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Abstract
Nature exhibits rapid evolution in response to human activities.When using natural resources
for their own profit, humans should account for such responses. Stackelberg evolutionary
games (SEG) offer a method for modeling interactions between a rational leader (humans)
and evolutionary followers (nature). The followers evolve according to the principles of
natural selection, and the leader tries to steer these inevitable responses in a desired direction.
While the separate elements of this method, Stackelberg and evolutionary game theory, are
well established, their joint realization in SEG theory is underdeveloped. Thus far, simple
examples and formalisms of SEGs have considered models where the manager and evolving
species have a scalar-valued controller and scalar-valued trait, respectively. Here we provide
examples from cancer therapy, fisheries management, and pest control to illustrate extensions
of SEG theory, wheremanagers are attempting to control a Darwinian system. Themodels we
develop and present highlight extensions of SEG theory to include vector-valuedmanagement
strategies and vector-valued traits in the evolving species, and traits influencing different life-
history stages of the species under management. Throughout we highlight the mathematical
challenges that lie ahead.
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1 Introduction

Rapid evolution in nature driven by human activities has become the norm rather than the
exception [61, 101]. Examples are manifold [8, 13, 22, 32, 33, 76, 77, 88, 91, 95, 106,
108, 136]. Three timely examples of rapid evolution that we shall explore include cancer,
fisheries and pests (see Fig. 1). The evolution of drug resistance poses the single greatest
barrier to curing or prolonging the life of patients with the metastatic disease [51, 137]. If
all cancer cells are not killed or removed through surgery, radiation or various adjuvant and
neo-adjuvant therapies, the surviving cancer cells evolve resistance in ways that are often
much worse for the patient. Commercial fishing, through harvesting intensity or fishing gear
such as net size, acts as a strong selective force on life-history traits as has been seen in
cod, salmon and diverse other fishes. Frequently, fish will evolve to breed at a smaller size,
transition from juvenile to adult at an earlier age, and emphasize reproduction over continued
growth [29, 66]. Research on the evolution of pesticide resistance began in the early 1900s
and precedes the same for cancer and fisheries [82]. A number of insect pests, including the
diamondback moth and the Colorado potato beetle, have evolved resistance to essentially all
approved chemical agents [54, 150]. As a consequence, resistance management plans have
become a part of integrated pest management (IPM). The goal is to prevent the evolution of
resistance by applying pesticides more judiciously or in smaller quantities while maintaining
crop damage at acceptable levels [24, 107].

Therefore, the wrong question is: “Will species evolve in response to our rapidly changing
world?”. The correct question is: “How much will they evolve and how quickly?” Currently,
we aremostly bystanders of these rapid evolutionary events, or wemerely react to them.What
is needed are conceptual and mathematical tools for anticipating and, if need be, steering

Fig. 1 Managing evolving systems. We consider three examples where managers can act as a rational leader
in anticipating and altering the ecological and evolutionary dynamics of evolving systems: cancer treatment,
fisheries and pest management. For each, the manager has a principal objective.We briefly describe the current
scope of mathematical modelling of the evolutionary components of each system. Although SEG theory is
being applied in clinical trials for monotherapies in cancer treatments, the practical application of SEG in pest
management and fisheries remain unexplored. For each example, we propose needed advances to SEG and
suggest the mathematical tools that could be developed
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the evolution of species we deem valuable (aesthetically, economically or socially) or as
predators/pests (crop pests, infectious diseases and cancer). Stackelberg evolutionary game
theory (SEG) is an emerging branch of game theory that aims to understand, predict and
suggest solutions for managing living systems that are both ecologically and evolutionarily
dynamic in the face of human activities [130]. The theory applies to systems where human
actions act as a selective force on the evolution of other species be they insect pests [15] or
commercially valuable fish [119]. With this new selective force, the species can be expected
to evolve by natural selection toward a new evolutionary optimum (Evolutionarily Stable
Strategy, ESS). The human decision maker(s) can either be just another player that acts based
on the current state of the system, or the decision maker can take the lead by anticipating
the evolutionary consequences of their actions and act accordingly. As such, the leader’s
interactions with evolutionary followers can be framed as a special form of a Stackelberg
(leader–follower) game.

SEG theory clarifies three ways by which managers may approach a system that involves
ecologically and evolutionarily dynamic diseases, pests, harvestable resources, or species of
conservation interest. The naive manager takes short-sighted actions that may be expedient,
optimal in the short timescale, or that maximize the impact of the intervention. Such an
approach is short-sighted in that it does not consider either the ecological or evolutionary
consequences of the manager’s decision. For instance, in cancer this might involve using
maximum tolerable dose of a therapy to maximize the initial shrinkage of a cancerous tumor,
or unregulated fishing that permits boats to maximize their catch irrespective of future con-
sequences for the stock of fish. The ecologically enlightened manager is far-sighted in terms
of ecological dynamics but does not consider evolutionary dynamics, making it optimal
potentially in the short-to-medium timescales. This strategy is typical of maximum sus-
tainable harvest in resource management, or optimal dose–response in the application of
antibiotics and pesticides. While appealing in terms of sustaining valuable species, or con-
trolling a pest, it becomes reactive as the manager “chases” emerging circumstances resulting
from the species’ evolving responses to the interventions by the manager. The evolutionarily
enlightened manager is comprehensively far-sighted by anticipating both their ecological
and evolutionary consequences. This requires knowledge of how a species might change in
numbers and heritable traits, but it allows the manager to steer the species’ eco-evolutionary
dynamics. In terms of outcome: evolutionarily enlightened ≥ ecologically enlightened ≥
naive.

Recent works to formalize SEG theory have characterized the distinction between eco-
logically and evolutionarily enlightened management strategies (which result in Nash and
Stackelberg equilibria, respectively), determined under what conditions these two solutions
are the same and when the Stackelberg solution is superior to Nash for the manager, ana-
lyzed conditions for when the manager’s strategy may induce a branching point (increase the
species ESS from one strategy to two coexisting strategies), and put forward some condi-
tions for the convergence stability of the population and evolutionary dynamics of the species
under management [130]. Thus far, these formalisms apply to managers with a scalar-valued
strategy, a single species under management with a scalar-valued trait ESS, and no explicit
consideration of life-history states within the species.

We show, using models with direct application to cancer, fisheries, and pest management,
how to develop the analytical methods to go beyond scalar-valued strategies. For the cancer
model, the physician has two drugs that can be applied to treat the cancer (a vector-valued
strategy) and the cancer can evolve resistance to each of these through a vector-valued resis-
tance strategy. A similar model has been numerically analyzed and forms the basis for an
ongoing clinical trial on patients with a pediatric osteosarcoma [116]. Absent general results
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regarding the eco-evolutionary stability properties of these models, the state-of-the-art anal-
ysis relies on simulations alone. For the fisheries model, we explicitly consider the dynamics
of two life-history stages (adults and juveniles) that grow to a particular size while contribut-
ing to fecundity through egg laying. The evolving vector-valued trait determines the length
and weight of the fish population. The manger selects from a vector of strategies, namely
mesh size and harvest effort that, together, determine the harvest pressure on the fish popu-
lation. For the pest management model, the farmer can use two pesticides to increase crop
production, while pests can develop resistance against both of these chemicals.

In what follows, we highlight open questions as we model these examples. We then use
the discussion to suggest future needs for formalizing Stackelberg evolutionary games and
to identify even broader classes of games for both the managers and the evolving species.

