of each step with the results of the previous scale reduced the
risk of getting trapped in a local minimum during the optimization.

Among the 100 mosaics created by the proposed method, 44 mosaics were
free of any noticeable misalignment (‘perfect’ grade) and 45 mosaics received an
‘acceptable’ grade. Three mosaics were graded as ‘off’, all due to a failure in the
first initialization stage. One of these failures could be attributed to a very poor
image quality. Note that none of the 400 images were used to develop the method.

In the remaining eight mosaics, even though the accuracy of the alignment
was good in most of the overlap area, a small misalignment of one or two micro-
vessels resulted in a ‘not acceptable’ grade. The misalignments in these mosaics
occurred mostly in fine vasculature regions (see figure 2.4). Here, the low signal-
to-noise ratio resulted in a weak second-order local structure and, therefore, a low
vesselness weight. In these cases, the registration was mainly guided by larger
vasculature in regions around it.
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Abstract
Purpose: To evaluate the accuracy of a recently developed fundus image
registration method (Weighted Vasculature Registration or WEVAR) and to
compare it with two top-ranked state-of-the-art commercial fundus mosaick-
ing programs (i2k Retina, DualAlign LLC and Merge Eye Care PACS, formerly
named OIS AutoMontage) in the context of diabetic retinopathy (DR) screen-
ing.
Methods: Fundus images of 70 diabetic patients who visited the Rotterdam
Eye Hospital in 2012 and 2013 for a diabetic retinopathy screening program
were registered by all three programs. The registration results were used
to produce mosaics from fundus photos that were normalized for luminance
and contrast to improve the visibility of small details. These mosaics were
subsequently evaluated and ranked by two expert graders to assess the reg-
istration accuracy.
Results: Merge Eye Care PACS had high registration failure rates compared
to both WEVAR and i2k Retina (𝑝 = 8 × 10ዅዀ and 𝑝 = 0.002, respectively).
WEVAR showed significantly higher registration accuracy than i2k Retina
in both intra-visit (𝑝 ≤ 0.0036) and inter-visit (𝑝 ≤ 0.0002) mosaics. Fundus
mosaics processed by WEVAR were therefore more likely to have a higher
score (odds ratio (𝑂𝑅) = 2.5, 𝑝 = 10ዅ for intra-visit and 𝑂𝑅 = 2.2, 𝑝 = 0.006 for
inter-visit mosaics). WEVAR was preferred more often by the graders than
i2k Retina (𝑂𝑅 = 6.1, 𝑝 = 7 × 10ዅዀ).
Conclusion: WEVAR produced intra- and inter-visit fundus mosaics with
higher registration accuracy than Merge Eye Care PACS and i2k Retina.
Merge Eye Care PACS had higher registration failures than the other two
programs. Highly accurate registration methods such as WEVAR may po-
tentially be used for more efficient human grading and in computer-aided
screening systems for detecting DR progression.
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3.1. Introduction
Diabetic Retinopathy (DR) is one of the most common complications of Diabetes
Mellitus (DM) and results in vision loss and even blindness if not diagnosed and
treated adequately. An estimated 422 million people worldwide are reported to
have diabetes [1], and diabetic retinopathy accounts for 4.8% of the 37 million
cases of blindness worldwide [2]. The current practice of DR screening is based
on regular examinations of a series of fundus images. A retinal specialist looks
for pathognomonic abnormalities. In addition, manual grading is time-consuming,
subjective, and limits the efficiency of the available DR screening facilities. Auto-
mated registration of fundus images can be instrumental to alleviate this problem
and increases the efficiency of DR screening in two ways. Firstly, intra-visit im-
ages that capture partially overlapping regions of the same retinal surface can be
automatically registered to create a mosaic of the retina, enabling clinicians to do
a comprehensive retinal examination at a single glance. Secondly, registration of
inter-visit image sets allows longitudinal analysis, facilitating retinal change detec-
tion to monitor DR development and progression.

In addition to pre-processing retinal images for more efficient human grading,
fundus image registration is often used as part of computer-aided screening sys-
tems for detecting DR progression and longitudinal changes [3–6]. Over the last
decade, several computer-aided diagnosis (CAD) systems have been developed to
analyze digital fundus images for symptoms of diabetic retinopathy [4, 7–17]. The
performance of these systems are comparable to expert readers in distinguishing
fundus images of a normal retina from those with DR symptoms [4, 10–18]. CAD
systems could thus be used in DR screening such that experts only have to evaluate
suspicious or difficult cases [16–18]. Moreover, registration of fundus images cap-
tured across multiple exams enables CAD systems to identify and analyze retinal
surface changes due to disease progression.

Tracking small retinal features, such as microaneurysms, over time needs a very
high registration accuracy. This requires a thorough evaluation of image registra-
tion methods for DR screening. Evaluation can be done either by expert graders
based on visual inspection of the registered image pairs or by objective, automatic
computer algorithms that assess the registration accuracy between corresponding
landmark points. Due to the sparse distribution of landmark points in the field-of-
view and the difficulty to accurately extract and match these points, an objective
registration accuracy assessment may be limited to a few regions. On the other
hand, visual inspection by expert graders permits qualitative accuracy assessment
of the entire field-of-view. Moreover, clinicians are likely to focus on regions of
clinical interest, thereby producing a more clinically relevant accuracy assessment.

In this study, the accuracy of a recently developed fundus image registration
method (WEVAR) was systematically evaluated by clinical experts in the context of
automated diabetic retinopathy screening [19]. The evaluation was performed on
intra-visit and inter-visit fundus image sets acquired from diabetic patients who had
annual retinal exams for DR. A comparison was made with state-of-the-art commer-
cially available fundus mosaicking programs i2k Retina (DualAlign LLC, Clifton Park,
NY) and OIS AutoMontage (OIS, Sacramento, CA). These programs ranked first
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and second, respectively, in a recent comparative study that also included IMA-
GEnet Professional (Topcon, Oakland, NJ; ranked third) [20]. A full evaluation was
done for WEVAR and i2k Retina (version 2.1.6), while Merge Eye Care PACS (Ver-
sion 4.2.0.4221), the successor of OIS AutoMontage, was only partially evaluated
due to high registration failure rates.

3.2. Methods
3.2.1. Data description
This retrospective observational study was conducted on fundus images that were
captured during annual retinal examinations of diabetic patients who were enrolled
in the ongoing DR screening program of the Rotterdam Eye Hospital in The Nether-
lands. A representative sample of the screening population was gathered by includ-
ing all patients who were examined in a one week period in June 2013. During this
period, a total of 85 patients were screened for diabetic retinopathy. Because re-
peated examinations were needed for our evaluation, first-time patients and those
who were not examined in the year before were excluded. All fundus images were
acquired after pupil dilation (one drop of tropicamide 0.5%) using a non-mydriatic
digital funds camera (Topcon TRC-NW6S, Tokyo, Japan) with a 45∘ field-of-view.
The fundus images were 2000 × 1312 pixels in size. Although clinical guidelines
suggest two fields per eye for screening purposes [21–23], in this screening pro-
gram four fields are acquired per examination (See Figure 3.1): images of macula-
centered, optic nerve-centered, superior, and temporal regions of the retinal surface
were acquired from both eyes.

Figure 3.1: An example of a four field fundus image set captured during a retinal examination. From
left to right: macula-centered, optic nerve-centered, superior, and temporal fundus images of a left eye.

This study adhered to the applicable code of conduct for the reuse of data in
health research [24]. After exporting the fundus images from the clinical image
storage system, all data was anonymized prior to further processing.

3.2.2. Fundus Image Normalization
Color fundus images often show highly variable luminosity and contrast due to non-
uniform illumination of the retina during acquisition. Because of its higher contrast,
the green channel of the digital fundus images (see Figure 3.2a and 3.2b), closely
resembling red-free fundus photos, is commonly used in CAD of fundus images.
However, the green channel images still show considerable variation in luminosity
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and contrast, both within and between images. Foracchia et al. [25] proposed a
method to normalize retinal images based on estimates of the local luminosity and
contrast from the intensity distribution of the so-called background retina (which
excludes features such as vessels, optic disc, and lesions) and subsequently cor-
recting for their variation over the entire retinal image. However, this method does
not compensate for all illumination variation, especially around the rim of fundus
images. Recently, this limitation was addressed by applying a higher-order nor-
malized convolution, resulting in a considerably larger area with discernible retinal
features (see Figure 3.2c) [19].

(a) (b) (c)

Figure 3.2: An example of a fundus image from our data set. (a) Color fundus image. (b) Green channel.
(c) Normalized fundus image using the improved normalization method.

The enhanced visibility of retinal features in these normalized images is not only
beneficial for further processing by computer algorithms but may also be used by
clinicians for a better evaluation of the fundus. The graders who participated in this
study preferred the normalized images over the color and green channel fundus
images. Therefore, all evaluations in this study were based on normalized image.

3.2.3. Registration Methods for Fundus Image Mosaicking
Fundus image registration is the process of spatially mapping two or more images of
the retina into a common coordinate system. The resulting spatial correspondence
allows for combining the images into a single mosaic of the retinal surface in order
to facilitate comprehensive retinal examination at a single glance [26]. The regis-
tered images can also be used in CAD and longitudinal analysis of fundus photos
to detect and analyze retinal changes due to disease progression. Because of the
spherical shape of the human eye, fundus photography involves a non-linear spatial
deformation of the curved retina onto an image plane. Correctly modeling this de-
formation is central for accurate spatial mapping between fundus images captured
from multiple views of the retina [26]. Different attributes of fundus images, such
as the raw intensity, the vasculature tree and its bifurcations, may be used to de-
termine the optimal spatial mapping parameters. In this study, two fundus image
registration methods were extensively evaluated: WEVAR [19] and i2k Retina, the
latter representing the state-of-the-art in fundus image registration methods [20].
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The main difference between the two methods lies in the fundus image attributes
they use for the registration.

In brief, WEVAR aligns fundus images based on intensity and structural infor-
mation derived from the retinal vasculature [19]. The method starts by normalizing
the green channel of the fundus images for luminosity and contrast. The optimal
alignment of the normalized images is then determined using a multi-resolution
matching strategy coupled with a deformation model of progressive complexity.
For each intra- and inter-visit image set of each eye, the method automatically
selects the image having the largest overlap with the other images as the anchor
image. Then, the image with the largest overlap to the anchor image is mapped
sequentially to the coordinate system of this anchor image. This result becomes
the new anchor image and the procedure is repeated for the remaining images until
all images have been registered. This yields a set of normalized images which were
transformed into a common coordinate system. These outputs are then combined
into a mosaic for grading (see Figure 3.3a).

i2k Retina finds similar corresponding regions between a pair of images based on
the information extracted from landmark points of the retinal vasculature [27, 28].
The program initializes the alignment by matching features extracted from vessel
bifurcations and crossover points in the image pairs. The results are then refined
based on vessel centerlines. Hence, the method does not make use of most of
the other intensity and structural information within fundus images. Each complete
set of color fundus images that needs to be registered were loaded into the i2k
Retina program and aligned to one coordinate system using the default program
settings. No pre-processing, such as normalization, was performed on the color
fundus images before processing by i2k Retina, because the software may have its
own internal pre-processing algorithms. To compare the registration produced by
both methods, the green channel of the individual color images were normalized
for variations in luminosity and contrast as before and then combined into a mosaic
using the spatial mapping that was determined during registration (see Figure 3.3b).

3.2.4. Registration Accuracy Assessment
In this study, two experienced graders who are involved in DR care including screen-
ing and diagnosis of diabetic retinopathy, independently assessed the registration
accuracy of WEVAR and i2k Retina by scoring both intra and inter-visit fundus mo-
saics. The graders also ranked the mosaics produced by both methods in a side-
by-side comparison.

Grading mosaics is a time-consuming task and therefore each grader did not
evaluate all data. However, to be able to compare the scores between graders,
half of the available data were assessed by both graders. The remaining half were
divided equally between the two graders. Note that the two mosaics of each eye by
both methods were scored by the same grader. Since the side-by-side comparison
was less time-consuming, both graders scored all data.

In the intra-visit evaluation, the accuracy of the fundus mosaics constructed
from registered fundus images that were captured during one examination was as-
sessed. Conventionally, when combining multiple fundus images into one mosaic,
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(a)

(b)

Figure 3.3: An example of a correctly registered intra-visit fundus mosaic by WEVAR method (a) and i2k
Retina (b).

overlapping areas are averaged. Although averaging or more advanced blending
methods produce visually appealing results, it conceals misalignment of retinal fea-
tures and thereby hinders the quality assessment. In this study intra-visit mosaics
were created by stacking the four registered images on top of each other. By chang-
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(a) (b)

Figure 3.4: Examples of image patches showing vessel misalignments. The arrows in the image patches
mark misalignment locations. (a) Misalignments larger than the width of the misaligned vessels. (b)
Misalignment smaller than the width of the misaligned vessel.

ing the order of the images in the stack, each image appeared in the top layer once,
resulting in four mosaics that differed in the regions where the images overlapped.
These mosaics were put together in a video and played repeatedly for grading (see
intra-visit supplementary materials for an example). The graders evaluated each
mosaic by visually inspecting the vasculature alignment in the overlapping regions
and assigned one of the following grades to it:

• Off: at least one image is fully misplaced.

• Not Acceptable: misalignment larger than the width of the misaligned vessel
(see Figure 3.4a).

• Acceptable: misalignment smaller than the width of the misaligned vessel
(see Figure 3.4b).

• Perfect: no noticeable misalignment.

Graders were instructed to base their score on the region with the worst align-
ment. Hence a mosaic was graded as ‘not acceptable’ even if the misalignment
occurred only in a small region of the mosaic. i2k Retina sometimes discarded one
or more images which could not be registered into a mosaic; these mosaics were
given the score ‘off ’.

In the inter-visit accuracy evaluation, all images were registered to a common
coordinate system and a mosaic was produced for each visit. The two mosaics then
alternated in a video and played repeatedly for grading (see inter-visit supplemen-
tary materials for an example), using the same grading scheme as for the intra-visit
evaluation.

