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Abstract 15 

Efficient and accurate streamflow predictions are important for urban water management. 16 

Data-driven models, especially neural network (NN) models can predict streamflow fast, 17 

while the results are uncertain in some complex river systems. Physically based models 18 

can reveal the underlying physics, but it is relatively slow and computationally costly. This 19 
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work focuses on evaluating the reliability of three NN models (artificial neural networks 20 

(ANN), long short-term memory networks (LSTM), adaptive neuro-fuzzy inference 21 

system (ANFIS)) and one physically based model (SOBEK) in terms of efficiency and 22 

accuracy for average and peak streamflow simulation. All the models are applied for a tidal 23 

river and a mountainous river in Shenzhen. The results show that, the ANN model 24 

calculates fastest since the hidden layer’s structure is simple. The LSTM model is reliable 25 

in average streamflow simulation in tidal river with the lowest bias while the ANFIS model 26 

has the best accuracy for peak streamflow simulation. Furthermore, the SOBEK model 27 

shows reliability in simulating average and peak streamflow in mountainous river due to 28 

its ability to capture uneven spatial rainfall in the area. Overall, the results indicate that the 29 

LSTM model can be a helpful supplementary to physically based models in streamflow 30 

simulation of complex urban river systems, by giving fast streamflow predictions with 31 

usually acceptable accuracy. Our results can provide helpful information for hydrological 32 

engineers in the application of flooding early warning and emergency preparedness in the 33 

context of flooding risk management. 34 

Keywords: streamflow simulation, neural network models, SOBEK model, urban rivers 35 

1. Introduction 36 

Urban flooding has become a threat to urban water security and has increased in frequency 37 

in recent decades (Ziegler et al., 2012). China is prone to urban flooding, and many of 38 

Chinese cities have been experiencing a large increases in urban flooding in recent years 39 

(Duan et al., 2016). Between 2008 and 2010, 218 Chinese cities endured at least one urban 40 

flooding event while more than 100 cities experienced three urban flooding events, 41 



including major cities like Beijing, Shanghai, Guangzhou and Shenzhen (Jiang et al., 2018; 42 

Song and Li, 2019). Tidal river basins and mountainous river basins are two typical urban 43 

river basins with large impervious areas that are vulnerable to urban flooding (Archetti et 44 

al., 2011; Davenport et al., 2004; Dawson et al., 2008). In most tidal river basins of China, 45 

urban flooding is mainly caused by large amounts of rainfall-runoff at the same time of 46 

sustained high tide at outlet, in which the rivers cannot convey large water volume during 47 

high precipitation period (Lian et al., 2013; Orton et al., 2020). Urban flooding also occurs 48 

in mountainous river basins due to its uneven slope distribution (Ballesteros-Cánovas et al., 49 

2015). It causes the streamflow to quickly move from high-altitude areas to low-altitude 50 

areas, and impervious areas lead to slow streamflow infiltration, so a large amount of 51 

streamflow will accumulate in a short time (Chen et al., 2008). Urban flooding can result 52 

in disasters that cause enormous public and private property losses and casualties. In March 53 

2014, Shenzhen experienced a 50-year rainfall event, paralyzing the urban sewer system 54 

and surface water flows with more than 200 inundation areas (Xu et al., 2020). In 2016, 55 

weeks of torrential rainfall during the monsoon season led to severe urban flooding, which 56 

submerged 28 provinces and impacted 60 million people in China (Jiang et al., 2018). 57 

Therefore, streamflow prediction in tidal river basins and mountainous river basins is 58 

necessary and crucial for public safety management and social development. 59 

Urban flooding is characterized by short duration and high intensity, making it difficult to 60 

predict. The rapid forecasting and prediction of urban flooding can minimize potential 61 

losses. Therefore, efficient and accurate simulations of the streamflow caused by urban 62 

flooding is of great concern for urban water resource management and decision makers. 63 

Hydrologists have paid increasing attention and efforts to developing urban flooding 64 



models. Physically based models have been widely used for urban flooding prediction in 65 

recent decades (Anghileri et al., 2016; Botto et al., 2018; Chen et al., 2016). They take the 66 

dynamics of the hydrological cycle process into account, build a hydrodynamic equation 67 

set based on the characteristics of runoff generation in the basin, and simulate the rainfall 68 

runoff response. They can fully simulate the whole rainfall-runoff process of a river basin 69 