2 Stackelberg Evolutionary Games: Model

Thus far, SEG were applied to treating metastatic cancers, to sustainable fisheries manage-
ment and to pesticide-resistance reducing crop management with scalar-valued strategies
[15, 25, 26, 53, 116, 119, 128, 130, 140, 148, 149]. While plausible for practical reasons,
mathematically an extension to vector-valued strategies constitutes challenges as often one
can only obtain numerical solutions. Another reasonable extension of the models considers
the evolution of life-history traits [17]. For example, including life-history traits in cancer
modeling was demonstrated to be significant for predictions of the system’s evolution [2,
18]. Similarly, in sustainable fisheries and pest management applications, practice calls for
life-history approaches [58, 71]. In what follows, we first formally define a more general
vector-valued SEG model by defining its evolutionary and strategic components. We then
extend this model to the variation of SEG that accounts for life-history-trait evolution. We
summarize the notation used throughout the manuscript in Table 4.

2.1 Vector-Valued Stackelberg Evolutionary Games

Evolutionary components of the game. Consider a game between a rational leader and n
types of evolutionary followers (Fig. 2 left). Let x = (x1, . . . , xn) be a vector that describes
population sizes of each type of the follower. Each type in the population can have h traits
that evolve. In evolutionary terms, we shall refer to such traits as evolutionary strategies
of followers and denote them by an n × h matrix U = (

ui j (t)
)
. Here, ui j (t) ∈ [0, 1] is

the evolutionary trait j of i-th follower. The leader’s actions can be denoted by a vector
m(t) = (m1(t), . . . ,mh(t)). The eco-evolutionary dynamics of the i-th follower can then
be determined by the population size x, traits of the followers U (t) and actions of the leader
m(t) and can be written as:

ẋ = G(t) x (1)

U̇ = Ġ ◦ σ (t), (2)

where G(t) = diag(Gi i (t)) with (G(t))i i = (v(t),U (t),m(t), x(t))
∣∣∣
v(t)=ui (t)

, ui (t) is

the i-th row of U (t), and the matrix of partial derivatives Ġ is such that (Ġ)i j =
∂Gi (v(t),U (t),m(t),x(t))

∂v j (t)

∣∣∣
v(t)=ui (t)

, v(t) is the vector of traits of the focal types, and σ (t) is the

matrix of evolutionary speeds of the traits that measure how fast the trait is evolving. Here,
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Fig. 2 Vector-valued SEG. The game consists of two parties: the rational leader and the evolutionary followers.
Both parties have their own objective functions that they are trying to maximize: Q function for the leader
and G function for the followers’ fitness. The leader imposes an action m that directly affects the followers’
fitness function. In return, the followers evolve toward their ESS,

(
U∗(m), x∗(m)

)

the function G(v(t),U (t),m(t), x(t)) is the fitness-generating function-defining fitness (per
capita growth rate) of a focal follower [16, 85, 86].

The eco-evolutionary dynamics of the followers can be described in discrete time as

x(t + 1) = G(t) x(t) (3)

U(t + 1) = U(t) + l̇n(G) ◦ σ (t), (4)

In continuous time, an interior eco-evolutionary equilibrium for a particular m can be
defined as (U∗(m), x∗(m)), such that

G(v,U∗(m),m, x∗(m))

∣∣∣
v(t)=u∗

i (t)
= 0 (5)

∂G(v,U∗(m),m, x∗(m))

∂v j (t)

∣∣∣
v(t)=u∗

i (t)
= 0 (6)

If for a particular choice of the leader’s actions m the eco-evolutionary state (U∗(m),

x∗(m)) of the follower persist in the followers’ population and can resist invasion by a
rare mutant, we call such a state the evolutionarily stable state (ESS). In line with the ESS
condition, the ESS of the followers at their ecological equilibrium x∗(U (t),m(t)), given by
G(v(t),U (t),m(t), x∗(t)) = 0 will maximize its fitness, that is,

u∗
i = argmax

v
G(v,U∗,m, x∗) (7)

The value (7) is the followers’ evolutionary (best) response to the leader’s actions m at
ecological equilibrium x∗.

Equations (5) and (6) provide necessary but not sufficient conditions for an ESS leading
to a fitness maximum described by Eq. (7). In fact, the eco-evolutionary dynamics can result
in a convergent stable minimum of the adaptive landscape [14] termed evolutionarily stable
minima by Abrams et al. [1]. Thus, it is possible that the manager’s action would result in
such an outcome in SEG. It has been suggested that convergent stable minima are branching



Dynamic Games and Applications (2023) 13:1130–1155 1135

points that may lead to the speciation of the strategy into two or more coexisting strategies
[35, 118]. For the examples that follow, the models produce best response curves of the
evolving species that satisfy equation (7).

Strategic component of the game. In most applications, the leader who is trying to manage
the system is concernedwith an existence, uniqueness, and stability of the interior equilibrium
for the leader’s m. The leader’s actions are often directed toward keeping (U (m), x(m))

within a set of strategies leading to trajectories whose
∑

i xi (t) is always below a particular
threshold δ, defining a safety set S = {(U (m), x(m)) : x(m) ≤ δ}. That is, the leader’s
decisions are strategic as they have to account for the responses of the evolutionary followers.

In line with the previous research [130], we assume that either the ecological or evolu-
tionary dynamics have reached its equilibrium due to separation of timescales. Then, the
leader faces an optimization problem in which they are maximizing an objective function
Q(U (t),m(t), x(t)).
Case 1: Naive leader: In the simplest scenario, the leader does not directly consider the effects
of their actions on the ecological or evolutionary dynamics of the followers. The manager
chooses a strategy and then suffers the consequences of the species (followers) evolving
to their new ESS. Generally a naïve strategy means choosing the most aggressive strategy:
m = mmax.
Case 2: Ecologically enlightened leader: In this case, the leader anticipates the ecological
consequences of their strategy, but not the evolutionary consequences. Thus, this manager
maximizes their objective by including x∗(m) into their objective function. In this way the
manager evaluate Q in terms of both the direct effect of m on Q but also the effect of m on
Q via x∗. This translates into:

m∗ = argmax
m

Q(U ,m, x∗), (8)

where x∗ = x∗(U ,m). Then, the strategy of the ecologically enlightened leader will result in
a Nash equilibrium as the manager reacts to the ESS of the followers. The resulting solution
occurs at the intersection of the manager’s and the evolving species’ best response curves:
m∗(u) and u∗(m), respectively.
Case 3: Evolutionarily enlightened leader: In this case, the leader anticipates the new ESS
that will result from their strategy. In this way, the manager includesU∗(m), and x∗ into their
objective function. Thus, the manger takes into account the direct effect ofm on Q, and the
indirect effects ofm via U∗(m) and x∗. This translates into:

mS = argmax
m

Q(U∗(m),m, x∗), (9)

where x∗ = x∗(U∗(m),m). Knowing that the follower will evolve to its best response
curve, u∗(m), the strategy of an evolutionarily enlightened manger represents the point on
the follower’s best response curve that maximizes Q.

