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A B S T R A C T   

This study aims to interpret the early-stage rheology of alkali-activated slag (AAS) paste from microstructure 
perspectives. The microstructures visualized by cryogenic scanning electron microscopy (cryo-SEM) revealed the 
essential distinction between hydroxide and silicate-activated slag pastes. The hydroxide-based mixture showed 
typical suspension features, where slag particles were dispersed in the hydroxide activators. In the hydroxide 
media, even at very early ages (5 min), the solid grains were attached to each other through rigid connections of 
reaction products, which resulted in high yield stress. As for the silicate-based mixtures, an emulsion phase has 
been observed between slag particles, which consists of discontinuous water droplets and continuous silicate 
gels. Fine emulsions with smaller water droplets were observed as the silicate modulus of activators increased, 
which dispersed the slag particles but on the other hand improved the viscosity of the paste. With increasing 
water to binder ratio, both yield stress and viscosity of AAS pastes significantly reduced.   

1. Introduction 

Production of Portland cement (PC) clinker is a highly energy- 
consuming process, accompanied by the heavy emission of greenhouse 
gases. The cement industry has been blamed to be responsible for more 
than of 5% global CO2 emissions, which resulted in a great environ-
mental impact [1–3]. Alkali-activated material (AAM) is regarded as a 
green alternative binding material to replace Portland cement with 
equivalent and even better mechanical and long-term properties [4–9]. 
However, the uncontrolled setting process and undesirably poor work-
ability of AAM have been frequently addressed, especially when silicate 
solution is used as the activator [10–13]. 

Comparing to PC materials, the alkaline compound is an additional 
phase in AAM to promote the dissolution of solid particles [14,15]. Its 
interaction with the solid precursor particles also makes the reactions in 
AAMs more complex. Starting from each design factor (for instance, the 
nature of precursors and activators, liquid-to-solid ratio, and admix-
tures, etc.), the rheological properties of AAMs have been intensively 
investigated in previous studies [10,13,16–19]. Further, the rheology of 

AAM mixtures also change dynamically with time, dependent on the 
real-time packing patterns and interparticle interactions, which are 
closely correlated to the microstructural arrangement in the fresh mix-
tures [20]. Therefore, it's crucial to have a fundamental understanding 
of the relation between rheology and microstructure to optimize the 
flow of AAM mixtures, which is still missing to date. 

The early-stage microstructure characterization of fresh cementi-
tious materials is challenging. Conventional visualization by scanning 
electron microscopy (SEM) analyses are not applicable for a fresh paste 
in a hydrous or liquid state [21]. Some innovative in-situ testing 
methods have been employed (such as ESEM, FBRM/PVM, etc.) to 
investigate the microstructural features of fresh cementitious mixtures 
[22–26]. However, such understanding of early-stage AAM mixtures is 
very limited up to date. Previous studies on the microstructure evolution 
of AAM pastes have focused more on the solid fraction by using a 
destructive method. Through a solvent replacement technique, the 
liquid portion in the fresh paste was replaced with various organic sol-
vents [27–30] to stop the activation process. Afterwards, the solid res-
idues were collected by filtration for visualization through SEM. 
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However, it should be noted that the pore solution previously distrib-
uted between solid voids as the solvent is removed through the extrac-
tion, while the solid particles which were originally floating in the pore 
solutions are deposited as compacted sediment [31]. As a result, the 
primal spatial arrangement in the fresh AAM paste cannot be visualized 
by this technique. Furthermore, the solvent replacement normally has to 
be performed several times until the original pore solution can be 
completely substituted. This makes it difficult to accurately terminate 
the activation process at a specific time in the early stage for micro-
structural characterization. 

The development of cryogenic SEM (cryo-SEM), which includes a 
sublimation step, has enabled the visualization of hydrating and high- 
moist samples. Liquid, beam, and vacuum sensitive specimens can be 
set into a steady-state through cryogenic preparation [21], as has been 
broadly applied in biological and material science engineering [32–36]. 
Moreover, the artificial rearrangement of the microstructure induced by 
ice crystallization [21,37–39] during cryo-SEM imaging can be pre-
vented through an ultrarapid freezing process [37,40–43], and thus the 
nature of microstructures is well preserved [31]. 

The objective of this study is to better understand the rheological 
behavior of fresh alkali-activated slag (AAS) paste from microstructural 
perspectives. The structural build-up of AAS paste was characterized by 
the storage modulus and loss factor evolution determined by small 
amplitude oscillation shear (SAOS) test, while the rheological parame-
ters were derived from stress growth and flow curve tests. The micro-
structural features of AAS mixtures at very early ages were visualized by 
cryo-SEM. A quantitative analysis was provided to explore the micro-
structural evolution of AAS pastes by varying the key design factors 
(including the composition of activators, silicate modulus, and water to 
binder ratio), which brings new insight into the early-stage rheological 
behavior. 

2. Materials and methods 

2.1. Materials 

The blast furnace slag (BFS) used in this study was provided by 
Ecocem Benelux B.V., with a density of 2890 kg/m3. The particle size 
distribution measured by laser diffraction is shown in Fig. 1(a), (d50 =

8.28 μm). Morphology of BFS particles was observed with a scanning 
electron microscope (SEM), as shown in Fig. 1(b). Details of the chem-
ical composition of BFS determined by X-ray fluorescence (XRF) and loss 
on ignition (LOI) are listed in Table 1. 

In this study, blank mixtures where no alkali-activation takes place 
have been designed to study the interactions between precursors and 
activators by using cryo-SEM. It's been reported that quartz sand, which 
mainly consists of crystalline phases, has a relatively low alkali- 
susceptibility/reactivity [44]. Micronized quartz sand (d50 = 26.67 

μm) produced by grinding of quartz sand was selected as an “inert” 
precursor. A reference mixture was prepared with quartz sand and the 
activator to study the effect of sodium silicate on the early-stage 
microstructural arrangement. The chemical composition of quartz 
sand is given in Table 1. 

