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A B S T R A C T

The benefits of applying multi-objective optimization (MOO) in building design have been increasingly re-
cognized in recent decades. The existing or traditional computational design optimization (CDO) approaches
mostly focus on optimization problem solving (OPS), as they often conduct optimizations directly by assuming
the optimization problems in question are good enough. In contrast, the computational design exploration (CDE)
approaches defined in this research mainly focus on optimization problem formulation (OPF), which are con-
sidered more essential and aim to achieve or ensure appropriate optimization problems before conducting op-
timizations. However, the application of the CDE is very limited especially in conceptual architectural design.
The necessity of re-formulating original optimization problems and its potential impacts on optimization results
are often overlooked or not emphasized enough.

This paper proposes a new CDE approach that highlights the knowledge-supported re-formulation of a
changeable initial optimization problem. It improves upon the traditional CDO approach by introducing a
changeable initial OPF and inserting a CDE module. The changeable initial OPF allows expanding the di-
mensionality of an objective space and design space being investigated, and the CDE module can re-formulate
the changeable optimization problem using the information and knowledge extracted from statistical analyses.
To facilitate designers in achieving the proposed approach, an improved computational platform is used which
combines parametric modeling software (including simulation plug-ins) and design optimization software.
Assisted by the platform, the proposed approach is applied to the conceptual design of an indoor sports building
that considers multi-disciplinary performance criteria (including architecture-, climate- and structure-related
criteria) and a wide range of geometric variations. Through the case study, this paper demonstrates the use of the
proposed approach, verifies its benefits over the traditional method, and unveils the factors that may affect the
behaviour of the proposed approach. Besides, it also shows the suitability of the computational platform used.

1. Introduction

Nowadays, multi-objective optimization (MOO), coupled with
building performance simulation and parametric modeling, has been
increasingly used to improve overall building performance [1–4].
However, the importance of optimization problem formulation (OPF) or
re-formulation is often overlooked in conceptual architectural design.
Most existing studies are only interested in optimization problem sol-
ving (OPS), i.e. running various algorithms to search for optimal solu-
tions based on already formulated or initially formulated optimization
problems, without sufficiently demonstrating how the problems are
formulated and how they may affect the optimal results.

It is through the OPF that a design task can be partially converted to
an optimization problem. Key components of the OPF include at least
two aspects: (1) the formulation of objective space - selecting objective
and constraint variables (i.e. output variables) and constraint values;
(2) the formulation of design space - selecting design variables (i.e.
input variables) and their domains. The former determines all perfor-
mance goals and constraints to be achieved; while, the latter determines
all possible design alternatives that can be searched from.

In fact, the OPF is more essential than the OPS. If an optimization
problem is formulated in meaningless way, it makes no sense to solve it.
An improperly formulated objective space may lead to entirely wrong
results; and, an improperly formulated design space may provide a poor
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“design alternative pool” to search from. Apparently, it is not wise for
designers to dive directly into the OPS, without properly considering
the OPF. This is especially true for conceptual architectural design
optimization. During the OPF, designers usually have large freedom in
defining the objective space and design space, which may lead to im-
proper definitions. The initial OPF is often unstable and poorly defined,
due to the “ill-structured” nature of design tasks and the limited
knowledge support (see Section 2). Thus, it indicates the need of re-
formulating or revising the initial OPF with more sufficient information
and knowledge support, which we consider as computational design
exploration (CDE), a crucial step prior to computational design opti-
mization (CDO).

Specifically, we define the CDE as the process of extracting useful
information or knowledge (i.e. first-level CDE), and of applying it to re-
formulate the original optimization problem (i.e. second-level CDE).
The aim of the CDE is to achieve a good OPF before diving into the OPS.
In contrast, the CDO is defined as the process that is only keen on the
OPS. The aim of the CDO is to search for optimal solutions for a given or
fixed optimization problem. The relationships between the CDO, CDE,
OPS and OPF are summarized in a diagram (Fig. 1).

In response to the need of knowledge-supported re-formulation, this
paper proposes a new holistic approach, emphasizing the CDE in which
relevant information and knowledge are extracted to support the re-
formulation of the initial optimization problem in a more informed
manner. Statistical analysis techniques, such as correlation analysis,
cluster analysis and sensitivity analysis are used for the knowledge
extraction. An improved computational platform is also used for
achieving the proposed approach, which integrates parametric mod-
eling software (including simulation plug-ins) and design optimization
software. With a focus on the conceptual design of indoor sports
buildings, the proposed approach is applied to a complex real-world
project which considers multi-disciplinary performance criteria (in-
cluding architecture-, climate- and structure-related criteria) and a
wide range of geometric variations. Through the case study, this paper
demonstrates the use of the proposed approach, verifies its benefits over
the traditional method, and unveils the factors that may affect the be-
haviour of the proposed approach. Besides, it also shows the suitability
of the computational platform used.

2. Optimization problem (re)formulation and knowledge support

2.1. Initial formulation of an optimization problem

Due to the “ill-structured” nature of design tasks, the initial for-
mulation of an optimization problem is usually unstable. As first de-
fined by Simon [5], a building design task is ill-structured (i.e. lack of
definition) in a number of respects; and, it seemed to reach a consensus,
among researches in the late 1990s, that most of real-world tasks, in
particular design tasks, are ill-structured [6–16]. This is especially true
in the conceptual design stage. In this stage, there are no definitive
goals and constraints, since the goals are usually vague and many

performance criteria maybe unknown; and there are no definitive so-
lutions either, because a wide range of different solutions can be valid
responses to the goals and constraints [17]. Thus, the initially for-
mulated objective space and design space are usually unstable; they are
subject to change (i.e. re-formulation) once more information and
knowledge becomes available.

Due to the limited knowledge support, the initial formulation of an
optimization problem is often poorly defined. At the very beginning of a
conceptual design, the designers are usually not able to perceive every
aspect of the design task, since they have to rely on their limited
knowledge (e.g. educated guesses and/or intuition). For converting the
design task to an optimization problem, they have to answer: what are
the most important design issues and performance criteria; and what
kinds of solutions most probably manage to solve these issues?
According to Logan and Smithers [9], the designers' answers to these
questions are often subjective and highly context dependent; not sur-
prisingly, the initial expression of the design task is often misleading.
From the perspective of the OPF, the initial objective space and design
space are probably poorly defined.

2.2. Re-formulation of an optimization problem

Given the limitations above, the re-formulation of the initial opti-
mization problem is inevitable in conceptual architectural design. It
requires a balance between reducing computational cost and increasing
design creativity, i.e., between variable screening and variable adding.
Here, design variable screening refers to the process of screening out
unimportant design variables (that contribute the least to the variation
of objective variables), and design variable adding refers to the process
of introducing new design variables (that create new design variations).
Objective variable screening refers to the process of identifying the
most meaningful performance criteria to be considered as final objec-
tives, and objective variable adding refers to the process of introducing
new objective variables.

This balance is challenging due to its conflicting nature; designers
may struggle between reducing and increasing the dimensionality of a
design space and of an objective space. Specifically, for the re-for-
mulation of a design space, the decision whether or not to include more
design variables has to be made. From the perspective of increasing
design creativity, the incorporation of new design variables is crucial
for the creative design [18]; while from the perspective of reducing
computational cost, the best model is usually the simplest one [19], and
entities should not be multiplied beyond necessity according to the
principle of “Occam's razor” [20]. Similarly, for the re-formulation of
an objective space, the decision whether or not to include more ob-
jective variables has to be made. The incorporation of new objective
variables may be beneficial for a more holistic assessment, while it also
means the increase of computational cost. In this regard, the total
number of final objective variables is often limited to less than or equal
to three, given the challenges of handling many-objective optimization
problems [21].

Fig. 1. The relationships between the CDO, CDE, OPS and OPF.
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2.3. Information and knowledge support

To properly support the variable screening and variable adding,
substantial information and knowledge are needed. The information
desired for supporting the variable screening includes output-output
and input-output relations. The former refers to the inter-correlations
between pairs of objective variables; while the latter includes the im-
pact of design variables on objective variables, and the relative im-
portance ranking of all design variables with respect to objective vari-
ables. The knowledge is derived from designers' interpretation of the
information in disciplinary contexts.

For large-scale projects (e.g. indoor sports buildings), the variable
relations become complex when the number of the variables increases.
First, many performance criteria from various disciplines need to be
considered for large-scale projects, and some of them are often in
conflict with each other. For instance, the maximization of daylight
availability (in climate design) conflicts with the minimization of op-
erational energy [22–24]; the minimization of maximum displacement
(in structural design) conflicts with the minimization of structural
weight [25,26] and hence embodied energy; the geometrical preference
or aesthetics (in architectural design) may conflict with engineering
performances [27] etc. When all these performance criteria are con-
sidered simultaneously, their inter-correlations become more complex.
Second, a large number of design variables are often needed to define
the complex geometries of large-scale projects. For some design con-
cepts, the number of design variables is fixed; while for other concepts,
it may be changeable. In the latter scenario that we are interested in,
the changeable number of design variables facilitates the definition of
geometries with different levels of complexity; or in other words, the
number of design variables may readily increase, which complicates the
relations between design variables and objective variables.

In this context, statistical data analysis and visualization techniques
can be helpful for extracting the useful information and knowledge that
are not known (or not clear) in the initial formulation but relevant to
the re-formulation. The interrelations between the initial formulation,
re-formulation, information and knowledge support are summarized in
a diagram (Fig. 2).

3. Literature review

A series of studies that apply MOO techniques to building design are
reviewed in this section. They are categorized into two groups: com-
putational design optimization and computational design exploration.
According to their definitions, the former mainly focuses on solving
already formulated or initially formulated optimization problems by
using various search algorithms; while, the latter focuses on for-
mulating good optimization problems before solving them via the
knowledge-supported re-formulation.

3.1. Computational design optimization

Studies related to CDO dominate the reviewed literature. Most of
them assume that the already formulated optimization problems are
good enough for performing optimizations, and do not demonstrate
sufficiently how the problems are formulated, let along how the pro-
blem formulations may affect the optimization results. They may in-
volve different building disciplines, such as climate design, structural
design etc.

Typical MOO studies for climate design are reviewed, focusing on
the geometrical optimization of building envelopes with respect to
daylighting, thermal, energy and cost criteria etc. Lartigue, B.,
Lasternas, B. and Loftness, V. [22] optimized a simple building en-
velope according to the triple objective of heating load, cooling load
and daylighting, by using brute-force search. Window to wall ratio and
window type were selected as the only two design variables, which
were considered as strongly impacting the objective functions. Manzan,
M. and Clarich, A. [23] optimized the geometry of an external shading
device according to energy and daylighting criteria, by using a fast
algorithm that combines response surfaces and genetic algorithms.
Three geometrical design variables were selected according to the given
design concept. Futrell, B.J., Ozelkan, E.C. and Brentrup, D. [24] op-
timized the envelope of a single-zone classroom according to energy
and daylighting criteria, by using a Hooke Jeeves and Particle Swarm
Optimization algorithm. Five geometrical design variables were se-
lected, together with six material-related variables; and some reasons of
choosing them were briefly given. Kasinalis, C. et al. [28] utilized MOO
to assess the performance potential of seasonally adaptable facades. For
different seasonal scenarios, the envelope of a single-person south fa-
cing office was optimized according to energy and thermal criteria by
using NSGA-II. Only one geometrical design variable (i.e. window to
wall ratio) was chosen, together with five material-related variables.
Brownlee, A.E.I. and Wright, J.A. [29] applied several variants of
NSGA-II to optimize the envelope of a mid-floor of a small commercial
office according to energy and construction cost criteria. Out of fifty
design variables selected (for five thermal zones), half of them are
geometry related but only for defining window to wall ratios and
overhang shadings. Negendahl, K. and Nielsen, T.R. [30] focused on the
optimization of the overall geometry of an office building by using
SPEA2. Four objectives were considered, namely, building energy use,
capital cost, daylight distribution and thermal indoor environment; and
three design variables were selected to define the overall geometry
based on a “folding envelope” concept.