(Kim and Mohanty, 2017). Physically based models, however, also present several 70 

challenges. For instance, these models need large basic data for model set-up and 71 

calibration (Li et al., 2020), and the quality of the simulation results depends on the quality 72 

and availability of the input data (Yoon et al., 2011). Additionally, the calculation of 73 

physically based models is relatively slow, and the computational cost is expensive due to 74 

considerable data calibration and validation. 75 

Due to the slow simulation process of physically based models (Yang et al., 2020), data-76 

driven models have gained considerable attention in hydrology in recent years due to their 77 

rapid simulation capacity (Ahani et al., 2018). Data-driven models are therefore seen as 78 

alternatives to physically based models. They consider the input and output data, without 79 

using any of the physical processes (Wang and Yao, 2013). Among the various data-driven 80 

models, neural network (NN) models are the most widely used techniques for streamflow 81 

simulation and forecasting (Humphrey et al., 2016; Yang et al., 2020; Zhang et al., 2020). 82 

Artificial neural network (ANN) model, can be seen as a black-box model, has been used 83 

in river streamflow simulation because of its ability to mimic both linear, nonlinear and 84 

hydrological systems (Aichouri et al., 2015; Kashani et al., 2016; Shoaib et al., 2014). 85 

Among the data-driven models, it has a long development history, with the first studies 86 

using the ANN model for streamflow prediction dating back to the early 1990s (Daniell, 87 



1991; Halff et al., 1993). However, a drawback of ANN’s hidden layer is that any 88 

information about the sequential order of the inputs is lost. Long short-term memory 89 

(LSTM) model overcomes the problem of ANN’s hidden layer through a specially 90 

designed architecture (Kratzert et al., 2018). This architecture has memory cells replacing 91 

the traditional hidden layer. The memory cells could store, write and read data via gates 92 

that open and close (Zhang et al., 2018). This can overcome the problem of the ANN model 93 

of learning long-term dependencies representing, for example, storage effects within 94 

hydrological catchments, which may play a significant role for hydrological process 95 

(Kratzert et al., 2018). With the rapid development of data-driven modelling approaches, 96 

there has been a shift from black-box models to semantic-based fuzzy systems in recent 97 

years (Ang and Quek, 2005). Adaptive network-based fuzzy inference system (ANFIS) 98 

model is one example of a semantic-based fuzzy system which conducts learning through 99 

the minimization of global error within the model. However, there are several essential 100 

limitations for NN models, such as the lack of explanation of the physical mechanism and 101 

transparency of the simulation process and difficulties in explaining the results (Elshorbagy 102 

et al., 2010). 103 

Through the research, we find that physically based models can make up for the 104 

disadvantages of data-driven models that cannot simulate the physical process, and data-105 

driven models can make up for the slow simulation and prediction of physically based 106 

models. However, due to the uncertainty of physical parameters, input parameters and basic 107 

data, the simulation accuracy of the physically based model is also uncertain in some cases 108 

(Hattermann et al., 2018; Her et al., 2019; Liu et al., 2017; Sikorska and Renard, 2017). 109 

We therefore propose a hypothesis: for the streamflow simulation of a complex urban river 110 



system (i.e., a tidal river basin and a mountainous river basin), physically based models 111 

cannot fully generalize the physical process and the speed of the model is limited. Can 112 

data-driven models work as the supplementary, help to better simulate the streamflow in 113 

complex urban river systems? Existing studies that compared neural network models and 114 

physically based models for streamflow simulation in urban areas have only concentrated 115 

on data at the daily, monthly or annual scale (Chang and Chen, 2018; Mernild et al., 2018; 116 

Nikpour et al., 2019; Schuol et al., 2008; Tikhamarine et al., 2020). There are very few 117 

studies on the streamflow simulation based on hourly rainfall data. As the reliable 118 

streamflow simulation and prediction plays a key role in confronting urban flooding risks, 119 

a high temporal resolution precipitation dataset could have considerable influence on 120 

model accuracy (Bruneau et al., 1995) and help deepen our understanding of the process 121 

of streamflow, especially the process of extreme flooding events. The novelty of this study 122 

is that it conducts an evaluation on the reliability of short-term streamflow prediction 123 

methods driven by hourly rainfall data, with the goal to provide more suitable streamflow 124 

simulation models for urban rivers. 125 

This paper is organized as follows. Section 2 describes the study area, the data and method 126 

used in this study. Section 3 shows the calibration and validation results of the models, and 127 

the comparison of model performance in average and peak streamflow simulation. Section 128 

