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A B S T R A C T

Researchers and practitioners have extensively utilized supervised Deep Learning methods to quantify floating
litter in rivers and canals. These methods require the availability of large amount of labeled data for training.
The labeling work is expensive and laborious, resulting in small open datasets available in the field compared to
the comprehensive datasets for computer vision, e.g., ImageNet. Fine-tuning models pre-trained on these larger
datasets helps improve litter detection performances and reduces data requirements. Yet, the effectiveness of
using features learned from generic datasets is limited in large-scale monitoring, where automated detection
must adapt across different locations, environmental conditions, and sensor settings. To address this issue,
we propose a two-stage semi-supervised learning method to detect floating litter based on the Swapping
Assignments between multiple Views of the same image (SwAV). SwAV is a self-supervised learning approach
that learns the underlying feature representation from unlabeled data. In the first stage, we used SwAV to
pre-train a ResNet50 backbone architecture on about 100k unlabeled images. In the second stage, we added
new layers to the pre-trained ResNet50 to create a Faster R-CNN architecture, and fine-tuned it with a limited
number of labeled images (≈1.8k images with 2.6k annotated litter items). We developed and validated our
semi-supervised floating litter detection methodology for images collected in canals and waterways of Delft
(the Netherlands) and Jakarta (Indonesia). We tested for out-of-domain generalization performances in a
zero-shot fashion using additional data from Ho Chi Minh City (Vietnam), Amsterdam and Groningen (the
Netherlands). We benchmarked our results against the same Faster R-CNN architecture trained via supervised
learning alone by fine-tuning ImageNet pre-trained weights. The findings indicate that the semi-supervised
learning method matches or surpasses the supervised learning benchmark when tested on new images from
the same training locations. We measured better performances when little data (≈200 images with about 300
annotated litter items) is available for fine-tuning and with respect to reducing false positive predictions. More
importantly, the proposed approach demonstrates clear superiority for generalization on the unseen locations,
with improvements in average precision of up to 12.7%. We attribute this superior performance to the more
effective high-level feature extraction from SwAV pre-training from relevant unlabeled images. Our findings
highlight a promising direction to leverage semi-supervised learning for developing foundational models, which
have revolutionized artificial intelligence applications in most fields. By scaling our proposed approach with
more data and compute, we can make significant strides in monitoring to address the global challenge of litter
pollution in water bodies.
1. Introduction

Litter pollution in water bodies is a challenging global concern, that
negatively affects aquatic ecosystems and human livelihood (Bellou
et al., 2021). Plastics are the most dominant form of litter, due to their
extensive use and their persistence in aquatic environments (Lebreton
et al., 2018). Kaandorp et al. (2023) estimated an initial amount of
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floating marine plastics of 3.2 million tonnes in 2020. Recent studies
indicate that river systems act as plastic reservoirs, where the majority
of plastics accumulates, and even retains for decades (van Emmerik
et al., 2022). They become micro- and nanoplastics over the years,
associated with severe environmental and health risks (Xu et al., 2024).

Regardless of the type of litter, detecting and quantifying floating
litter accurately in rivers and waterways is necessary for assessing
https://doi.org/10.1016/j.watres.2024.122405
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environmental risks and designing intervention strategies (Bellou et al.,
2021; Hurley et al., 2023). Traditional approaches include debris sam-
pling and visual observation (Hurley et al., 2023). However, the labor-
intensive procedures and specific requirements for sampling equipment
may limit the applicability of debris sampling to various locations over
extended periods of time (van Lieshout et al., 2020). While visual
observation is effective, it is not suitable for continuous monitoring
and may be dangerous during extreme events, e.g., flood (van Emmerik
et al., 2023). Moreover, visual counting is challenging for human coun-
ters in rivers with high litter fluxes (van Lieshout et al., 2020). Given
these limitations, an automatic and efficient litter detection approach
is needed. Currently, deep learning methods, especially Convolutional
Neural Networks (CNNs) have drawn significant research attention for
developing efficient alternatives (Jia et al., 2023a). Several studies have
demonstrated the effectiveness of these approaches for litter detection
with various computer vision tasks (Jia et al., 2023a). For instance, van
Lieshout et al. (2020) applied Faster R-CNN with InceptionV2 to detect
plastic litter from camera images collected from waterways in Jakarta,
Indonesia, obtaining a precision of over 68%. Renfei et al. (2023)
collected data from cameras mounted at multiple locations in a water
conservation demonstration zone in Deqing, China, and proposed an
improved Single Shot MultiBox Detector network to detect floating
items with an average accuracy of 91.1%.