In the third evaluation, the registration methods were ranked in a side-by-side
comparison for each pair of intra-visit mosaics. The mosaics of both methods were
produced from the registered intra-visit fundus images by averaging overlapping
areas and each grader ranked all 140 resulting intra-visit mosaic pairs that were
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displayed simultaneously on two identical monitors (1920×1080 pixels resolution).
The possible grades were ‘slightly better ’or ‘much better ’for either mosaic, or
‘equal ’if both were of the same quality. To avoid bias, the monitor that presented
the result of each method was selected randomly for each mosaic pair.

In all three evaluations, the graders were blinded with respect to the method that
was used for registration in each mosaic. Moreover, in all accuracy assessments,
the mosaics of all eyes from both methods were presented in random order to the
graders to avoid any bias.

3.2.5. Data availability
All data that was used in this study is made publicly available through the Rotterdam
Ophthalmic Data Repository (http://rod-rep.com). This includes the source data
(1120 fundus images), the processed data (1120 normalized fundus images, all
intra- and inter-visit mosaic movies and images used for grading) and all grading
results (intra- and inter-visit mosaic grading and ranking).

3.2.6. Statistical Analysis
For each evaluation, two types of analyses were performed: First, the grades for
both methods were evaluated for each grader separately by conventional nonpara-
metric statistical analyses. Second, a comprehensive statistical model was defined
to simultaneously evaluate all grades of both graders.

In the evaluation per grader, the grades assigned to each method were com-
pared. To assess the difference between grades assigned to WEVAR and i2k Retina,
a Wilcoxon signed-rank test was applied to the intra- and inter-visit grades. Then,
to quantify the preference of a grader for either method, the odds ratio (𝑂𝑅) of
the methods was computed from the ranking grades and its significance was tested
by Fisher’s exact test. The 𝑂𝑅 for each method was defined as the ratio of the
number of cases that the method was preferred over all other cases. To determine
the intergrader agreement and consistency, the intraclass correlation coefficient
𝐼𝐶𝐶(3, 1) was calculated. The 𝐼𝐶𝐶 values were interpreted as follows: < 0.4 corre-
sponds to poor, 0.4 − 0.75 was fair to good, and > 0.75 was excellent agreement
or consistency [29].

For a comprehensive statistical analysis of each evaluation, proportional odds
mixed models were used. Here all mosaics are modelled as random effects whereas
the methods and graders (and their interaction) are modelled as fixed effects. The
odds ratios resulting from this model were used to quantify the influence of the
aforementioned effects on the grade. Such an 𝑂𝑅 is defined as the ratio of the
odds that an image gets a better grade including a certain effect over the same
odds excluding that effect. The analysis for the side-by-side method ranking was
based on a proportional odds model with only the graders as fixed effects. The
results of this model were used to compute the odds ratio for the methods which
was then used to determine the preference of one method over the other. The
odds of each method was defined as the ratio of the probability that a method is
preferred over all other cases.
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3.3. Results
During the one week screening period, 85 patients were examined for DR; among
these patients, 4 were first-time patients and 11 were not examined the year be-
fore, resulting in 70 patients who had consecutive retinal examinations. A total of
1120 fundus images was acquired from 70 patients. At the time of the examination
in 2012, the average age of the patients was 63 years (𝑆𝐷. 12 years), 33 (47.1%)
were male, and 37 (52.9%) were female. From 70 patients, 140 intra- and 140
inter-visit fundus photo sets were processed by WEVAR and i2k Retina to produce
mosaic movies. The 140 intra-visit image sets also were processed by Merge Eye
Care PACS; however, the results (described later) did not warrant further evalua-
tion by the expert graders. The mosaic movies from WEVAR and i2k-Retina were
independently assessed by two expert graders. Of the mosaic movies from each
method, 70 were graded by both graders, the other mosaics were graded by a sin-
gle grader. The resulting grades are summarized in Tables 3.1 and 3.2. The results
showed that WEVAR produced more ‘acceptable ’or ‘perfect ’mosaics and fewer ‘off
’cases than i2k Retina according to both graders. Each grader assigned significantly
more often a higher grade to the WEVAR than to i2k Retina in intra-visit (Wilcoxon
signed-rank test, 𝑝 = 0.0036 and 𝑝 = 0.0006 for graders 1 and 2, respectively) and
inter-visit (𝑝 = 0.0002 and 𝑝 = 0.0001 for graders 1 and 2, respectively) mosaic
evaluations. A partial evaluation of Merge Eye Care PACS revealed that it failed to
register one or more images into a mosaic, that is, ‘off ’cases, in 19 (of 140) intra-
visit image sets. This was significantly higher compared to i2k Retina and WEVAR
(McNemar’s test, 𝑝 = 0.002 and 𝑝 = 8 × 10ዅዀ, respectively). Therefore, Merge Eye
Care PACS was excluded from further evaluation.

Table 3.1: Summary of the grades assigned to the intra-visit mosaics produced by both methods. Each
grader evaluated 105 out of 140 available mosaics from each of the methods. 70 mosaics were evaluated
by both graders.

WEVAR

Off Not Acceptable Acceptable Perfect

Grader 1

i2
k
Re
tin
a Off 2 1 1 -

Not Acceptable - 11 24 1
Acceptable - 8 48 4
Perfect - 1 3 1

Grader 2

i2
k
Re
tin
a Off 2 - 1 3

Not Acceptable - - 3 4
Acceptable - 1 19 30
Perfect - 2 14 26

In Table 3.3, the ranks assigned to each of the methods in the side-by-side
comparison of intra-visit mosaic pairs are summarized. WEVAR produced mosaics
which were preferred more often by both graders than i2k Retina. Examples of
pairs of mosaics which were compared and ranked are shown in figure 3.5. For
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Table 3.2: Summary of the grades assigned to the inter-visit mosaics produced by both methods. Each
grader evaluated 105 out of 140 available mosaics from each of the methods. 70 mosaics were evaluated
by both graders.

WEVAR

Off Not Acceptable Acceptable Perfect

Grader 1

i2
k
Re
tin
a Off 1 1 2 -

Not Acceptable - 22 21 -
Acceptable - 4 50 2
Perfect - 0 2 -

Grader 2

i2
k
Re
tin
a Off 1 - - 4

Not Acceptable - 6 1 7
Acceptable - - 1 3
Perfect - - 1 81

Table 3.3: Summary of the ranks assigned to the methods. Each grader ranked all 280 mosaics produced
by the two methods.

i2k Retina WEVAR

A: Much better B: Slightly better C: Equal D: Slightly better B: Much better

Grader 1 1 2 120 7 10
Grader 2 1 3 115 13 8

grader 1, the odds of preferring WEVAR, expressed by the ratio of grades D and E
over grades A, B and C, was 0.14; the odds of preferring i2k Retina (A and B over
C, D and E) was 0.02. The resulting odds ratio was 6.3. For grader 2, the odds ratio
was 6.0, showing that a higher rank was assigned significantly more frequently to
mosaics produced by WEVAR than to mosaics produced by i2k Retina.

Although the results indicated that WEVAR yields significantly higher accuracy
in both intra- and inter-visit registration than i2k Retina, the inter-grader agree-
ment and consistency between the grades assigned by both graders ranged from
poor to moderate levels (𝐼𝐶𝐶(3, 1) agreement and consistency of 0.52 and 0.65, re-
spectively for the intra-visit grades and 0.35 and 0.71 for inter-visit grades). Thus,
the data cannot simply be pooled for analysis by ignoring the grader. Instead, a
comprehensive statistical analysis based on the proportional odds mixed model was
applied to the grades of both graders altogether.

The fitted parameters of a proportional odds mixed model for the intra-visit
grades considering the method and grader as fixed effects and the fundus image set
as a random effect are summarized in Table 3.4. Interaction between the methods
and graders was not included in the final model as its effect on the grades was
insignificant (𝑝 = 0.17). The resulting coefficient of the method indicates that
mosaics processed by WEVAR were significantly more likely to receive a higher
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(a)



3.3. Results

3

35

(b)
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(c)

Figure 3.5: Examples of mosaic from i2k Retina and WEVAR which were compared and ranked side-
by-side. Top: mosaics processed by i2k Retina, Bottom: mosaics processed by WEVAR. The graders
were blinded to the identity of the program that produced each mosaic. In (a) the pair of mosaics were
ranked as ‘equal’. The mosaic by i2k Retina was ranked as ‘slightly better’ in (b), whereas in (c), the
mosaic produced by WEVAR was ranked as ‘much better’.
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Table 3.4: The estimated coefficients of the proportional odds mixed model fit for the intra-visit grades
excluding the effect of the interaction between the methods and graders.

Effects Estimate Std. Error p-Value

method 0.94 0.22 10ዅ
grader 2.55 0.28 < 2 × 10ዅኻዀ

Table 3.5: The estimated coefficients of the proportional odds mixed model fit for the inter-visit grades.

Effects Estimate Std. Error p-Value

method 0.79 0.29 0.006
grader 5.06 0.53 < 2 × 10ዅኻዀ
method × grader 1.23 0.60 0.037

grade compared to i2k Retina 𝑝 = 10ዅ. The coefficient of 0.94 corresponds to an
odds ratio of 𝑒ኺ.ዃኾ. Thus, the odds of receiving a higher score were 2.5 times more
likely for WEVAR than for i2k Retina. The model corrected for the fact that the odds
of receiving a higher grade from grader 2 were far higher (𝑂𝑅 = 13.0).

Similarly, Table 3.5 shows the parameters of a proportional odds mixed model
fit for the inter-visit grades. In this case, the interaction between the methods and
graders was significant. The estimated coefficient associated with the method’s
effect indicates that for both graders the inter-visit mosaics processed by WEVAR
are significantly more likely to receive a higher grade compared to i2k Retina (𝑝 =
0.006). In addition, grader 2 assigned a higher grade compared to grader 1. The
resulting odds ratio of WEVAR vs i2k Retina is 𝑒ኺ.ዃ = 2.2 and 𝑒ኺ.ዃዄኻ.ኼኽ = 7.5 for
grader 1 and 2, respectively.

In order to quantify the difference in accuracy and quality between the intra-visit
mosaics of the two methods, the ranks of each method from the side-by-side com-
parison were also modeled using the proportional odds model. As expected, due to
the relative nature of the scores, the grader effect was insignificant (𝑝 = 0.68). The
resulting model parameters are shown in Table 3.6. The odds of preferring WEVAR
was 𝑒ዅኻ.ዂ = 0.16, while the odds of preferring i2k Retina was 𝑒ዅኽ.ዀዀ = 0.03. The
odds ratio was therefore 6.1 (𝑝 = 7 × 10ዅዀ), indicating that the graders were 6.1
times more likely to prefer the results of WEVAR.

3.4. Discussion
This study assessed the accuracy of vessel alignment in mosaics constructed from
intra and inter-visit fundus image sets for a recently developed fundus registration
method (WEVAR). An extensive accuracy assessment and comparison with two top-
ranked state-of-the-art commercial fundus mosaicking programs (i2k Retina and
Merge Eye Care PACS) shows that WEVAR yields a significantly higher registration
accuracy in both intra-visit (𝑝 ≤ 0.0036) and inter-visit (𝑝 ≤ 0.0002) mosaics. The
likelihood of receiving a higher score was 2.5 (𝑝 = 10ዅ) and 2.2 (𝑝 = 0.006) times
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Table 3.6: The estimated parameters of the proportional odds mixed model for the ranking grades (see
Table 3). The estimates show the log-odds of a grade below the threshold.

Thresholds Estimate Std. Error

Between A and B -4.93 0.71
Between B and C -3.66 0.38
Between C and D 1.85 0.17
Between D and E 2.68 0.24

higher for WEVAR than for i2k Retina on intra- and inter-visit mosaics, respectively.
Due to a very high registration failure rate, Merge Eye Care PACS was excluded from
a full evaluation. Despite the generally higher scores from one grader, the results
from both graders show that WEVAR has a significantly higher registration accuracy
and significantly fewer failures than i2k Retina. A comprehensive statistical analysis,
taking into account the inter-grader variability, also revealed a strong association
between the grades assigned to each mosaic and the method used to produce it. In
the side-by-side comparison, both graders preferred WEVAR over i2k Retina. The
two graders are very experienced in grading DR, but not in assessing registration
accuracy. Therefore, the difference between the scores of the two experts might
be attributed to differences in evaluation strategies of the mosaics.

The WEVAR program aligns fundus images based on intensity and structural
information derived from the retinal vasculature [19]. Therefore, the better the
visibility of the retinal vasculature is, the more accurate the registration results
become. To this end, the normalized fundus images, created by compensating
for the local luminosity and contrast variations, are crucial to enhance the visibility
and contrast of especially small retinal structures over the entire field of view and
therefore improve the registration accuracy.

Moreover, the enhanced visibility of retinal features in the normalized images
may be useful for more sensitive detection of registration errors than color or green
channel images. In a clinical setting, the improvement in contrast of retinal struc-
tures may enhance the detection of dark red spots or lesions, such as microa-
neurysms, hemorrhages, and intra-retinal microvascular abnormalities. It will be
interesting to further evaluate whether the normalized images can give a higher
screening sensitivity without adversely affecting specificity.

The fundus mosaic movies introduced in this study provide a useful way to
analyze multiple fundus images of the retina. The intra-visit mosaic movies highlight
any possible misalignment between overlapping images, which is useful for human
graders to assess the registration accuracy. The inter-visit mosaic movies are also
useful in clinical practice, allowing experts to compare a series of fundus images in
an efficient manner.

During the side-by-side comparison, differences in image deformation between
the mosaics of the two methods were observed. This difference is mainly evident in
the registered temporal fundus images (see Figure 3.3 and 3.6). This deformation
was observed frequently in the mosaics produced by i2k Retina. This might be due
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(a)

(b)

Figure 3.6: An example of an intra-visit fundus mosaics of the same eye produced by using: (a) WEVAR
and (b) i2k Retina. Note the difference in deformation between the two mosaics despite the registration
of the individual images being correct in both cases.
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to the possibly very small number of available features that i2k Retina uses to match
the temporal, superior, and macula-centered fundus images that have a (very) small
overlap region. Such image deformation cause changes in shape and area of retinal
pathology and thus may hinder a correct interpretation. WEVAR on the other hand
introduces little deformation, and yet provides higher quality mosaics that allows
clinical experts to make accurate diagnosis.