Independent of the leader’s strategy, followers always respond with their corresponding
ESS. It was shown that at equilibrium, these cases can be ordered according to the desired
features of the resulting evolutionary response [130]:

Qmmax ≤ Qm∗ ≤ QmS (10)

There exist conditions when ecologically and evolutionarily enlightened leaders act the same,
leading to Qm∗ = QmS . Such a situation can arise when (i) the leader’s actions do not
affect the evolution of the trait, (ii) the leader’s objective is independent of the follower’s
evolutionary trait, and (iii) when there is no frequency-dependent selection between the
followers [130].
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Relation (10) implies that the profit of the evolutionarily enlightened leader at equilib-
rium, quantified by QmS , is at least as high as the profit of an ecologically enlightened leader,
quantified by Qm∗ . Thus, a strategy/control chosen by an evolutionarily enlightened leader is
superior to the ecologically enlightened leader [130]. This is in agreement with the axiom that
more information about causal relations is beneficial in controlling a system. For example,
the anticipation of evolving resistance of cancer cells in response to cancer treatment allows
a treatment adjustment prior to cancer cells reaching resistance, hence prolonging the cancer
patient’s lifespan. Similarly, harvest strategies that account for its effect on the mean of the
evolving body size of fish populations, therefore following Case 3, can only enhance a fisher’s
profit. Clearly, such applications of Relation (10) depend on the assumption that the determin-
isticmodel adequately captures the evolution of the species, the traits, and the leader’s actions.
While Relation (10) holds for any given deterministic model, relative differences between
the models are likely parameter-dependent, which could be investigated using bifurcation
theory [81, 130, 134]. Given the uncertainty in predicting evolution [144], the sensitivity of
actions mmax, m∗, and mS and their corresponding outcomes Qmmax , Qm∗ , and QmS

should further be assessed by comparing them to alternative model formulations, including
stochastic systems, to test model robustness.

2.2 Life-History Models as Stackelberg Evolutionary Games

When moving from a vector-valued SEG to a vector-valued SEG with life history, the main
difference lies in the formulation of the dynamics of the evolutionary component, where
matrix population (MP) models are often used. MP models describe population dynamics
in structured populations, such as in age, locations, or classes [17]. The fitness of the entire
population is then determined by how many individuals are in each class and the average
fitness of each of those classes. When considering an age-structured population, we can
capture the size of the entire population, as well as the size of each age group. To do so, we
use the equations

ẋ = Px (11)

or, in discrete time,
x(t + 1) = Px(t), (12)

where an l × l projection matrix P describes transition probabilities between classes. This
matrix is often derived from life cycles of a specific population (see [17] for more details).
Here, the behavior of the population dynamics is described by the spectral radius of P , r(P).
Formally, the matrix P depends on the life-history traits that are subject to evolutionary
pressure and the controls applied by the leader. These traits can be represented, among
others, by average body size of individuals in each class or, for example, their reproduction
rates [46]. The evolution of these traits can be captured as: [27, 28]

u̇ = σ (t)
∂

∂u
ln r(P), (13)

or, in discrete time, as

u(t + 1) = u(t) + σ (t)
∂

∂u
ln r(P). (14)

Keeping in mind all considerations discussed in this section, one can imagine many bio-
logical and ecological situations where SEG can inform management decisions and help to
steer the system toward the desired state. In what follows, we will outline three examples
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where SEG has been applied and argue that more work is necessary for the SEG method to
live up to its full potential.

3 SEG in Cancer Treatment

While most cancers can be treated successfully at early stages, the mortality rates from
metastatic cancer are very high [65]. The reason for such differences are the approaches to
cancer treatments at late stages: physicians often try to eradicate the disease by applying
the Maximum Tolerable Dose (MTD) [43, 50], leading to either cure of the cancer or tumor
progression due to either development of unacceptable toxicity or resistance against the
therapy [5, 9, 49, 78, 127, 133, 140]. SEG led to the development of evolutionary (or adaptive)
cancer therapy [25, 26, 53, 116, 128, 140, 148, 149]. While most of these studies focused on
a mono-therapy, there is a need for combination therapies, as for example non-small cell lung
cancer [31, 67, 110, 128, 129, 135]. Such need arises from the increased speed of treatment-
induced resistance against mono-therapy [110, 141, 143]. We formulate a general model in
“Appendix B”. In Table 1, we consider an example with two possible formulations for the
population dynamics and discuss the results.

The choice of the quality of life function will change both the Nash and Stackelberg equi-
libria, as well as determining whether they differ a lot, a little or not at all. The choice will also
influence the data required to find these solutions, and the complexity of the corresponding
optimization problem. The quality of life function Q(m,u, x∗(m,u)) that we used in our
example of evolutionary therapymay provide a good representation when cure is not possible
but a chronic disease state is. However, it applies only if the cancer’s eco-evolutionary trajec-
tories do not stray into regions of progression or even death when approaching their ESS for
the given treatment strategy. It remains to be shown whether, and under which conditions, the
cancer eco-evolutionary trajectories remain in the safety region, where evolutionary trajec-
tories stay in the safe region, and whether treatment strategies exist that could prevent them
from leaving this set. One would then try to find the strategies that maximize the patient’s
quality of life, for example as defined by (16) in “Appendix B”, only among dynamic treat-
ment strategies that safely arrive at the cancer’s ESS. When it is impossible to keep cancer
eco-evolutionary dynamics in the safety region, the goal may be to delay disease progression
or maximize overall survival time.

Additionally, every patient likely has a different perception of quality of life. We assumed
that the entire population of patients is homogeneous, or that we know explicitly a patient’s
quality of life function. Patients may have a different Qmax and weights on the 3 remaining
components of Eq. (16). Depending on these weights, there might not exist an interior Nash
or Stackelberg equilibrium. Hence, sensitivity analyses across all key parameters become
crucial for finding strategies that are effective for a wide range of parameter values. This
advancement will also allow us to anticipate when eco-evolutionary responses are sensitive to
small perception errors anddetermine potentially safe or unsafe trajectories for the physician’s
actions. When no safe trajectory exists, the leader may want to play a safer ecologically
enlightened strategy leading to the Nash solution.

In addition, different cancer types and stages may require different components for Q and
their weights. The patient and their health team can decide on the best meaning of quality of
life and tailor Q to the patient’s needs andwishes. Hence, ideally, the formulation of Q should
offer flexibility and permit an individualized approach. Multi-criteria decision making, such
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Table 1 Comparison of two alternative approaches to modeling dynamics of cancer evolution

For a two-drug therapy, let 0-type denote the cell that does not develop resistance against either drug
1 or 2, 1-type and 2-type be the cell resistant against drug 1 and 2, respectively. Then, we obtain the
following fitness functions:

G0 = rmax

(
1 − α00x0+α01x1+α02x2

K

)
− d − m1

k1
− m2

k2

G1 = rmaxe−g1u1
(
1 − α10x0+α11x1+α12x2

K

)
− d − m1

b1u1+k1
− m2

k2

G2 = rmaxe−g2u2
(
1 − α20x0+α21x1+α22x2

K

)
− d − m1

k1
− m2

b2u2+k2

We can alternatively consider only two populations (sensitive and resistant) in line with [109]. Here, the
resistant population develops resistance to both drugs simultaneously,while the sensitive cell population
does not. Hence, the fitness functions are now given by:

GS = rmax

(
1 − αSS xS+αSR xR

K

)
− d − m1

k1
− m2

k2

GR = rmaxe−g1u1−g2u2
(
1 − αRSxS+αRRxR

K

)
− d − m1

b1u1+k1
− m2

b2u2+k2

Such formulation sacrifices the possibility that different drugs need completely different (potentially
conflicting) resistant strategies and that these cells might have different impacts on each other. For
example, this excludes a competition like Rock-Paper-Scissors. In addition, behavior of the population
dynamics varies, which affects the strategies themanager can execute. Let us consider an examplewhen
MTD of both drugs does not lead to cure (left panel in the figure). Note that mono-therapy also does not
cure the cancer even though the effect of the drugs is symmetric (middle panel). Moreover already with
mono-therapy, predictions of the two models differ significantly. However, we can mitigate this effect
for given parameter values by applying the Stackelberg equilibrium treatment strategy, for which both
dynamical systems exhibit qualitatively similar behavior allowing for safe tumor burden (right panel
in the figure). This example demonstrates that vector-valued SEG can help maintain tumor burden in
a safe zone while decreasing the toxicity effect of the therapy, in this case, by keeping m1 + m2 = 1,
and does it better than mono-therapy.

as the best–worst method [117], can help to identify essential elements of the patient’s quality
of life function.