4 and Section 5 present the discussion and conclusion, respectively. 129 



2. Materials 130 

2.1 Study area 131 

 132 
Figure 1 Geography map and slope map (coordinate system: WGS-1984) of Maozhou 133 

River Basin and Pingshan River Basin in Shenzhen city, China; the spatial distribution of 134 
hydrological stations (red dots) and meteorological stations (white dots). 135 

Shenzhen is a coastal city in China that is experiencing rapid economic development. 136 

Urban flooding is one of the most devastating natural disasters that can occur in Shenzhen 137 

(Ke et al., 2020). Due to its rapid urbanization, the frequency of urban flooding in Shenzhen 138 

has increased in recent years (Shi et al., 2007; Yan et al., 2019). Maozhou River (MZR) is 139 



a tidal river (Cui and Guo, 2006), located in the northwest of Shenzhen close to the borders 140 

of Dongguan, which is the largest watershed in Shenzhen (see Figure 1). It flows through 141 

Baoan District and Guangming District and finally flows into the Lingding Ocean. 142 

Pingshan River (PSR), a mountainous river with an average slope of 2.76% (Xiong et al., 143 

2010), is located in north-eastern Shenzhen and close to the borders of Huizhou. The 144 

distribution of slopes in the two river basins is different (see Figure 1), resulting in different 145 

lag time period for the start of the rain to the peak of the flooding. Maozhou River can 146 

reach its peak in one hour, while Pingshan River can reach its peak in 40 minutes (SZN, 147 

2020). The comparison of general characteristics (including the river length, basin area, 148 

land use types, annual average rainfall, average slope and average elevation) of two rivers 149 

are shown in Table 1 (Chen et al., 2016; Cui and Guo, 2006; Peng et al., 2018; SMEEB, 150 

2018). 151 

Table 1 General characteristics of two river basins (MZR and PSR). 152 

River Length  
(km) 

Area  
(km2) 

Urban 
land 

Forest 
land 

Green 
land 

Annual 
average 

rainfall(mm) 

Average 
slope 

Average 
elevation 

(m) 
MZR 41.61 388.23 48% 32% 20% 1800 2.2‰ <25 
PSR 22.14 129.40 40% 50% 10% 2073 2.76% <82 

2.2 Data 153 

In this study, digital elevation model (DEM) data, meteorological data, hourly streamflow 154 

observation data and river profiles were used. The DEM data is retrieved from the Shuttle 155 

Radar Topography Mission with a resolution of 30m (SRTM, 2020). Meteorological data, 156 

including hourly precipitation data, daily temperature (average, maximum and minimum), 157 

and daily average wind speed, are provided by the Meteorological Bureau of Shenzhen 158 

(SMB). Hourly streamflow observation data and the river profiles, including bed level, 159 



channel slope, width of cross section and shape of cross section, are provided by the 160 

Huadong Engineering Corporation Limited (ECIDI) and the Municipal Ecological 161 

Environment Bureau of Shenzhen (SMEEB). 162 

2.3 Method 163 

As shown in Figure 2, we apply three neural network models (artificial neural networks 164 

(ANN), long short-term memory networks (LSTM) and adaptive neuro-fuzzy inference 165 

system (ANFIS)) with hourly rainfall data for streamflow simulation in a tidal river basin 166 

(Maozhou River) and a mountainous river basin (Pingshan River) in Shenzhen, China, and 167 

use a physically based model (the SOBEK model) as a reference. The introduction of the 168 

four models can be found in the supplementary materials. We attempt to assess model 169 

performance in three parts: model accuracy in average and peak streamflow simulation, 170 

model accuracy. Meanwhile, we examine whether neural network models can make up for 171 

physically based models in complex urban river systems in terms of accuracy. 172 



 173 
Figure 2 The general framework of this study. 174 

2.4 The definition of streamflow event 175 

Adams et al. (1986) found that less than 60 minutes intervals between two streamflow 176 

events, causes the division of rainfall to have greater impacts on the rainfall characteristic 177 

parameters, which will not be conducive to the statistics of rainfall characteristics. If the 178 

interval is set between 1-6 hours, the division of rainfall has a lower impact on rainfall 179 

characteristic parameters and is more reasonable and scientific. Figure 3 shows the 180 

definition of streamflow events in this paper. Considering the effects of rainfall confluence 181 

time and rainfall duration, this study selects 180 minutes as the minimum interval between 182 

two streamflow events, and the cumulative rainfall of each event is greater than 3 mm. 183 