Both intra- and inter-visit fundus mosaics of WEVAR can improve the efficiency
of today‘s DR screening practice. Intra-visit mosaics provide a single large field of
the retina for comprehensive analysis and more efficient grading. Inter-visit mo-
saics can be used to analyze fundus photos of successive retinal exams to monitor
DR progression through biomarkers such as the microaneurysm turnover rate. Al-
though our target application is DR screening, these mosaics could also be used
in diagnosis and monitoring of other retinal diseases such as age-related macular
degeneration.

Current clinical guidelines on referral of DR patients are based on the presence
and detection of lesions in fundus images and therefore exclude the dynamics of
these lesions. This implies that longitudinal analysis, and therefore accurate reg-
istration, of fundus images does not play a significant role in current clinical care.
However, recent studies suggest that the progression rate of microaneurysms over
time may be a better biomarker for DR progression than the differences between
the number of microaneurysms at successive examination [3, 5, 6, 30]. These stud-
ies also suggest a correlation between the microaneurysm turnover rate and the
likelihood of developing clinically significant macular edema (CSME).

We showed that WEVAR was significantly better in constructing intra- and inter-
visit mosaics and obtained a significantly higher registration accuracy than Merge
Eye Care PACS and i2k Retina. Merge Eye Care PACS had high registration fail-
ures compared to both WEVAR and i2k Retina. A higher registration accuracy is
of clinical interest as it is an essential step towards having an automated and re-
liable objective disease progression measure for progressive eye disease such as
DR. An objective progression measure, such as microaneurysm turnover rate, aids
clinicians in assessing disease progression for a proactive and effective screening
and treatment planning, thereby improving the quality of service provided by eye
care centers.
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fundus images

Abstract
This paper presents a method to automatically assess the accuracy of im-
age registration. It is applicable to images in which vessels are the main
landmarks such as fundus images and angiography. The method simulta-
neously exploits not only the position, but also the intensity profile across
the vasculatures. The accuracy measure is defined as the energy of the odd
component of the 1D vessel profile in the difference image divided by the to-
tal energy of the corresponding vessels in the constituting images. Scale and
orientation-selective quadrature filter banks have been employed to analyze
the 1D signal profiles. Subsequently, the relative energy measure has been
calibrated such that the measure translates to a spatial misalignment in pix-
els. The method was validated on a fundus image dataset from a diabetic
retinopathy screening program at the Rotterdam Eye Hospital. An evaluation
showed that the proposed measure assesses the registration accuracy with
a bias of -0.1 pixels and a precision (standard deviation) of 0.9 pixels. The
small Fourier footprint of the orientation selective quadrature filters makes
the method robust against noise.
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4.1. Introduction
Registration of medical images can be defined as a spatial mapping between two
or more images in order to relate them for diagnosis, screening, or other clinical
purposes. The images to be registered may be acquired from different patients
and can be of different imaging modalities. However, they can also come from
longitudinal data of the same patient to detect pathologies or to quantify disease
progression. Depending on the task at hand one chooses a specific registration
method. The state-of-the-art medical image registration techniques are presented
in recent surveys [1, 2]. In addition to robustness, a key performance measure of
these techniques is accuracy.

In medical images where sparsely distributed blood vessels are the main avail-
able landmarks, quantifying the registration accuracy is challenging. The most com-
mon way to quantify the registration accuracy of such images is to use the vessels’
skeleton in the two images and evaluate the distance between them [3]. However,
extracting the skeleton is not a trivial task. Some parts may be missing in one of the
images and it is also sensitive to noise. Moreover, it does not provide sub-pixel res-
olution and results in the loss of all the valuable intensity information. Conventional
metrics such as intensity difference, cross correlation, and mutual information fail
either to handle differences in contrast or defocus between registered image pairs.
In addition, these metrics do not provide the spatial registration error in pixels,
which is crucial to determine if the registration result meets the required level of
accuracy for a certain application.

Other evaluation approaches include visual inspection of the registration result
in an overlay mode, comparing the obtained transformation with the “ground truth”
transformation, or testing its transitivity [4, 5]. Visual inspection is a very fast way
to find large registration errors. As such, it is useful for determining the robustness
of an algorithm and to find outliers, but it is not suited for a quantitative assessment
of the accuracy for images with small registration errors. Since a ground truth is
often not available, one has to simulate a given transformation to use this method
for evaluation. Simulated transformations, however, will only cover those deforma-
tions that are part of the model and will therefore miss some of the deformations
encountered in practical cases. An alternative is to evaluate the transitivity of the
algorithm, but this does not guarantee a high registration accuracy because the
registration errors may be correlated. Another major limitation common to all of
the above approaches is that they do not provide an objective error measure in
pixels.

In this paper, we address the problem of assessing the registration accuracy of
images in which the vasculature is the main feature. The proposed method uses
the vessels as landmarks to quantify the accuracy of the alignment in the direction
perpendicular to the vessels. The presence of vessel branches with various orien-
tations ensures a complete accuracy assessment. Thus, the proposed mismatch
measure is a quantity related to the physical displacements occurring across the
vessels.

A scale and orientation adaptive quadrature filter bank has been used to de-
compose the 1D profile perpendicular to a vessel in the difference image into an
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(a) (b) (c)

Figure 4.1: Example of registered fundus image pairs. (a) Macula and optic nerve-centered images.
(b) Normalized and registered output image. (c) The difference image in the overlap region. Zero

difference is depicted in grey.

odd and an even component. The ratio of the energy of the odd component to the
total energy of the vessel profile of the two images provides a measure that is di-
rectly related to the registration error. This measure is invariant to other disturbing
factors due to imaging and illumination artifacts.

We applied our method to assess the accuracy of registered red-free fundus
photos acquired for diabetic retinopathy screening. We show that the proposed
error measure is strongly related to the spatial registration error in the registered
images, thus it can be used as a tool in the longitudinal screening of fundus images
for disease progression.

4.2. Material and Method
4.2.1. Material
The proposed algorithm was validated on fundus images obtained from an ongoing
diabetic retinopathy screening program at the Rotterdam Eye Hospital. 20 diabetes
patients who visited the hospital in two consecutive years for diabetic retinopathy
screening were included. During each visit, four images of macula-centered, optic
nerve-centered, superior, and temporal regions of the retina were acquired from
each eye. For the sake of simplicity, we will use macula and optic nerve-centered
images of each patient.

4.2.2. Registration Method
Although the proposed quantitative accuracy assessment method can be applied
to evaluate the accuracy of any registration method for images with vessels, we
demonstrate it here by applying it to a hierarchical non-rigid fundus image reg-
istration approach[6]. The method registers image pairs using intensity as well
as structural information of the retinal vasculature after normalization of the green
channel for luminosity and contrast variation over the full field of view. The normal-
ized images are registered based on a vasculature-weighted mean square difference
(MSD) similarity measure and a multiresolution matching strategy coupled with a
hierarchical registration model. Figure 4.1a and 4.1b show an example of individual
image pairs and the registered normalized mosaic. Figure 4.1c shows the difference
image in the overlap region.
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(a) (b)

(c) (d)

Figure 4.2: Examples of registered image patches with the corresponding vessel profiles and the differ-
ence profile. (a-c) Correct alignment. (d) Misalignment.

4.2.3. Registration Accuracy Assessment
When evaluating the registration accuracy of medical images in which the vascu-
lature is the main feature, it is of importance to be able to differentiate vessel
misalignments (Fig.4.2d) from other contributions to the MSD such as contrast dif-
ferences (Fig.4.2b) and (de)focus differences (Fig.4.2c).

In cases where the alignment is correct (Fig.4.2a-4.2c), the profiles of the differ-
ence image perpendicular to the aligned vasculatures shows an even signal whereas
a misalignment yields an odd (Fig.4.2d) signal. Hence, a new measure called rela-
tive vessel misalignment energy (RVME) which exploits this signal property of the
difference image is defined to assess the registration accuracy. The RVME measure
is expressed as the energy of the odd component of the vessel profile in the differ-
ence image divided by the total energy of the two corresponding vessel profiles:

𝑅𝑉𝑀𝐸 =
𝐸(𝑆፨፝፝,ዊ(𝐼 ።፟፟,፩))

𝐸(𝑆ዊ(𝐼ኻ,፩ኻ)) + 𝐸(𝑆ዊ(𝐼ኼ,፩ኼ))
, (4.1)

where 𝐸(𝑆፨፝፝,ዊ(𝐼 ።፟፟,፩)) is the energy of the odd component of the difference im-
age signal profile perpendicular to the vasculatures and centered at a point 𝑝.
𝐸(𝑆ዊ(𝐼ኻ,፩ኻ)) and 𝐸(𝑆ዊ(𝐼ኼ,፩ኼ)) are the energies of the signal profiles perpendicu-
lar to the vasculatures of the registered image pairs 𝐼ኻ and 𝐼ኼ centered at 𝑝ኻ and
𝑝ኼ, respectively.

Quadrature filters
In order to compute the RVME, the odd and even parts of the signal perpendicular
to the vessel need to be extracted. A quadrature filter 𝑞(𝑥) gives the analytic
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representation of a signal that has been filtered by a filter ℎ(𝑥). Such a filter is
defined as 𝑞(𝑥) = ℎ(𝑥) + i ⋅ ℋ(ℎ(𝑥)), where ℋ is the Hilbert transform.

By choosing an even filter ℎ(𝑥), the real and imaginary parts of 𝑞(𝑥) allow
to differentiate between even and odd profile signals, respectively. Therefore, the
analytic representation 𝑓 of the profile signal 𝑆, centered at a given point, becomes:

𝑓 = 𝑆(𝑥) ∗ 𝑞(𝑥) = 𝑆(𝑥) ∗ Re (𝑞(𝑥)) + 𝑖 ⋅ 𝑆(𝑥) ∗ Im (𝑞(𝑥)) (4.2)

If the profile signal is even, then the response to the filter will be real. However,
the response to an odd signal profile will be imaginary, which is in agreement with
the models in figure 4.2. We can thus use this method to evaluate the RVME.

Orientation space
As the Hilbert transform needs to be applied to the signal in a certain direction,
we adopted an orientation space filter bank [7, 8]. The filter bank is composed
of rotated versions of an orientation selective quadrature filter. The orientation
selectivity and scale selection can be best described in the frequency domain rep-
resentation of the filter [8]:

Φ(𝜃,𝑤) = exp( − (𝑁𝜃)
ኼ

2𝜋ኼ )
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

angular filter

⋅ ( |𝑤|𝑤
)
፰ኼ
ኼ፰

exp( − 𝑤
ኼ −𝑤ኼ
2𝑏ኼ፰

)
⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝

radial filter

, (4.3)

where 𝜃 is the orientation angle, 𝑤 the radial frequency, 𝑁 the number of filters in
the bank which defines the angular resolution, 𝑤 the frequency at which the filter
attains its maximum, and 𝑏፰ the standard deviation of the radial Gaussian. These
parameters were set based on the vessels’ width and orientation.

The 𝑁 filtered images are relatively noise-free and the signal in each image
represents a specific orientation range, solving the problem of spurious or missing
vessel skeleton and simplifying the computation of the RVME. Eq.(1) becomes:

𝑅𝑉𝑀𝐸 =
𝐸( Im(𝐼 ።፟፟ ∗ 𝑞᎕̂))

𝐸(𝐼ኻ ∗ 𝑞᎕̂) + 𝐸(𝐼ኼ ∗ 𝑞᎕̂)
(4.4)

where 𝑞᎕̂ is the spatial domain representation of the orientation space filter corre-
sponding to the orientation of the vessel.

Vessel detection and width estimation
In order to match the scale and orientation of the quadrature filters, each vascula-
ture along with its width and orientation must be identified. The vasculature region
is first detected from one of the registered images using a multi-scale (𝜎 ∈ [1, 9]
pixels) vessel enhancement approach [9] followed by connected component anal-
ysis . A vasculature mask is then obtained by keeping objects larger than 2000
pixels, discarding possible noise. This mask is further reduced to a skeleton, and its
junctions are removed, leaving only segments of the skeleton along which the reg-
istration assessment can be done. It should be noted that even though we used the
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skeleton, the assessment can also be done on any point along the vessel segment,
solving the requirement of accurate skeleton detection.

Once the skeleton is detected, the width and orientation of the vasculature
segments are estimated by exploiting the properties of the local principal curvature
computed from the second-order derivatives of the image. Given a scale-normalized
Hessian matrix of each pixel x = (𝑥, 𝑦):

𝐻(x; 𝜎) = 𝜎ኼ [
𝐼፱፱(x; 𝜎) 𝐼፱፲(x; 𝜎)
𝐼፱፲(x; 𝜎) 𝐼፲፲(x; 𝜎)

] , (4.5)

where each element 𝐼⋅⋅(x; 𝜎) is the convolution of the image at location x with a
second-order Gaussian derivative kernel of scale 𝜎 along the specified subscript .

For each vasculature pixel, the eigenvalues 𝜆ኻ and 𝜆ኼ (|𝜆ኻ| ≫ |𝜆ኼ|) of 𝐻 corre-
spond to the local (intensity) curvature values across and along a vessel, respec-
tively. The width is approximated by selecting the scale �̂� which maximizes the
largest principal curvature 𝜆ኻ:

�̂� = argmax 𝜆ኻ(𝜎) (4.6)

Hence, at each evaluation point, the quadrature filters were tuned to match the
vessel width (2�̂�) and the orientation of the vasculature, determined by the eigen-
vector corresponding to 𝜆ኻ(�̂�).

4.3. Experiments and Results
4.3.1. Parameter Optimization
The orientation space filter bank (Eq. 4.3) parameters (𝑁,𝑤 , 𝑏፰) were optimized
to match the width and orientation of vessels. The angular resolution 𝑁 was set to
15 and the optimal values of the remaining parameters are summarized as 𝑤 =
𝑏፰ = 0.15 �̂�ዅኻ. These parameters were the same for all fundus data, healthy and
diseased.

4.3.2. Evaluation
In order to determine the relation between the RVME measure and the spatial reg-
istration accuracy, an evaluation was done on registered image pairs. For each pair,
a mismatch was introduced by translating one of the image pairs horizontally (but
any other direction would suffice as well) by a known amount before calculating the
RVME for vessels running perpendicular to the imposed displacement. The trans-
lation was increased by 1 pixel until the vessels were fully misaligned. Figure 4.3a
shows the evaluation results stratified by vessel width. Since the orientation se-
lective filters have footprint that runs parallel to vessels, the result of neighboring
pixels are correlated, thus evaluation was done at randomly sampled points uni-
formly distributed across the entire overlap region. Each point on the graph is the
average over 50 evaluation points selected from the 20 registered fundus image
pairs.