Achieving a Stackelberg solution requires quite precise information on the cancer’s eco-
evolutionary dynamics in response to possible treatment options. Itmaybedifficult to estimate
evolutionary dynamics from standard of care data, which typically comprises imaging and
blood biomarkers [37]. Liquid biopsies may help us with estimating resistant clones early
enough, but become less helpful if resistance is epigenetic or results from phenotypic plas-
ticity [70, 80, 83, 147]. Moreover, the frequency of measurements may be limited especially
for imaging and biopsies. Besides interpolating and extrapolating dynamics from a limited
number of measurements, there may be error or time lags associated with each measurement
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adding to uncertainty in the model’s predictions. In the future with a better alignment of
measurements and modeling, real-time model predictive control methods have the potential
to guide clinical trials, where the model and the corresponding optimal treatment schedules
can be updated with each new measure of the patient’s state [4, 89, 92]. This methodology
could also incorporate adjustments to the patient’s quality of life function, which may change
during the course of treatment.

4 SEG in Fisheries Management

Many questions arise regarding the best way to model harvested population’s eco-
evolutionary dynamics. While the dynamics of some species can be modeled using
(one-stage) surplus models [10], which is a common tool for data-poor species [34, 75, 142],
multi-stage models are typically preferred, especially for long-lived species [62, 111]. Age-
structured population models belong to the repertoire of traditional stock assessments [62,
64, 112, 114] and are commonly implemented whenever age-dependent data is available. For
example, the stock assessment for the Australian Barramundi (Lates calcarifer) population
was based on an age-structured model with 25 age-classes [132] and the stock assessment of
Rusty Jobfish (Alphareus rutilans) considered 30 age-classes and, for some regions, further
distinguished between their 2 sexes [93]. Independent of the model choice, crucial model
parameters for the species’ sustainability are the reproduction and survival rates. Commonly,
these are estimated from the data and assumed to remain constant over time. However, obser-
vations suggest that these model parameters are trait-dependent and may change in response
to external factors, such as harvest pressure [40, 60, 145].

An example of a crucial age-dependent model parameter is reproduction. This is because
juveniles (sexually immature individuals), in contrast to (sexually mature) adults, do not
contribute to the per-capita growth of the population. Although stage-dependentmodels allow
the modeling of realistic properties, age-dependent parameters are (generally) assumed to
be constant over time. More advanced models, such as NOAA’s advocated Stock Synthesis
Tool [84], allow time-dependent model parameters to account for environmental changes.
The consideration of trait-dependent model parameters that evolve over time to increase an
individual’s fitness is, as we argue, a worthwhile addition to the model complexity, leading
to more insight into harvested species’ struggle for survival. In fact, the interplay between
harvest and evolution of traits has been recognized and analyzed in previousworks [38, 39, 41,
42, 56, 97]. This small selection of papers highlights the different mathematical modeling
techniques commonly used to formulate evolutionary population models. Typically, these
eco-evolutionary models of harvested populations do not include evolving harvest strategies.
For example, suppose that a species evolves to remain at small body sizes in reaction to
harvest pressure with a fixed mesh size. Then, an informed fisherman (leader) may invest in a
net with smaller mesh size. Incorporating not only the evolution of traits but also strategies in
the mathematical models that are used to formulate harvest strategies will aid the prediction
of a species’ chance for survival.

The harvested population’s evolving trait(s) are an essential component of the SEG and in
“Appendix C” we formulate a general SEG model for fisheries. Should the model consider
traits such as size, fecundity and survivorship separately for each age or stage? In Table 2,
we demonstrate that even for two seemingly identical models, the choice of evolving traits
may significantly impact the manager’s optimal combination of strategies. Hence, it should
be systematically studied how traits affect resulting equilibria of the model, and if there exist
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life-history trade-offs that need to be accounted for. Additionally, since the leader can choose
the mesh size, considerations of the evolving traits might influence the dimensionality of the
leader’s strategy. If different ages and stages can be harvested separately, perhaps because of
timing or habitat, then the manager’s mesh size can vary across seasons and/or space.

To formulate sustainable harvest strategies, it is important to note that there are generally
more than one party involved in the fishing process. For example, a governmental body
may set the quotas on volumes and legal limits on sizes of harvested fish, to guarantee
the sustainability of the species. The commercial fishing industry, reporting on their catch,
aims to maximize their profit. Thus, these two parties have potentially conflicting objectives.
Moreover, multiple fishers might be involved, creating competition, which can manifest
itself in the variety of technological advances, for example, with radar systems to detect fish
schools. Such competition should be considered by the governmental body responsible for
the fisheries management, which should be expressed in the functional form of Q. Such a
model would be somewhat hierarchical in that there may be a rational leader (governing
bodies) influencing the game among rational followers (fishers) whose collective decision
influences the eco-evolutionary dynamics of the harvested species.

Lastly, the example shown here assumed maximizing profit as the difference between
the gain from the fishing and the cost of harvesting [21, 45]. However, fisheries managers

Table 2 Example of a two-stage evolutionary fisheries model

As an example of a two-stage model with vector-valued strategies, consider (17) with sexually immature
juveniles x1 and sexually mature adults x2, based on [28],

x1(t + 1) = f (u)ϕ(x1(t), x2(t))x2(t)

x2(t + 1) = (1 − h(u,m))s(u)σ (x1(t), x2(t))x1(t)

where u is the average body size, f (u) = b
1+u represents the fertility, s(u) = u

1+u is the natural survival,

and the harvest rate h(u,m) = m1 e
− (u−m2)2

σ2m with effort m1 and mesh size m2. Furthermore, ϕ =
1

1+c21x1+c22x2
and σ = 1

1+c11x1+c12x2
. Then, u follows (14) with r(P) = √

R0, where R0 = f (u)(1−
h(u,m))s(u)ϕ(x1, x2)σ (x1, x2) is the net reproductive number.

Such a vector-valued model allows the analysis of the optimal combination of fisher’s strategiesm1 andm2
that maximize their profit at the ESS (x∗

1 , x∗
2 , u∗). We visualize the leader’s profit function at the ESS for

different leader’s strategy combinations (first row, left panel). In this one-trait model, the profit is optimized
for effort levels around m1 ≈ 0.5 and mesh size m2 ≈ 0.4, although for near-by values, the profit remains
approximately the same. Additionally, we plot the adult to juvenile density ratios, which may be relevant
from a fishery sustainability perspective (first row, right panel). We observe that in general, higher profit
margins correspond to more imbalance. However, there exists an overlap, indicating a control that benefits
the species sustainability as well as the fisher.