 184 

Figure 3 The definition of streamflow events in this research. 185 

2.5 Assessment criteria 186 

The Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), the R square (R2), the 187 

percent bias (PBIAS) and the root-mean-square error (RMSE) are selected as assessment 188 

criteria to evaluate the model results in calibration and validation periods. Meanwhile, the 189 

Taylor diagram is applied to visualize the model performance in average streamflow 190 

simulation (Taylor, 2001). In addition to the standard deviation and correlation coefficient 191 

(r), the center root-mean-square errors (CRMSEs) are used in the Taylor diagram. The 192 

equations for computing these objective functions are given as follows: 193 
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where 𝑋𝑋𝑖𝑖,𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑋𝑋𝑖𝑖,𝑆𝑆𝑆𝑆𝑆𝑆 are the i-th observation and simulation data respectively, 𝑋𝑋�𝑂𝑂𝑂𝑂𝑂𝑂 and 203 

𝑋𝑋�𝑆𝑆𝑆𝑆𝑆𝑆 are the mean values of the observation and simulation data respectively, and n is the 204 

sample size. 205 

The NSE can measure the goodness of fit, from 0 to 1, where a value approaching 1 means 206 

the simulations are closer to the observations. The R2 and r value are used to express the 207 

correlation of simulation data and observation data directly, and a value approaching 1 208 

indicates a perfect correlation. The PBIAS measures the average tendency of the simulated 209 

values to be larger or smaller than their observed ones. The optimal value of PBIAS is 0.0, 210 

positive values indicate overestimation bias, whereas negative values indicate model 211 

underestimation bias (Moriasi et al., 2007). The RMSE is used to evaluate how closely the 212 

simulation data match the observation data and the values can range from 0 to +∞ based 213 

on the range of the data. The CRMSE is similar to the RMSE but has easier visualization 214 

characteristics in Taylor diagram. It ranges from 0 to 1, where a value approaching 0 means 215 

good simulation result. 216 



3. Results 217 

3.1 Model accuracy in average streamflow simulation 218 

We first selected 59 streamflow events (49 events for calibration; 10 events for validation) 219 

for Maozhou River and 21 events (11 events for calibration; 10 events for validation) for 220 

Pingshan River. As seen from Table 2, four models can simulate the streamflow of two 221 

river basins satisfactorily with high NSE (larger than 0.80) and low absolute PBIAS value 222 

(less than 15%) and the ANN model is the best one among four models in calibration period 223 

in Maozhou River, the SOBEK model is the best in Pingshan River. Moreover, it can be 224 

seen that in the validation period, the LSTM model is the best in Maozhou River, and the 225 

SOBEK model is the best in Pingshan River. The details of the calibration and validation 226 

results can be found in appendices (Figure A1). 227 

Table 2 Comparison of assessment criteria of four models for streamflow simulation  228 
in calibration and validation periods. 229 

Basins Models NSE R2 RMSE 
(m3/s) 

PBIAS 
(%) 

MZR 

Calibration 
SOBEK 0.849 0.868 10.137 -12.029 
ANN 0.954 0.956 5.601 -0.850 
LSTM 0.922 0.939 7.284 -14.317 
ANFIS 0.852 0.854 10.029 4.071 

Validation 
SOBEK 0.948 0.950 11.387 -0.542 
ANN 0.587 0.687 32.106 -17.860 
LSTM 0.976 0.977 7.725 -1.379 
ANFIS 0.883 0.884 17.123 0.121 

PSR 

Calibration 
SOBEK 0.925 0.926 1.922 -6.760 
ANN 0.874 0.879 2.498 -0.702 
LSTM 0.888 0.892 2.358 6.461 
ANFIS 0.817 0.820 3.010 3.989 

Validation 
SOBEK 0.891 0.897 2.109 1.670 



ANN 0.645 0.646 3.805 6.480 
LSTM 0.830 0.848 2.633 9.791 
ANFIS 0.878 0.880 2.235 4.982 

Visualizing the average streamflow simulation statistic results of standard deviation, 230 