The results show a strong correlation between the RVME measure and the im-
posed misalignment (registration error). Moreover, figure 4.3b shows the RVME
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(a) (b)

Figure 4.3: Registration assessment results. (a) RVME as a function of misalignment in pixels. (b)
Correlation between RVME and misalignment as a function of vessel width.

Figure 4.4: Examples of difference image patches. Corresponding MSD (for the entire patch) and RVME
values (at the red-cross locations) are shown on each patch.

measure of various vessel widths have an approximately linear correlation, which
indicates that it is robust to variation in the vessel width. Hence, given the RVME
value and the estimated vessel width, the spatial registration accuracy can be de-
termined in a straightforward manner. This evaluation showed that the proposed
measure assesses the registration accuracy with a bias of -0.1 pixels and a precision
(standard deviation) of 0.9 pixels.

In the example shown in figure 4.4, even if the registration of two images is
perfect, the difference image at the location of blood vessels may show a significant
residual signal. For example, in figure 4.4a noise leads to an MSD of 0.78. In
figure 4.4b, the contrast difference between correctly aligned vessels leads to an
MSD value as high as in case of a clear misalignment, while the RVME remains
low. Figure 4.4c shows an example of a well-aligned vessel suffering from a clear
difference in (de)focus, resulting in a significant MSD. In contrast, these examples
show a very small value for the proposed RVME measure, indicating a very accurate
registration. In case of actual registration errors, such as in figure 4.4d, the RVME
is close to 1, corresponding to the expected value for a registration error of about
the width of a vessel. To evaluate the robustness of the RVME measure to higher
noise levels than the noise available in the normalized images which is 𝜎ኼ፧፨።፬፞ = 1,
a Gaussian noise was added to each of the registered images. Evaluation results at
5 randomly selected points show that the RVME measure barely changes with the
noise in the registered image pairs (Fig.4.5).
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(a) (b) (c)

Figure 4.5: Comparison of RVME measures at 5 randomly selected evaluation points on incorrectly
registered image pair before (left image, ኼ፧፨።፬፞  ኻ) and after adding Gaussian noise (right image,
ኼ፧፨።፬፞  ኾዂ).

4.4. Discussion
In this paper, a new way of quantitatively assessing the registration accuracy of
images in which the vasculature provides the main landmarks has been proposed.
An accuracy measure (RVME) which exploits the even and odd signal property of
the 1D profile across the vessels in the difference image is defined and used to
determine the registration accuracy relative to the width of a vessel. The RVME
measure is translated to the spatial registration accuracy in pixels by multiplication
with the estimated vessel width, enabling an objective and quantitative registration
accuracy assessment.

We demonstrated the method by applying it to registered red-free fundus im-
ages in order to quantify a misalignment error up to the full width of the widest
vessel. Evaluation results showed that the RVME, in contrast with the MSD, does
not depend on the intensity variation between registered image pairs, i.e. it is
invariant to factors such as contrast, (de)focus, and noise (Fig. 4.4-4.5). It pro-
vides an excellent prediction of the imposed displacement (bias of -0.1 pixels and
a standard deviation 0.9 pixels) in a controlled experiment.
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5. An automated system for the detection and classification of retinal

changes due to red lesions in longitudinal fundus images

Abstract
People with diabetes mellitus need annual screening to check for the develop-
ment of diabetic retinopathy (DR). Tracking small retinal changes due to early
diabetic retinopathy lesions in longitudinal fundus image sets is challenging
due to intra- and inter-visit variability in illumination and image quality, the
required high registration accuracy, and the subtle appearance of retinal le-
sions compared to other retinal features. This paper presents a robust and
flexible approach for automated detection of longitudinal retinal changes due
to small red lesions by exploiting normalized fundus images that significantly
reduce illumination variations and improve the contrast of small retinal fea-
tures. To detect spatio-temporal retinal changes, the absolute difference be-
tween the extremes of the multiscale blobness responses of fundus images
from two time-points is proposed as a simple and effective blobness measure.
DR related changes are then identified based on several intensity and shape
features by a support vector machine classifier. The proposed approach was
evaluated in the context of a regular diabetic retinopathy screening program
involving subjects ranging from healthy (no retinal lesion) to moderate (with
clinically relevant retinal lesions) DR levels. Evaluation shows that the sys-
tem is able to detect retinal changes due to small red lesions with a sensitivity
of 80% at an average false positive rate of 1 and 2.5 lesions per eye on small
and large fields-of-view of the retina, respectively.
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5.1. Introduction
Diabetic retinopathy is a complication of diabetes mellitus, which progressively dam-
ages retinal blood vessels and may result in vision loss and even blindness if not
diagnosed and treated adequately. Regular eye examination is necessary for timely
detection and treatment of DR at an early stage [1]. The current eye care practice
for screening DR involves examination of multiple field fundus images for pathog-
nomonic abnormalities by a trained expert. Depending on the observed retinal
abnormalities at the time of the examination, diabetic patients are either scheduled
for a follow-up examination or referred to an ophthalmologist for further diagnostic
evaluation and possibly treatment. This screening procedure is subjective [2], time
consuming and puts a considerable demand on diabetic eye care resources.

Moreover, in addition to examining how far the disease has progressed at the
time of examination, the goal of regular DR screening is also to identify patients
with a high risk of progression. DR is a progressive disease that results in reti-
nal changes such as the appearance (and the disappearance) of associated lesions
such as microaneurysms and hemorrhages (see Fig. 5.1). Recent studies suggest
that in addition to the number of lesions at the time of examination, the dynamics
of these lesions is useful to monitor progression of DR [3–5]. Automated detection
and quantification of retinal changes can thus be an important addition to regu-
lar DR screening to objectively assess the disease activity over time for proactively
taking appropriate measures. An automated system is also instrumental in patient
education, especially in asymptomatic patients. By highlighting and showing DR
related retinal changes on a computer display, the patients may have better under-
standing of their progressing eye condition and the importance of regular checkup
and adjustment of their blood sugar level to reduce their risk of developing visual
complications.

(a) Baseline image (b) Follow-up image

Figure 5.1: A pair of spatially aligned fundus image patches showing longitudinal retinal change locations
(yellow arrows) due to early stage DR lesions between the baseline and follow-up retinal examinations.

Automated detection of longitudinal retinal changes from a series of fundus im-
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ages is challenging for several reasons. Firstly, accurate detection and classification
of longitudinal retinal changes requires a robust algorithm to discriminate clinically
relevant changes from changes caused by illumination variation and noise. Fundus
imaging is a process that involves careful manual tuning of fundus camera settings,
thus color fundus images often suffer from intra- and inter-image variation in lu-
minosity and contrast (see Fig. 5.2) [6]. Illumination variation coupled with the
subtle appearance of early DR lesions renders identifying clinically relevant retinal
changes in color fundus images as a very difficult task, even for expert graders.

Figure 5.2: Examples of fundus image pairs of the same retina (top and bottom rows) captured one
year apart during regular DR screening. Significant variation in illumination and acquisition artefacts can
be seen in both image pairs.

Secondly, tracking small retinal features, such as microaneurysms and dot hem-
orrhages, over time requires very high registration accuracy. In order to correctly
register fundus images, the nonlinear spatial deformation caused by the projection
of the curved surface of the retina onto a flat imaging plane needs to be accounted
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for [7, 8]. This is challenging due to the sparseness of retinal features that can
be used for matching and the limited overlapping region between different fundus
fields.

Most of the previous studies on computer-aided detection and diagnosis (CAD)
systems for DR screening exclusively aimed at analyzing digital fundus images from
a single retinal examination [2, 9–22]. A common approach in these studies is
to detect early stage retinal abnormalities that are associated with referable DR.
Although these CAD systems enable to identify retinal abnormalities for screening
DR at the time of examination, they give only limited insight into the activity of
the disease since the previous check-up, and thus are not suitable for explicitly
monitoring DR.

So far, only a few automated systems have been developed for the detection
of longitudinal retinal changes for monitoring DR over time. Examples include sys-
tems proposed by Cree et al. [23] and Goatman et al. [24] to detect microa-
neurysms in longitudinal fluorescein angiogram images. Both systems consist of a
method to detect microaneurysms from a region-of-interest centered on the fovea
and a registration algorithm to align longitudinal images of the same retina for
determining the microaneurysm turnover. Narasimha-Iyer et. al. [25] presented
an integrated system for directly detecting and classifying retinal changes from a
single-field (macula-centered) color fundus image using a combination of methods
for illumination correction, dust removal and segmenting retinal features such as
the fovea, optic disc, and blood vessels. The system was later extended to de-
tect changes in vasculature width and appearance/disappearance of lesions [26]. A
commercial system also exists for automatically detecting temporal retinal changes
due to ‘red-dot-like’ lesions from a pair of fundus images of the same retina [27, 28].

The main limitation of existing methods for retinal change detection is that they
do not address the problems of illumination variation and the space-variant image
quality over the entire field-of-view of the retina. Hence, they are not applicable to a
large field of the retina, which is required for a comprehensive retinal examination.
This is especially a crucial factor when analyzing fundus images in which illumina-
tion variation and low image quality affect more than 50% of the field-of-view as
shown in Fig. 5.2. This paper addresses these problems and presents a robust
and flexible multi-stage approach that is applicable to a wide range of fundus fields
for automated detection of longitudinal retinal changes due to microaneurysms and
dot hemorrhages (small red lesions).

5.2. Materials and Methods
An overview of the proposed multi-stage approach for automated detection and
classification of changes due to small red retinal lesions in longitudinal fundus im-
ages is shown in Fig. 5.3. In the first stage, illumination variation is addressed
by normalizing the green channel of each color fundus image for luminosity and
contrast variation, thereby improving the visibility of retinal features. Then all the
baseline and follow-up sets of normalized four-field fundus images are registered
into a common coordinate system using a multi-resolution matching strategy cou-
pled to a hierarchical registration model. In the second stage, spatio-temporal
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retinal change locations are detected by a novel criterion, blobness measure, based
on a multi-scale Laplacian of Gaussian. At the last stage, several local intensity and
shape descriptors were extracted from each of the detected change locations and
subsequently classified as a change due to a red retinal lesion or no change. Each
stage of the proposed approach is described in detail in the following subsections.

5.2.1. Dataset
Data for this study was obtained from a regular DR screening program at the Rot-
terdam Eye Hospital. Four field (macula-centered, optic nerve-centered, superior,
and temporal regions) fundus image sets from 81 diabetic eyes that were acquired
for DR screening in 2012 and again in 2013 were used for training (40 eyes) and
testing (41 eyes) the proposed approach. All fundus images of 2000×1312 pixels in
size were acquired after pupil dilation using a non-mydriatic digital fundus camera
(Topcon TRC-NW6S, Tokyo, Japan) with a 45∘ field of view.

5.2.2. Illumination Normalization and Registration
The green channel of digital fundus images is commonly used in automated fun-
dus image analysis because of its higher contrast between retinal features and the
background than the red and blue channels. However, the green channel images
show considerable variation in luminosity (brightness) and contrast between retinal
structures, both within and between images [6]. In a recent work [29], we have ad-
dressed this illumination variation by applying an improved version of the luminosity
and contrast normalization technique of Foracchia’s et al [6]. The normalization was
done by using estimates of the local luminosity and contrast from the intensity dis-
tribution of the so-called background retina (i.e., the retina excluding features such
as vessels, optic disc, and lesions) and subsequently correcting for their variation
over the entire retinal image. In order to take into account missing retinal features,
especially around the borders of fundus images, the local luminosity and contrast
were estimated based on normalized convolution [29]. This results in a normalized
retinal image with a uniform illumination pattern within the entire retinal field and
improved visibility of fine retinal details (see Fig. 5.4).

In order to track small retinal features, such as small red lesions, over time, a
very high registration accuracy is required. The curved nature of the retinal sur-
face introduces a nonlinear spatial deformation in the process of acquiring fundus
images. Therefore, a higher order (quadratic) deformation model is needed for
registering fundus images accurately. Over the past decade, several algorithms
have been proposed for registration of fundus images [7, 8, 30–34]. In this pa-
per, we used a recently introduced robust fundus image registration method that
exploits the normalized intensity as well as the structural information of the retinal
vasculature [21]. The method aligns retinal vessels based on a multi-resolution
matching strategy coupled to a hierarchical registration model with a deformation
model of increasing complexity for robust optimization of a global second-order
transformation model. The method was successfully applied to register four-field
(macula-centered, optic nerve-centered, superior, and temporal) intra- and inter-
visit fundus images that capture different parts of the same retinal surface [35].
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Figure 5.4: Examples of baseline (left) and follow-up (right) normalized fundus mosaics produced by
registering four-field fundus images captured from a left eye during regular DR screening. The overlaid
color and normalized (enlarged) image patches highlight retinal changes due to DR lesions.

5.2.3. Retinal Change Detection
At early stages, DR is associated with microaneurysms, swellings in small blood
vessels that may leak blood into the retina. These lesions commonly appear in
color fundus images as small, round dark-red spots (see Fig. 5.4 and 5.5).

Due to the resemblance of these lesions to roundish blobs, the Laplacian of
Gaussian (LoG) operator is proposed for detecting them in normalized fundus im-
ages. The LoG is sensitive to a certain scale and will therefore provide a maximum
response at the scale that matches the size of the object to be detected. In order
to take into account the reduction of the LoG response with an increase in 𝜎, the
scale-normalized LoG operator is defined as [36]

∇ኼ፧፨፫፦(𝜎) = 𝜎ኼ∇ኼ𝐺(𝑥, 𝑦; 𝜎), (5.1)

where ∇ኼ𝐺(𝑥, 𝑦; 𝜎) = Ꭷኼፆ(፱,፲;)
Ꭷ፱ኼ + Ꭷኼፆ(፱,፲;)

Ꭷ፲ኼ is the LoG operator and 𝐺(𝑥, 𝑦; 𝜎) =
ኻ

ኼኼ 𝑒
ዅ(፱ኼዄ፲ኼ)
ኼኼ is a 2D Gaussian function of scale 𝜎.