Typical MOO studies for structural design are reviewed, focusing on
the topological optimization of discrete structures with respect to de-
flection and weight (or cost, embodied energy) criteria etc. Kicinger, R.
and Arciszewski, T. [25] minimized the total weight and maximum
horizontal displacement of the steel structural system of a tall building,
by using a weighted-sum approach. In the experimental design, a fixed-
length genome consisting of 220 genes (i.e. design variables) was used

Fig. 2. The interrelations between the initial formulation, re-formulation, information and knowledge support.
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to define the structural system (in terms of the types of bracing ele-
ments, beams and supports). Later, Kicinger, R., Obayashi, S. and Ar-
ciszewski, T. [26] extended the previous study by using a more ad-
vanced algorithm, SPEA2, for solving the same bi-objective
optimization problem. Similarly, Richardson, J.N. et al. [31] minimized
the deflection and cost of the X-bracing system of four steel facades by
using MOGA. A fixed-length chromosome (determined by the number
of possible positions for bracing cables) was used to define the bracing
topology in each facade. Winslow, P., Pellegrino, S. and Sharma, S.B.
[32] developed a novel method for synthesis of optimal grid structures
(consisting of a repeating unit cell on free-form surfaces) based on
MOGA. In this method, the selection of design variables depends on the
choice of “design points” on a given surface. In an example case, twelve
geometrical design variables (i.e. six design points) were selected, and
the structure was optimized for minimizing the deflections under two
different combinations of load cases.

There are very few MOO studies that simultaneously consider multi-
disciplinary objectives (e.g. objectives from both climate design and
structural design) in the literature of building design. They are known
as multi-disciplinary optimization (MDO), and reviewed here. Flager, F.
et al. [33] optimized the envelope and structure of a rectangular
classroom by using process integration and design optimization (PIDO)
software which is originally used in the aerospace industry. The ob-
jective is to minimize the capital cost of the steel structure and the
operational energy cost; the constraints include criteria about structural
safety, daylighting and architectural space; the design variables include
building length, orientation, window to wall ratio, and structural ele-
ment sections. Brown, N.C. and Mueller, C.T. [34] applied MOO to the
conceptual design of three long span structures. For all the three cases,
structural and energy performances were considered simultaneously,
and a set of geometrical design variables was used to define the
structure and envelope. Mueller, C.T. and Ochsendorf, J.A. [27] de-
veloped a MOO approach for considering both quantitative goals (e.g.
structural efficiency, cost, embodied energy) and qualitative require-
ments (e.g. aesthetics, designer intent) in conceptual design. It extends
existing interactive evolutionary algorithms for the increased inclusion
of designer preferences.

In addition, some researchers used the term “exploration” to express
the investigation of performance driven geometry using optimization
techniques. They may concern knowledge extraction, but the knowl-
edge extracted was not applied to modify the original optimization
problems. Turrin, M., von Buelow, P. and Stouffs, R. [35] and their later
study [36] optimized the geometry of a long span roof by using an
interactive GA, for minimizing incident radiation and maximizing
daylight factor in summer, and for maximizing both in winter. They
emphasized the knowledge extraction from sub-optima solutions, rather
than focusing only on optimal solutions. Janssen [37] optimized the
configuration of an apartment for minimizing solar radiation and
maximizing daylight. His main goal of using MOO techniques is not
finding optimal solutions, but rather discovering unexpected design
configurations and useful knowledge feedback.

3.2. Computational design exploration

Studies related to CDE are limited, compared with the other kind.
Nevertheless, there is a series of early studies that emphasize the im-
portance of design exploration theoretically. In these studies, the notion
of design exploration was defined differently based on varying design
models proposed. Gero [38] proposed a Function-Behavior-Structure
(FBS) model of design (i.e. design prototype); based on which he [11]
characterized exploration in design as a process of creating new or
modifying existing design state spaces (consisting of three subspaces of
function, behaviour and structure). Smithers et al. [39] developed an
Exploration-Based model of design; based on the model, Smithers,
Corne and Ross [12] considered that an exploration process involves

the construction and incremental extension of problem statements and
associated solutions. Maher, Poon and Boulanger [14,15] defined ex-
ploration as a phenomenon in design where problem spaces interact
and evolve with solution spaces over time, based on a Problem-Design
Exploration model.

Although the definitions of design exploration differ in detail, they
essentially agreed on the re-formulation or co-evolution of design
spaces and/or objective spaces, as well as on the dynamic or iterative
nature. Gero and Kannengiesser [40,41] articulated three types of re-
formulation of design state spaces, and indicated the dynamic nature of
designing. Logan and Smithers [9] pointed out that the formulation of a
design problem at any stage is not final; it needs to be re-defined in an
iterative manner, until the knowledge obtained has become insignif-
icant and the designer has reached the limits of his or her under-
standing on the problem. Maher, Poon and Boulanger [14,15] stated
that design is an iterative interplay to “fix” a problem from the problem
space and to “search” plausible solutions from the corresponding so-
lution space. In addition, Jonas [10] considered that finding and solving
design problems are a dynamic, cyclically self-sustaining process, in-
stead of a static and linear process; Recently, the iterative re-formula-
tion process was revisited by Arora [42] and demonstrated with some
simple engineering examples.

Other related issues, such as knowledge extraction, design creativity
etc. are among the early researchers' concerns. For the knowledge ex-
traction, Smithers et al. [39] believed that knowledge about the nature
of a design space should be obtained before goals can be well for-
mulated; Gero [38] suggested to bring together all the necessary
knowledge appropriate to a design situation in a conceptual schema
(i.e. design prototype) to provide the basis for the start and continua-
tion of the design. For the design creativity, Gero and Maher [43] stated
that creative design occurs when new design variables are introduced in
the design process; on the other hand, the introduction of new criteria
may be also beneficial for achieving creative design, according to Na-
vinchandra [7]. Moreover, Dorst and Cross [44] identified aspects of
creativity in design related to the formulation of design problems. And,
a set of studies in modeling creativity and knowledge-based creative
design were provided in [45].

Except for the early theoretical studies as mentioned above, there
are very few applications of CDE. The most typical ones are the appli-
cations of sensitivity analysis in building energy performance [46,47].
These studies aim to simplify (or re-formulate) the original design space
by screening out unimportant design variables. But, most of them did
not conduct the consequent optimization based on the simplified design
space, and often focused on a late design stage where most of the design
variables investigated are not geometry-related. Heiselberg et al. [48]
conducted a sensitivity analysis of primary energy use for an office
building. Various design variables, including very limited geometry-
related variables, were ranked according to their relative importance.
Shen and Tzempelikos [49] presented a global uncertainty and sensi-
tivity analysis of five performance metrics to seven selected design
variables for a private office. The information about the relative sen-
sitivity of each design variable was extracted for further study.

3.3. Current challenges

As indicated by the literature review, research challenges exist in
the application of the CDE to building design optimization. On one
hand, the early studies focusing on the theoretical development of de-
sign exploration models lack sufficient demonstration or application of
the proposed models via real-world building design projects. On the
other hand, the current studies applying sensitivity analysis to simplify
original design spaces are limited in terms of dealing with geometric
complexity and utilizing the simplified design spaces for the consequent
optimizations. When focusing on the conceptual architectural design
optimization, the application of the CDE is even less. The importance of
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optimization problem re-formulation, and further, its possible impacts
on the optimization results are often overlooked or not emphasized
enough.

4. Computational approach and platform

4.1. Computational approach

In response to the challenges, a new CDE approach is proposed that
highlights the knowledge-supported re-formulation of a changeable
initial optimization problem. It is applicable to the conceptual design
optimization of large-scale buildings (e.g. indoor sports buildings) in-
volving multi-disciplinary criteria and complex geometries.

The traditional CDO approach (Fig. 3, left) often considers a fixed
initial OPF which is assumed to be good and hence directly pushed into
the problem-solving. In contrast, the proposed CDE approach (Fig. 3,
middle) introduces a changeable initial OPF and inserts a CDE module
(i.e. shaded components), aiming to ensure a good OPF prior to the
problem-solving. The proposed overall approach can be implemented in
different ways, depending on the decisions made during the CDE pro-
cess. One possible way identified by solid arrows (Fig. 3, middle) is the
focus of this paper. It emphases the screening of existing variables
during the re-formulation process in order to narrow down design
possibilities; thus, it is particularly suitable for the case with relatively
large number of variables (like the case we are interested in this paper).
With a focus on the way identified, the proposed overall workflow in-
cluding the sub-phases of the first-level CDE and of the CDO (Fig. 3,
right) is described below.

4.1.1. Initial formulation of a changeable optimization problem
The workflow starts with the initial formulation of a changeable

design space and objective space (and the creation of parametric
models and simulation models) based on the a priori knowledge of
designers.

For defining the changeable design space, a hierarchical structure of
input variables can be used. In this structure, there are three types of
input variables, i.e. high-level (Type I), normal (Type II), and low-level
(Type III) variables. The high-level variable determines the selection of
low-level variables. In this way, the dimensionality of the design space
being investigated is changeable. As an example, for the case in Section
5, the high-level variable “RoofSteps” determines the selection of low-
level variables in the “Ridge Division” and “Front Row Division”. The

higher value of the “RoofSteps”, the more dimensions of the design
space, and vice versa.

For defining the initial objective space, initial objective variables
which constitute the dimensions of the space need to be specified. They
can be derived from many performance criteria, given the complexity of
multi-objective and multi-disciplinary design tasks. That is, the most
relevant criteria, the designers believe, are treated as initial objective
variables; while, the remaining criteria are treated as initial constraints.
And, the initial objective variables and constraints can be converted to
each other, once more information becomes available. Thus, the di-
mensions of the initial objective space are also subject to change. In
addition, it is worth noting that the initial objective variables are also
called “candidate” objective variables, as final objective variables
which constitute a final objective space can be selected from them; and
that the number of the candidate objective variables can be larger than
three, while the number of the final objective variables are often at
most three (as mentioned in Section 2.2).

4.1.2. First-level CDE: information and knowledge extraction
To better understand the performances of the initial optimization

problem, the designers can perform a parametric study and extract
useful information and knowledge in the first-level CDE. The para-
metric study involves three sub-phases (Fig. 3, right): (1) specifying
proper domains of the input variables and a design of experiments
(DoE) sampling strategy; (2) automating the geometry generation, si-
mulation run and data collection for each design sample; and (3) ana-
lysing the data collected and extracting useful information and
knowledge. Note that, if the data obtained in the second sub-phase is
not satisfying (e.g. too many unfeasible designs), the domains of input
variables could be adjusted, thus the whole parametric study procedure
is restarted. And, in the third sub-phase, correlation analysis (using
Pearson Correlation [50]) is applied to identify the output-output re-
lations, thus the most necessary objective variables; cluster analysis
(using Hierarchical Clustering [51]) and sensitivity analysis (using
Smoothing Spline ANOVA [52]) are applied to identify the input-output
relations, thus the most promising clusters of alternatives and the most
important design variables. Once the relevant information and knowl-
edge are extracted, the designers can apply them to the re-formulation
of initial optimization problem; or, they can also enter CDO directly, if
the information and knowledge extracted indicate that the initial op-
timization problem has already well formulated. In this paper, we are
interested in the former scenario.