Sodium hydroxide and sodium silicate solution, the most commonly 
used alkaline activators in AAM, were applied in this study. Reagent- 
grade sodium hydroxide anhydrous pearls were provided by Brenntag 
N.V., and the sodium silicate solution (15% Na2O, 30% SiO2, and 55% 
water) was provided by PQ Corporation. 

In previous studies, organic solvents [27–30] have been applied as 
the reaction termination media to stop the alkali-activation process. The 
organic solvent 2-propanol was applied as an “inert” activator to study 
the early-stage microstructural arrangement features. 

2.2. Mixture proportions 

Details of AAS paste mixtures tested in this study are presented in 
Table 2. In all AAS mixtures, the sodium concentration (Na2O to BFS 
mass ratio) was kept constant at 4% [45]. The alkaline activator for each 
AAS mixture was prepared by dissolving alkaline compounds into tap 
water one day before mixing. The effects of activator solution, silicate 
modulus (Ms), and water to binder ratio (w/b) were investigated by 
varying design factors. 

M1 and M3 were designed as the reference AAS paste activated by 
sodium hydroxide and sodium silicate solutions, respectively. The 
interaction between solid and liquid phases in AAS pastes was studied by 
using different combinations of alkaline activators and precursors in M1, 
M3, M9, and M10. M9 and M10 were designed as blank mixtures, where 
the activator and precursors were replaced with the “inert” materials, 
respectively. M2 to M6 were designed to study the effect of silicate 
concentration in the activator, by varying the Ms. from 0.125 to 2.0. In 
the meantime, M7 and M8 were designed to evaluate the effect of water 
content with elevated w/b. 

2.3. Experimental method 

2.3.1. Mixing procedure 
The fresh AAS paste mixtures used for the rheological tests in this 

study were prepared with a Hobart planetary mixer. The solid precursor 
was first added into the mixer bowl and dry-blended at 140 ± 5 rpm for 
60 s. Afterwards, the activator solution was gradually added to the mixer 
within 10 s. The precursor and activator were mixed at low (140 ± 5 
rpm) and high (285 ± 5 rpm) speeds for 90 s, respectively. The entire 
mixing procedure was finished in 180 s ever since the wetting of pre-
cursors, and the fresh AAS mixture was used for subsequent rheological 
tests. 

Fig. 1. Physical properties of BFS (a) Particle size distribution; (b) Morphology by SEM (5000×magnification).  
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2.3.2. Rheological tests 
The rheological properties of AAS pastes were measured with Anton 

Paar MCR 102 rheometer fitted with a 6-blade vane having 22 mm 
diameter, and 16 mm height. For each test, a new AAS paste was pre-
pared to avoid the effect of shear history from previous measurements. 
The fresh AAS paste was loaded into a cylindrical cup (27.6 mm inner 
diameter and 75 mm depth). The temperature was controlled at 20 ±
0.5 ◦C with a water bath system during each measurement. 

The structural build-up of AAS paste was assessed by a small 
amplitude oscillation shear (SAOS) test. First, a strain-sweep with the 
strain amplitude varying from 0.0001% to 10% with a constant fre-
quency of 1 Hz [17,46,47] was conducted to determine the linear 
viscoelastic domain (LVED). Subsequently, a time-sweep was performed 
at a constant frequency of 1 Hz and at a constant strain amplitude of 
0.005% (within the LVED) from 8 min after the wetting of precursors to 
60 min to assess the structural build-up with respect to time. Similar 
approaches have also been used by other researchers to characterize the 
structural build-up of cementitious systems [17,48,49]. The viscoelastic 
behavior of AAS pastes can be described by the storage modulus (G′) and 
loss modulus (G′ ′) [49], which represents the energy stored and dissi-
pated in the mixture in each cycle of excitation, respectively. In this 
study, the storage modulus and loss factor (the ratio between G′ and G′ ′, 
which indicates the phase lag between the elastic and viscous portions) 
were presented to characterize the structural build-up of AAS pastes. For 
each AAS mixture, the SAOS test was performed on 3 replicate samples 
to ensure repeatability, and the curve most close to the average of 3 
measurements is presented. 

The static yield stress of AAS paste was determined by the stress 
growth test. AAS paste in the rheometer cup was first subjected to a 150 
s− 1 pre-shear for 30 s ensuring all samples reached an identical reference 
state [46,50]. The paste was then subjected to a rest duration of 30 s to 
release the residual stress [46,51]. Following this, a constant shear rate 
of 0.1 s− 1 was applied for 60 s [52]. By applying a constant shear rate, 
the shear stress first increased to the maximum, and then progressively 
decreased to finally reach a steady state value [53]. The static yield 
stress is expressed as the maximum shear stress that is reached during 
the stress growth test. Stress growth tests were conducted at 6 min after 

the wetting of precursors. 
As shown in Fig. 2, the flow curve test was also conducted to 

determine the dynamic yield stress and plastic viscosity. A 150 s− 1 pre- 
shear was applied for 30 s, and the fresh AAS paste was left at rest for 
another 30 s until the flow curve test. This is followed by an increase in 
shear rate in steps of 25 s− 1 with each step lasting for 1 min and to reach 
a maximum shear rate of 150 s− 1. Afterwards, the shear rate was ramped 
down from 150 s− 1 to 25 s− 1. The dynamic yield stress and plastic vis-
cosity were determined by fitting the ramp down portion of the flow 
curve with the Bingham model [18,19]. In addition, the hysteresis loop 
curve area was calculated to assess the thixotropic behavior in AAS 
pastes [54,55]. For each mixture, the test was repeated 3 times, and the 
averaged rheological parameters are presented. 