CRMSE, and the correlation coefficient in the Taylor diagram (Figure 4) verifies the 231 

distinguish performance of each model. Generally, the LSTM model in Maozhou River 232 

(yellow dot) and the SOBEK model in Pingshan River (blue star) lead the reliability of 233 

average streamflow simulation regarding the statistical performance, characterized by 234 

relatively small standard deviation and CRMSE, and relatively higher r values. The details 235 

of the comparison between the observed and simulated results for the four models in terms 236 

of average streamflow in two river basins can be found in appendices (Figure A2 and A3). 237 

 238 

Figure 4 Taylor diagram of the four models in two basins, with shapes and colours 239 
indicating simulation and observation data. 240 



3.2 Evaluation of model efficiency 241 

In Section 3.1, we evaluated the model accuracy in average streamflow simulation during 242 

calibration and validation period. In this section, the model efficiency will be evaluated as 243 

the computation time of models would be of great importance for the streamflow 244 

simulation during short period. 245 

The computation time of the models is related to the computer’s CPU and memory. To 246 

eliminate the impact of different computer configurations, the computer configuration we 247 

adopted is as follows: i7-8700 CPU, 32G memory. Under the same computer configuration, 248 

the computation time of the SOBEK model depends on the complexity of the constructed 249 

river network and the amount of input rainfall data. As the river network of Maozhou River 250 

is more complicated than Pingshan River, the SOBEK model validates for almost 1 hour 251 

in Maozhou River and 30 minutes in Pingshan River. Unlike the physically based models, 252 

rainfall data is the only input required in the neural network model (after calibration) to 253 

obtain the prediction streamflow. Therefore, the computation time is much faster. 254 

We also measured the validation time of the three neural network models. The time series 255 

of the two basins for validation is approximately 350 hours. The ANN model is the quickest 256 

one (the simulation time is 6 min for the MZR and 5 min for the PSR), and the LSTM 257 

model is the slowest among three neural network models we used (12 min for the MZR 258 

and 10 min for the PSR). The ANN model and LSTM model provided faster simulation 259 

for Pingshan River than Maozhou River as there were fewer streamflow events in Pingshan 260 

River. Fewer streamflow events mean less simulation time. The simulation time of the 261 

ANFIS model was between the ANN model and the LSTM model, and there was no 262 



difference in the simulation time of the ANFIS model in the two basins (approximately 8 263 

min). Overall, it shows that the validation time of the neural network models is faster than 264 

that of physically based model. 265 

For the prediction time, we performed a rough test to estimate simulation time based on 266 

the existing validation time. In Shenzhen, the streamflow from rainfall to peak value does 267 

not exceed three hours (SZN, 2020). Therefore, we used a three-hour rainfall data for 268 

testing. As seen in Table 3, under a future three-hour rainfall event, the SOBEK model has 269 

a better performance in prediction time for each basin than in validation because the amount 270 

of input rainfall data is smaller. The neural network models can increase a factor of 10-60 271 

over the SOBEK model for 3-hours rainfall duration (the ANN model takes approximately 272 

30 seconds, the LSTM model approximately 2 minutes and the ANFIS model 273 

approximately 1 minute). 274 

Table 3 The prediction time of 3-hour rainfall data using four models. 275 

               Model 
River 

SOBEK ANN LSTM ANFIS 

MZR 30 min ≈30s ≈2 min ≈1 min 
PSR 15min ≈30s ≈1.5 min ≈1 min 

3.3 Model performance in predicting flooding events 276 

To analyze the simulation performance of the four models during a flooding event process, 277 

we compare the observation and simulation hydrographs of four flooding events (the 278 

rainfall characteristics of these events are short duration and high intensity) using the four 279 

models in the two river basins ((a) is SJ station, (b) is LC station and (c) is XT station in 280 

MZR, (d) is PSS station in PSR see figure 1) in Figure 5. The ANFIS model is the best 281 

among the four models for the simulation of peak streamflow during a flooding event, 282 



while the ANN model is the worst, which relies in the simulated values of the ANN model 283 

fluctuate abnormally compared with the observed values in large volume streamflow 284 