Fig. 3. The traditional CDO approach (left); the proposed CDE approach (middle); the sub-phases of the first-level CDE and of the CDO (right).
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4.1.3. Second-level CDE: re-formulation of the initial optimization problem
Assisted by the extracted information and knowledge, the designers

can re-formulate the initial optimization problem in a more informed
manner in the second-level CDE. During the re-formulation, new vari-
ables (that are not included in the initial OPF) can be conceived and
added for increasing design creativity; and existing variables (that are
included in the initial OPF) can be screened out for reducing compu-
tational cost. In this paper, we are interested in the later scenario as
mentioned before. Thus, based on the results of the previous statistical
analyses, unnecessary objective variables identified are treated as
constraints; non-promising clusters of alternatives identified are left out
from further consideration; and unimportant design variables identified
are treated as constants. Note that, a prioritization or balance between
quantitative and qualitative goals may be needed for the identification
of promising clusters; and selecting the initial generation from the
promising clusters can be helpful for obtaining desired solutions. Once
the initial optimization problem is re-formulated and the initial gen-
eration is selected, the designers can conduct CDO without entering a
next CDE iteration (as there are no new variables to be added and no
new associated knowledge to be investigated in the case we are con-
cerned with).

4.1.4. CDO: solving of the re-formulated optimization problem
In the CDO, the re-formulated optimization problem is solved using

simulation-based optimization [3]. The optimization problem solving
follows a similar workflow as the first-level CDE (Fig. 3, right). The
major differences are that the CDO workflow implements optimization
algorithms (rather than systematic evaluations); and that the informa-
tion and knowledge extracted from the CDO are mainly about optimal
solutions (rather than design samples including sub-optimal solutions).
This paper compares the results of several re-formulated optimization
problems, aiming to verify the benefits of the proposed approach over
the traditional approach, and understand other factors that may affect
the behaviour of the proposed approach.

4.2. Computational platform

4.2.1. Software selection
The computational platform (Fig. 4) used in this research was pre-

viously developed based on a collaboration between TUDelft and ES-
TECO. It is meant to facilitate designers in achieving the proposed ap-
proach. To form the platform, two software (and related plug-ins) are
selected considering their appealing features. They are McNeel's Rhi-
noceros (Rhino) [53] and Grasshopper (GH) [54] for parametric

modeling and ESTECO's modeFRONTIER (MF) [55] for design optimi-
zation and exploration.

Grasshopper (integrated with Rhinoceros) is one of the most pop-
ular parametric modeling environments among architectural design
professionals, given its intuitive way of exploring complex geometries.
It includes various plug-ins for integrating building performance si-
mulation engines, such as, the environmental analysis plug-ins (e.g.
Ladybug and Honeybee [56]) for integrating daylight and energy si-
mulation engines, and the structural analysis plug-ins (e.g. Karamba
[57]) for conducting finite element calculations. Daysim [58] is a
daylight simulation engine developed based on the concept of daylight
coefficients [59] and the Perez sky luminance model [60], and vali-
dated by Reinhart and Walkenhorst [61]. It can simulate indoor illu-
minance under arbitrary sky condition. EnergyPlus [62] is a widely
used energy simulation engine developed by the U.S. Department of
Energy, which can model the energy consumption for heating, cooling,
ventilation, lighting and equipment loads etc.

modeFRONTIER is a process integration and automation platform
for multi-objective and multi-disciplinary design optimization. It allows
the integration with a variety of third party CAD/CAE tools; provides
efficient DoE sampling strategies and optimization algorithms; supports
parallel computing; and especially offers a number of easy-to-use data
analysis tools and user-friendly interfaces.

4.2.2. GH-MF integration
The version of the platform used in this research is an improved one.

As compared to previous versions, the new platform allows a direct
communication between the two software, i.e. a direct GH-MF in-
tegration. In fact, the development of the GH-MF integration went
through several stages where the communication between GH and MF
was improved or simplified. In previous studies [63–65], the necessity
and potentials of the GH-MF integration in supporting the CDO and
CDE processes were shown, assisted by a prototype plugin (though it
involves manual initiation and unstable behaviour); and later in [66], a
new GH-MF integration plugin was developed which overcomes some
limitations of the prototype and enables indirect communication be-
tween GH and MF via external files. In this paper, an improved version
of the precedent is used to better support the proposed approach. It
allows MF to directly detect or interact with the input and output
variables in GH via an API, without the need to specify external file
templates by GH (as required in the previous version). Thus, it much
simplifies the preparation of the GH file.

The direct GH-MF integration is key to the computational platform,
which facilitates designers in achieving the proposed approach. Fig. 4

Fig. 4. The computational platform integrating Grasshopper and modeFRONTIER.
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illustrates how the GH-MF integration assists the automated iterative
processes of geometry generation, simulation run and data collection;
Fig. 5 (top) shows the process automation interface. In this automation,
modeFRONTIER is the driver which initiates the input data of design
samples and determines when to stop; Grasshopper generates geome-
tries and the related simulation engines calculate performances to ob-
tain the output data. All the data (including numerical data, images of
geometries and simulation results) are stored in the database for further

analysis. Moreover, the GH-MF integration leverages other advantages
of both GH and MF. For instance, the modeling and simulation tools
help to create parametric simulation models featuring a changeable
design space; the efficient DoE sampling strategies facilitate to generate
proper sets of design samples; the easy-to-use post-processing tools (like
correlation analysis, cluster analysis, sensitivity analysis and various
data visualization charts) help to extract relevant information and
knowledge; and the user-friendly interface, shown in Fig. 5 (bottom),

Fig. 5. Interface for process automation, i.e. automating the iterative processes of geometry generation, simulation run and data collection (top); interface for post-
processing, i.e. monitoring geometric variations while exploring numerical data and other simulation results (bottom).
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allows to monitor geometric variations while exploring numerical data
and other simulation results, which is beneficial for the balance be-
tween quantitative and qualitative goals etc.

5. Case study

In this section, the proposed approach is applied to a real-world
project as a case study, assisted by the GH-MF platform. The back-
ground of the project is introduced in Section 5.1; and the formulation
of the initial and changeable optimization problem is presented in
Sections 5.2 and 5.3.

5.1. Project description

The project is an indoor sports building in Wuhan University in
China (Fig. 6), designed by Sun Yimin Studio of the Architectural De-
sign and Research Institute of South China University of Technology.
The site is located in a historic district and in a subtropical climate zone.
Given this context, the design team decided to respect the forms of
Chinese traditional buildings and to take advantages of natural day-
light; thus, a stair-like roof concept with clearstories was proposed at
the very beginning of the conceptual design. The designers argued that
proper architecture-, climate- and structure-related performances can
be achieved by carefully designing the geometries associated with the
concept. Several questions arose with this concept:

(1) What are the most meaningful performance criteria to be con-
sidered as final objectives?

(2) How many “steps” of the roof are more promising to ensure desired
overall performance?

(3) Would the layout of the grandstand, the height of the volume, the
division of the roof, the depth of overhang shadings, and the geo-
metry of the roof structure affect the overall performance? If so,
how and to what extent they may affect?

(4) How to obtain quantitatively well-performing solutions with de-
sired qualitative performance?

To respond to these questions, the design team had to use rules of
thumb, as this study began to be involved in the project when the
concept had been finalized and was ready for the design development
[67]. Nevertheless, it is worth investigating the potential improvement
of the concept by applying the proposed approach, thus, the project is
assumed being in the conceptual design phase. Moreover, this study
focuses on the main competition hall where the main court and seating

are accommodated (excluding auxiliary space like training hall, en-
trance hall, management offices etc.), and it avoids to use electric
skylights which may be expensive and difficult to maintain on the
rooftop.

5.2. Design variables and domains

There are a wide range of geometric variations, although focusing
on one given concept (Fig. 7, top). The initial design variables and
domains are listed in Table 1, based on which the corresponding
parametric model is created (Fig. 7, bottom). All the design variables
are geometry related and independent. They are grouped into nine fa-
milies and parametrically define four integrated parts of the building,
i.e. the geometry of the grandstand, building envelope, external shading
and roof structure. Given the symmetry of the main competition hall
along X and Y axes, a quarter of it is defined. Moreover, the benchmark
configuration is also shown in Table 1, which is most like that of the
real-world project.

For the geometric parameterization of the grandstand, a computa-
tional tool based on shape grammar [68] is used. Out of many possible
design variables for the grandstand design, the number of maximum
seat rows of the upper tier (i.e. the variable “SeatRows”) is selected. It
determines how far the upper tier (and the eaves of the sub-roofs) ex-
tends horizontally and vertically. The total extension (in both hor-
izontal and vertical directions) is equally divided by the number of sub-
roofs, forming the jagged, saw-toothed outline of the upper tier (and of
the sub-roofs).

For the geometric parameterization of the stair-like sub-roofs, the
length of the ridge of each sub-roof (denoted by Lri) and the length of
the upper tier front row under each sub-roof (denoted by Lfi) are de-
termined by the variables in the “Ridge Division” and “Front Row
Division” and the variable “RoofSteps”, according to Eqs. (1) and (2).
And, the elevations of the ridges of the sub-roofs are calculated using
the variables in the “Roof Height”, given the equal vertical distance
between each ridge. All these variables (including “SeatRows”) define
the geometries of the sub-roofs. Their bounds and intervals have been
fine-tuned, to ensure rich variability of the roof, while avoiding a too
small division in each end of the sub-roofs or a too small vertical dis-
tance between the sub-roofs (for clearstories).

= ∗
∑ =
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Fig. 6. Exterior and interior perspectives of the indoor sports building project in Wuhan University in China (left); first level plan (middle); second level plan (right).
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where
Lr=half-length of the entire ridge (constant value: 48m).
Lf=half-length of the entire upper tier front row (constant value:

44.5 m).
Ri or Rj= the portion of the ridge of sub-roof i or j (i.e. R1 to R5).
Fi or Fj= the portion of the upper tier front row under sub-roof i or j

(i.e. F1 to F5).
n=number of roof steps (i.e. RoofSteps).
The hierarchical structure of design variables exists due to the in-

clusion of the Type I variable “RoofSteps” (Table 1, in dark gray). The
value of this variable determines the selection of the Type III variables
in the “Ridge Division” and “Front Row Division” (Table 1, in light
gray). In this way, the geometric complexity of the roof can be readily
changed, which can expand or shrink the design space and affect si-
mulation time.

For the geometric parameterization of the roof structure, the half
span is divided into three parts along X axis according to the structural
principle. The horizontal length of each part can be changed by ma-
nipulating the variable “CentreSpan” or “SideSpan”. The variable
“MiddleSpan” defines the position of middle secondary beams (the
lower bound represents the position closest to the centre and vice
versa). Note that the “CentreSpan” and “SideSpan” are used identically
for all sub-roofs; while the “MiddleSpan” is for the lowest sub-roof only
(the middle secondary beams for the higher sub-roofs are forced to
align with that for the lowest sub-roof on XY plane). The vertical dis-
tance between beams (i.e. BVD1 to BVD5) and the number of repeated
units (i.e. RUN1 to RUN5) are defined separately for each sub-roof. The
bounds and intervals of all the variables are set based on certain
structural rules of thumb to avoid unfeasible design solutions. Note that
the width of each repeated unit is constrained in between 3 m and 9m,

which prevents that a too large or too small repeated unit number is
selected.