Table 1 
Chemical composition of BFS measured by XRF and LOI (mass %).  

Precursor CaO SiO2 Al2O3 MgO SO3 TiO2 K2O Fe2O3 MnO ZrO2 Other LOIa 

BFS 40.9  31.1 13.7  9.16  2.31  1.26  0.69  0.40  0.31  0.12  0.05  0.10 
Quartz sand 0.25  97.3 0.37  0.34  0.02  0.03  0.26  0.89  0.17  0.05  0.32  0.17  

a LOI measured by thermogravimetric analysis at 950 ◦C. 

Table 2 
Mixture proportion of AAS pastes.  

Mix BFSa (g) Activator (g) Na2Ob Msc Admixtureb w/bd Water (g) 

Sodium hydroxide Sodium silicate 

M1 100 5.16 0 4% 0 0 0.4 42.06 
M2 100 4.84 1.67 4% 0.125 0 0.4 41.32 
M3 100 3.87 6.67 4% 0.5 0 0.4 39.08 
M4 100 2.58 13.33 4% 1 0 0.4 36.10 
M5 100 1.29 20.00 4% 1.5 0 0.4 33.12 
M6 100 0 22.67 4% 2 0 0.4 30.13 
M7 100 3.87 6.67 4% 0.5 0 0.45 44.72 
M8 100 3.87 6.67 4% 0.5 0 0.5 49.77 
M9 100 0 0 0 0 0 0.4 2-propanol, 40e 

M10 Quartz sand, 100f 3.87 6.67 4% 0.5 0 0.4 39.09  

a The mass of precursor was fixed at 100 g for each mixture in this study. 
b Represented as the mass percentage of precursor. 
c Defined as the molar ratio between SiO2 and Na2O in activators. 
d Defined as water content in both aqueous activator and water added separately from the activator divided by the sum of precursor and solid activators. 
e In M9, all liquid components were replaced with the “inert” activator 2-propanol. 
f In M10, BFS was replaced with the “inert” precursor micronized quartz sand. 

Fig. 2. Shear protocol applied in flow curve tests.  
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2.3.3. Microstructural investigation 
The microstructure of fresh AAS paste was investigated by cryo-SEM, 

using a JSM-7100F TTLS LV TFEG-SEM (JEOL Ltd., Tokyo, Japan). AAS 
pastes for cryo-SEM investigation was prepared by mixing precursors 
and activator solutions. The mixture was subjected to a 2-min strong 
manual mixing and left at rest until the target testing ages. In addition, a 
manual remix of 30 s followed by a rest duration of 30 s was applied to 
the sample before the cryo-SEM experiment. The fresh paste sample at 5 
min after wetting was first vitrified in a nitrogen slush (− 210 ◦C, which 
can effectively prevent the ice crystallization [40–43]) to suspend the 
activation reaction. Afterwards, the vitrified sample was immediately 
transferred under vacuum conditions into PP3010T cryo-SEM prepara-
tion system (Quorum Technologies Ltd., East Sussex, U.K.) conditioned 
at − 140 ◦C. Subsequently, the sample was fractured with a cooled knife 
and subjected to a 1-hour etching process at − 90 ◦C in the preparation 
chamber to sublimate the water content. A thin layer of conductive 
metal (Pt) was sputter-coated on the surface of AAS samples using argon 
gas to prevent charging during electron beam targeting [56]. SEM 
observation was performed at − 140 ◦C under vacuum conditions (1e− 6 

mbar) and at an accelerated voltage of 3 kV. For each mixture, ten 
pictures were captured from random positions for image analysis. 
Moreover, the cryo-SEM observation was performed on M3 at 20 and 60 
min as well to study the microstructural evolution of silicate-based 
mixtures along the activation process (Note: only 3 images were 
captured from M3 at 60 min since it was too stiff to create more fracture 
surface under the frozen state for visualization). The cryo-SEM images 
were taken under 1000 and 5000×magnifications (0.093 and 0.019 μm 
resolution, respectively), and the image analysis were performed under 
1000×magnification on a frame size of 1280×1024 pixels. 

A porous gel-like network structure was detected in AAS pastes made 
of silicate-based activators (see Fig. 3), and it was found that the pore 
size varies by changing the design factors. Image analysis was performed 
on the micrographs obtained from cryo-SEM using the ImageJ software 
[57] to characterize the properties of pores. To be specific, the cryo-SEM 
images were first converted into an 8-bit greyscale image. The grayscale 
image was subsequently binarized to separate the solid grains and 
network structure from the liquid phase. As shown in Fig. 3, the network 
structure is indicated by the red square, and the big solid grain in the 
blue square is representative for slag particles. Afterwards, the area of 
each pore was determined by the software. Starting from the smallest 
pore detected in each mixture, the area of pores was summed up to 
derive a cumulative pore area distribution (from 0% to 100%). 
Furthermore, A50 was defined as the average pore area in each image 
when the cumulative percentage reaches 50%. 

3. Results and discussion 

3.1. Rheology of AAS pastes 

3.1.1. Critical strain of AAS paste 
The strain-sweep was first conducted to determine the LVED, the 

evolution curves of oscillation stress are presented in Fig. 4. In the ma-
jority of AAS mixtures, linear growth in a double logarithmic plot was 
detected in the low strain amplitude region. Peak stress occurred at 
around 0.1%, followed by a gradual reduction in stress with further 
increases in the strain amplitude. Similar results have been reported by 
Beersaerts et al. [58]. It is noteworthy that the greatest peak stress was 
detected in M3 with a silicate modulus of 0.125, which is even higher 
than the hydroxide mixture M1. The stress evolution was progressively 
declined with a further increase in Ms. (from 0.5 to 1.5), while the peak 
located at around 0.1% became less significant as well. Alnahhal et al. 
[46] observed a small peak of stress at a strain value at around 0.03% in 
a BFS-FA blended mixture, which was correlated to the formation of 
primary C-A-S-H gels in a Ca-rich system [27,59]. However, a higher 
stress level was achieved in M6 (Ms2.0) as compared to M5 (Ms1.5), 
which can be attributed to the presence of colloidal silicate complexes in 
a highly concentrated silicate solution [18,58], and thus contributed to 
higher stress in the AAS mixture. Meanwhile, as presented in Fig. 4(b), 
the extra water content led to the reduction in oscillation stress along 
with the strain amplitude. 