We further consider an extension of this model, incorporating two different traits as body length u1 and
body weight u2:

x1(t + 1) = f (u1)ϕ(x1(t), x2(t))x2(t)

x2(t + 1) = (1 − h(u,m))s(u2)σ (x1(t), x2(t))x1(t),

where h(u,m) = m1e
− (u1−m2)2

σ2m

⎛

⎜
⎝1 − δe

− u22
σ22

⎞

⎟
⎠.

In the figure below we plot Q and an imbalance index, based on the ratio of adults to juveniles. We observe
that the optimal Stackelberg strategy is achieved by choosing low to medium values of fishing mesh. Now,
the imbalance index is high for any values of positive profit. These computations reveal that choice of traits
can significantly impact policy-making.
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Table 2 continued

should also be concerned about the sustainability of the fishery and the prevention of the
fishery’s collapse [47, 121]. The manager’s or societal objectives may include maintaining
the population structure sufficiently close to the pre-harvest population. Subsequently, a form
of imbalance index could also enter the objective function of the leader.

Clearly, the SEGs can be applied to broader scenarios beyond the model presented here.
In fact, there may be other evolutionary traits, such as shape, habitat selection (e.g. both
spawning and feeding, spawning season, schooling propensity). All or at least some of these
traits may evolve to decrease fishing mortality that depends on the fishing gear, methods,
strategies and regulations. The considered profit function may also be more complex as the
profit could depend on the harvested sizes and their reproductive states. For example, fish roe
of some species are considered a seafood delicacy and recreational fishers may only target
specifically large individuals. Although our example only considered two strategies, mesh
size and harvest intensity, other strategies, such as fishing location, applied technology, and
length of fishing season, could be also considered. These strategies do, however, have to
satisfy legal limitations, such as restrictions on legal limit sizes. For example, the minimum
legal limit size for Amberjack (Seriola dumerili) is 36 inches Fork Length in some US
states [125]. All of these mentioned extensions are accessible through SEG, but will require
often more complex models with vector-valued strategies for both the managers and the
phenotypic traits of the harvested population.
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5 SEG in Pest Management

Pest management poses major challenges for agriculture and crop management. Insect pests
and others have demonstrated rapid evolution of resistance to new pesticides compromising
their efficacy and cropyields [104].Additionally, chemical pesticides raise concerns for health
and negative environmental effects necessitating strict regulatory constraints on management
strategies. In practice, some farmers become inventive and use biological control agents. For
example, in some organic farms, Trichogramma wasps are applied to fields for the control of
moths and caterpillars [73]. While such sustainable strategies might not always be feasible
or may even be damaging in the long term (one example is Cane toads introduced in 1935
into Australia to control the gray-backed cane beetle and French beetle [122, 123]), most
frequently farmers use chemicals or combinedmeasures to control harmful insect populations
[15].

In “Appendix D”, we formulate a general model for pest management and in Table 3, we
provide one possible formulation of this game and analyze the equilibria. When dealing with
two pesticides and two resistant traits, it is possible to encounter multiple best responses of
followers and leaders. Hence, other optimality considerations might influence the leader’s
choice of pesticide usage.

First of all, the leader as an environmental policymaker may consider the impact of pes-
ticides on the environment and public health [79, 115]. These constraints in turn may enter
the objective function Q, but could also be considered as part of the evolutionary response of
the followers. That is, when multiple eco-evolutionary equilibria are possible (see Table 3),
the exact choice of action might be dictated by other constraints. However, a bigger question
is whether these constraints should enter the decision-making process initially (and hence
influence the optimal actions) or should be used as a means for selecting among equally good
equilibria. The stability properties of equilibria with respect to different forms of Q and G
require analysis.

Additionally, the policymaker might be concerned with the pesticide drifting onto non-
farmland. In some ecosystems and landscapes, this might be more relevant than others [94].
For instance, the pesticidemaydrift onto pasture landwhere itmaybe ingested by livestock, or
incidentally reduce herbivorous insects present on the pasture. Or, the pesticidemay drift onto
nature preserveswhere any reduction of insectsmight negatively impact birds or other animals
of conservation interest. Hence, apart from vector-valued controls and life-history traits, the
leader may need to consider the spatially explicit landscapes with different land uses [44].
Spatial control problems are typically solved numerically, due to their complexity [20, 36].
Effective numerical schemes will likely be needed for the application of spatio-temporal
control in pest management.

IPM refers to enforcing guidelines to control the pests’ evolution of resistance to pesti-
cides [126]. These guidelines, developed decades ago, do not aim at eliminating pests but
at keeping pest populations under control, so that economic damage to the crops is limited
while maintaining the pesticide’s efficacy into the future. Most IPM practices are simple
rules of thumb that help maintain high crop yields [87, 124] while advocating against the
over-application of pesticides. IPM has been widely adopted worldwide. Anticipating and
steering evolutionary responses of pests to the pesticides may lead to better results, and for-
mulating the problem as SEGs may identify more sophisticated and successful pesticide-use
strategies. Future research could take real-world scenarios and formulate these into SEGs.

Sustainable and organic farming requires the use of less toxic pesticides. This often means
less effective pesticides that must be used in combination with other pesticides and control
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measures. In addition, the different life-history stages of a pest species may have different
effects on the crop [57]. For instance, the caterpillar stage of the tobacco horned worm can be
a voracious herbivore of the tobacco plants, even as the adultmoth serves as a pollinator [131].
Hence, more sophisticated vector-valued controls with stage-structured models are required
for the optimal management of pesticide-resistance strategy [58]. However, it comes with
similar challenges as we discussed for fisheries management: how many traits should be
accounted for at each life-history stage?,what are the essential trade-offs?, howmanydecision
makers are involved? and what other social, health and market pressures might influence
pesticide use? While similar to the fisheries management questions, pest management has
an opposite objective. Instead of preserving the population, the main goal is to minimize the
negative impact of pests on crop production by reducing their population size. Hence, in terms
of the objective function, pest management is more similar to cancer treatment. It may be that
a common denominator for all three examples is the general superiority of the Stackelberg
solution over the Nash solution over unrestrained actions (maximum tolerable dose in cancer,
unsustainably high fishing rates, and unregulated use of chemical pesticides), and the scaling

Table 3 Multiplicity of followers’ best responses in a vector-valued SEG

Let us consider first a simple scenario without life-history trait evolution. Vector-valued formulation
of a pest management problem that accounts for evolution of resistance against pesticide can have
the form extended from [15]. The fitness-generating function can have the form similar to the cancer
example defined as

G(x, u,m) = r (1−u1)(1−u2)K−x
K − m1

k1+b1v1
− m2

k2+b2v2
, (15)

and the population dynamics can be defined as

ẋ = xG(x, u, E). (16)

Here, the ecological equilibrium is given by

x∗ = (1 − u1)(1 − u2)K − Km1
(k1+b1v1)r

− Km2
(k2+b2v2)r

. (17)

The traits (u1, u2) are then evolving to maximize the fitness function, given the control applied by
the farmer (m1, m2) as

u∗
1 = argmaxu1 G(x, u,m) =

√
m1b1−rk1u2

b21r
− k1

b1
(18)

u∗
2 = argmaxu2 G(x, u,m) =

√
m2b2−rk2u1

b22r
− k2

b2
. (19)

Let us assume that the profit of the farmer is defined by

Q(x, u,m) = Y (1 − a ∗ (x/K )2) − c1m1 − c2m2, (20)

where Y is the harvesting rate, a is the effect of the pests on the crop production, c1 and c2 are
the costs of pesticides 1 and 2, respectively. Note that (u∗

1, u∗
2) are functions of each other. One

can numerically solve this system of equations; however, exact solutions are not feasible, due to the
complexity of the functional form.