The Type I variable “RoofSteps” affects the geometric para-
meterization of the roof structure, as the main structural members are
generated by taking sub-roof surfaces as reference. When the number of
sub-roofs changes, the structural members attached to the sub-roofs can
be added or removed. Accordingly, different sets of the Type III vari-
ables in the “Beam Vertical Distance” and “Repeated Unit Number”may
be selected.

For the geometric parameterization of the external shading, the sub-
roof surfaces are also taken as reference and extended outwards.
Nevertheless, the variables in the “Shading Dimension” are not affected
by the Type I variable “RoofSteps”, as they are used identically for all
the sub-roofs.

5.3. Objective functions and constraints

Multiple performance criteria from different building disciplines are
considered simultaneously in this case. The initial objective functions
and constraints are listed in Table 2, based on which the corresponding
simulation models are created. Note that the criteria ensured by the
parametric or simulation models are also listed. The disciplines in-
volved include architecture, climate (daylight, thermal and energy) and
structure. For each discipline, the corresponding simulation setup and
the performance criteria considered are described below.

5.3.1. Architecture
For the conceptual architectural design of indoor sports buildings,

both quantitative (or hard) and qualitative (or soft) criteria need to be
considered. The quantitative criteria can be fulfilled via calculating the
corresponding performances and comparing them with desired perfor-
mance constraints; they can also be achieved by setting desired

Fig. 7. Geometric variations based on the stair-like roof concept (top); the parametric model integrating the grandstand, building envelope, external shading and roof
structure, when the “RoofSteps” equals to four (bottom).
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performance constraints in parametric or simulation models. And, the
fulfilment of the qualitative criteria (e.g. culture, beauty, emotions,
etc.) often involves the integration of subjective human preferences.

To ensure the basic function of indoor sports buildings, some im-
portant quantitative criteria regarding the grandstand design and
playing area need to be fulfilled in this case. For the grandstand design,

C-value is a crucial criterion to ensure the view quality of spectators.
Assisted by the parametric grandstand design tool [68], a C-value of
60mm is set as an input to generate various variations of grandstands in
this case. Thus, this criterion is always fulfilled during the generation
process. And, the number of seats (i.e. the capacity) of the grandstand is
calculated by the tool as one of the important performance feedback.

Table 1
Initial design variables and domains (Type I, II and III variables are marked by dark, medium and light gray respectively).

Variable
family

Variable full name Variable short
name

Data
type

Lower bound Upper bound Intervals Benchmark

Grandstand Seat row
number

Number of maximum seat rows (of the
upper tier)

SeatRows Int. 15 (19) 20 (24) 1 11

Building
envelope

Roof step
number

Number of roof steps RoofSteps Int. 2 5 1 2

Roof height Height of the highest ridge (m) TopHeight Float 25.00 (27.00) 30.00 (32.00) 0.01 26.00

Height of the lowest ridge (m) BottomHeight Float 15.00 (17.00) 20.00 (22.00) 0.01 24.00

Ridge
division

Portion of the ridge of sub-roof 1 R1 Float 0.20 0.90 0.01 0.9

Portion of the ridge of sub-roof 2 R2 Float 0.20 0.90 0.01 0.2

Portion of the ridge of sub-roof 3 R3 Float 0.20 0.90 0.01 –

Portion of the ridge of sub-roof 4 R4 Float 0.20 0.90 0.01 –

Portion of the ridge of sub-roof 5 R5 Float 0.20 0.90 0.01 –

Front row
division

Portion of the front row under sub-roof 1 F1 Float 0.20 0.90 0.01 0.9

Portion of the front row under sub-roof 2 F2 Float 0.20 0.90 0.01 0.2

Portion of the front row under sub-roof 3 F3 Float 0.20 0.90 0.01 –

Portion of the front row under sub-roof 4 F4 Float 0.20 0.90 0.01 –

Portion of the front row under sub-roof 5 F5 Float 0.20 0.90 0.01 –

External
shading

Shading
dimension

Overhang depth in X axis (m) OverhangX Float 0.10 3.00 0.01 3.80

Overhang depth in Y axis (m) OverhangY Float 0.10 3.00 0.01 2.20

Roof
structure

Span
partition

Centre Span (m) CentreSpan Float 0.50 5.00 0.01 4.20

Middle Span Partition (fraction) MiddleSpan Float 0.10 0.90 0.01 0.50

Side Span (m) SideSpan Float 0.50 5.00 0.01 4.20

Beam
vertical
distance

Beam vertical distance for sub-roof 1 (m) BVD1 Float 2.00 7.00 (6.00) 0.01 4.60

Beam vertical distance for sub-roof 2 (m) BVD2 Float 2.00 7.00 (6.00) 0.01 2.00

Beam vertical distance for sub-roof 3 (m) BVD3 Float 2.00 7.00 (6.00) 0.01 –

Beam vertical distance for sub-roof 4 (m) BVD4 Float 2.00 7.00 (6.00) 0.01 –

Beam vertical distance for sub-roof 5 (m) BVD5 Float 2.00 7.00 (6.00) 0.01 –

Repeated
unit number

Repeated unit number for sub-roof 1 RUN1 Int. 1 5 1 5

Repeated unit number for sub-roof 2 RUN2 Int. 1 5 1 1

Repeated unit number for sub-roof 3 RUN3 Int. 1 5 1 –

Repeated unit number for sub-roof 4 RUN4 Int. 1 5 1 –

Repeated unit number for sub-roof 5 RUN5 Int. 1 5 1 –
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Given that the capacity of the lower tier is unchangeable, a constraint
value is used for the upper tier to include>3600 seats. Moreover, to
ensure the clear space for holding various sports activities, the clear
height above the court (i.e. from the bottom of the lowest structural
elements to the court) is checked against the minimum requirement of
15m.

To achieve the qualitative criteria, the subjective human pre-
ferences are considered in this case. Specifically, the preference on the
number of roof steps from the aesthetics perspective will be integrated
during the decision of the Type I variable “RoofSteps”. This leaves
sufficient flexibility for human designers to re-formulate optimization
problems subjectively.

5.3.2. Climate (daylight, thermal and energy)
For climate design, reducing operational energy as much as possible

while improving or maintaining daylight and thermal comfort are
common concerns crucial for achieving the low-cost daily operation of
indoor sports buildings. To obtain the climate-related performance
feedback, annual hourly daylight and energy simulations are performed
by Daysim [58] and EnergyPlus [62] respectively, via Ladybug and
Honeybee [56] which connects GH geometries with the simulation
engines.

To setup these simulations for this case, it requires some shared
settings, including the same weather file of Wuhan derived from
Chinese Standard Weather Data (CSWD) [69], the same geometry of the
competition hall that has been converted to meshes properly to save
simulation time, and the same occupancy schedule (Fig. 8) that con-
siders both educational or recreational use (i.e. off-peak use from
Monday to Saturday) and competition use (i.e. peak use on Sunday).
Besides, for the daylight simulation, two lighting control zones are
defined based on an analysis grid with a spacing of 6m (Fig. 9, left),
which cover the central and surrounding areas of the court respectively.
In these zones where different activities may occur, different lighting

control types and lighting power densities are assigned. And, for the
energy simulation, EnergyPlus's Ideal Loads Air System is used to study
the energy performance of the building without modeling a full HVAC
system. It can be considered as an ideal unit that mixes air, and then
adds or removes heat and moisture at 100% efficiency [70]. The
boundary condition is set (Fig. 9, right), and the setpoint and setback
temperatures are assigned. Moreover, other assumptions, such as op-
tical and thermal material properties etc., are also made for the daylight
and energy models based on related building codes or rules of thumb, as
listed in Table 3. By running the simulations, the internal illuminances
are calculated at each test point for 8760 h of a year; and the heating
and cooling loads are calculated and scaled according to a generic
heating system efficiency of 0.85 and a cooling system COP of 3.

Note that Daysim is utilized here in conjunction with EnergyPlus for
different reasons. First, EnergyPlus has shown a significant limitation in
calculating internal illuminances, as it tends to overestimate the
amount of daylight in indoor environments [77]. Second, Daysim can
model automated lighting control and provide hourly lighting sche-
dules of different lighting zones for EnergyPlus to calculate the final
energy use [24,78]. The lighting schedule can describe the control of a
continuous dimming lighting system. It consists of a list of lighting
power scalars (denoted by L) calculated depending on the availability of
daylight, according to Eq. (3). In this case, a list of values ranging from
0.2 to 1 are obtained as the lighting schedule for each lighting zone.
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where
L= lighting power scalar.
BLF (Ballast Loss Factor)= percentage of peak energy used by a

dimming system when fully dimmed down (constant value: 20%).
LS (Lighting Setpoint)= illuminance target (constant values: 300 lx

Table 2
Objective functions and constraints.

Disciplines Performance criteria Objective functions Constraints (to be calculated) Constraints (set in models)

Architecture C-value – – 60mm
Number of seats in the upper tier – >3600 –
Minimum space check (SC) – >15m –

Climate Daylight Modified Useful Daylight Illuminance (UDImod) Maximization – –
Modified Uniformity Ratio (URmod) Maximization – –

Thermal Operative temperature – – See Table 3

Energy Energy Use Intensity (EUI) Minimization – –

Structure Mass per square meter Minimization – –
Maximum utility check (UC) – <0.9 (failed members<2% of the total) –
Maximum displacement check (DC) – <0.3m –

Fig. 8. Off-peak use without spectators from Mon. to Fri. (blue) and on Sat. (green); peak use with spectators on Sun. (Orange). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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and 200 lx for lighting control group 1 and 2 respectively).
Emin=minimun daylight illuminance in the current lighting zone.
A modified Useful Daylight Illuminance (UDImod), or called spatial

UDI, is used as a maximization objective function in this case. Daylight
can be beneficial to sports halls if properly designed and well con-
trolled. To measure the availability of daylight, the original Useful

Daylight Illuminance (UDI) is often considered useful as it also attempts
to incorporate factors related to overheating or glare risk. It is calcu-
lated based on the internal illuminances at all time steps (but at a
specific analysis point); and, it represents the annual occurrence of the
“useful” daylight illuminances that fall within the range of 100–2000 lx
[79], that is, the percentage of time during occupied hours that an
analysis point receives hourly illuminances between 100 and 2000 lx.
Given that the original UDI is defined based on one specific analysis
point, it is not sufficient to understand the overall daylighting condition
of a large space (e.g. the 40m ∗ 70m court in question where 66 ana-
lysis points are needed). Thus, to consider multiple analysis points,
UDImod is defined as the percentage of floor area (represented by the
percent of analysis points) that receives the “useful” illuminances (i.e.
100–2000 lx) for at least a specified percentage of occupied hours. Note
that this percentage of occupied hours is initially set to 60% in this case
(i.e. UDImod-60), which can be changed when needed. By using the
UDImod, the overall daylighting condition (i.e. daylight availability) of
the entire court is described by a single value, which facilitates the use
of the criterion in optimization.