The G′ responses of different AAS pastes over the strain-sweep are 
shown in Fig. 5. An initial plateau has been observed at relatively low 
strain ranges among all mixtures, followed by a reduction in G′ under 
higher strain amplitude. The strain beyond which G′ decreased is 
considered as the critical strain [47], and the structuration is broken 
down as the shear excitation applied exceeded the strain capacity of the 
AAS paste. As presented in Fig. 5, the critical strain of all AAS pastes 
ranged between 0.01% and 0.1%, regardless of the Ms. and w/b ratio. 
Thus, the subsequent time-sweep was performed with a strain amplitude 
of 0.005% within the LVED. 

3.1.2. Viscoelastic behavior of AAS pastes 
The G′ evolution as a function of time in different AAS pastes is 

presented in Fig. 6. As shown in Fig. 6(a), almost linear growth in the G′

has been detected in M1, where no silicate was present in the activator. 
In a hydroxide-based AAS mixture, the majority of elemental compo-
nents are completely dissolved from the precursors to form the poly-
merization product (C-A-S-H gels), while the activator solutions provide 
elevated alkalinity to promote the dissolution. It is indicated that the 
structural build-up in M1 can be ascribed to the precipitation of reaction 
products around individual slag grains [17], which progressively 
bridged the precursor particles to form a percolation network [60]. 

On the other hand, the silicate-based AAS mixtures exhibited 
different G′ development features by varying Ms. in the activator. In the 

Fig. 3. Cryo-SEM image analysis protocol.  
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case of a low Ms. mixture, the G′ of M2 (Ms0.125) developed sharply at 
the first couple of minutes and quickly reached a relatively stable high 
level after 30 min, which reveals the fast formation of a well-percolated 

network structure [61]. A trace amount of silicate species in M2 pro-
vided extra nucleation sites in the pore solution to facilitate the reaction 
process [62]. The precipitation of reaction products takes place 

Fig. 4. Evolution of oscillation stress as a function of strain (a) Effect of Ms.; (b) Effect of w/b ratio.  

Fig. 5. Evolution of storage modulus as a function of strain (a) Effect of Ms.; (b) Effect of w/b ratio.  

Fig. 6. Evolution of storage modulus as a function of time (a) Effect of Ms.; (b) Effect of w/b ratio.  
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simultaneously in both pore solution and on the slag surface, which 
leads to a more rapid structural build-up as compared to the hydroxide- 
based mixture M1. With a further increase in Ms., as indicated by the 
dashed arrow in Fig. 6(a), the very early-stage structuration of AAS 
pastes approximately before 15 min was gradually attenuated. Almost 
no significant increase in G′ has been observed in M5 and M6 at this 
stage, which reveals that the structural formation is very limited indi-
cating a dormant period. The slow early structural build-up can be 
attributed to the extra silicates applied in the activator, which not only 
reduced the alkalinity in the pore solution to slow down the dissolution 
[12] but also increased the liquid content in the AAS mixture and 
resulted in less elastic behavior. However, this dormant period is 
distinctive from the induction period detected by the calorimetry studies 
in AAS mixtures with a high Ms., which can last from hours to days 
[63,64]. The lowest G′ has been observed in M3 after 60 min, accom-
panied with a slight reduction in the slope of G′ evolution after about 30 
min. This can be explained by the limited ion diffusion rate along the 
reaction process. A reaction ring on the slag surface has been reported by 
previous studies [17,62], which can be interpreted as a Si-rich layer 
formed due to the dissolution of other elements along the reaction 
process [60,65]. Apart from that, the early reaction products also 
wrapped around the outer surface to slow down the dissolution of 
unreacted slag particles [66]. Accordingly, both the inner and outer 
reaction products [62] obstructed the ion exchange between the acti-
vator solution and unreacted slag particles and thereby decelerated the 
structural build-up in M3. Moreover, a very steep increase in G′ occurred 
in M4, M5, and M6 after the initial dormant period. It's been observed 
that the higher the Ms., the greater the structural build-up rate at this 
stage as indicated by the solid arrow in Fig. 6(a). Palacios et al. [27] also 
reported a similar fast increase of the storage modulus in an Ms1.5 AAS 
mixture, and the rapid loss in workability can be attributed to the 
accumulation of primary C-(A)-S-H gels, which is the intermediate re-
action products between the Ca, Al dissolved from slag particles and the 
silicate species in the activator [10,67]. 

With an increased w/b ratio, the structural build-up of AAS paste is 
gradually slowed down as shown in Fig. 6(b). The higher water content 
resulted in lower alkalinity in the activator, which slowed down the 
dissolution of precursors and thus result in slower structural develop-
ment. In addition, a more porous AAS microstructure is formed due to 
the extra water content. In that case, more reaction products and longer 
time are needed to establish a rigid network. 