Weconsider a numerical examplewhere twopesticides have different effects on the evolution andhave
different costs for the farmer. As it can be seen, best results in terms of the profit are achieved along
the diagonal m1 +m2 = 1. In this region, the farmer can achieve the highest profit while containing
the population size of pests reasonably low. Moreover, while there exists a unique maximum, the
differences between profits of several options of (m1,m2) are ε-small. However, optimal resistance
rates along the diagonal vary. Hence, there might exist multiple combinations of (m1,m2) leading
to the profit ε-close to the optimal profit QmS and population size x∗, but different resistance rates,
which impliesmultiplicity of equilibria to the same action of the leader,making it difficult to anticipate
the exact action of the follower and assuring desired properties of the resulting equilibria.
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Table 3 continued

back of the intervention (dose rate, fishing rate and pesticide usage) to minimize the evolution
of the evolving cancer, fish, or pest.

6 Discussion

Game theory and evolutionary game theory, in particular, have proven useful for modeling
systems with complex interactions among diverse individuals and agents [138, 139]. Many
studies have been devoted to working out mechanisms on both sides: on the side of the
management (optimality and rationality of behavior but also its limitations [68, 113]), and on
the side of the system itself (complex ecological and evolutionary dynamics [30, 63, 105]). It
is nowwell-understood and appreciated that biological systems can exhibit rapid evolution in
response to human actions [100, 101]. Yet, in practice, evolutionary responses to managerial
actions are often overlooked during decision making. Reasons for this are the complexity
of possible solutions even in the absence of evolutionary considerations and the traditional
assumption that evolution in nature occurs too slowly to be relevant [55, 69, 146].

Despite these challenges, Stackelberg evolutionary games attend to the desire of incor-
porating the interdependence of evolutionary changes and external management strategies
and, therefore, provide a more realistic mathematical modeling framework. Management
models should include predicting both ecological and evolutionary changes [98, 144]. Stack-
elberg evolutionary games have been successfully applied to the treatment of metastatic
cancers [128, 143] and fisheries management [119, 130]. However, despite the promising
results, the current state of the theory has limitations. Thus far, mathematical formalism and
solution concepts only exist for a scalar-valued trait and a single-action interaction between
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the evolving system and the manager. Utilizing a mono-trait and single-action approach lim-
its applicability. For example, in aggressive cancers, patients rarely receive mono-therapies.
Instead, two or more drugs are given in combination [120]. Hence, there is a need for SEG
theory applicable to vector-valued traits and vector-valued leader’s actions. Such an extension
comes with significant complications.
Choosing the leader’s objective function. Defining an appropriate objective function for
the leader poses challenges and will depend on the application. In cancer therapy, such
a function defines the patient’s quality of life, typically including the cancer population
size (tumor burden), the leader’s strategy regarding the treatment dose (as it impacts drug
toxicity), and the followers’ evolutionary response (resistance to the selected treatments).
When discussing application of SEG in fisheries management, we argue that evolutionary
sustainability should enter the leader’s objective function. For pest management, we used a
function that is independent of the followers’ response to the pesticides. Depending on the
exact application, the reasoning for the functional form of Q may differ, and this in turn
will determine the resulting Stackelberg strategy and corresponding equilibria. It was shown
that the Stackelberg outcome may either outperform or coincide with Nash, depending on
the functional form of Q [130]. Therefore, when expanding this framework to vector-valued
traits and vector-valued life-history traits, it is critical to determine how the functional form
of Q affects the existence and properties of the evolving system’s equilibria.
Modeling eco-evolutionarydynamics. Evenwith aone-dimensional SEG, the eco-evolutionary
dynamics of the followers can exhibit bifurcations, where for one action of a leader there
might exist multiple responses of the followers [130]. Bifurcations may be more difficult to
track and analyze in the multivariate case. If such a bifurcation occurs, it is unclear what
strategy the leader should choose. In classical Stackelberg games with rational leaders and
followers, the answer would be to apply a mixed strategy or assume that the rationality of
the follower would make them choose the worse outcome for the leader [7]. However, the
evolutionary followers do not anticipate but rather react to the leader’s actions, according to
the principles of Darwinian evolution. Hence, choosing a mixed strategy or assuming that
followers are choosing the option most harmful for the leader does not apply. In such a situ-
ation, the Nash strategy, to which the leader will converge by adjusting their choices based
on the evolutionary response of the system, may be less risky. However, that means giving
up the Stackelberg solution that will likely lead to a better outcome. Additionally, we show
with our example in Table 1 that the Stackelberg strategy might reduce ambiguity as different
eco-evolutionary dynamics often respond to the Stackelberg strategy in a qualitatively similar
manner.

The goal of the manager may include steering the followers’ eco-evolutionary dynamics
toward the desired state more effectively and/or preventing the eco-evolutionary dynamics
from traversing to undesirable (unsafe) states. These considerations may result in higher sen-
sitivity of the eco-evolutionary dynamics to small changes in the leader’s actions (including
bifurcations), and hence, less controllable systems. Mathematically, incorporating transient
dynamics in the game will likely allow for comparison to open-loop, closed-loop, and feed-
back strategies of the leader [7], differing in their assumptions of what the leader knows when
deciding on their strategy.
Equilibrium behavior. Here, we assumed that followers’ response to the leader’s actions m
goes to an eco-evolutionary equilibrium (U∗(m), x∗(U∗(m),m)). However, the systemmay
take time to reach this equilibrium or may not reach it in a meaningful time at all. The system
might also have multiple equilibria and the leader’s actions might change stability properties
of those equilibria, forcing the system to switch. Some traits may take several generations
to evolve to a noticeable level, while others may exhibit rapid evolution. Hence, the leader’s



1146 Dynamic Games and Applications (2023) 13:1130–1155

actions, optimal when the eco-evolutionary equilibrium is assumed, might be suboptimal
during the transient phase of the followers’ eco-evolutionary dynamics. Some applications
of SEGmay require safetymargins on the followers’ ecological and/or evolutionary dynamics
(safe tumor burden for cancer patients, sustainable populations for fisheries, and safe levels of
pesticides use). Analyzing followers’ transient dynamics will help determine whether/when
x∗(t) will exceed a safety threshold. If exceeding the safety threshold is inevitable, we
may aim at either maximizing the time to exceeding this threshold (cancer and pests) or
maximizing the time before reaching extinction (fisheries).