A modified Uniformity Ratio (URmod) of illumination, is also used as
a maximization objective function in this case. The uniformity of illu-
mination is crucial for sports as non-uniform conditions can make it
more difficult to perceive fast-moving balls. To measure the uniformity,
the original Uniformity Ratio (UR) is often used. It is calculated based
on the internal illuminances at all analysis points (but at a specific time
step) and expressed as the ratio of minimum to mean horizontal illu-
minance. To consider the daylight uniformity on an annual basis, the
URmod averages the UR values obtained at different time steps of a year
(when daylight is available).

Energy Use Intensity (EUI), as a basic metric to benchmark a buil-
ding's energy efficiency, is often used as a minimization objective
function. It is defined as the annual energy consumption per unit of
floor area (kWh/m2), facilitating direct comparison with other build-
ings. Here, site energy for heating, cooling, lighting and equipment is
considered. Moreover, operative temperature, as a simplified measure
of human thermal comfort, is ensured by the settings of setpoint and
setback temperatures in this case (See Table 3).

5.3.3. Structure
For large-span structural design, reducing the weight (or embodied

energy) of the roof structure as much as possible while fulfilling other

Fig. 9. Two lighting control zones of the court for daylight simulation (left); boundary conditions of the main competition hall for energy simulation (right). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Modeling assumptions for the daylight and energy models. Values from
[71–76].

Daylight and energy model parameter Value

Wall reflectance 0.55
Floor reflectance 0.30
Roof reflectance 0.75
Window Transmittance 0.40

Lighting control type
(lighting control group 1)

Always on during occupied hours,
automatic dimming, 300-lx target

Lighting control type
(lighting control group 2)

Always on during occupied hours,
automatic dimming, 200-lx target

Lighting power density
(lighting control group 1)

15.00W/m2

Lighting power density
(lighting control group 2)

9.00W/m2

Wall U-value 0.72W/m2 K
Ground floor U-value 3.70W/m2 K
Roof U-value 0.34W/m2 K
Window U-value 2.60W/m2 K
Window SHGC 0.37
Window VT 0.62

Cooling thermostat setpoint
temperature

27 °C

Cooling thermostat setback
temperature

30 °C

Heating thermostat setpoint
temperature

17 °C

Heating thermostat setback
temperature

14 °C

Occupancy density 0.92 person/m2

Equipment power density 2W/m2

Ventilation rate 15m3/h person
Infiltration rate 4.5m3/hm2
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structural performance constraints are traditional concerns crucial for
reducing the initial investment of indoor sports buildings. To obtain the
structure-related performance feedback, finite element analysis (FEA) is
conducted by Karamba [57].

In this case, the large-span steel roof is the main load-bearing
structure, which approximately spans over 91.6m between the farthest
supports (depending on the extension of the upper tie). Fig. 10 shows
the typical structure for one sub-roof. The structural system features a
one-way span steel frame in diamond patterns in two layers. Steel
cables are applied in the lateral direction providing lateral stability at
multiple locations. A space truss is used at the step area where two sub-
roof surfaces at different elevations interface with each other. Ac-
cording to the structural function and practical engineering con-
siderations, the structural elements are grouped into different types, as
shown by the color coding.

For the FEA simulation, mechanical properties of structural ele-
ments and related analysis parameters are set up. The definition of
sections is based on the element groups. Each group will be only as-
signed with one identical section to simplify the connection design and
to reduce the number of different joints. For this, a list of standard steel
section profiles (including HE beam and rod section profiles) is pre-
pared for each group, from which the optimum section will be selected
according to EN1993 by a local optimization module in Karamba; S355
steel is used as the steel grade for all the section profiles. In addition,
buckling information is also defined based on the element groups. In
order to increase the computational speed and simplify the model, some
unimportant secondary members connecting the main beams are not
modelled directly in the buckling calculation. To account for this, a
reduction factor on the buckling length is introduced for the lateral
torsional buckling and the minor axis bending buckling calculation of
the main beams. Moreover, the single load case and load combinations
are defined based on Eurocode, including the most typical loads such as
the structure's self-weight, super imposed dead load, wind load and
snow load.

The roof structure is designed to withstand the load combinations
and satisfy the Ultimate Limit State (ULS) and Service Limit State (SLS)
criteria. The corresponding performance constraints are applied to both
criteria in order to ensure the structural safety. They are the maximum
utility limit of 0.9 for ULS strength check and maximum vertical

displacement limit of 0.3 m for SLS deformation control. Based on the
constraints, the unity check and displacement check are performed
respectively for each member. A code checking module in Karamba
based on EN1993 is used for the unity check. It has been observed that
the system will consider a design as an unfeasible solution even if there
is only one member that fails the unity check. In fact, from a practical
point of view, a small amount of the structural members that slightly go
beyond the maximum utility limit are allowed, as this can be easily
solved afterwards (e.g. by strengthening locally). Thus, to increase the
total number of feasible solutions and not to miss many potential de-
signs, a tolerance number of 2% (of the total members) has been in-
troduced for the unity check.

6. CDE results

Having defined the initial and changeable optimization problem,
two levels of CDE are conducted according to the proposed approach.
The CDE results are presented in this section. Section 6.1 briefly de-
scribes the CDE workflow establishment and data collection (i.e. the
first two sub-phases of the first-level CDE); Section 6.2 presents the
results of information and knowledge extraction derived from data
analysis (i.e. the last sub-phase of the first-level CDE); and Section 6.3
shows the re-formulated optimization problem based on the informa-
tion and knowledge extracted (i.e. the second-level CDE).

6.1. CDE workflow establishment and data collection

To establish the CDE workflow (Fig. 11), Uniform Latin Hypercube
(ULH) [80] sampling strategy is applied to generate 500 design sam-
ples, which guarantees a relatively broad and uniform distribution of
samples over each input dimension. Then, the multidisciplinary simu-
lations of each sample are automated sequentially by using the GH-MF
integration, and the simulations are run on a 6-core and 12-thread CPU
computer for about 51 h. All the numeric input and output data and
images showing the geometries and simulation results are stored in a
database.

According to the summary of the initial DoE data set (Table 4),
unfeasible solutions account for a major portion (i.e. 87.6%) of the 500
design samples. They are mostly due to the violation of architectural

Fig. 10. Typical structure for one sub-roof.
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constraints, namely, the constraints for the number of seats in the upper
tier (i.e. Con_NOS) and the clear height above the court (i.e. Con_SC).
Given this fact, it is necessary to increase the portion of feasible solu-
tions by fine-tuning the domains of some design variables. In this case,
the domains of SeatRows, TopHeight, BottomHeight and BVD are ad-
justed (as indicated by the values in parentheses in Table 1), to obtain
more feasible solutions that satisfy Con_NOS and Con_SC. Moreover, by
observing the distribution of the initial output data, we find that the
potential objective variable UDImod-60 can be readily achieved, as most
of its values are high (Fig. 12, left). This, in fact, indicates that a stricter
criterion (or a higher goal) could be expected, thus the specified per-
centage of occupied hours (for which the “useful” illuminances are
achieved) is changed to 65% (i.e. UDImod-65).

A second DoE data set (Table 4) is obtained by repeating the pre-
vious processes. As expected, in this data set, unfeasible solutions are
reduced significantly and the proportions of design samples violating
different constraints become more even. Moreover, compared to the
UDImod-60 values, the UDImod-65 values obtained are relatively low
(Fig. 12, right), which leaves room for further improvement in later
optimization. This data set will be used for further data analysis and
knowledge extraction.

6.2. Data analysis and knowledge extraction

Data analysis, information and knowledge extraction are key to the
first-level CDE. In this section, complex relationships between variables,
including output-output, (Type I) input-output and (Type II & III) input-
output relationships, are unveiled by correlation analysis, cluster ana-
lysis and sensitivity analysis respectively. Some of the information ex-
tracted is familiar to the designers and relatively easy to interpret in
disciplinary contexts, while some is not. In the former scenario, the
designers' educated guesses based on a prior knowledge can be con-
firmed quantitatively; while in the latter scenario, knowledge un-
familiar to the designers can be discovered.

6.2.1. Correlation analysis and output-output relationships
Knowing the output-output relationships is helpful for the objective

variable screening (i.e. identifying the most meaningful performance
criteria to be considered as final objectives). But, it is hard for designers
to know the exact correlations between output variables quantitatively
based on rules of thumb. What makes it even harder is that there may
be many (i.e. more than three) candidate objective variables being
considered at the same time, and that the correlations are subjected to

Fig. 11. CDE workflow for the case.

Table 4
Summary of DoE data sets.

Feasible
solutions

Unfeasible
solutions

Violation of constraints

Con_NOS Con_SC Con_UC Con_DC

Initial DoE data set 62 (12.4%) 438 (87.6%) 261 367 57 21
Second DoE data set 230 (46.0%) 270 (54.0%) 52 169 75 30

Fig. 12. Distribution of the UDImod-60 values (left); distribution of the UDImod-65 values (right).
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change due to the factors like the adjustment of input variable domains,
the selection of sample points, and the definition of criteria etc.

Correlation analysis (using Pearson Correlation [50]) is performed
to investigate the output-output relationships in this case. For this
analysis, four candidate objective variables (i.e. Obj_EUI, Obj_Mass,
Obj_UDImod-65, Obj_URmod) are used. The inter-correlations between
pairs of the candidate objective variables are visualized by using a
correlation matrix chart (Fig. 13, top). In this chart, the correlation
coefficients and corresponding 2D scatter plots are shown below and
above the diagonal respectively; and the discrete probability density
functions and related statistical summary are presented on the diagonal.

The following information is extracted from the correlation analysis
results: (1) Obj_EUI does not correlate with the other three variables
(|correlation coefficient| < 0.1); (2) Obj_Mass has a weak correlation
with Obj_UDImod-65 and Obj_URmod (0.1 < |correlation coefficient| <
0.3); (3) Obj_UDImod-65 has a medium correlation with Obj_URmod

(0.3 < |correlation coefficient| < 0.5); and (4) the dispersion of
UDImod-65 is relatively large in this case, as indicated by the probability
density functions and variation coefficients (i.e. the standard deviation
divided by the mean) of the four candidate objective variables.
Moreover, by zooming into the 2D scatter plot of the most correlated
variables (Fig. 13, bottom), it is showed that Obj_UDImod-65 increases

along with the increase of Obj_URmod to certain degree.
The information extracted from the correlation analysis is relatively

easy to interpret in disciplinary contexts. First, objective variables from
different disciplines can be not correlated or weakly correlated, as they
may be the functions of many different design variables. In this case,
the climate-related objective variables (i.e. Obj_EUI, Obj_UDImod-65,
Obj_URmod) are the functions of variables defining the building en-
velope, while the structure-related objective variable (i.e. Obj_Mass) is
calculated based on the variables defining the roof structure (though it
also takes roof surfaces of the building envelope as reference). Thus,
these two kinds of objective variables are probably not correlated or
weakly correlated (as confirmed by the information obtained). Second,
some objective variables from the same discipline can be correlated in
some circumstances. In this case, the better the UDImod-65 performance
the more likely that the court can avoid too low illuminance levels (i.e.
lower than 100 lx), which prevents to get uneven distribution of day-
light according to the definition of URmod. In this sense, Obj_UDImod-65

may be positively correlated with Obj_URmod to some extent (which is
confirmed as well). Nevertheless, not all objective variables from the
same discipline are necessarily correlated. For instance, good UDImod-65

performance does not necessarily indicate good EUI performance. This
may be because the energy saving from utilizing daylight can be offset

Fig. 13. Correlation matrix chart of the four candidate objective variables (top); 2D scatter plot of Obj_UDImod-65 and Obj_URmod (bottom).
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or overcompensated by the energy used for removing excessive heat
gain, given the relatively wide range of the “useful” illuminance (i.e.
100–2000 lx).