The loss factor evolution of AAS paste is presented in Fig. 7, showing 
the effects of Ms. and w/b ratio. A rapid reduction in the loss factor has 
been observed in M1 and M2 (Fig. 7(a)) at the first several minutes, in 
line with the fast structural build-up in these mixtures. The loss factor of 

M2 reached 0 at around 20 min, indicating a pure elastic behavior in the 
mixture as well as the formation of a percolated network [68]. With the 
increase in Ms., higher initial loss factors have been detected, which 
reveals a more viscous behavior in the AAS mixtures due to the extra 
liquid silicate content. It is noteworthy that a hump occurred on the loss 
factor curves in M5 and M6 as the reaction progressed (indicated by the 
arrow in Fig. 7(a)), which reveals a partial dissipation of the stored 
energy at the beginning of polymerization [69]. Previous studies sug-
gested this can be correlated to the free water released due to the 
polycondensation [70,71], contributing to the viscous behavior over the 
elastic portion. On the other hand, the loss factor over time was signif-
icantly increased with an elevated w/b ratio, as shown in Fig. 7(b). The 
addition of extra water content enhanced the viscous behavior of AAS 
paste at the beginning, and also extended the time required to reach an 
elastic state. 

3.1.3. Flow curves of AAS pastes 
Flow curves of AAS paste with different Ms. and w/b ratios are 

shown in Fig. 8, and hysteresis loops have been observed in all mixtures. 
The rheological parameters of AAS pastes are summarized in Table 3. A 
gradual reduction in dynamic yield stress from 144.39 Pa to 7.10 Pa has 
been detected when the Ms. was increased from 0 to 2.0, confirming the 
fluidizing effect of sodium silicate solutions [19]. In the meantime, the 
plastic viscosity was reduced by 16.7% in M3 comparing to M1, while 
further increase in Ms. resulted in the higher viscosity of M4, M5, and 
M6, which was around 2.5 Pa⋅s in these mixtures. The degree of thix-
otropy in AAS mixtures was reflected by the area between up and down 
ramp flow curves. By varying the Ms., the greatest loop curve area was 
detected in M2 (Ms0.125), which is in agreement with the G′ evolution 
detected by the SAOS test. A more flocculated structure can be expected 
due to the rapid initial structural build-up, which also resulted in the 
highest static yield stress in M2. However, this initial structuration is 
reversible such that the dynamic yield stress of M2 is 26.7% lower as 
compared to M1. Regarding the effect of water content, an increase in 
the w/b ratio resulted in significant reductions in all rheological pa-
rameters listed in Table 3. It is indicated that the solid precursor grains 
are more dispersed by the extra water content [72]. 

3.2. Microstructural features of AAS pastes 

3.2.1. Effect of activators 
Microstructures of M1, M3, M9, and M10 at 5 min are presented in 

Fig. 9. Firstly, Fig. 9(a) and (c) show the micrograph obtained when 
hydroxide and 2-propanol media are used, respectively. As shown in 
Fig. 9(c), irregular-shaped angular BFS particles have been observed, 

Fig. 7. Evolution of loss factor as a function of time (a) Effect of Ms.; (b) Effect of w/b ratio.  
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which was very similar to the original morphology of BFS (Fig. 1(b)). 
Agglomeration of slag particles was observed where smaller particles 
were closely attached to the surface of large grains. The interparticle 
cavities represent the space originally occupied by water, which was 
sublimated during the etching process. When sodium hydroxide acti-
vator is used, a thin layer of amorphous reaction products was observed 
on the particle surface (see Fig. 9(a)). This indicates that the reaction 
proceeded very rapidly in sodium hydroxide media such that the reac-
tion products already precipitated on the BFS surface at 5 min after 
wetting. In both 2-propanol and sodium hydroxide media, a clear 
boundary adjacent to the surface of slag particles could be identified as 
the water content was sublimated. 

However, significant changes in the microstructural features of 
interparticle phases occurred as the sodium silicate was applied. As 
shown in Fig. 9(b), a porous network structure appeared between slag 
particles. The network structure consists of gel-like skeletons and semi- 
connected pores (some pores are connected to each other through 
openings on inner walls), which were formed due to the sublimation of 
water droplets. Further, it can be observed that the slag particles were 
tightly wrapped up and bridged to each other through the network 
structures. A similar microstructure was observed in Fig. 9(d) (M10, 
made of silicate-based activator and the “inert” precursor) as well, 
where no dissolution or activation reaction takes place. Therefore, the 
presence of the gel-like network structure detected in M10 is attributed 
to the activator phase. Moreover, almost identical microstructures have 
been observed in Fig. 9(b) and (d), while the network structure wrap-
ping around slag particles was not observed in hydroxide-based mix-
tures (Fig. 9(a)). It is indicated that the network structure is formed due 
to the presence of sodium silicate. A schematic microstructure sketch of 

AAS paste is illustrated in Fig. 10, which will be further explained to 
interpret the rheological parameters. 

Dai et al. [17] studied the pore solution chemistry of a similar AAM 
mixture (Ms0.4) made of BFS and fly ash, and they reported that the pore 
solution was dominant by Na and Si at 10 min after wetting, while only 
very limited quantities of Al and Ca dissolved from precursors were 
identified. The result further illustrates that the network structure is 
formed due to the activator. The tiny reduction in Si concentrations 
might be indicative of the formation of N-A-S-H precursor gel and C-(N)- 
A-S-H [27] at the very early stage of the activation reaction. Previous 
studies suggested that the silicate content in activators can provide 
nucleation sites for the reaction products [62,73]. However, no obvious 
changes in microstructural features in cryo-SEM images have been 
detected, and the reaction products are scarcely observed on the silicate 
gel network. It might be ascribed to that the pore solution did not reach 
the supersaturation to form the precipitations [27], or the low amount of 
reaction products can be buried in the silicate gels. 