While the current outcomes are promising, obtaining an accurate
and robust deep learning model for detecting floating litter requires
large quantities of annotated training data for supervised learning (Jia
et al., 2023a). The manual labeling work is costly, time-consuming
and relies on domain-specific knowledge on floating litter detection.
While the community has released some open datasets, the amount of
annotated data available is far below that of comprehensive datasets,
e.g., ImageNet with over 14 million images and almost 20,000 cat-
egories (Deng et al., 2009). This may hinder achieving broad model
generalization and effective transferability, which underpins robust and
versatile computer vision systems for structural monitoring of floating
litter.

To partially overcome this limitation, researchers usually used trans-
fer learning approaches (Jia et al., 2023a; Wu et al., 2024). They
usually involve (1) pre-training a base network on a base dataset
and task (e.g., image classification on ImageNet), and (2) transferring
the learned knowledge to a target network to be fine-tuned on a
target dataset and task. In the base task, the first few layers of the
base network extract generic low-level features (e.g., edges, lines, and
corners), that generalizes to many datasets and tasks. The remaining
layers extract more high-level, complex and abstract feature knowledge
(e.g., object boundaries and contours), that specializes to a target
dataset and task (Yosinski et al., 2014). While transfer learning is
a powerful technique, its effectiveness declines when the base and
target tasks become less similar (Yosinski et al., 2014). To develop
deep learning models for floating litter detection, previous studies pre-
trained models on comprehensive datasets (Jia et al., 2023b). However,
the high-level features in these datasets have limited relevance with
respect to floating litter imagery. This may hinder performances and
generalization capability.

To address the constraints of supervised learning, the deep learn-
ing research community is increasingly investigating self- and semi-
supervised learning methods due to their data efficiency and general-
ization capability (Liu et al., 2021; Reddy et al., 2018). Self-supervised
learning operates by using the unlabeled input data to automatically
generate its own labels, learning the underlying representations from
the data itself without explicit guidance (Liu et al., 2021). More re-
cently, contrastive self-supervision have gained momentum (Jaiswal
et al., 2020). Contrastive self-supervision obtains representations by
distinguishing between positive pairs (similar instances) and negative
pairs (dissimilar instances) (Jaiswal et al., 2020). For example, the
Simple framework for Contrastive Learning of visual Representations

(SimCLR) generates two different views from each input image by
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performing data augmentation (Chen et al., 2020). The positive pairs
include two augmented views from the same image, while the negative
pairs are formed by sampling two augmented views from different
images. Semi-supervised learning (SSL) enhances self-supervised pre-
trained models regardless of the method used. SSL leverages a small
amount of labeled data to address specific downstream tasks e.g., image
classification and object detection (Reddy et al., 2018). Recent studies
have shown that SSL methods outperform traditional supervised learn-
ing approaches for applications on large-scale datasets (e.g., ImageNet),
as well as domain-specific applications, including agriculture (Gülden-
ring and Nalpantidis, 2021). While SSL approaches are promising, they
have not been applied to detect floating litter.

In this paper, we proposed a two-stage semi-supervised learning
method based on the Swapping Assignments between multiple Views of
the same image (SwAV) for detecting floating litter in (fresh)water bod-
ies. We developed and validated the methodology for images collected
in canals and waterways of the Netherlands, Indonesia, and Vietnam.
Furthermore, we assessed the transferability of low-level and high-level
representations learned via SwAV pre-training. The goal of this study
is to help understand whether SSL can lead to the development of
foundational models capable of better generalization across multiple
locations with limited data available for fine-tuning (Oquab et al.,
2023; Jakubik et al., 2023), through the aforementioned evaluation.
Models extracting relevant high-level feature representations, thus re-
quiring little or no fine-tuning, are crucial to develop litter monitoring
strategies at scale (Jia et al., 2023a).