6.2.2. Cluster analysis and (type I) input-output relationships
Given that the Type I design variable “RoofSteps” is crucial in this

case (see Section 5.2), it is important to know its proper value in ad-
vance, i.e. how many “steps” of the roof are more promising to ensure
desired overall performance. But, it is not easy to get an insight into the
possible impacts of this variable by going through each alternative one
by one (due to the large number of the alternatives). Instead, it would
be helpful to group the alternatives into manageable and meaningful
clusters (where the alternatives having similar configurations and per-
formance trends gather together), namely, to simplify large amounts of
multi-dimensional data.

Cluster analysis (using Hierarchical clustering [51]) is performed to
investigate the (Type I) input-output relationships in this case. Twenty
clusters are created based on the “RoofSteps” and the Obj_EUI, Obj_-
Mass, Obj_UDImod-65 (which will be selected as final objective variables
in Section 6.3). The distribution of the clusters is visualized by using a

clustering parallel coordinate chart and a 3D scatter plot (Fig. 14.1).
The chart represents each cluster with a centre line and a colored band
which respectively indicates the mean (of the variables for the cluster in
question) and the confidence interval (of the mean). The corresponding
3D scatter plot shows the clusters in the objective space using the same
color coding as in the chart. The pie chart (in Fig. 14.3) shows the
number of alternatives in each cluster.

The following information is extracted by manipulating the filters of
the variables in question and observing the patterns of the concise
clusters. First, by manipulating the filter of the “RoofSteps”, the impacts
of this variable on the overall performance can be captured quickly. As
shown in Fig. 14.2, the clusters of alternatives having 2 and 3 roof steps
perform relatively good in EUI and UDImod-65 performances; while the
clusters of alternatives having 3 and 4 roof steps perform relatively
good in Mass performance. Second, by manipulating the filters of the
Obj_EUI, Obj_Mass and Obj_UDImod-65 towards desired directions, the
clusters achieving good EUI, Mass and UDImod-65 performances can be
filtered. Note that the closer a filter gets to the end of its desired di-
rection, the more important the objective variable is. In this way,
human preference on the relative importance of each quantitative goal

Fig. 14.1. All twenty clusters created via the cluster analysis.

Fig. 14.2. The filtered clusters with a similar number of roof steps.
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is integrated (without requiring transforming the problem into a single
objective optimization problem, as in usual prior preference articula-
tion approaches). As shown in Fig. 14.3, four clusters are filtered which
achieve relatively low EUI and Mass values and high UDImod-65 value;
and most of the alternatives in the filtered clusters have 3 roof steps,
while some alternatives have 2 or 4 roof steps. The above findings are
consistent, indicating that the alternatives having 3 roof steps are
generally more likely to achieve the desired quantitative goals. And,
purely from the perspective of achieving the quantitative goals, some
alternatives having 2 roof steps (i.e. CLUSTER_5) also perform very
well, even better than some alternatives having 3 roof steps (e.g.
CLUSTER_0) in all the three quantitative goals.

The information extracted from the cluster analysis seems un-
familiar to the designers in this case. Specifically, by relying on the
educated guesses, the designers may only know very general informa-
tion. For instance, the variation of the roof steps can change the loca-
tions of the clearstories and thus may affect the EUI and UDImod-65

performances; it may also affect the Mass due to the significant change
in structural topology. But the information provided by the cluster
analysis gives a much clear view on how the value of the “RoofSteps”
may affect the achievement of the three performance goals, namely, the
relation between building shape and quantitative performances. In fact,
to investigate this relation, some traditional parameters characterizing
building shape can be used; and the related knowledge is known. For
instance, “shape coefficient” (i.e. the ratio between the external sur-
faces and the inner volume of a building) was often used in energy
studies; and it was believed that the energy use is inversely proportional
to the compactness (i.e. weak shape coefficient) in a severely cold and
scarcely sunny weather [81,82]. Nevertheless, in many real practices,
various other design variables may be used as well to characterize
building shape depending on specific design concepts, such as the
“RoofSteps” in question. Architects tend to manipulate this kind of
variable (that is directly associated with the concept) more often during
the conceptual design; but lack of sufficient knowledge about the re-
lation between the case-dependent design variable and quantitative
performances. In this regard, the unfamiliar information extracted from
the cluster analysis can possibly lead to new knowledge.

6.2.3. Sensitivity analysis and (type II and III) input-output relationships
Knowing the (Type II and III) input-output relationships is helpful

for the design variable screening (i.e. screening out unimportant design
variables that contribute the least to the variation of objective vari-
ables). But, it is hard for designers to know the relative importance of

each design variable on objective variables quantitatively based on
rules of thumb, especially when the number of design variables is large
and/or the interaction effects are considered.

Sensitivity analysis (using Smoothing Spline ANOVA [52]) is per-
formed to investigate the (Type II and Type III) input-output relation-
ships in this case. For this analysis, the design variables excluding
BVD4, BVD5, F4, F5, R4, R5, RUN4, RUN5, RoofSteps are used as
“factors” (given that RoofSteps= 3); and the Obj_EUI, Obj_Mass, Ob-
j_UDImod-65 are used as “responses”. Both main effects and interaction
effects are considered. A factor with a main effect or a pair of factors
with an interaction effect is called a “term”. The relative importance
(i.e. the percentage of effect or contribution) of each term to the global
variance of a response is visualized by a column in an effect column
chart; and the curve in the chart represents the cumulative effect of the
terms in question (Fig. 15).

The following information is extracted from the sensitivity analysis
results: (1) the contributions of the terms on Obj_EUI are the most di-
verse, the most important two design variables (i.e. OverhangY and
TopHeight) are responsible for the major portion (i.e. 37.9% and 33.9%
respectively) of the variation of Obj_EUI; (2) the contributions of the
terms on Obj_Mass are the least diverse, the most important design
variable (i.e. MiddleSpan) is only responsible for a small portion
(i.e.10.8%) of the variation of Obj_Mass, while the remaining terms
account for the major portion as a whole; (3) the pattern of the con-
tributions on Obj_UDImod-65 is more similar to that on Obj_Mass, the
most important three design variables (i.e. TopHeight, BottomHeight
and R1) account for 14.2%, 11.2% and 10.5% of the overall contribu-
tion respectively, while the remaining terms as a whole account for a
larger portion (although each of them contributes a very small portion).
These findings are indicated by the different curvatures of the cumu-
lative effect curves (Fig. 15, top). Moreover, the interaction effects are
non-negligible, especially for Obj_Mass and Obj_UDImod-65, as indicated
by the many interaction terms (Fig. 15, bottom).

By filtering out less important terms to a degree that maintains a
cumulative effect of about 80% (Fig. 15, bottom), some design variables
important for each response emerge (as indicated in gray in Table 5).
Note that if an interaction effect is important, all the involved design
variables are considered as important even if their main effects are not
significant. In addition, the importance of the Type I variable “Roof-
Steps” is also confirmed by the sensitivity analysis (that includes the
variable as one of the factors).

The information extracted from the sensitivity analysis is logical in
disciplinary contexts. From an energy point of view, the OverhangY

Fig. 14.3. The filtered clusters with desired performance trends.
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Fig. 15. All terms that maintain a cumulative effect of 100% (top); the terms that maintain a cumulative effect of 80% (bottom).
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defines the overhang depth for south- and north-facing clearstories, it
can determine the sun exposure in the indoor space thus affect the
energy use. And, the TopHeight can affect the energy use via changing
the volume of the indoor space. From a structural point of view, the
MiddleSpan defines the location of the maximum vertical distance be-
tween upper and lower main beams, thus it can change the load-bearing
capacity and hence the mass. From a daylight point of view, the
TopHeight and BottomHeight define the vertical locations and sizes of
clearstories, they may affect the illuminance levels of the court. And,
the R1 helps to define the horizontal locations of clearstories that are
closest to the centre of the court, thus it may also affect the illuminance
levels.

6.3. Optimization problem re-formulation

With the relevant information and knowledge extracted, the de-
signers can re-formulate the original optimization problem in a more
informed manner. In this section, the initial objective variables and
design variables are re-formulated in different manners for different
purposes (as shown in Tables 6 and 7). They are re-formulated ac-
cording to the proposed method, thus forming the optimization pro-
blem No. 2. Meanwhile, they are kept unchanged when following the
traditional method, thus forming the optimization problem No. 1. Ad-
ditionally, to investigate the factors that may affect the behaviour of the
proposed method (i.e. Factor1 to Factor4), the optimization problems
No. 3–No. 7 are also formulated by changing each factor at a time. The
underlines in Table 6 identify the factors being changed, in order to
facilitate quick understanding of the formulation of the optimization
problems No. 3-No. 7. The (re-)formulation processes are described in
more detail below.

During the objective variable screening, the Obj_URmod is screened
out for the optimization problem No. 2. This is based on the information
obtained from the correlation analysis. Specifically, given that the
Obj_URmod and Obj_UDImod-65 vary in a similar direction, one of them
can be removed from the four candidate objective variables and treated

as a constraint during optimization. In this case, the UDImod-65 remains
as an objective as its values are more widely spread out; and the
Obj_URmod is treated as a constraint> 0.58 (i.e. its third quartile in the
DoE data set). Moreover, to understand how the overscreening of the
objective variables (i.e. Factor1) may affect the optimization results, the
optimization problem No. 3 is formulated. In this formulation, the
Obj_UDImod-65 is also screened out and treated as a constraint> 32.55%
(i.e. its third quartile in the DoE data set).

Regarding the decision on the (Type I) design variable value, the
“RoofSteps” equals to three, thus the BVD4, BVD5, F4, F5, R4, R5,
RUN4, RUN5 are eliminated accordingly for the optimization problem
No. 2. This decision is based on the information obtained from the
cluster analysis. Given that the alternatives having three roof steps (i.e.
CLUSTER_0 and CLUSTER_1) account for the major portion of the fil-
tered alternatives, they are considered more promising from the per-
spective of achieving quantitative goals. Meanwhile, these alternatives
are also considered subjectively preferred from the perspective of
achieving qualitative goals (like aesthetics). Thus, the expected
“RoofSteps” values from both perspectives are the same (i.e. three) in
the optimization problem No. 2. However, the expected “RoofSteps”
values can be in conflict with each other. For instance, the designers
may subjectively prefer the alternatives having two or four roof steps
(i.e. CLUSTER_5 or CLUSTER_16) which are quantitatively less pro-
mising. In this case, they may need to balance between the quantitative
and qualitative goals before determining the “RoofSteps” value (thus
the promising clusters). If the qualitative goals are considered dominant
over the quantitative goals, the “RoofSteps” can be two or four. In this
sense, it is meaningful to understand how the human preference on the
qualitative goals (i.e. Factor2) may affect the optimization results. For
this, the optimization problems No. 4 and 5 are formulated in which the
“RoofSteps” equals to two and four, respectively, due to the dominant
qualitative goals.

During the (Type II & III) design variable screening, none of the
remaining design variables is further screened out for the optimization
problem No. 2. This is based on the information obtained from the

Table 5
Important design variables for each response and their main effects.