In longitudinal DR screening, the focus is mainly on identifying regions that
have changed due to an appearance or disappearance of retinal lesions between
DR checkups. Thus, given the two time-point fundus images 𝐼፭ኻ and 𝐼፭ኼ , spatio-
temporal changes are detected by first applying the scale-normalized LoG operator
at several scales to each of the two time-point images and then comparing the
results. To this end, we propose a blobness measure (𝐵𝑀), which is defined as the
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Figure 5.5: A pair of spatially-aligned normalized retinal image patches and their surface topographies
before (left) and after (right) a small red DR lesion appears.

absolute difference between the extremes of the multiscale blobness responses of
fundus images from two time-points.

𝐵𝑀(𝐼፭ኻ , 𝐼፭ኼ) = |max

∇ኼ፧፨፫፦(𝜎) ∗ 𝐼፭ኻ −max


∇ኼ፧፨፫፦(𝜎) ∗ 𝐼፭ኼ |. (5.2)

In regions that changed due to an appearance or disappearance of retinal lesions
between the two time-points, the 𝐵𝑀 is expected to be significant (see Fig. 5.6a-
5.6c). A candidate change mask (M) is then obtained by thresholding the 𝐵𝑀
response at 𝜃ፁፌ as

𝑀 = {(𝑥, 𝑦)|𝐵𝑀(𝐼፭ኻ(𝑥, 𝑦), 𝐼፭ኼ(𝑥, 𝑦)) ≥ 𝜃ፁፌ} (5.3)

In addition, candidate regions that are smaller than the smallest microaneurysm
size (3 pixels or 21𝜇𝑚 in diameter in our dataset) were excluded. Figure 5.6d shows
an example change mask extracted from a pair of fundus image patches.

5.2.4. Red Lesion Classification
After detecting candidate regions several intensity features, image quality mea-
sures, and appearance and shape descriptors were extracted from each candidate
region. The complete list of features is
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(a) 𝐼፭Ꮃ and 𝐼፭Ꮄ

(b) max �ኼ፧፨፫፦(𝜎) ∗ 𝐼፭Ꮃ and max �ኼ፧፨፫፦(𝜎) ∗ 𝐼፭Ꮄ

(c) 𝐵𝑀(𝐼፭Ꮃ , 𝐼፭Ꮄ) (d) Change mask (𝑀)

Figure 5.6: An example of a pair of spatially-aligned normalized image patches (a), the maximum multi-
scale blobness responses (b), and the resulting ፁፌ values of each pixel (c). Retinal changes due to
appearance or disappearance of lesions appear in the ፁፌ image as bright white spots. The white spots
in (d) indicate the final candidate change mask locations derived from the ፁፌ.

Intensity features (𝐹።፧፭)
• The red and green channel values of the baseline and follow-up images.

• The normalized intensities of the baseline and follow-up images, 𝐼፭ኻ and 𝐼፭ኼ .

• The difference in luminosity (𝐿) and contrast (𝐶) between the baseline and
follow-up images computed as △𝐿 = |𝐿፭ኻ − 𝐿፭ኼ | and △𝐶 = √𝐶ኼ፭ኻ + 𝐶ኼ፭ኼ . 𝐿 and
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𝐶 are respectively estimated from the instensity distribuition of the retinal
background image(excluding vessels, optic disc, and lesions) using the sample
mean and standard deviation [29].

• Local power per frequency band of normalized images, which is defined as the
extent to which the intensities of retinal regions change rapidly and locally.
This is obtained by computing the signal power after band-pass filetring.

A total of 20 intensity features were extracted from each candidate region.

Appearance and shape descriptors (𝐹ፚ፬፝)
• The blobness measure (𝐵𝑀) (see eq. 5.2).

• Histogram of oriented gradients (HOG) [37] computed with a cell size of 5×5
pixels and block size of 4 × 4. This produced 144 features.

• Scale-adapted speeded up robust features (SURF) [38]. 64 SURF features
were extracted.

• The local intensity curvatures (eigenvalues) computed from the second-order
Gaussian derivatives computed at 𝜎 = 2።/ኼ, 𝑖 ∈ {0, 1, 2, 3, 4, 5}.

A total of 221 appearance and shape descriptors features were extracted.
Three classifiers, K-nearest neighbor (KNN), random forests (RF), and a support

vector machine (SVM) with a radial basis function (RBF) kernel, were independently
used to predict the probability that each candidate region is a change due to a red
retinal lesion.

5.2.5. Reference Annotation Formation
The reference annotations used for both training and testing the proposed system
was gathered from three experts on DR screening (two ophthalmologists and an
optometrist). Each of the graders independently annotated the center locations
of retinal changes between the baseline and follow-up exam due to small red DR
lesions in the fundus mosaics for each eye. The experts were shown both the
color and normalized mosaics side-by-side using custom-made software that we
developed for lesion annotation. In order to handle inter-grader annotation vari-
ability, the reference annotation was defined based on the simultaneous truth and
performance level estimation (STAPLE) algorithm [39].

5.3. Experiments and Results
5.3.1. Evaluation metrics
The performance evaluation metrics were the sensitivity (the proportion of correctly
detected and classified lesion locations) and average number of false positives per
eye. These metrics were computed as

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (5.4)
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑃𝑠 𝑝𝑒𝑟 𝐸𝑦𝑒 = 𝐹𝑃
𝑁 , (5.5)

where 𝑇𝑃 is the number of true positives, 𝐹𝑁 is the number of false negatives,
𝐹𝑃 is the number of false positives and 𝑁 is the number of eyes in the test set.
A detected location is counted as 𝑇𝑃 if the distance between its centroid and the
closest reference annotation is less than 7 pixels. The evaluation metrics were
measured for several threshold levels applied to the (prediction) probability assigned
to each of the candidate locations by the classifier and the results are summarized
using free-response receiver operating characteristics (FROC) curves.

5.3.2. Parameter Settings
The settings of the two parameters (𝜎, 𝜃ፁፌ) for the retinal change detection algo-
rithm (eq. 5.1-5.3) were optimized based on the training set. The 𝜎 values were
determined from the relationship between the size (diameter 𝑑) of a retinal lesion
and the scale at which the lesion response to the scale-normalized LoG operator
achieves its maximum. The 𝜎 value can be computed as

𝜎 = 𝑑
2√2

. (5.6)

The estimated diameter of the retinal lesions in our dataset ranges from 3 to
16 pixels (21𝜇𝑚 to 112𝜇𝑚) and thus scales of 𝜎 = 2።/ኼ, 𝑖 ∈ {0, 1, 2, ..., 5} pixels were
applied to eq. 5.2. The change detection sensitivity and number of false candidates
were optimized by varying a range of values 𝜃ፁፌ ∈ {1.0, 1.1, 1.2, 1.3, 1.4, 1.5}. A
threshold value of 𝜃ፁፌ = 1.2 provided the best compromise between sensitivity
(which was set to be at least 96%) and average number of false candidates per
eye.

The optimal values for the RBF kernel parameters (𝐶 = 2ኺ., 𝛾 = 2ዅዃ) of the SVM
classifier and for the number of nearest neighbors (𝐾 = 25) of the KNN classifier
were chosen through 10-fold cross-validation on the training set. A grid-search
[40] in combination with cross-validation was used to test various (𝐶, 𝛾) pairs. The
RF classifier parameters (the number of trees, the number of randomly selected
features for splitting) were set based on the out-of-bag (OOB) data error estimate
[41]. During each bootstrap the RF classifier sets aside about one-third of the
training samples as OOB data and this data is not used for constructing a tree;
therefore, it is used internally as a validation set to estimate the classification error.

5.3.3. Evaluations
We evaluated the proposed approach for the detection and classification of retinal
changes due to red lesions from longitudinal retinal mosaics on both a large and a
small field of view of the retina on the test set. The evaluation on a large retinal
field was done using the four field fundus mosaics, which consists of the macula,
optic-disc, superior, and temporal retinal regions. The number of retinal changes
(appearances and disappearances) for each eye in the training and testing set is
shown in figure 5.7. The total number of retinal changes in the training and testing
set were 174 and 164, respectively. The evaluation on a small retinal field was done
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Figure 5.7: Distribution of the number of retinal changes in the training and testing sets.

based on the macula-centered fundus images due to their clinical significance. In
addition, the performance of each of the two feature types (intensity vs. appearance
and shape) paired with each of the three classifiers (KNN, RF, SVM) was evaluated
on the large field fundus mosaics.

5.3.4. Results
Figure 5.8 shows the FROC curves for the systems with various classifier and fea-
ture combinations. The blue horizontal line indicates the retinal change detection
sensitivity (98%) of the proposed approach on the testing set, which acts as an
upper bound on the sensitivity of the whole system. The results show that for all
tested classifiers the appearance and shape descriptors produced a much better
classification result than the intensity features. Moreover, the performance of the
classifiers increased when the combined set of features was used. The SVM clas-
sifier performed best among the three classifiers and achieved a sensitivity of 80%
at an average false positive rate of 2.5 per eye.

The system that performed best on the large field retinal mosaics (SVM with
𝐹።፧፭+ 𝐹ፚ፬፝) was retrained and used to detect retinal changes from a small field of
the retina centered on the macula. The performance of the proposed approach is
shown in the FROC curve in figure 5.9. The sensitivity of the retinal change de-
tection algorithm was 97% on macula-centered fundus images. The overall system
achieves a sensitivity of 80% at an average false positive rate of 1 per eye.

For each eye in the test set, we visually inspected and analyzed those locations
that were detected by our approach but not defined as a DR related change in the
reference annotations and thus were counted as false alarms. These locations were
found to be in either of the following categories:

• Dark spots that resemble tiny red retinal lesions on either the baseline or
follow-up mosaics.

• Retinal vessels that were affected by illumination artefacts on either the
baseline or follow-up mosaics.
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Figure 5.8: FROC curves of the proposed systems for the detection and classification of longitudinal
retinal changes due to small red lesion applied to large field-of-view retinal mosaics.

Figure 5.9: FROC curve of the proposed system for the detection and classification of longitudinal retinal
changes due to small red lesion applied to macula-centered fundus image pairs.

• Noisy regions that have a low signal-to-noise (SNR) ratio.

Figure 5.10 shows the number of false alarms in each of the three categories for
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Figure 5.10: Histograms depicting the number of false alarms for each category.

the 41 test eyes at 0.80 sensitivity. Overall, the results show that dark spots that
resemble small red lesions caused 63% of the false alarms. The remaining false
alarms were detected either on retinal vessels (18%) or in regions with a low SNR
(19%). An example from each of the three categories of false alarms are shown in
figure 5.11.

5.4. Discussion and Conclusion
In this paper, we have presented a robust and flexible multi-stage approach for
tracking retinal changes due to small red DR lesions such as microaneurysms and
dot hemorrhages in longitudinal fundus images. The system was applied to both
small and large retinal fields of 81 diabetic eyes. Robustness to intra and inter-image
illumination variation was achieved by exploiting fundus images that are normalized
for luminosity and contrast over the entire field of view. The improvement in the
visibility and contrast of especially small retinal features in the normalized fundus
images enabled our approach to track subtle retinal changes, including those that
are visually difficult to detect on the color fundus images. A simple and effective
criterion for blobness (𝐵𝑀) was defined for detecting spatio-temporal retinal change
locations from longitudinal normalized fundus images. The 𝐵𝑀 can also be easily
adapted to other related problems for the detection and tracking of small round
objects in a series of registered longitudinal images.

The proposed approach was evaluated in the context of a regular diabetic retinopa-
thy screening program involving subjects ranging from healthy (no retinal lesion)
to moderate (with clinically relevant retinal lesions) DR levels. Evaluation was done
on both a large field-of-view fundus mosaics, which consisted of the macula, optic
nerve, temporal, and superior fields, and a small field-of-view of the retina consist-
ing only of the macula-centered fields. The results show that the system was able
to detect retinal changes due to small DR lesions with a sensitivity of 80% from
large field fundus mosaics and small field fundus images at an average false posi-
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Figure 5.11: An example of the output of the proposed change detection and classification approach
at a sensitivity of ዂኺ%. The zoomed in color and normalized image patches for the baseline (left) and
follow-up (right) indicated by different shapes represent the true positives (TPs), false positives (FPs)
and false negative (FN) locations.

tive rate of 2.5 and 1, respectively. In contrast to the small fields, the higher false
alarm rate in the large field fundus mosaics is mainly caused by the lower image
quality and the presence of significant illumination artefacts, such as white spots
(see Fig. 5.4), on the temporal and superior fundus fields.

Visual inspection of the false alarms suggests that most of them were very
similar in appearance and shape to small red DR lesions and thus may well be true
positives that were erroneously not included in the reference annotation. Indeed,
49% of the detected dark spot locations were small red lesions that were also
annotated by one of the graders. It should also be noted that color fundus images
are routinely used by eye care experts in DR screening. Therefore, introducing the
normalized images during annotation can help the experts see subtle DR related
retinal changes, although their annotations might have been biased towards the
color images.

The proposed approach could also be applied to determine the red DR lesion
count of individual fundus images provided that reference images with known retinal
conditions are available. Automated detection of red DR lesions from single time
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point images can be very difficult due to the subtle nature of most of the lesions and
limited number of lesion pixels. On a publicly available Retinopathy Online Challenge
fundus image dataset [42], the top ranking method for automated detection of red
lesions from individual images achieved a sensitivity of 53% at an average of 2 false
alarms per image [16]. By incorporating reference images and analyzing spatio-
temporal change locations, our approach could be applied to detect and determine
red lesion count with a higher sensitivity.