Meanwhile, Favier et al. [74] studied the colloidal interactions be-
tween metakaolin grains when suspended in a silicate-based alkaline 
solution. It was observed that the colloidal interactions between the 
precursor grains are of very low energy, which results in a suspension 
with very low yield stress. On the other hand, the hydrodynamic viscous 
dissipation was found to be a predominant mechanism in the silicate 
media, resulting in a high macroscopic viscosity of the suspension. Be-
sides, Kashani et al. [75] reported a transition from negative to positive 
zeta potential value in a hydroxide-based AAS mixture with an increased 
alkali concentration, due to the adsorption of cations on slag surfaces. 
Conversely, the addition of sodium silicate resulted in greater negative 
zeta potential values in silicate-based AAS mixtures, which reveals that 
the slag particles are wrapped around by the negatively charged silicate 
species [66]. Moreover, they also detected attractive double layer forces 
in mixtures with a high silicate dosage, which can be linked to the 
bridging of slag particles through the network structures, as shown in 
Fig. 9(b). 

Comparing Fig. 9(a) and (b), it can be observed that the AAM in 
hydroxide media showed a suspension type behavior (solid particles 
dispersed in a liquid media) [76] whereas in the presence of silicates, the 
pore solution phase between slag particles showed typical emulsion 
characteristics, where two liquid phases immiscible to each other 
formed a dispersion of liquid droplets in a continuous liquid medium 
[77,78]. In that case, the AAS paste prepared using silicate-based acti-
vators could be interpreted as a complex multi-phasic dispersion, where 
BFS particles are dissolved in a “water-in-silicate” emulsion. 

Regarding the rheological parameters, both static and dynamic yield 
stress in M1 were drastically declined (by 38.5% and 42.5%, 

Fig. 8. Flow curves of AAS pastes (a) Effect of Ms.; (b) Effect of w/b ratio.  

Table 3 
Rheological parameters of AAS pastes.  

Mix Static yield 
stress (Pa) 

Dynamic rheological parameters (fitted 
with Bingham model) 

Loop curve 
area (Pa/s) 

Dynamic yield 
stress (Pa) 

Plastic 
viscosity 
(Pa⋅s) 

R2 

M1  275.31  144.39  2.28  0.9987  7207.44 
M2  326.28  105.91  1.77  0.9909  8945.77 
M3  169.31  74.33  1.90  0.9988  3838.88 
M4  64.89  19.30  2.48  0.9990  5945.76 
M5  45.36  10.52  2.49  0.9994  5861.83 
M6  34.29  7.10  2.51  0.9999  5271.86 
M7  22.38  7.75  1.12  0.9973  2269.51 
M8  11.19  3.54  0.59  0.9982  393.65  
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respectively) with the involvement of the silicate content in the acti-
vator, which confirmed the fluidizing effect of sodium silicate [19]. 
Meanwhile, the plastic viscosity of M3 also reduced by 16.7% as 
compared to M1. The high yield stress of AAM in the hydroxide media 
compared to the silicate media can be explained based on the micro-
structures visualized in Fig. 9. As discussed earlier, the hydroxide media 
showed a suspension-like behavior, i.e., the slag particles are dissolved 
in the hydroxide solution to form a suspension, which is consistent with 

PC mixtures [76]. However, as the solid reaction products progressively 
precipitate on the surface particles as the reaction proceeds and the slag 
particles are bridged to each other due to the accumulation of reaction 
products. This is schematically shown in Fig. 10. Further, the agglom-
erations of the slag particles cause the free water to be trapped in flocs 
[16,79]. Externally applied shear has to break the agglomeration be-
tween solid slag particles and reaction products to initiate the flow, 
which leads to the high yield stress detected in hydroxide-based AAS 

Fig. 9. Microstructure of fresh paste by cryo-SEM (1000 and 5000×magnification) at 5 min. (a) M1, BFS with hydroxide-based activator; (b) M3, BFS with silicate- 
based activator (Ms0.5); (c) M9, BFS with 2-propanol; (d) M10, quartz sand with silicate-based activator (Ms0.5). 

Fig. 10. Schematic diagram of microstructures (a) Hydroxide-based AAS paste; (b) Silicate-based AAS paste.  
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mixtures. With the presence of silicate in the activator, the system be-
comes rather complex. According to cryo-SEM observations, a discon-
tinuous bi-phasic liquid occurs between the slag particles as shown in 
Fig. 10(b), identified as an emulsion consisting of the continuous silicate 
gel and water droplets. Compared to the more rigid connections formed 
by the reaction products in the hydroxide media (Fig. 10(a)), the bi- 
phasic liquid structure in the silicate media can be broken relatively 
more easily when subjected to shear [76]. Therefore, the flow initiates 
more easily in the latter case in a more dispersed mixture, leading to 
lower yield stress and viscosity as seen in the rheological parameters. 

3.2.2. Effect of Ms 
At a fixed alkali concentration, an increased silicate concentration 

from Ms0.125 to Ms2.0 was designed in this study to investigate the 
microstructural features in AAS pastes with different Ms. (M2-M6) at 5 
min, and the results are illustrated in Fig. 11. It's been observed that the 
pore size of water droplets significantly reduced as the Ms. increased. 
The pore size distribution and A50 values are presented in Fig. 12. The 
results showed that the micropores in area fraction 0.1 to 10 μm2 

remarkably increased in AAS pastes with higher Ms. 
As shown in Table 3, both static and dynamic yield stresses of AAS 

pastes was dramatically reduced as the silicate became more concen-
trated. Considering the extreme condition in hydroxide-based AAS 
paste, where no silicate was applied, high yield stress was detected to 
initiate the flow. However, a network structure was formed with the 
addition of sodium silicate, which wrapped around the slag particles and 
resulted in the dispersion of slag particles in the mixture. Direct contacts 
between solid particles were extensively prevented. This can be corre-
lated to the reduction in dynamic rheological parameters in M2 as 
compared to M1 (the dynamic yield stress and plastic viscosity were 
reduced by 26.7% and 22.4%, respectively) when only a small dosage of 
silicate was applied in the activator. On the other hand, M2 showed a 
higher static yield stress than M1. This can be interpreted by the rapid 
structural build-up at the first couple of minutes and the strong thixo-
tropic behavior in M2 (Fig. 6(a) and Table 3). However, as aforemen-
tioned, the early-stage reaction products can be buried in the interstitial 
silicate gels and were not observed by the cryo-SEM images. With 
further increase in Ms., the fluidizing effect became less significant. For 
instance, the dynamic yield stress of Ms2.0 mixture only reduced 3.42 Pa 

compared to Ms1.5 mixture. It is indicated that the direct contact and 
colloidal interactions progressively reduced, and the solid particles were 
dispersed sufficiently far apart from each other as more silicate gels 
appeared in the pore solution [76]. 