Seat
rows

Bottom
height

Top
height

R1 R2 R3 F1 F2 F3 Over-
hang X

Over-
hang Y

Centre
Span

Middle
Span

Side
Span

BVD1 BVD2 BVD3 RUN1 RUN2 RUN3

Obj_EUI 0.026 0.032 0.339 0.026 0.002 0.000 0.012 0.000 0.000 0.004 0.379 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000

Obj_Mass 0.013 0.002 0.002 0.000 0.000 0.000 0.003 0.002 0.012

Obj_UDImod-65 0.009 0.112 0.142 0.105 0.000 0.005 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.001 0.004 0.006 0.001 0.000 0.000 0.003

0.020 0.108 0.021 0.012 0.012 0.000 0.000 0.0390.003 0.0000.019

Table 6
Re-formulated optimization problems and the execution.

No. Item Optimization problem (re-)formulation Execution

Objective var.
number

(Type I) design var. number (Type II & III) design var.
number

Initial generation Actual evaluated
designs

Total time Time per
design

1 Traditional 4 1 (RoofSteps=2,3,4,5) 16–28 ULH 462 37 h:43m 4.90m
2 Proposed 3 0 (RoofSteps=3) 20 Promising clustera 463 42 h:02m 5.45m
3 Factor1 2 0 (RoofSteps=3) 20 Promising clustera 453 40 h:51m 5.41m
4 Factor2 3 0 (RoofSteps=2) 16 Promising clusterb 455 32 h:01m 4.22m
5 Factor2 3 0 (RoofSteps=4) 24 Promising clusterc 449 51 h:41m 6.91m
6 Factor3 3 0 (RoofSteps=3) 18 Promising clusterd 463 42 h:52m 5.56m
7 Factor4 3 0 (RoofSteps=3) 20 ULH 465 44 h:09m 5.70m

a The initial generation is selected from the promising clusters CLUSTER_0 and CLUSTER_1.
b The initial generation is selected from the promising cluster CLUSTER_5.
c The initial generation is selected from the promising cluster CLUSTER_16.
d The initial generation is selected from the promising clusters CLUSTER_0 and CLUSTER_1 in which the R3 and RUN3 are treated as constants.
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sensitivity analysis. Specifically, design variables can be eventually
screened out when they are considered unimportant for all the perfor-
mance goals in question. But, in this case, all the remaining design
variables are important for at least one of the three quantitative per-
formance goals, thus they are all kept. Moreover, to understand how the
overscreening of the design variables (i.e. Factor3) may affect the op-
timization results, the optimization problem No. 6 is formulated. In this
formulation, the R3 and RUN3 are further screened out (at the cost that
the cumulative effects of the remaining terms on Obj_Mass and
Obj_UDImod-65 are 60%); and they are treated as constants (i.e. their
central values).

In addition, selecting an initial generation from promising clusters is
believed a good start for the consequent optimization. Therefore, for
the optimization problem No. 2, the initial generation is selected from
the promising clusters which consist of alternatives having three roof
steps (i.e. CLUSTER_0 and CLUSTER_1). Similarly, for the optimization
problems No. 3–No. 6, the initial generations are also selected from
promising clusters, but the clusters being considered as promising are
different and depend on the “RoofSteps” values, which is indicated by
the footnotes of Table 6. Moreover, to understand how the initial
generation (i.e. Factor4) may affect the optimization results, the opti-
mization problem No. 7 is formulated. In this formulation, the initial
generation is selected using the ULH sampling strategy.

7. CDO results and comparison

Having re-formulated the original optimization problem, the de-
signers can enter the CDO directly without further conducting CDE

iterations (given that the focus of this case is to narrow down design
possibilities as mentioned in Section 4.1). In Section 7.1, the results of
the optimization problems No. 1 and No. 2 are visualized and com-
pared, to verify the benefits of the proposed approach over the tradi-
tional method; In Section 7.2, the results of the optimization problem
No. 2 are compared with the results of the optimization problems No.
3–No. 7, respectively, to further understand how the four factors may
affect the behaviour of the proposed approach.

To ensure the comparability, all the optimizations listed in Table 6
were executed using the same optimization algorithm (i.e. NSGA-II
[83]) and the same optimization settings (i.e. population size of 25 and
20 generations); and they were run on the same 6-Core (12-Thread)
machine. For each optimization, the number of actual evaluated designs
is similar and<500 because of occasional skips; the execution time is
limited to around two days; and the average time for evaluating each
design is calculated and recorded in Table 6. The design summary bars
at the top of Figs. 16, 17, 19, 20, 21, 22 and 23 keep track of each
design evaluation. They show feasible designs in green, unfeasible de-
signs in yellow and occasional skips in gray. The optimization results
shown in these figures include both quantitative and qualitative per-
formances of Pareto solutions. All these results to be compared are
summarized in Table 8, including the number of Pareto solutions, of
unfeasible designs, and of broken designs (that violate certain con-
straints). The underlines in Table 8 identify the quantitative perfor-
mances superior to that derived from the optimization problem No. 2,
in order to facilitate quick understanding of the relative goodness of the
results derived from other optimization problems.

Table 7
Lists of re-formulated objective variables and design variables.

No. 1 2 3 4 5 6 7

Item Traditional Proposed Factor1 Factor2 Factor2 Factor3 Factor4

Objective variables Obj_EUI Obj_EUI Obj_EUI Obj_EUI Obj_EUI Obj_EUI Obj_EUI
Obj_Mass Obj_Mass Obj_Mass Obj_Mass Obj_Mass Obj_Mass Obj_Mass
Obj_UDImod-65 Obj_UDImod-65 – Obj_UDImod-65 Obj_UDImod-65 Obj_UDImod-65 Obj_UDImod-65

Obj_URmod – – – – – –
Design variables (Type I) RoofSteps – – – – – –
Design variables (Type II & III) SeatRows SeatRows SeatRows SeatRows SeatRows SeatRows SeatRows

BottomHeight BottomHeight BottomHeight BottomHeight BottomHeight BottomHeight BottomHeight
TopHeight TopHeight TopHeight TopHeight TopHeight TopHeight TopHeight
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 – R3 – R3
R4 – – – R4 – –
R5 – – – – – –
F1 F1 F1 F1 F1 F1 F1
F2 F2 F2 F2 F2 F2 F2
F3 F3 F3 – F3 F3 F3
F4 – – – F4 – –
F5 – – – – – –
OverhangX OverhangX OverhangX OverhangX OverhangX OverhangX OverhangX
OverhangY OverhangY OverhangY OverhangY OverhangY OverhangY OverhangY
CentreSpan CentreSpan CentreSpan CentreSpan CentreSpan CentreSpan CentreSpan
MiddleSpan MiddleSpan MiddleSpan MiddleSpan MiddleSpan MiddleSpan MiddleSpan
SideSpan SideSpan SideSpan SideSpan SideSpan SideSpan SideSpan
BVD1 BVD1 BVD1 BVD1 BVD1 BVD1 BVD1
BVD2 BVD2 BVD2 BVD2 BVD2 BVD2 BVD2
BVD3 BVD3 BVD3 – BVD3 BVD3 BVD3
BVD4 – – – BVD4 – –
BVD5 – – – – – –
RUN1 RUN1 RUN1 RUN1 RUN1 RUN1 RUN1
RUN2 RUN2 RUN2 RUN2 RUN2 RUN2 RUN2
RUN3 RUN3 RUN3 – RUN3 – RUN3
RUN4 – – – RUN4 – –
RUN5 – – – – – –
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7.1. Comparison between proposed and traditional methods

The results of the optimization problems No. 1 and No. 2 are vi-
sualized in Fig. 16 (top) and Fig. 17 (top). The Pareto Front derived
from each optimization is plotted in the same 3D space composed of
Obj_EUI, Obj_Mass and Obj_UDImod-65 dimensions (although the URmod

is treated as an objective in the optimization problem No. 1); the EUI,
Mass, UDImod-65 and URmod performance data of Pareto solutions are
described by box-whisker plots and tables; and the geometries of initial
generations and of Pareto solutions are also presented. By comparing all
these results, the relative advantages of the proposed approach are in-
dicated, as described below.

From the perspective of quantitative performances, the Pareto so-
lutions derived from the optimization problem No. 2 generally perform

better than those derived from the optimization problem No. 1, al-
though the total number of unfeasible designs during the optimization
process is slightly larger. They are considered better, given the fol-
lowing facts. In the optimization problem No. 2, the EUI and Mass
median performance values are relatively lower; the UDImod-65 and
URmod median performance values are relatively higher; the inter-
quartile performance ranges are relatively more concentrated; and the
total number of the Pareto solutions is proper. These desired features
facilitate to obtain quantitatively high-performing solutions that better
meet the designers' preference on the quantitative goals. Note that al-
though the performance ranges are relatively concentrated, the Pareto
solutions are still distributed in a diverse manner, which allows the
designers to balance between the conflicting quantitative goals during
the final decision making.

Fig. 16. Results of the optimization problem No. 1 (top); history chart of the “RoofSteps” in the optimization problem No. 1 (bottom).
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It is also interesting to compare the quantitative results derived by
using the proposed method with that of the real-world project. For this,
a Pareto solution randomly selected from the optimization problem No.
2 (marked by a circle in Fig. 17), and the benchmark solution most like
the real-world project (as mentioned in Table 1) are shown in Fig. 18. It
is proved that all the EUI, Mass, UDImod-65 and URmod performances of
the former are better than that of the latter. Especially, the UDImod-65

performance can improve from 0 to 51.5. This potential improvement
confirms the necessity of adding additional skylights on the roof top in
the real-world project, to increase daylight availability (as shown in
Fig. 6).

From the perspective of qualitative performances, the geometries of
the Pareto solutions derived from the optimization problem No. 2 are
aesthetically preferred, rather than those from the optimization pro-
blem No. 1. This is associated with whether the subjective human
preference on qualitative goals is considered. Specifically, in the opti-
mization problem No. 2, the aesthetic preference on three roof steps is
integrated during the decision of the Type I design variable

“RoofSteps”. The “RoofSteps” is considered as a constant (i.e. 3) during
the optimization, thus, all the Pareto solutions derived have three roof
steps as desire. On the contrary, in the optimization problem No. 1,
there is no preference on the number of roof steps. The “RoofSteps” is
considered as an integer variable (i.e. ranging from 2 to 5) during the
optimization; thus, the Pareto solutions derived (i.e. boxed solutions in
Fig. 16, bottom) do not necessarily include alternatives having three
roof steps. Furthermore, the history chart of the “RoofSteps” (Fig. 16,
bottom) also shows that, as the optimization No. 1 proceeds, the al-
gorithm searches more among the alternatives having two roof steps,
although they are not aesthetically preferred. It also explains why the
average time for evaluating per design in the optimization problem No.
1 is relatively shorter (given that the alternatives having less roof steps
often consume less simulation time).

Another observation regarding the geometries of the Pareto solu-
tions is that the geometries derived from the optimization problem No.
2 are more like each other compared to those derived from the opti-
mization problem No. 1, which may indicate knowledge unfamiliar to

Fig. 17. Results of the optimization problem No. 2 (top); history charts of the “MiddleSpan”, “R1”, “R2”, “R3” in the optimization problem No. 2, showing the Pareto
solutions only (bottom).
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the designers. The geometric similarity in the optimization problem No.
2 can be confirmed by the history charts of the related design variables
(Fig. 17, bottom). The charts show that most of the “MiddleSpan” va-
lues of Pareto solutions are around 0.2, and the dominant values of the
“R1”, “R2”, “R3” are 0.86, 0.78, 0.23. These values indicate the
knowledge that, for the well-performing solutions, the position of
middle secondary beams tends to be close to the centre of the building,
and the half-ridge tends to be divided in the proportion of
0.86:0.78:0.23. Note that despite the geometric similarity, the Pareto
solutions still maintain a sufficient degree of geometric diversity, which
allows the designers to balance between quantitative and qualitative
goals during the final decision making.