In addition,many othermathematically challenging questions arisewhen analyzing SEGs,
to name a few: (i) Can the Folk Theorem [23] be extended to this broader class of bioeconomic
games, in hope that over time the system dynamics converge to either Nash or Stackelberg
equilibria? (ii)What is the role of various forms of frequency-dependence among the evolving
species in determining the effects of the manager on the species’ ESSs and the attainability
of the ESSs? (iii) What is the effect of a time scale separation between the species’ dynamics
of population sizes, strategy values, and possibly stage distributions in matrix models? (iv)
What if there is more than one ESS for the followers, i.e., what if a particular manager’s
strategy leads to more than one best response curve for the evolving species? (v) How do the
stability concepts from evolutionary game theory (ESS, convergence stability, Neighborhood
invader strategy—NIS, mutual invasibility) apply in the presence of a leader?
Errors and information. Given the level of complexity of analyzing even a simple SEG,
another question arises: As leaders, when do we need to obtain the optimal outcome or when
a particular (“simple enough” or “stable enough”) structure of the obtained strategy is more
important? Perhaps, we could instead focus on the outcomes that are “good enough”, with a
rule of thumb that has some set of desirable properties. As with the example in Table 3, there
might exist a set of the leader’s strategies that yield ε-different profits. In such a situation, the
leader might focus on the stability of the eco-evolutionary equilibria corresponding to these
different strategies, or their other properties. But before we even start with answering these
questions, we have to determine what constitutes “good enough” outcomes. These questions
need to be answered systematically.

In the analyses of this paper and previous works [119, 130], it was assumed that the leader
has perfect information on the followers’ eco-evolutionary response. That is rarely the case.
Future research must focus on the sensitivity of the SEGs with respect to small errors in the
perceived ecological and/or evolutionary responses, and on what frequency and type of data
is needed to accurately predict the followers’ behavior and subsequent outcomes. In these
cases, we may utilize results known in classical Stackelberg game theory with incomplete
information (e.g. [100]) and adapt them to SEG.
Potential applications. Thus far, SEGs have been successfully applied to cancer treatment
and fisheries management, and a model was proposed for pest management. However, many
more applications exist where this method may lead to potentially better outcomes such as
conservation ecology. Sustainability and conservation policies post an optimization prob-
lem under strict budget and time constraints. Challenges lie in the complexity of ecological
and conservation modeling and data analysis [11, 52, 72], as well as in the choice of the
leader’s objective function [96]. Beyond the analytical complexity, there are also strategic
considerations influencing the decision making as conservation decisions are often made in
collaboration with multiple stakeholders and require coordinated actions [12, 99, 102]. Yet,
despite all the efforts, not all initiatives are successful and new techniques are necessary to find
the most effective approach to conservation [48, 59, 103]. Apart from exploring completely
new techniques for conservation, many studies argue that conservation decisions should take
into account the evolutionary pressures faced by the ecosystems due to rapidly changing
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environmental conditions [19, 90]. It was argued that ecological and medicine modeling
should have more exchange of knowledge, as both are concerned with questions of coexis-
tence and extinctions of entire populations [3]. SEGs can offer a method that combines all
elements needed to find the best conservation strategies, including constrained optimization
with evolutionary responses. Moreover, SEGs can be extended to scenarios with multiple
leaders arranged as a prespecified hierarchy. For instance, several policy makers may need to
coordinate actions with stakeholders when making environmental decisions [12, 99]. Such
a framework has the potential to be applied to many other pressing issues where evolving
systems need to be managed efficiently and sustainably.
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Appendix A: Table of Notation

See Table 4.

Table 4 Table of notation used
throughout the manuscript

Symbol Description

x Population size of followers

x∗ Population size of followers at equilibrium

U Matrix of evolutionary traits of followers

U∗ Matrix of evolutionary traits of followers at equilibrium

σ (t) Matrix of evolutionary speeds of the traits

σ j (t) Evolutionary speed of trait j

v Focal individual’s trait

m Control applied by the leader

mmax Maximally possible value of controls

m∗ Control applied by the leader at Nash equilibrium

mS Control applied by the leader at Stackelberg equilibrium

G(U ,m, x) Followers’ fitness-generating function

P Projection matrix

r(P) Spectral radius of P

Q(U ,m, x) Leader’s objective function

https://github.com/kleshnina/SEGopinion
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Appendix B: Vector-Valued SEG for Cancer Treatment

A model that accounts for vector-valued traits and multiple controls can be set as follows.
Consider a cancer population that may consist of n distinct types. For example, these types
could be cells resistant to a particular drug or, on the contrary, sensitive to this drug. Let x =
(x1, . . . , xn) be a vector that describes population sizes of each cell type. Each type of cancer
cells can have a trait that is subject to evolution. In evolutionary terms, we shall refer to such
traits as evolutionary strategies of cancer cells and denote them by u = (u1, . . . , uh). Then,
accordingly, the patient can be administered h types of drugs in quantitiesm = (m1, . . . ,mh).
We can model the cancer cell population dynamics xi and the traits ui continuously using
(1) and (2), respectively, with the fitness function

G(v,u, x,m) = r(v)

(

1 −
∑n

j=1 αi j x j

K

)

− d −
h∑

j=1

m j

k j + b ju j

∣
∣
∣
v=ui

, (15)

where r(v) = rmaxe−g j v is the growth rate, g j is the cost of resistance strategy v, αi j are
the interaction coefficients between types i and j , K is the carrying capacity, d is the natural
death rate, ki are the innate resistance that may be present before drug exposure, and bi are
the benefit of the evolved resistance trait in reducing therapy efficacy.

The leader (physician) faces the optimization problem inwhich, apart from trying to reduce
the tumor size, they are concerned with the patient’s quality of life. A possible objective
function representing patient’s quality of life may be defined by:

Q(m,u, x∗(m,u)) = Qmax − c1

(∑
i x

∗
i

K

)2

− c2
∑

i

ωim
2
i − c3

∑

i

∑

j

ρi j u
2
i j , (16)

for (u(m), x∗(m)) ∈ S, where Qmax is the quality of life of a healthy patient,
∑

i ωi = 1 is
the drug toxicity,

∑
i
∑

j ρi j = 1 is the effect of resistance rates, and ci ’s are the weights that
determine the impact of tumor burden, drug toxicity, and treatment-induced resistance rate,
respectively. Apart from tumor burden and drug toxicity, ui j ’s are also expected to reduce
patient’s quality of life as it was suggested that in some cancers drug resistance can cause
physical discomfort directly [6, 74].

Appendix C: Life-History SEG for Fisheries

We consider the discrete N -stage-structured population model, where xi represents the pop-
ulation of the i-th stage class and is modeled by (3) as

x1(t + 1) = G1(v,u, x(t),m)

xi (t + 1) = (1 − hi (v,u,m))si (v,u)Gi (v,u, x(t),m), 2 ≤ i ≤ N , (17)

where G1 includes the stock recruitment function, si ∈ [0, 1] is the natural survival, hi ∈
[0, 1] is the harvest rate of stage-class i , and Gi represents the change in stage-class i from
time t to time t + 1. In the case of stage-classes, the evolution of traits follows (14).

The leader’s profit function at any time t can be described by

Q(u, x,m) =
N∑

i=1

pi hi (v,u,m)si (v,u)Gi (u, x(t),m) −
k∑

i=1

cimi ,
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where ci are the costs for a harvest strategy mi (i = 1, . . . , k) and pi , for i = 1, . . . , N ,
is the price of individual fish in the different stage-classes, potentially dependent on their
respective trait.