Meanwhile, the plastic viscosity of AAS pastes exhibited a nonlinear 
variation with the increase in Ms. At low Ms. ranges, the plastic viscosity 
first improved when Ms. was increased from 0.125 to 1.0, while it almost 
kept unchanged by further improving the silicate modulus. Once the 
flow is initiated, the resistance to the flow determines the plastic vis-
cosity. It has been reported in suspensions that the viscosity is directly 
proportional to the viscosity of the liquid phase and the solid concen-
tration. For instance, the Krieger-Dougherty equation [80,81] expresses 

the viscosity of suspension as η = ηLf
(

ϕ
ϕm

)
where ηL is the viscosity of the 

liquid phase and f
(

ϕ
ϕm

)
is a function of solid volume fraction (ϕ) and 

maximum possible solid volume fraction (ϕm). Alnahhal et al. [46] 
studied the rheology of activator solutions in AAM with various silicate 
concentrations, and they found out the viscosity was doubled when Ms. 
was increased from 1.0 to 1.5. This can be attributed to the nature of 
emulsions that the fine droplets result in the high viscosity of the 
mixture [77,82,83]. Microstructural features illustrated in Fig. 11 
confirmed the presence of smaller droplets with an increase in Ms., 
which indicates the viscosity of the activator was increased. However, 
excess silicate content as the extra liquid phase on the other hand 
reduced the solid concentration. Accordingly, the plastic viscosity 
slightly increased as Ms. was increased from 0.125 to 1.0, while after-
wards remained almost unchanged with further increasing the silicate 
concentration. 

The above results showed the dispersing effect of silicate content. 
However, such effect might disappear as the reaction proceeds. Due to 
the continuous accumulation of reaction products, the silicate network 
gradually hardens until the mixture loses its fluidity. Previous studies 
also suggested the hardening process might take place very fast in 
mixtures with a high Ms. [17,84], referring to the steep increase of G′

after the initial dormant period detected by SAOS test. Therefore, it is 
possible to improve the initial workability of AAS by using more silicate 
in the activator, while the fast setting process should be properly 
controlled in the case of high Ms., this will be further discussed in Sec-
tion 3.3. 

Fig. 11. Microstructure of fresh paste by cryo-SEM (1000×magnification) at 5 min (a) M2, Ms0.125; (b) M3, Ms0.5; (c) M4, Ms1.0; (d) M5, Ms1.5; (e) M6, Ms2.0.  
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3.2.3. Effect of w/b 
The effect of water content was studied by increasing w/b up to 0.45 

and 0.5 (M3, M7, and M8), and the microstructures of fresh AAS pastes 
at 5 min are given in Fig. 13. Obvious changes were detected on the 
microstructures of pastes with high w/b. As presented in Fig. 13(b), the 
pore size of water droplets increased with the extra water content, while 
the thickness of inner walls between droplets was also reduced. In the 
meantime, more openings could be observed on the inner walls, which 
indicates that the connectivity of the adjacent water droplets was 
improved so that water could more easily flow from one pore to another. 
As the w/b further increased to 0.5 (Fig. 13(c)), microstructural features 
of the network structure became much less significant, and the water 
phase became more predominant within the solvent phase. Some big 
pores were merged, and the inner walls between droplets disappeared. 
This observation is also evident in the pore size distribution curves and 
A50 values shown in Fig. 14. It can be seen that there is an increase in the 
size of water droplets with increasing w/b. 

All rheological parameters significantly decreased as the w/b 
increased, as shown in Table 3. The reduction in yield stress and vis-
cosity can be attributed to the extra water content, which resulted in 
more dispersing effect between slag particles. Meanwhile, the micro-
structures also suggested the free water became less trapped in the 
network structure as w/b increased, and thus the collision and interac-
tion between silicate gel and water droplets within the emulsion phase 
were mitigated. Consequently, the viscosity of fresh AAS paste was 
modified, which is ascribed not only to the reduction in solid concen-
tration, but also to a reduction in viscosity of the pore solution. 

3.2.4. Aging effect 
The microstructure evolution of Ms0.5 AAS pastes was observed by 

cryo-SEM at 5, 20, and 60 min, respectively. The mixtures for tests on 
the aging effect were prepared separately to ensure a comparable shear 
history. Due to the rapid structural build-up and high stiffness under the 
cryogenic state of the rest AAS pastes, the microstructural evolution was 
only studied on M3. As presented in Fig. 15, the interparticle network 
structure progressively became denser as time elapsed, which is attrib-
uted to the precipitation and accumulation of reaction products on the 
network structure. The pore size distribution curves and A50 values are 
given in Fig. 16. The results show that the average pore size decreased as 
the pores were gradually filled by the gel-like primary reaction products 
[27,62,85]. 