7.2. Behaviour of the proposed method

The benefits of the proposed approach (represented by the optimi-
zation problem No. 2) may derive from different factors during CDE,
such as the objective variable screening, integration of human

preference on qualitative goals, design variable screening, and selection
of an initial generation. In other words, the behaviour of the proposed
method may be affected by the use or abuse of these factors. Thus, it
would be helpful to further understand the magnitudes of the possible
impacts of these factors. For this, the results of the optimization pro-
blems No. 3–No. 7 (visualized in Figs. 19–23 and Table 8) are compared
with the results of the optimization problem No. 2 respectively. Useful
messages about the behaviour of the proposed approach are indicated,
as described below.

In the optimization problem No. 3, the quantitative and qualitative
performances, the unfeasible design and broken design numbers are
relatively close to those in the optimization problem No. 2; while the
Pareto solution number is much smaller than that in the optimization
problem No. 2. This information indicates that (1) the overscreening of
objective variables may lead to similar performances of the Pareto so-
lutions, in comparison with the proper screening, as long as the ob-
jective variables being screened out are treated as constraints with
proper limits, such as, the third quartiles of the variables in the DoE

Table 8
Comparison of the optimization results.

No. Item Pareto solution
number

Quantitative performances of Pareto solutions Qualitative performances of Pareto
solutions

Unfeasible design
number

Broken design
number

EUI Mass UDImod-65 URmod Geometric preference Geometric
similarity

1 Traditional 65 52.60
(1.30)

204.00
(38.50)

39.40
(21.20)

0.59
(0.07)

RoofSteps=2,3,4,5 * 50 (10.8%) 21 (Con_URmod)
21 (Con_SC)

2 Proposed 26 52.40
(0.60)

191.50
(33.00)

56.10
(7.60)

0.62
(0.00)

RoofSteps=3 *** 83 (17.9%) 72 (Con_URmod)
10 (Con_SC)

3 Factor1 4 52.65
(1.05)

179.00
(10.50)

46.25
(7.55)

0.65
(0.02)

RoofSteps=3 *** 90 (19.9%) 67 (Con_URmod)
33 (Con_UDImod-65)
11 (Con_SC)

4 Factor2 40 52.10
(0.85)

178.50
(28.50)

47.75
(34.05)

0.60
(0.02)

RoofSteps=2 ** 144 (31.6%) 97 (Con_URmod)
72 (Con_UC)

5 Factor2 20 53.10
(1.15)

214.00
(34.50)

38.65
(9.85)

0.61
(0.04)

RoofSteps=4 ** 186 (41.4%) 168 (Con_URmod)
32 (Con_SC)
10 (Con_DC)

6 Factor3 19 53.20
(0.85)

204.00
(62.25)

34.80
(35.55)

0.59
(0.01)

RoofSteps=3 ** 302 (65.2%) 294 (Con_URmod)
37 (Con_SC)

7 Factor4 29 53.00
(0.93)

215.00
(79.25)

43.90
(17.07)

0.62
(0.03)

RoofSteps=3 ** 165 (35.3%) 154 (Con_URmod)
26 (Con_SC)

In the 4th, 5th, 6th, 7th column, median performance values and interquartile ranges are shown without and with parentheses respectively.
In the 9th column, the number of stars represents the degree of geometric similarity; the more stars the more similar.
In the last column, major broken constraints (i.e. those violated by> 10 designs) are listed; some designs may violate multiple constraints.

Fig. 18. a Pareto solution randomly selected from the optimization problem No. 2 (left); the benchmark solution most like the real-world project (right).
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data set; and (2) it may also lead to the sharp decrease of the Pareto
solution number, which may not be preferable for the final decision
making (if too few Pareto solutions are left).

In the optimization problems No. 4 and No. 5, only some of the
Pareto solutions (indicated by the ellipse in Fig. 20) have similar

quantitative performances as in the optimization problem No. 2; while
most of them deviate from the desired direction (i.e. the bottom right
corner of the objective space). This may be associated with the different
“promising” clusters (i.e. CLUSTER_5 and CLUSTER_16) from which the
initial generations are selected. Regarding the qualitative

Fig. 20. Results of the optimization problem No. 4.

Fig. 19. Results of the optimization problem No. 3.
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performances, both optimizations can achieve aesthetically preferred
geometries with desired numbers of roof steps; while, the geometries
derived are less similar with each other compared to those derived from
the optimization problem No. 2. This can be confirmed by the values of
some design variables like the “RoofSteps”, “MiddleSpan”, “R1”, “R2”
etc. Moreover, the unfeasible design and broken design numbers in-
crease considerably in the optimization problem No. 4 and No. 5. The

above information indicates that the integration of dominant qualita-
tive goals (like aesthetics) can lead to aesthetically preferred geometries
but probably with compromise in the quantitative performances.

In the optimization problems No. 6 and No. 7, the quantitative
performances deviate from the desired direction obviously; the geo-
metric similarity is relatively low; and the unfeasible design and broken
design numbers increase dramatically, especially in the optimization

Fig. 21. Results of the optimization problem No. 5.

Fig. 22. Results of the optimization problem No. 6.
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problem No. 6. This information indicates that (1) the overscreening of
(Type II & III) design variables may deteriorate the quantitative per-
formances of Pareto solutions significantly, in comparison with the
proper screening where the cumulative effects of the remaining terms
are high enough, such as 80%; and (2) the selection of an initial gen-
eration does affect the optimization results significantly, specifically,
selecting the initial generation using the ULH sampling strategy is not
as beneficial as selecting it from promising clusters.

8. Conclusion

8.1. Discussion and summary of contributions

This paper has proposed and demonstrated a new CDE approach
which is developed for the conceptual design optimization of large-
scale buildings involving multi-disciplinary criteria and complex geo-
metries (e.g. indoor sports buildings). The proposed approach improves
upon the traditional method by introducing a changeable initial OPF
and inserting a CDE module. The changeable initial OPF allows or fa-
cilitates the expansion of the dimensionality of an objective space and
design space being investigated, which is valuable for encouraging the
designers' creative intentions. The CDE module can re-formulate the
changeable optimization problem by screening out unnecessary objec-
tive variables, unimportant design variables, and by focusing on pro-
mising clusters of alternatives, which is beneficial for using the com-
putational resources more wisely. Moreover, the proposed approach
highlights the role designers play throughout the CDE process, which is
crucial for integrating subjective human preferences. In particular, it
allows the designers to prioritize quantitative goals during the cluster
filtering (as described in Section 6.2.2), thus, the human preferences on
the relative importance of each quantitative goal can be integrated. It
also allows the designers to prioritize between quantitative and quali-
tative goals during the determination of promising clusters (as de-
scribed in Section 6.3), thus, the human preferences on the qualitative

goal can be considered as well. In this way, the human involvement on
the front end (i.e. in the CDE process) can make the approach more
flexible and not constraining to convergent thinking only as in the
traditional methods. Thus, this approach fits conceptual design tasks
requiring significant creativity.

This paper has verified the benefits of the proposed approach over
the traditional one, and has unveiled the factors that may affect the
behaviour of the proposed approach, by comparing the results of a
series of optimization problems formulated for the same design task.

The comparison results concerning the proposed and traditional
approaches show that (1) the Pareto solutions derived from the pro-
posed approach are quantitatively more promising and qualitatively
more preferred in general, although their total number is relatively
smaller; (2) they are more concentrated in the objective space (i.e.
quantitatively similar) and their geometries look more convergent (i.e.
qualitatively similar), which are valuable for focusing on the quanti-
tatively high-performing solutions that match well with the designers'
preference, and for indicating new knowledge about the relations be-
tween geometries and quantitative performances; and (3) despite the
similarity, they still maintain a sufficient degree of diversity, which
allows the designers or decision makers to select the most satisfying
solution from among them.

The comparison results concerning the behaviour of the proposed
approach show that (1) the overscreening of objective variables can
decrease the total number of Pareto solutions dramatically, while may
not affect too much the overall performance; (2) integrating dominant
qualitative goals can lead to aesthetically preferred geometries, but
probably with compromise in the quantitative performances; (3) the
overscreening of (Type II & III) design variables may deteriorate the
quantitative performances of Pareto solutions significantly; and (4)
selecting the initial generation from promising clusters is more bene-
ficial for achieving quantitatively high-performing Pareto solutions.
These results provide a good basis for the proper use of the proposed
approach.

Fig. 23. Results of the optimization problem No. 7.

D. Yang et al. Automation in Construction 92 (2018) 242–269

267



In addition, this paper also showed the suitability of the computa-
tional platform used. By combining the parametric modeling software
(including simulation plug-ins) and the design optimization software,
the platform can leverage their advantages, so that it can be used to
create the parametric simulation model featuring a changeable design
space, establish the CDE and CDO workflows, automate the geometry
generation, simulation run, data collection processes, and especially,
facilitate the knowledge extraction and optimization problem re-for-
mulation (via the use of post-processing tools). Among these tools, the
clustering analysis and the corresponding charts (Fig. 14.1–3) and the
interface for browsing geometries and numerical data (Fig. 5, bottom)
can effectively support the integration of subjective human preferences.

8.2. Future work and concluding remarks

This research could be extended in several aspects. The work pre-
sented in this paper focuses on the “variable screening” (i.e. screening
out unnecessary or unimportant variables from the initial OPF, as
mentioned in Section 4.1.3). But, the “variable adding” (i.e. inspiring
and adding new variables that are not originally included in the initial
OPF) could be another important advantage of the proposed approach,
and valuable for increasing design creativity. Thus, future work should
aim to expand the approach to include the variable adding, forming an
iterative CDE process that can bring about new design possibilities.
Furthermore, the current work compares different OPFs based on one
given design concept only. To further encourage divergent thinking for
the conceptual design, multiple design concepts could be compared in
terms of the OPF. For this, the hierarchical structure of design variables
can be helpful. For instance, a Type I design variable called “Concept”
can be used to label different sets of design variables for different
concepts to be compared. In addition, although the proposed approach
is already applied within a rather broad context of multi-disciplinary
and multi-objective design optimization, it could be still interesting to
include additional objective variables (e.g. cost) and/or additional de-
sign variables (e.g. envelope attributes), achieving a more integrated
design in the early design stages.

In conclusion, although various MOO methods have been developed
for the conceptual architectural design, most of them can be categor-
ized as the traditional approach where the achievement of high-per-
forming solutions only relies on advanced optimization algorithms and
their improvements. Meanwhile, the importance of the OPF is often
overlooked, which can actually affect the optimization results sig-
nificantly. The proposed approach provides a crucial perspective for
MOO by emphasizing the CDE. During the CDE process, relevant in-
formation and knowledge are extracted to support the re-formulation of
the initial optimization problem, and hence to ensure a proper OPF
before the OPS. Assisted by the platform used, this approach can be
applied to the conceptual architectural design optimization involving
multi-disciplinary goals and complex geometries, and can achieve
quantitatively more promising and qualitatively more preferred Pareto
solutions. This contribution has the potential to broaden the use of
MOO in the sustainable conceptual design of complex projects.
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