Automated detection and quantification of longitudinal retinal changes can be
an important addition to regular DR screening. The detected retinal changes can
be used for making objective and quantitative analysis of DR progression as well as
for more efficient human grading and patient education by highlighting DR related
changes since the previous visit.
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Abstract
Diabetic retinopathy (DR) is a complication of diabetes mellitus, which pro-
gressively damages small retinal blood vessels and may result in vision loss
and even blindness if not diagnosed and treated timely and adequately. To
monitor DR progression, diabetes mellitus patients need to undergo periodic
screening. In this study, the correlation between DR development and the
retinal surface change over time is investigated. To quantify retinal changes
due to formation and disappearance of small round red lesions, a recently
developed fully automated longitudinal fundus image analysis system has
been applied. The number of detected changes are then analyzed among
referable and non-referable DR classes derived from DR levels assigned by
trained clainical expert. Evaluation was done on 199 diabetic eyes with a
non-referable DR stage at baseline. The data of the yearly examinations of
these eyes for four more years were used in this investigation. During this pe-
riod, 178 eyes (89.4%) remained at non-referable DR stage whereas 21 eyes
(10.6%) progressed to referable DR. The number of detected retinal changes
have been analyzed and compared between referable and non-referable di-
abetic eyes. Evaluation results show a statistically significant association
between the number of detected retinal changes and classification of refer-
able DR (p = 0.008). The odds ratio for developing referable DR was 1.15
(𝑝 = 0.018, 95% CI: 1.02 − 1.29) for each detected change per year. These
results suggest that the red lesion activity between successive retinal exam-
inations can be used as a potential biomarker in building a prediction model
for future referal.
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6.1. Introduction
Diabetic retinopathy (DR) is a complication of diabetes mellitus (DM), which pro-
gressively damages small retinal blood vessels and may result in vision loss and
even blindness if not diagnosed and treated timely and adequately. Because of
long-standing DM, changes in the capillaries occur leading to thickening of basal
membrane, loss of pericytes and death of the endothelium cells, thereby result-
ing in microaneurysms and capillary non-perfusion [1]. As the disease progresses,
more retinal blood vessels that nourish the retina start to close or leak, resulting in
formation of exudates (lipids and proteins) or small hemorrhages. This results in a
reduction of oxygen supplies to the retina and stimulates the formation of neovas-
cularization, i.e, the growth of new blood vessels that are fragile. The newly formed
blood vessels may easily leak and cause bleedings and vitreous hemorrhages. These
blood vessels could also become fibrotic over time and lead to tractional retinal de-
tachments.

Because the risk of retinal damage due to DR progression over time and the la-
tency between development of DR and early DR symptoms, diabetic patients need
to undergo periodic screening. This involves the acquisition of fundus photos cov-
ering multiple retinal fields and manual inspection by trained eye care experts to
assess the onset and progression of DR. A trained expert reviews the fundus photos
and, based on the observed retinal condition, decides either to refer the patient to a
retinal specialist for further retinal examination and possibly treatment or to sched-
ule another screening appointment. The current DR screening practice is subjective
and time-consuming. This, together with the global rise in the diabetic population
puts a significant burden on the accessibility of eye care resources and the efficiency
of DR screening programs.

DR is a progressive disease that results in the appearance (and the disappear-
ance) of associated retinal lesions, such as microaneurysms and dot hemorrhages,
at an early stage. An objective assessment of retinal changes over time is thus cru-
cial to explore whether red lesion turnover, which is defined as the total number of
progressed and regressed red lesions since the previous examination, is predictive
for future referral. Automated analysis of longitudinal series of fundus photos plays
an important role to objectively assess spatio-temporal retinal change over time.
This provides complementary prognostic information in addition to the observed
retinal change at the time of the retinal examination. Recent studies suggest that
microaneurysm turnover, which is the rate of formation [2, 3] or both the formation
and disappearance [4] of microaneurysms, can be a useful biomarker to predict DR
progression to clinically significant macular edema. A semi-automatic method was
used to analyze the macula centered (field-2 as defined in ETDRS protocol [5]) field
of the retina [2, 3].

This study aims to explore whether the red lesion turnover can be used as pre-
dictor to identify patients with a high risk of progression to referable DR. This was
done by evaluating and comparing the red lesion turnover between two groups
of diabetic eyes: referable and non-referable. Both groups were diagnosed with
non-referable DR at baseline and they were annually screened for DR for four more
years. The fundus photos gathered from all five retinal examinations were auto-
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matically analyzed to detect, classify and quantify retinal changes due to early DR
lesions between consecutive retinal examinations. To this end, recently developed
and published methods for automated fundus image registration [6, 7] and detec-
tion and classification of retinal changes in longitudinal four-field fundus images [8]
were applied.

6.2. Methods
6.2.1. Data description
The dataset used in this retrospective study was gathered from diabetic patients
who were enrolled in the DR screening program of the Rotterdam Eye Hospital in
The Netherlands. Four fundus fields consisting of macula-centered, optic nerve-
centered, superior, and temporal regions of the retinal surface were gathered from
both eyes of 125 diabetic patients that have been screened for DR for 5 consecutive
years between 2007 and 2013. Each fundus image was 2000 × 1312 pixels in
size and acquired after pupil dilation (one drop of tropicamide 0.5%) using a non-
mydriatic digital funds camera (Topcon TRC-NW6S, Tokyo, Japan) with a 45∘ field-
of-view.

This study adhered to the applicable code of conduct for the reuse of data in
health research [9]. After exporting the fundus images from the clinical image
storage system, all data was anonymized prior to further processing.

6.2.2. Automated longitudinal fundus image analysis
The longitudinal fundus images were analyzed using a fully automated system. For
each eye, all the four field fundus images acquired at five consecutive retinal ex-
amination are normalized for illumination variation and registered to a common
coordinate system using state-of-the art registration approach [6, 7], resulting in a
single large field-of-view mosaic of the retinal surface for each examination. Fig-
ure 6.1 shows examples of such longitudinal fundus mosaics for the first two DR
examinations of an eye. The number of red lesion related retinal changes between
consecutive examinations is extracted using an automated system for the detection
and classification of retinal changes in longitudinal fundus images [8].

6.2.3. Longitudinal fundus mosaic grading
For each eye, a trained retinal expert graded each of the mosaics based on the
International Clinical Diabetic Retinopathy (ICDR) disease severity scale. The ICDR
disease severity scale defines five levels for DR: none, mild, moderate, severe, and
proliferative (see Table 6.1) [10, 11]. Both the color and normalized mosaics were
used for grading.

The grades in each of the five examinations are translated to non-referable and
referable DR. Non-referable DR was defined as no apparent retinopathy or mild
NPDR, whereas referable DR was defined as moderate or one of the more severe
levels (shaded in red in Table 6.1). The eyes are then categorized into referable and
non-referable groups based on whether they were considered referable at any stage
during the five year follow-up. Eyes in which non-referable DR was detected in all
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(a) Baseline mosaic. (b) Follow-up mosaic.

Figure 6.1: Examples of normalized fundus mosaics of produced from baseline (a) and follow-up exam-
ination (b) of an eye.

Table 6.1: The International Clinical Diabetic Retinopathy (ICDR) disease severity scale. Non-referable
and referable DR classes are shaded in green and red, respectively.

Disease severity level Findings observable upon dilated
ophthalmoscopy

No apparent retinopathy No abnormalities

Mild non-proliferative DR (NPDR) Microaneurysms only

Moderate NPDR More than just microaneurysms but less
than Severe NPDR

Severe NPDR Any of the following: more than 20
intraretinal hemorrhages in each of 4
quadrants, definite venous beading in
2+ quadrants, prominent IRMA in 1+
quadrant

Proliferative DR One or more of the following: neovascu-
larization, vitreous/preretinal hemorrhage
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the five exminations were grouped as non-referable and eyes in which referable DR
was detected in any of the five examinations were grouped as referable.

6.2.4. Statistical analysis
The association between the red lesion turnover between consecutive examinations
and classification of referable DR was analyzed and compared between referable
and non-referable eye groups. The analysis was done in groups of eyes that were
non-referable at baseline and later either progressed to referable DR level or re-
mained as non-referable during follow up. The number of detected retinal changes
were analyzed in the two groups and the significance of the relationship was tested
by Fisher’s exact test. In addition, the significance of the red lesion turnover as a
predictor for future referal was quantified using odds ratio (OR) derived from logistic
regression. A p-value below 0.05 is considered to be statistically significant.

6.3. Results
A total of 5000 color fundus images acquired from a total of 250 diabetic eyes
screened for DR during a five year period were processed to create longitudinal
fundus mosaics. Eyes for which any of the four fields were missing or of poor
quality (41 eyes, 16.4%) at any of the five examinations were excluded from the
automated processing and expert grading. Out of 209 eyes that were graded by
an expert, 10 eyes (4.8%) were already at moderate or severe DR levels (referable
stage) at baseline and hence excluded from further analysis. Of the remaining eyes,
a total of 178 eyes (89.4%) were graded as no DR or mild NPDR (non-referable
stage) in all the follow-up examinations whereas 21 eyes (10.6%) progressed from
the non-referable to the referable stage during one of the follow-up examinations.

Figure 6.2 shows the average number of detected retinal changes between suc-
cessive DR examinations. The result shows that on average the red lesion turnover
in referable eyes is higher compared to the non-referable eyes (y-intercept differ-
ence of 1.62 changes per year, p-value = 0.048). In addition, the red lesion turnover
in both groups increases with time, suggesting that the risk of accumlated damage
to the retina and hence DR progression increases with the duration of diabetes.

In figure 6.3, the frequencies and cumulative distributions of the number of de-
tected retinal changes at the time of referral in the referable eyes group is shown
along with the detected changes between successive retinal examinations in non-
referable eyes group. The results show a significant correlation between the number
of retinal changes and classification of referable DR (Fisher’s exact test, p-value =
0.002). It was observed that a few referable eyes (3 out of 21, 14.3%) progressed
into moderate DR due to the presence of either non-round or relatively large hem-
orrhages with no apparent retinal change due to small red lesions in previous DR
examinations. Since the automated system was designed to detect changes due to
small red lesions, no retinal change was found in those eyes, thereby resulting in
the extreme left tail in the referable eye distribution shown in figure 6.3. On the
other hand, the right tail in the distribution of non-referable eye group is due to the
presence of mild NPDR (non-referable DR) cases in which microaneurysms only are
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Figure 6.2: Average number of retinal changes between consecutive retinal examinations done at ፭።ዅኻ
and ፭።.

detected.

Figure 6.3: Histogram of the detected retinal changes and the corresponding cumulative distribuition
up to the referal time point.

In order to analyze the difference in the red lesion turnover between the two dia-
betic eye groups, the number of retinal changes one year prior to the year of referral
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in the referable eyes group is analzyed and compared with the number of detected
retinal changes up to and including the fourth examination of the non-referable
eyes group. The changes detected between the fourth and fifth examinations were
discarded as we cannot warrant that these eyes would not be referred in one year
time. Figure 6.4 shows the resulting frequencies and cumulative distribuitions. The
results show that the dynamics of red lesions in the retina is strongly associated
with the classification of referable DR (Fisher’s exact test, p-value = 0.008). The
trends in both figures 6.3 and 6.4 show that progression to referable DR is often
accompanied by an increase in the red lesion turnover. This association enables
the use of the red lesion turnover as a biomarker in building a prediction model for
future referal.

Figure 6.4: Histogram of the detected retinal changes and the corresponding cumulative distribuition
prior to referal.

The fitted parameters of the logistic regression model for the prediction of refer-
able DR are summarized in table in 6.2. The result shows that effect of the red
lesion turnover on the classification of referable DR was significant (p-value =
0.018). Thus, the odds ratio of developing referable DR vs non-referable DR was
𝑒ኺ.ኻኾኼ = 1.15 (95% CI: 1.02 − 1.29) per unit (lesion per year) increase in red lesion
turnover. Given no detected retinal change, the odds of developing referable DR
was 𝑒ዅኽ.ኼዀኼ = 0.04. It should be noted that although this simple prediction model
shows only group level differences and a more rigorous model that includes other
DR risk factors needs to be constructed to predict the likelihood of future referral
for individual patients.
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Table 6.2: The estimated coefficients of the logistic regression model for referable DR prediction.

Coefficients Estimate Std. Error p-Value

Intercept -3.262 0.268 < 2 × 10ዅኻዀ
Red lesion turnover 0.142 0.060 0.018

6.4. Discussion and Conclusion
In this study, we retrospectively investigated the correlation between retinal changes
due to small red retinal lesions and the classification of referable DR in diabetic eyes
that have been regularly screened for DR. A recently developed fully automated lon-
gitudinal fundus image analysis approach has been applied to quantify the number
of retinal changes due to early DR related lesions and analyzed along with the DR
levels assigned by a trained expert. A total of 199 diabetic eyes of a non-referable
DR stage at baseline were followed for four consecutive years. During this period,
178 eyes (89.4%) remained at non-referable DR stage whereas 21 eyes (10.6%)
progressed to referable DR. The number of detected retinal changes between suc-
cessive retinal examintations show that the red lesion activity and hence the risk
of retinal damage increases with the duration of diabetes. Moreover, a statistically
significanct association was found between the red lesion turnover and classifica-
tion of referable DR (𝑂𝑅 = 1.15, 𝑝 = 0.018). For each observed change per year,
a 15% increase in the risk of developing referable DR was found. These results
suggest that the red lesion turnover can be used as a predictor of future risk for
referable DR development.

The current DR screening practice involves periodic retinal examination and the
grading is based on the presence and detection of lesions at the time of the retinal
examintation. Patients who did not develop referable DR are followed up with
periodic examinations. By predicting the risk of developing referable DR within a
given time based on previously acquired data, an efficient and personalized diabetic
eye care can be facilitated, ensuring a reduction in associated health care expenses.
Recent studies suggest that the dynamics of retinal change due to microaneurysms
may be used as a biomarker to predict diabetic patients that are likely to develop
clinically significant macular edema [2–4].

For better understanding of DR activity over time, a longer follow-up period is
useful. This study includes a short follow-up period, resulting in a relatively low
number of referable cases which might not adequately represent the underlying
distribuition of red lesion activities. Previous studies suggested that referable DR
prevalence is strongly associated with the duration of diabetes [12, 13]; therefore,
extending the follow-up period can be beneficial to get a representative sample.
Another limitation of this study is that the automated system was designed to de-
tect only retinal changes due to small round red lesions. Therefore, larger and
non-round hemorrhages, exudates, cotton-wool spots and intraretinal microvascu-
lar abnormalities (IRMA) which are indirect signs of vascular hyperpermeability and
capillary closure or retinal ischemia were not detected and investigated in this study.