(especially at LC station see Figure 5(b)). The LSTM model is not very effective in 285 

simulating small volume flow values in flooding events (the LSTM model cannot reflect 286 

the fluctuating state of small volume streamflow, see Figure 5 (d), highlighted by a grey 287 

box). The SOBEK model shows abnormal fluctuate values between the time of 40-50 hours 288 

in Figure 5(b) (see green line).  289 

290 
Figure 5 Observed and simulated hydrographs of streamflow in the two basins.  291 

(a) - SJ station, (b) -LC station (c) - XT station in MZR, (d) - PSS station in PSR. 292 

In addition, a comparison study on the correlation of observation data and simulation 293 

results is conducted, and the result is shown in Figure 6. As seen in Figure 6, the four 294 

models all have a high correlation (higher than 0.70) between the observation data and the 295 

simulation values in two river basins. Compared with other models, the distribution of the 296 



ANFIS model (green dots) is more concentrated in Maozhou River (Figure 6(a)), and the 297 

SOBEK model (blue dots) is more concentrated in Pingshan River (Figure 6(b)), 298 

respectively. This reveals that the ANFIS and SOBEK model have great potential to 299 

simulate peak streamflow well in tidal river basin and in mountainous river basin, 300 

respectively. 301 

 302 

Figure 6 Observed and simulated hydrographs of streamflow in MZR (a) and PSR (b) 303 
basins. 304 

4. Discussion 305 

From the above research, all four models have potential to simulate the streamflow of urban 306 

river basins well. Table 4 ranks the four models’ performance in terms of accuracy for 307 

average streamflow simulation (AAS), accuracy for peak streamflow simulation (APS), 308 

model efficiency and overall choice in two river basins. 309 

Table 4 Rank performance of four models in two river basins. 310 



 Tidal river basin Mountainous river basin 

SOBEK ANN LSTM ANFIS SOBEK ANN LSTM ANFIS 

AAS 2nd 4th 1st 3rd 1st 4th 2nd 3rd 

APS 3rd 4th 2nd 1st 1st 4th 3rd 2nd 

Model 

Efficiency 

4th 1st 2nd 3rd 4th 1st 2nd 3rd 

Overall 

Choice 

  √  √    

Of the four models, the LSTM model shows a good ability in simulating average 311 

streamflow well in tidal river basin. The internal memory cells of the LSTM model 312 

(‘forgotten gate’ and ‘memory gate’) have the ability to filter data and memory data 313 

features making as neural network functions to simulate the average streamflow process 314 

could be the reason for its good performance (Kratzert et al., 2018; Sahoo et al., 2019; 315 

Sudriani et al., 2019). Besides, the low streamflow has little impact on the average 316 

streamflow prediction accuracy in tidal river basin and the physical-based models 317 

sometimes cannot apply well in tidal basins due to some uncertainty sources, such as 318 

excessive rainfall data and the tidal effects (Jung et al., 2018), so the LSTM model can 319 

simulate better than the SOBEK model. 320 

The uneven slope distribution has great influence on the average streamflow simulation 321 

accuracy in mountainous river basin. The SOBEK model can therefore, exhibit better due 322 



to the ability of physically based models to response to the rainfall-streamflow process 323 

(Noor et al., 2014). However, the ANN model does not show high reliability in validation 324 

period. According to Hu et al. (2018) and Ahmad and Simonovic (2005), the hidden layer 325 

function of the ANN model has limitations and challenges when simulate insufficient data. 326 

The input streamflow event of validation period is not enough, so the ANN model cannot 327 

validate well. Moreover, the results of the ANFIS model are similar to those of the LSTM 328 

model and more stable than those of the ANN model, which relies on the fact that the 329 

ANFIS model combines the relationship structure of neural network models with the 330 

decision-making mechanism of fuzzy logic (Amutha and Porchelvan, 2011; Vetrivel and 331 

Elangovan, 2017). 332 

Compared to physically based model, all neural network models have the ability to 333 

simulate and predict quickly. The physically based model needs several data for model set-334 

up and the calculation time depends on the complexity of urban river system. Therefore, 335 

physically based model has disadvantages in prediction time (Ke et al., 2020; Sun et al., 336 

2017). The prediction speed of the ANN model is the best among the three neural network 337 

models we used. The ANN model can complete nonlinear predictions by adjusting the 338 

number and type of neurons in the hidden layer and the weights carried by each neuron 339 