It's been proposed that the structuration of silicate-based AAS can be 
attributed to the accumulation and hardening of interstitial gels [28]. As 
the reaction progress, the existing pore structures are more filled and the 
inner wall between adjacent droplets became thicker (comparing Fig. 15 
(c) to (a)). Moreover, the silicate gel in the pore solution became thicker 
and more viscous due to the accumulation of primary reaction products. 
In this way, the droplets are more trapped within the pores and difficult 
to flow and approach each other [86], resulting in the stiffening of the 
network and structural build-up of the AAS paste. 

3.3. Rheology optimization of AAS 

Similar to the PC materials, AAS made of hydroxide-based activators 
exhibited a typical suspension microstructure. Reaction products pre-
cipitate and accumulate on the slag particles as the activation reaction 
proceeded. Due to the agglomeration of slag particles (as shown in Fig. 9 

Fig. 12. Pore size properties of water droplets derived from cryo-SEM images of M2, M3, M4, M5, and M6 at 5 min. (a) Pore size distribution curves; (b) A50 values.  

Fig. 13. Microstructure of fresh paste by cryo-SEM (1000×magnification) at 5 min (a) M3, w/b = 0.4; (b) M7, w/b = 0.45; (c) M8, w/b = 0.5.  
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(b)), the free water is trapped within the flocs, gradually reducing its 
fluidity [87]. In this case, the electrostatic repulsion and steric hindrance 
mechanisms of conventional superplasticizers are still effective. Slag 
particles could be well dispersed as long as the functional groups of 
superplasticizer polymers remain undestroyed in the high-alkalinity 
activators. It's also been confirmed in previous studies that PNS types 
of superplasticizers are still effective in hydroxide-based AAS mixtures 

[88,89]. 
Significant changes were observed by applying silicate species in the 

activators, a porous network structure has been identified in the AAS 
paste made of silicate-based activators. The presence of the network 
structure dispersed the solid slag particles to reduce their direct contact, 
and the yield stress of AAS mixtures significantly decreased. On the 
other hand, fine droplets occurred as higher silicate content was applied, 

Fig. 14. Pore size properties of water droplets derived from cryo-SEM images of M3, M7 and M8 at 5 min. (a) Pore size distribution curves; (b) A50 values.  

Fig. 15. Microstructure of M3 by cryo-SEM (1000×magnification) (a) 5 min; (b) 20 min; (c) 60 min.  

Fig. 16. Pore size properties of droplets derived from cryo-SEM images of M3 at 5, 20, and 60 min (a) Pore size distribution curves; (b) A50 values.  
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which increased the viscosity of the solvent emulsion phase. Moreover, 
it's also possible to improve the workability of AAS mixtures by using 
high w/b, however, the reduction in mechanical properties should be 
aware that high water content would result in a more porous structure. 
Accordingly, it's feasible to optimize the rheology of AAM by improving 
silicate and water content, however, both methods should be limited to a 
reasonable range to avoid rapid setting and too much reduction in 
strength, respectively. Regarding the rapid setting in high Ms. AAS 
mixtures, multiple methods have been proposed to prolong the setting 
time and improve the fresh properties, such as using a longer mixing 
time [85,90,91], replacing silicate activator with other alkaline com-
pounds [92,93], and adding admixtures to slow down the activation 
process (for instance, phosphoric salts and borax) [12,94–96]. Never-
theless, no existing superplasticizer was found to be very effective in 
silicate media, a fluidizing admixture for silicate-based AAS mixtures is 
still absent up to date. The microstructural features observed in this 
study suggest that the working mechanisms for PC superplasticizers 
might not be applicable in silicate-based AAS mixtures [46,74]. Sur-
factant could be applied to improve the rheology of the emulsion phase 
itself, while more understandings on the interactions in the solid- 
emulsion dispersion are required to better control the rheology of 
silicate-based AAS mixtures. 

4. Conclusions 

This study attempts to interpret the early-stage rheological behavior 
of alkali-activated slag (AAS) paste from microstructural features. The 
effects of activators, silicate modulus (Ms), and water to binder ratio (w/ 
b) were studied along the activation process. Cryogenic scanning elec-
tron microscopy (cryo-SEM) and rheological tests were performed to 
characterize the evolution of microstructure and rheology of AAS pastes, 
respectively. 

As indicated by the storage modulus evolution, the very early age 
structural build-up in AAS mixtures was gradually slowed down with an 
increase in Ms., resulting in an initial dormant period in high Ms. mix-
tures. However, rapid structuration has been detected in both low and 
high Ms. mixtures in the first 30 min. The most moderate structural 
build-up was observed in the Ms0.5 mixture, which can be correlated to 
the accumulation of intermediate reaction products and thickening of 
interstitial gels according to the cryo-SEM observations. 

In hydroxide-based AAS mixtures, amorphous reaction products 
have been observed at very early ages which precipitated on the slag 
surface. The slag particles were attached and bridged to each other 
through the reaction products to form agglomerations in AAS mixtures, 
and the free water was trapped in flocs. Thereby, high yield stress has 
been detected in hydroxide-based AAS mixtures. With the addition of 
silicate in the activator, a network structure wrapped around the slag 
particles was identified by cryo-SEM images. Meanwhile, the pore so-
lution showed typical emulsion characteristics, where water droplets are 
dispersed in the silicate gels. The yield stress of silicate-based AAS paste 
was significantly reduced as compared to the hydroxide-based mixture 
as slag particles were dispersed by the silicate gels. However, this effect 
turned less obvious with further increasing Ms. since slag particles 
became far apart enough from each other. In silicate-based AAS pastes, 
the viscosity of the mixtures first increased and later kept nearly con-
stant with increasing Ms. A porous fine emulsion was visualized in high 
Ms. mixtures, which reveals the highly-viscous nature of the activator as 
well as the pore solution. Eventually, the rheological parameters of AAS 
mixtures dramatically reduced with increasing w/b, since the extra 
water content not only decreased the solid concentration but also 
improved the connectivity between adjacent water droplets within the 
emulsion phase. 
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