In conclusion, this exploratory study showed that the number of retinal changes



6

86
6. Investigation of correlation between DR development and longitudinal

retinal changes in diabetic eyes

due to small red lesions between successive retinal examinations is significantly
correlated with the risk of developing referable DR. The red lesion turnover can
be exploited in future work as biomarker in constructing a prediction model for DR
progression. In addition to the red lesion turnover, the duration of diabetes and
age of diabetic patients play a key role in DR progression [12, 14] and hence need
to be taken into account.
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Diabetic retinopathy (DR) is a complication of diabetes mellitus, which progres-
sively damages retinal blood vessels and may result in vision loss and even blind-
ness if not diagnosed and treated timely and adequately. Because the risk of retinal
damage due to DR progression over time, diabetic patients need to undergo peri-
odic screening. This involves acquisition of fundus photos covering multiple retinal
fields and manual inspection by trained eye care experts to assess onset and/or
progression of DR. Manual inspection of fundus photos to objectively assess DR
development is time consuming and difficult due to, for example, differences in the
included retinal surface and deformation and changes in illumination. In this thesis,
a fully automated approach for analyzing longitudinal fundus photos for assessing
DR progression is presented. The presented approach involves illumination normal-
ization to improve the visibility of retinal features, mosaicking multiple field fundus
photos acquired during intra- and inter-visits, and detection and quantification of
longitudinal retinal changes to objectively assess DR development. Evaluation done
in the context of regular diabetic retinopathy screening on diabetic patients ranging
from non-referable DR (no DR or mild NPDR) to referable DR (moderate or severe
DR levels) show that the proposed approach can be a useful addition to regular DR
screening to effectively and efficiently assess DR development.

7.1. Technical contribuitions
In Chapter 2, a robust hierarchical coarse-to-fine approach for registering intra-
and inter-visit fundus images was presented. Firstly, illumination variation between
fundus images is addressed by using higher-order normalized convolution to esti-
mate the local luminosity and contrast from the intensity distribution of the so-called
background retina (which excludes features such as vessels, optic disc, and lesions)
and subsequently correcting for their variation over the entire retinal image. Sec-
ondly, the normalized intensity as well as the structural information of the retinal
vasculature are exploited to spatially align fundus images from multiple fields of the
retina based on the vasculature-weighted mean squared difference (MSD) of the
normalized images.

To prevent the registration algorithm from getting trapped in a local minimum,
we employed a multi-scale approach coupled with a deformation model of pro-
gressive complexity to estimate the parameters of a global second-order spatial
transformation model parameters. In addition, the initializing of each scale was set
based on the results of the previous scale. Extensive evaluation on multiple field
fundus images show that the proposed approach can successfully register fundus
images pairs which have an overlap region as low as 14%. Moreover, the registra-
tion algorithm was robust to illumination variation and uneven distribution of retinal
features within the fundus fields.

In Chapter 3, a qualitative accuracy assessment was done on fundus mosaics
produced by the proposed registration algorithm and compared with two top-ranked
state-of-the-art commercial available fundus mosaicking programs: i2k Retina (Du-
alAlign LLC, Clifton Park, NY) and OIS AutoMontage (OIS, Sacramento, CA). Evalu-
ation was done on four-field (macula-centered, optic nerve-centered, superior, and
temporal) fundus images of 70 diabetic patients who visited the Rotterdam Eye Hos-



7.1. Technical contribuitions

7

91

pital in 2012 and 2013 for a diabetic retinopathy screening program. The full eval-
uation results showed that the proposed approach produced intra- and inter-visit
fundus mosaics with higher registration accuracy than i2k Retina in both intra-visit
(odds ratio (𝑂𝑅) = 2.5, 𝑝 = 10ዅ) and inter-visit (𝑂𝑅 = 2.2, 𝑝 = 0.006) mosaics.
State of the art clinical systems regularly fail at producing mosaics without regis-
tration artifacts. We have shown that it is possible to get high quality intra- and
inter-visit mosaics in 65% and 49% of the cases, respectively, where the existing
system fails.

In Chapter 4, an automated method for a quantitative approach for assessing
the registration accuracy of fundus image pairs is presented. The method auto-
matically assesses the registration accuracy of fundus image pairs exploiting the
intensity profiles across the vasculature and their difference in the registered im-
ages. A new accuracy measure, relative vessel misalignment energy (RVME), which
exploits the even and odd signal property of the 1D profile across the vessels in the
difference image, is introduced. Our evaluation results show that the RVME be-
haved as expected, as it was invariant to contract, (de)focus, and noise. The RVME
measure could be translated to the spatial registration accuracy in pixels, with a bias
of -0.1 pixels and a precision (standard deviation) of 0.9 pixels, by multiplication
with the estimated vessel width. The RVME measure can thus be used as a robust
measure to objectively quantify registration accuracy between retinal vessels as low
as 4 pixels in diameter.

In Chapter 5, a robust and flexible multi-stage approach is presented for the
detection and classification of longitudinal retinal changes due to early DR related
retinal lesions such as microaneurysms and dot hemorrhages. To detect spatio-
temporal retinal changes, the absolute difference between the extremes of the
multiscale blobness responses of fundus images from two time-points is proposed
as a simple and effective blobness measure. The detected retinal changes are then
classified as red lesion or non-red lesion related based on several intensity and
shape features and supervised classifier. Evaluation on image sets acquired during
regular DR screening program involving subjects ranging from healthy to moderate
DR levels shows that the proposed approach can detect red lesion related retinal
changes with a sensitivity of 80% at an average false positive rate of 1 and 2.5
lesions per eye on small and large fields-of-view of the retina, respectively. The
results suggest that, by incorporating reference images and analyzing longitudinal
retinal changes, the proposed approach can be used to determine red lesion count
with a much higher sensitivity compared to state-of-the art methods for red lesion
count based on single time-point images. The proposed approach for automated
detection of longitudinal retinal changes can thus be an important addition to reg-
ular DR screening for an objective and quantitative analysis of DR progression.

In Appendix A, a deep convolutional neural network (CNN) has been trained
for the detection of spatio-temporal retinal changes from illumination normalized
fundus images. Evaluation and comparison with two other CNNs trained separately
on color and green channel fundus images shows that the CNN trained on normal-
ized images has a higher accuracy than the other two CNNs in detecting retinal
changes. The results suggest that illumination normalization greatly facilitates the
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performance of CNNs to quickly and effectively learn retinal change signatures.

7.2. Clinical applications
In Chapter 6, the correlation between retinal changes due to small red retinal
lesions and the classification of referable DR is explored retrospectively in diabetic
eyes that have been screened yearly for DR. To quantify red lesion turnover, the
fully automated longitudinal fundus image analysis approach presented in Chapter
5 has been applied. Evaluation was done on 199 diabetic eyes that have been at
non-referable DR stage at baseline and were followed for four consecutive years.
The red lesion turnover between successive retinal examinations were analyzed
and compared between 178 eyes (89.4%) that remained at non-referable DR stage
and 21 eyes (10.6%) that progressed to referable DR. The results show that the
development of referable DR is significantly associated with red lesion turnover
(odds ratio of 1.15, 𝑝 = 0.018, 95% CI: 1.02 − 1.29). The red lesion turnover can
thus be used as a biomarker for predicting future risk of referable DR development.

Although the methods introduced in the previous chapters play a key role in
achieving a fully automated computer aided diagnosis (CAD) system for assessing
DR progression, the intermediate results are also useful in clinical practice. Among
the key results that have potential for clinical applications are:

• Illumination normalization: The enhanced visibility of retinal features in
normalized fundus images can simplify fundus image grading by clinical ex-
perts. However, whether normalized images can give a higher screening sen-
sitivity without compromising specificity is currently being explored in a joint
collaboration between Rotterdam Ophthalmic institute and NIHR Biomedical
Research Centre at Moorfields Eye Hospital. Preliminary results showed that
normalized fundus images improve the visibility of retinal features and hence
facilitates better detection of red DR lesions [1].

• Fundus mosaicking: The ETDRS standard for DR detection and classifica-
tion requires stereoscopic color fundus from 7 standard fields to cover a large
field-of-view of the retina [2]. Manual processing of these individual fields to
construct a large retinal field is time consuming and resource demanding and
hence a limiting factor in clinical practice. The robust automated mosaick-
ing algorithm introduced in this thesis can be useful to construct high quality
mosaic of the retina, thereby enabling clinicians to do a comprehensive reti-
nal examination efficiently. The algorithm can also be applied to align retinal
images from multiple examinations, thereby facilitating analysis of temporal
retinal changes.

• Automated detection of retinal changes: The CAD system for the detec-
tion and classification of longitudinal retinal changes could also be useful in
analyzing retinal images acquired during regular DR screening. The system
can help to detect, objectively asses and highlight the retinal changes since
the previous examination, allowing eye care experts to get insight about the
disease activity over time for a comprehensive DR grading.
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7.3. General discussion and future directions
The main goal of this thesis was to develop a fully automated CAD system that
can be used to objectively assess DR progression in longitudinal series of fundus
images. To this end, several methods are proposed to address challenges such as
intra- and inter-visit illumination variation, fundus image registration, and detection
and classification of longitudinal retinal changes due to red DR lesions. The CAD
system was subsequently used to investigate the association between red lesion
turnover and classification of referable DR. The statistically signification association
results suggest that the red lesion turnover between successive retinal exams can
be used as a biomarker to identify patients with high risk of progression to referable
DR.

Areas for future investigation include developing a rigorous risk prediction model
for referable DR development. Given the red lesion turnover from previous retinal
examinations, predicting the likelihood of developing a referable DR within a given
time could be instrumental for health care programs to provide efficient diabetic eye
care service. Other DR risk factors such as age, duration of diabetes, and blood
sugar level could also be useful in accurately determining the risk and thus need to
be considered.
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Abstract
Automated detection and quantification of spatio-temporal retinal changes is
an important step to objectively assess disease progression and treatment
effects for dynamic retinal diseases such as diabetic retinopathy (DR). How-
ever, detecting retinal changes caused by early DR lesions such as microa-
neurysms and dot hemorrhages from longitudinal pairs of fundus images is
challenging due to intra and inter-image illumination variation between fun-
dus images. This paper explores a method for automated detection of retinal
changes from illumination normalized fundus images using a deep convolu-
tional neural network (CNN), and compares its performance with two other
CNNs trained separately on color and green channel fundus images. Illumi-
nation variation was addressed by correcting for the variability in the lumi-
nosity and contrast estimated from a large scale retinal regions. The CNN
models were trained and evaluated on image patches extracted from a reg-
istered fundus image set collected from 51 diabetic eyes that were screened
at two different time-points. The results show that using normalized images
yield better performance than color and green channel images, suggesting
that illumination normalization greatly facilitates CNNs to quickly and cor-
rectly learn distinctive local image features of DR related retinal changes.
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A.1. Introduction
Diabetic retinopathy (DR) is a complication of diabetes mellitus, which progressively
damages retinal blood vessels and results in vision loss and even blindness if not
diagnosed and treated adequately. Regular eye examination is necessary for the
detection and treatment of DR at an early stage [1]. The current eye care practice
for regular DR screening involves manual examination of multiple fundus photos
and is resource demanding, subjective, and does not exploit images from previous
retinal exam for progression assessment. Automated detection of longitudinal DR
related changes provides an objective measure of retinal abnormalities over time
and enables clinicians to objectively assess DR progression.

DR progression is accompanied by retinal changes due to appearance and disap-
pearance of lesions such as microaneurysms, hemorrhages, exudates, and cotton
wool spots. In addition to the number of these lesions at the time of examina-
tion, the dynamics of lesions such as the lesion turnover rate can provide more
insight into the disease activities over time [2, 3]. Therefore, automated detection
and quantification of longitudinal retinal changes can be an important addition to
regular DR screening.

Automated detection of longitudinal retinal changes due to microaneurysms
and dot hemorrhages from a series of fundus images is challenging due to intra
and inter-image illumination variation between fundus images captured at different
retinal checkups (Fig. A.1b). A previous approach for longitudinal fundus image
analysis excluded retinal regions around the borders of fundus images due to illu-
mination variation and analyzed the remaining regions to identify change locations
[4]. Retinal changes are then detected using hand crafted features extracted from
each of the images [4, 5]. Recently, deep convolutional neural networks (CNNs)
are shown to be successful in automatically learning local image features for object
detection and classification [6, 7]. Deep CNNs can learn local object features in a
hierarchical fashion using kernels that are limited to a small neighborhood. In this
paper, we explore the performance of a CNN model for the detection of DR related
retinal change in pairs of fundus images which are normalized for illumination vari-
ation and compare its performance with two other CNNs trained separately on color
and green channel fundus images.

A.2. Methodology
A.2.1. Illumination Normalization and Registration
In color fundus images, the red and blue channels suffer from low contrast between
the retinal features and the background. Because of its higher contrast, the green
channel of the digital fundus images is commonly used in DR screening by eye care
experts as well as in automated fundus image analysis. However, the green chan-
nel images still show considerable variation in luminosity and contrast, both within
and between images. This variability was normalized by estimating the luminosity
and contrast from the local intensity distribution of the so-called background retina
(i.e., the retina excluding features such as vessels, optic disc, and lesions) and sub-
sequently correcting for their variation over the entire retinal image [8](Fig. A.1c).
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(a) Color fundus image patches.

(b) Gree channel fundus image patches.

(c) Normalized fundus image patches.

Figure A.1: Examples of various fundus image patches showing retinal changes due to microaneurysms
and hemorrhages (red arrows) between the baseline (left) and follow-up (right) DR checkups.

Then, the intra- and intervisit fundus image series were aligned by a registration
method that makes use of the normalized intensity as well as structural information
of the retinal vasculature using a multiresolution matching strategy coupled with
a hierarchical registration model [8]. The color and green channel fundus images
were also registered into the same coordinate system as the normalized images
using the final estimate of the transformation model parameters.

A.2.2. Data and Reference Annotation
Data for this study was obtained from the regular DR screening program at the Rot-
terdam Eye Hospital. Four field (macula-centered, optic nerve-centered, superior,
and temporal regions) fundus image sets from 51 diabetic eyes who were examined
for DR in 2012 and 2013 were included. For each eye, three expert graders inde-
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pendently inspected and annotated the registered color and normalized images for
microaneurysm and hemmorrhage related retinal change between the two screen-
ing time-points. The experts annotated the center of each changed region. The
reference annotation was defined as the union of all the annotations by the three
graders. The estimated diameter of the annotated regions ranges from 3 to 16
pixels (21𝜇𝑚 to 112𝜇𝑚).