Appendix D: Vector-Valued SEG for Pest Management

We formulate a bioeconomic vector-valued SEG between farmers and pests without account-
ing for life-history trait evolution (based on [15]). The fitness-generating function of pests as
a function of a vector-valued control applied by the farmer can have the form:

G(x,u,m) = F(x,u) − μ(u,m), (18)

where F(x,u) is the population growth rate in the absence of pesticides and μ(u,m) is the
pesticide-induced mortality rate. The farmers’ profit function depends on the volume of crop
production minus the cost of controlling the pests population (other costs can be subtracted
from the value of the crop without changing the Nash or Stackelberg solutions of this SEG),
specifically,

Q(x,u,m) = Y (x,u) − cm, (19)

where Y (x,u) is the crop production and cm is the cost of pesticide application.
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berg evolutionary game theory: how to manage evolving systems. Philos Trans R Soc B Biol Sci
378(1876):20210495. https://doi.org/10.1098/rstb.2021.0495

131. Strauss SY, Zangerl AR (2002) Plant-insect interactions in terrestrial ecosystems. In: Plant-animal inter-
actions: an evolutionary approach, pp 77–106

132. Streipert S, Robins J, Filar J, O’Neill M, Whybird O. Stock assessment of the Barramundi (Lates
Calcarifer) Fishery in Queensland, Australia. http://era.daf.qld.gov.au/id/eprint/7003/ [2021-12-01]

133. Swan GW, Vincent TL (1977) Optimal control analysis in the chemotherapy of igg multiple myeloma.
Bull Math Biol 39:317–337

134. Troost TA, Kooi BW, Kooijman SALM (2007) Bifurcation analysis of ecological and evolutionary
processes in ecosystems. EcolModel 204(1):253–268. https://doi.org/10.1016/j.ecolmodel.2007.01.007

135. Ulivi P, Petracci E, CanaleM, Priano I, Capelli L, Calistri D, Chiadini E, Cravero P, Rossi A, Delmonte A
et al (2021) Liquid biopsy for EGFR mutation analysis in advanced non-small-cell lung cancer patients:
thoughts drawn from a real-life experience. Biomedicines 9(10):1299

136. VahsenML,BlumMJ,Megonigal JP, Emrich SJ, Holmquist JR, Stiller B, Todd-BrownKEO,McLachlan
JS (2023) Rapid plant trait evolution can alter coastal wetland resilience to sea level rise. Science
379(6630):393–398. https://doi.org/10.1126/science.abq0595

137. Vasan N, Baselga J, Hyman DM (2019) A view on drug resistance in cancer. Nature 575(7782):299–309
138. Vincent TL (1994) An evolutionary game theory for differential equation models with reference to

ecosystem management. Advances in dynamic games and applications. Springer, Berlin, pp 356–374
139. Vincent TL, Brown JS (2005) Evolutionary game theory, natural selection, and Darwinian dynamics.

Cambridge University Press, Cambridge
140. West J, You L, Zhang J, Gatenby RA, Brown JS, Newton PK, Anderson AR (2020) Towards multidrug

adaptive therapy. Can Res 80(7):1578–1589
141. West J, Adler F, Gallaher J, Strobl M, Brady-Nicholls R, Brown J, Roberson-Tessi M, Kim E, Noble R,

Viossat Y, Basanta D, Anderson AR (2023) A survey of open questions in adaptive therapy: bridging
mathematics and clinical translation. Elife 12:84263. https://doi.org/10.7554/eLife.84263

142. Winker H, Carvalho F, Kapur M (2018) JABBA: Just another Bayesian biomass assessment. Fish Res
204:275–288. https://doi.org/10.1016/j.fishres.2018.03.010

143. Wölfl B, Te Rietmole H, Salvioli M, Kaznatcheev A, Thuijsman F, Brown JS, Burgering B, Staňková K
(2022) The contribution of evolutionary game theory to understanding and treating cancer. Dyn Games
Appl 12(2):313–342

144. Wortel MT, Agashe D, Bailey SF, Bank C, Bisschop K, Blankers T, Cairns J, Colizzi ES, Cusseddu D,
Desai MM, Dijk B, EgasM, Ellers J, Groot AT, Heckel DG, JohnsonML, Kraaijeveld K, Krug J, Laan L,
LässigM, Lind PA,Meijer J, Noble LM,Okasha S, Rainey PB, RozenDE, Shitut S, Tans SJ, TenaillonO,
Teotónio H, Visser JAGM, Visser ME, Vroomans RMA,Werner GDA,Wertheim B, Pennings PS (2022)

https://doi.org/10.1158/0008-5472.CAN-17-1201
https://safmc.net/species/amberjack-greater/
https://safmc.net/species/amberjack-greater/
https://doi.org/10.1016/j.pestbp.2014.11.014
https://doi.org/10.1098/rstb.2021.0495
http://era.daf.qld.gov.au/id/eprint/7003/
https://doi.org/10.1016/j.ecolmodel.2007.01.007
https://doi.org/10.1126/science.abq0595
https://doi.org/10.7554/eLife.84263
https://doi.org/10.1016/j.fishres.2018.03.010


Dynamic Games and Applications (2023) 13:1130–1155 1155

Towards evolutionary predictions: current promises and challenges. Evol Appl 16(1):3–21. https://doi.
org/10.1111/eva.13513

145. Wright PJ, Trippel EA (2009) Fishery-induced demographic changes in the timing of spawning: conse-
quences for reproductive success*. Fish Fish 10(3):283–304. https://doi.org/10.1111/j.1467-2979.2008.
00322.x

146. Yamamichi M, Letten AD (2021) Rapid evolution promotes fluctuation-dependent species coexistence.
Ecol Lett 24(4):812–818

147. Yee S, Lieberman D, Blanchard T et al (2016) A novel approach for next-generation sequencing of
circulating tumor cells. Mol Genet Genom Medi 4(4):395–406

148. You L, Brown JS, Thuijsman F, Cunningham JJ, Gatenby RA, Zhang J, Staňková K (2017) Spatial vs.
non-spatial eco-evolutionary dynamics in a tumor growth model. J Theor Biol 435:78–97

149. Zhang J, Cunningham JJ, Brown JS, Gatenby RA (2017) Integrating evolutionary dynamics into treat-
ment of metastatic castrate-resistant prostate cancer. Nat Commun 8(1):1816

150. Zolfaghari M, Ghadamyari M, Hassan Sajedi R (2019) Resistance mechanisms of a field population of
diamond backmoth, Plutella xylostella (Lepidoptera: Plutellidae) to current organophosphate pesticides.
J Crop Prot 8(4):403–416

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1111/eva.13513
https://doi.org/10.1111/eva.13513
https://doi.org/10.1111/j.1467-2979.2008.00322.x
https://doi.org/10.1111/j.1467-2979.2008.00322.x

	Game Theory for Managing Evolving Systems: Challenges and Opportunities of Including Vector-Valued Strategies and Life-History Traits
	Abstract
	1 Introduction
	2 Stackelberg Evolutionary Games: Model
	2.1 Vector-Valued Stackelberg Evolutionary Games
	2.2 Life-History Models as Stackelberg Evolutionary Games

	3 SEG in Cancer Treatment
	4 SEG in Fisheries Management
	5 SEG in Pest Management
	6 Discussion
	Appendix A: Table of Notation
	Appendix B: Vector-Valued SEG for Cancer Treatment
	Appendix C: Life-History SEG for Fisheries
	Appendix D: Vector-Valued SEG for Pest Management
	References