(Navale and Singh, 2020). The model structure is relatively simple and can verify a large 340 

amount of data, so the prediction time is the shortest. Compared to the ANN model, the 341 

LSTM model requires more data for training and validation, so the calculation time is 342 

longer than that of the ANN model. The ANFIS model combines the characteristics of 343 

fuzzy systems and neural networks and adjusts the model by adjusting the type and number 344 

of membership functions. Due to the complex structure and gradient learning, the 345 



computational cost of ANFIS is very high, and it has more difficulty dealing with a large 346 

amount of input data (Salleh et al., 2017). 347 

For peak streamflow prediction, the ANN model performs the largest underestimations in 348 

two river basins. However, it exhibits good performance in low volume streamflow 349 

simulation. The poor performance of the ANN model on peak streamflow simulation is in 350 

line with Sudheer et al. (2003) who highlighted that the ANN model tends to underestimate 351 

the peak streamflow even after data transformation and the learning process of an ANN 352 

model will reward a correct response of the system to input by increasing the strength of 353 

the current matrix of nodal weights. Likewise, the LSTM model is unable to simulate the 354 

small volume streamflow in a flood event well in mountainous river basin (see Figure 5 355 

(d)), as having a continual value of streamflow for a high quantile of training data seems 356 

to pose difficulty for the LSTM model to learn and calibrate (Kratzert et al., 2018). The 357 

ANFIS model has the best accuracy in tidal river basin and the SOBEK model has the best 358 

accuracy in mountainous river basin, respectively. The peak streamflow value in tidal river 359 

basin is relatively large, the ANFIS model has a greater ability to train large data, as it 360 

combines the characteristics of fuzzy systems and neural networks, making it most 361 

appropriate for tidal river basins. The complex mechanisms of river system and lack of 362 

data are two main challenges in peak streamflow simulation of mountainous river basins 363 

(Zhang et al., 2013). The physically based model can reflect the complex mechanisms 364 

between rainfall and streamflow, and neural network models may have insufficient training 365 

data due to the low frequency of peak streamflow in mountainous river basins (Sudheer et 366 

al., 2003; Yang et al., 2019). 367 



5. Conclusion 368 

An evaluation on the performance of three neural network models and one physically based 369 

model for the streamflow simulation driven by hourly precipitation data in one tidal river 370 

basin and one mountainous river basin of Shenzhen has been conducted in this study. The 371 

following major findings are drawn: 372 

(1) The four models we used are able to capture streamflow simulation well in two river 373 

basins. Specifically, the LSTM model is reliable in terms of average streamflow simulation 374 

in tidal river basin with the lowest bias but underestimates the small volume streamflow. It 375 

is suitable for tidal river basins that low streamflow has little impact on the simulation 376 

accuracy. The SOBEK model shows reliability in simulating average streamflow in 377 

mountainous river basin, while needs large basic data for model calibration and validation.  378 

(2) All neural network models used in this research present high simulation speed. The 379 

three neural network models can predict a three-hour rainfall event in less than 2 minutes. 380 

The ANN model shows great reliability in prediction speed, is suitable for scenarios that 381 

require high forecasting speed such as emergency flooding management. 382 

(3) The ANFIS model has best accuracy for peak streamflow simulation in tidal river basin, 383 

is suitable for extreme flooding prediction. For example, in urban flooding management, 384 

decision makers need to obtain extreme value of a flooding event in order to facilitate 385 

flooding management and decision-making. The SOBEK model has best accuracy of peak 386 

streamflow simulation in mountainous river basin, is suitable for river basins with complex 387 

mechanism systems. 388 



(4) Overall, the LSTM model can compensate for physically based models in streamflow 389 

simulation in complex urban river systems, by giving fast streamflow predictions with 390 

usually acceptable accuracy. 391 

Our research provides scientific support for the application in flood early warning and 392 

emergency preparedness in the context of flood risk management in the urban area. 393 
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Appendices 405 

 406 

Figure A1 Details of calibration and validation results in two basins  407 
(a-MZR, b-PSR). 408 



 409 

Figure A2 Comparison of observation (x-axis) and simulated results (y-axis) for the four 410 
models in terms of streamflow in MZR. 411 

 412 

Figure A3 Comparison of observation (x-axis) and simulated results (y-axis) for the four 413 
models in terms of streamflow in PSR. 414 



 415 
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