A.2.3. Convolutional Neural Network Architecture
The CNN model consists of two convolutional layers and one fully connected layer
(Fig. A.2). In both convolutional layers, kernels of size 5 × 5 were applied to learn
local image features. To progressively reduce the size of the spatial representation
of the objects in the image and the amount of parameters, the kernels were applied
with a stride of 2. A rectified linear unit (ReLU) activation function was employed
after each convolutional layer. Then, 32 features maps were generated by the
fully connected layer and fed into a softmax classifier to compute the probability
that a change (or no change) has occured between the baseline and follow-up
retinal regions. Note that in addition to the CNN shown in Fig. A.2 with a specific
configuration of the normalized input images (32×32×2), other CNNs consisting of
different image types (color or green channel) and configuration (difference images)
were also explored.

Figure A.2: An overview of the convolutional neural network architecture.

A.3. Experiments and Results
A total of 531 retinal change locations were annotated on the 51 baseline (𝐼ፁ)
and follow-up (𝐼ፅ) registered image pairs. A positive class, which represents the
occurrences of a change, was formed by gathering image patch pairs of 32 × 32
pixels centered on each annotated change location. A negative class was created
by randomly sampling 531 image patches of size 32× 32 pixels from locations that
were not marked by any of the experts. After splitting all the gathered patches as
training (80%) and evaluation (20%) set, the sample size of each set was increased
by applying data augmentation techniques such as Gaussian blurring, rotation, and
flipping. In total, 7650 training and 1908 evaluation baseline and follow-up image
patch pairs were gathered from each of the color, green channel and normalized
fundus image types.

For each image type, the CNN model hyperparameters were optimized indepen-
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dently using a subset of samples from the training set. We explored two approaches
to combine 𝐼ፁ and 𝐼ፅ and feed them into the CNNs. In the first approach, both 𝐼ፁ
and 𝐼ፅ were directly fed into the CNN models as separate channels (Fig. A.2). In the
second approach, the absolute difference between the two images, |𝐼ፁ − 𝐼ፅ|, was
used as input to the CNNs. The performance evaluation metrics were the sensitivity
and the specificity, which are computed as

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (A.1)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃 , (A.2)

where 𝑇𝑃 is the number of true positives, 𝐹𝑁 is the number of false negatives,
𝑇𝑁 is the number of true negatives and 𝐹𝑃 is the number of false positives. The
results are summarized using receiver operating characteristics (ROC) curves. All
the experiments were done using TensorFlow [9].

The results show that in both approaches the accuracy of the CNNs trained on
the normalized images was higher than the accuracy of the CNNs trained on either
the color or the green channel images (Fig. A.3). In addition, the results suggest
that illumination normalization helps the CNN to quickly learn distinctive local image
features of DR related retinal changes and thus converge fast. The ROC curves in
Fig. A.4 show that a higher sensitivity and specificity was achieved for the CNN that
is trained on the normalized images than on the color or green channel images. For
both the normalized and green channel images, a slight increase in performance
was observed when directly using the 𝐼ፁ and 𝐼ፅ input image patches as separate
channels than combining them as |𝐼ፁ−𝐼ፅ|. For the color and green changel images,
the performance does not reach the same level as for the normalized images even
after many iterations. This may be due to the normalization operating on a larger
scale (151 × 151 pixels) than the kernel size of the CNN (5 × 5 pixels).

Figure A.3: Accuracy on the evaluation set after each iteration.
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Figure A.4: ROC curves of CNN models trained on color (RGB), green channel (G), and normalized (NOR)
fundus images for the detection of retinal changes due to DR lesions. For each image type, the CNNs
that are trained directly on ፈፁ and ፈፅ are indicated by CNN∗ and those networks trained on |ፈፁ ዅ ፈፅ| are
indicated by CNN△∗.

Figure A.5: An example of baseline (left) and follow-up (middle) retinal regions on which a CNN trained
on normalized images was applied to produce pixelwise probability map (right) for DR related retinal
changes.



A
102

A. Detection of retinal changes from illumination normalized fundus
images using convolutional neural networks

A.4. Conclusion
In this paper, we presented an approach for the automated detection of longitudi-
nal retinal changes from a series of fundus images. The approach employed a deep
CNN trained on normalized fundus images that are corrected for intra- and inter-
visit illumination variations, thereby enabling the CNN to correctly learn highly rep-
resentative local image features of DR related retinal changes. Evaluation showed
that the CNN network trained on normalized fundus images outperforms two other
CNNs trained separately on color and green-channel images. The detected DR re-
lated changes may be used for objective assessment of DR progression as well
as for more efficient human grading by highlighting DR related changes since the
previous visit (Fig. A.5). Future work includes incorporating contextual informa-
tion between neighboring pixels using fully CNNs and incorporating postprocessing
methods to remove regions that are less likely to be clinically relevant from the
pixelwise probability map.
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Summary

Diabetic retinopathy (DR) is a complications of diabetes mellitus, which progres-
sively damages small retinal blood vessels and result in vision loss if not treated
and controlled timely. Because of an increase in the risk of vision loss with the
duration of diabetes and the latency between DR progression and early symptoms,
diabetic patients require periodic screening. The required regular screening by a
trained clinician, based on fundus photos, is time consuming, subjective, and re-
source demanding. Furthermore, the current practice does not scale well with the
global rise in the diabetic population. Computer-aided screening offers a solution
to this problem. This thesis presents several building blocks for automated analysis
of a series of fundus images for DR.

DR screening involves acquisition and inspection of one or more fields of the
retinal surface for early DR lesions such as microaneurysms (small round red le-
sions). Regular screening is aimed at identifying diabetic patient with a high risk
of progression to referable DR. The dynamics of retinal change over time provides
insight into the disease activity and can be used as a biomarker for DR progres-
sion. The fully automated system presented in this thesis enables tracking retinal
changes due to small round red lesions in longitudinal series of fundus images,
thereby providing an objective measure of the disease activity over time.

The proposed approach spatially aligns illumination normalized intra- and inter-
visit fundus images by exploiting the intensity and structural information of the
retinal vasculature. Illumination variation was addressed by normalizing luminos-
ity and contrast variations in each of the retinal fields. To increase robustness to
local minimum, a multiresolution registration approach coupled with a deformation
model of increasing complexity was applied. Qualitative accuracy assessment on
the suitability of the registration results for longitudinal analysis showed that the
proposed approach can align images with a very high registration accuracy, war-
ranting detection of retinal changes due to especially small retinal lesions (3 pixels
or 21𝜇𝑚 in diameter).

A robust and flexible multi-stage framework is proposed to detect and classify
retinal changes in registered longitudinal fundus image sets. The framework ex-
ploits the enhanced visibility and contrast of small retinal features in the normalized
images. To detect spatio-temporal retinal change locations, a simple and effective
criterion for blobness measure (BM), which is defined as the absolute difference
between the extremes of the multiscale blobness responses of fundus images from
two time-points, was proposed. A supervised classifier was trained based on sev-
eral intensity and shape features extracted from candidate retinal change locations
to detect relevant early DR related changes. Evaluation in the context of regular DR
screening involving subject with no, mild, and moderate DR levels shows that the
proposed framework was able to detect retinal changes due to small DR lesion with
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a sensitivity of 80% from both large and small field fundus mosaics with a relatively
low false positive rate of 2.5 and 1, respectively.

The red lesion turnover, extracted using the proposed multi-stage framework,
over time was explored as a potential predictor for future referral. The red lesion
turnover between successive retinal examinations were retrospectively evaluated
and compared between eyes with referable and non-referable DR. Evaluation re-
sults shows, on average, the red lesion turnover increases with duration of diabetes
in both groups of eyes; however, a higher red lesion turnover rate is found in refer-
able eyes compared to non-referable eyes. Furthermore, a statistically significant
correlation was found between the red lesion turnover and classification of referable
DR, suggesting that the red lesion turnover can be used as a potential biomarker
in building a prediction model for future referral.

Overall, this thesis introduced a robust and flexible CAD system for analyzing a
longitudinal series of fundus images for an objective assessment of DR progression.
Several fully automated methods are presented to address fundus image illumina-
tion variation, registration, and retinal change detection. The CAD system was used
to explore the red lesion turnover as a potential imaging biomarker for assessing
DR progression. Furthermore, the intermediate results of the CAD system, such as
normalized fundus images and fundus mosaics, are also shown to be potentially
useful to facilitate inspection of fundus images by trained eye care experts.



Samenvatting

Diabetische retinopathie (DR) is een complicatie die optreedt bij diabetes mellitus,
waarbij kleine retinale bloedvaten steeds verder beschadigen, hetgeen in verlies
van gezichtsvermogen kan uitmonden als adequate behandeling uitblijft. Omdat
het risico op verlies van gezichtsvermogen met de duur van diabetes toeneemt en
het symptomen in de eerste fase van DR progressie uitblijven, is regelmatige scree-
ning van diabetespatiënten nodig. Deze benodigde regelmatige screening door een
getrainde clinicus, gebaseerd op fundusfoto’s, is tijdrovend, subjectief en legt een
groot beslag op beschikbare bronnen. Bovendien is de huidige praktijk niet goed
op te schalen met de voortdurende toename van diabetes in de populatie. Compu-
terondersteunde screening biedt een oplossing voor dit probleem. In deze thesis
worden verschillende onderdelen voor een automatische analyse op DR van series
van fundusfoto’s gepresenteerd.

DR screening omvat de acquisitie en inspectie van een of meerdere velden van
het oppervlak van het netvlies op vroege DR laesies zoals microaneurysmata (kleine,
ronde, rode laesies). De reguliere screening is gericht op het identificeren van
diabetespatiënten met een verhoogd risico op progressie tot doorverwijsbare DR.
De dynamica van de veranderingen in het netvlies gedurende de tijd geeft inzicht
in de ziekteactiviteit en kan gebruikt worden als een biomarker voor progressie
van DR. Het volledig automatische systeem dat in deze thesis wordt gepresenteerd
maakt het mogelijk om de retinale veranderingen door kleine, ronde, rode laesies
te volgen in series van fundusfoto’s en biedt daarmee een objectieve maat voor de
ziekteactiviteit gedurende de tijd.

De voorgestelde aanpak zorgt eerst voor een spatiele correspondentie tussen
intra- en inter-visite fundusfoto’s, na normalisatie voor belichting, door gebruik te
maken van intensiteits- en structuurinformatie van het retinale vaatstelstel. Variatie
in belichting werd aangepakt door te normaliseren voor variaties in helderheid en
contrast in elk van de retinale velden. Om robuust te zijn voor lokale minima werd
een aanpak gebruikt, gebaseerd op multi-resolutie registratie gekoppeld aan een
deformatiemodel van toenemende complexiteit. Een kwalitatieve analyse van de
nauwkeurigheid van de toepasbaarheid van de registratieresultaten voor een tijds-
analyse toonde aan dat de voorgestelde aanpak in staat is om beelden met een
zeer hoge nauwkeurigheid te registreren, dat de detectie van retinale veranderin-
gen, vooral door kleine retinale laesies (met een diameter van 3 pixels of 21𝜇𝑚),
mogelijk maakt.

Een robuust en flexibel meertraps-framework voor de detectie en classificatie
van retinale veranderingen in geregistreerde sets van fundusfoto’s wordt geïntro-
duceerd. Dit framework maakt gebruik van de verbeterde zichtbaarheid en con-
trast van kleine retinale kenmerken in de genormaliseerde beelden. Om locaties
met spatio-temporele retinale veranderingen te detecteren wordt een eenvoudige
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en effectieve maatstaf voor ‘blobness’ geïntroduceerd, dat gedefinieerd is door het
absolute verschil tussen twee extremen van de multi-schaal blobness respons in fun-
dusfoto’s van twee tijdpunten. Een gesuperviseerde classificator werd getraind, op
basis van verscheidende intensiteits- en vormkenmerken gedefinieerd op kandidaat-
locaties met retinale veranderingen, voor het detecteren van relevante vroege DR-
gerelateerde veranderingen. De evaluatie binnen de reguliere DR screening van
patienten zonder, met milde, en met matige DR liet zien dat het voorgestelde fra-
mework in staat was om retinale veranderingen door kleine DR laesies te detecteren
met een sensitiviteit van 80% in zowel kleine als grote fundusvelden met een relatief
lage proportie fout positieven van respectievelijk 2.5 en 1.

De turnover (verandering) van rode laesies, bepaald met het beschreven meertraps-
framework, gedurende de tijd werd onderzocht als mogelijke voorspeller van toe-
komstige verwijzing. De turnover van rode laesies tussen opeenvolgende retinale
onderzoeken werden retrospectief geëvalueerd en vergeleken tussen ogen met en
zonder verwijsbare DR. Deze evaluatie liet zien dat, gemiddeld, de turnover van
rode laesies toenam met de duur van diabetes in beiden groepen ogen; een hogere
turnover snelheid werd echter gevonden in de verwijsbare ogen vergeleken met de
niet-verwijsbare ogen. Bovendien werd een statistisch significante correlatie ge-
vonden tussen de turnover van rode laesies en DR classificatie, wat suggereert dat
de turnover van rode laesies gebruikt kan worden als een mogelijke biomarker voor
het bouwen van een voorspellend model voor toekomstige verwijzingen.

In deze thesis werd een robuust en flexibel CAD systeem geïntroduceerd voor
het analyseren van longitudinale series van fundusfoto’s voor een objectieve beoor-
deling van DR progressie. Verschillende volledig automatische methodes werden
gepresenteerd voor het omgaan met variatie van belichting, registratie, en het de-
tecteren van retinale veranderingen. Het CAD systeem werd gebruikt om de tur-
nover van rode laesies als mogelijke beeldvormende biomarker voor het bepalen
van DR progressie te onderzoeken. Daarnaast bleken de tussenliggende resultaten
van het CAD systeem, zoals genormaliseerde fundusfoto’s en mozaïeken daarvan,
mogelijk nuttig te zijn bij de inspectie van fundusfoto’s door getrainde oogzorgex-
perts.
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