2. Case studies and related datasets

We trained the SSL method using data from three locations: (1)
The TU Delft - Green Village (TUD-GV), the Netherlands (Jia et al.,
2023b), (2) Oostpoort, the Netherlands, and (3) Jakarta, Indonesia (van
Lieshout et al., 2020). Moreover, we tested the generalization capability
of our method using images captured in three other locations: (1)
Amsterdam and (2) Groningen, the Netherlands, and (3) Ho Chi Minh
City, Vietnam. Table 1 summarizes the detailed information of these
datasets. All data used in experiments, including images and bounding
box annotations, is publicly accessible (see Data Availability State-
ment). The detailed information on the actual data used in experiments
can be found in Section 4.

2.1. The TU Delft - Green Village dataset

The TUD-GV dataset includes nearly 10,000 images, introduced in
our previous study (Jia et al., 2023b). These images were captured
by two action cameras and a phone from semi-controlled experiments
conducted during 10 days in February and April 2021, in a small
drainage canal in the TU Delft Campus, the Netherlands. These images
contain floating litter under two different weather condition (sunny and
cloudy), taken from two device heights above the water surface (2.7 m
and 4.0 m) and two viewing angles (0 and 45 degrees).

2.2. The Oostpoort dataset

We generated the Oostpoort dataset from experiments conducted
during 26 days from February to March 2022, in a canal at Oostpoort,
Delft, the Netherlands. We collected data employing action cameras
with a viewing angle of 0 degree. Fig. A.1 shows monitoring setups
including cameras mounted outside the windows of a tower at Oost-
poort. We recorded video sequences with a time-lapse recording (1
image/30 s) and a FPS (frame per second) of 17.98. We generated
the Oostpoort dataset by saving images from these videos. Examples
of images can be found in Fig. A.2. Some images in this dataset
contain fauna and various extents of organic material (e.g., leaves and
branches), that increases the complexity of the environment owing to
their diverse range of color patterns, shapes and sizes. Organic material
and floating litter clutter together in garbage patches in some images,

making litter harder to detect (van Lieshout et al., 2020).
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Table 1
Details on case study locations and related imagery.

Name Collection location Collection device Image resolution
(pixel × pixel)

Device height (m) No. imagesa

TU Delft - Green Village Delft,
the Netherlands

GoPro Hero 4,
GoPro MAX 360

1920 × 1080 2.7 1501

Oostpoort Delft,
the Netherlands

GoCam3,
GoPro MAX 360

3840 × 2160,
1920 × 1440

5 562

Jakarta Jakarta,
Indonesia

Dahua Easy4ip 2560 × 1440,
1920 × 1080

4.5 526

Amsterdam Amsterdam,
the Netherlands

GoPro Hero 10 5568 × 4176 1–2 9

Groningen Groningen,
the Netherlands

Obscape HQ 2592 × 1944 4 63

Ho Chi Minh City Ho Chi Minh City,
Vietnam

GoPro Hero 11,
DJI Phantom 4 Pro

5568 × 4872,
5464 × 3070

7.4–18.6 (cameras)
11–14 (drones)

27

a In this column, we only reported the number of images we used in experiments (see Section 4.1).
a
v
s

2.3. The Jakarta dataset

The Jakarta dataset is an object detection dataset with 1272 images
and 14,968 annotated floating macroplastic litter items. van Lieshout
et al. (2020) collected these images using a camera mounted on bridges
at five different waterways in Jakarta, Indonesia, from 30 April to 12
May 2018. These images were taken from the view angle of 6 degrees,
under various levels of organic material on river surface (i.e., no
organic debris, some organic debris, and many organic debris). Most
images (1108) have relatively still water surfaces, but the remaining
images (164) have waves.

2.4. The Amsterdam dataset

We created the Amsterdam dataset from one experiment conducted
on 1st March 2023, in canals and ponds at Amsterdam, the Netherlands.
We recorded images using an action camera. Examples of these images
can be found in Fig. A.3.

2.5. The Groningen dataset

We conducted several experiments in a canal in Groningen, the
Netherlands, in 2023. Fig. A.4 shows monitoring setups including
security cameras mounted on a bridge. We recorded images with a
time-lapse recording (1 image/6 s). Examples of images are shown in
Fig. A.5.

2.6. The Ho Chi Minh City dataset

The Ho Chi Minh City dataset with 15,495 images was generated
from experiments conducted during 8 weeks from February to April
2023, at five locations of the Saigon river at Ho Chi Minh City, Vietnam.
They were collected by bridge-mounted cameras and drones that flew
across the river width. Examples of images are shown in Fig. A.6.

3. Methodology

3.1. Overview of the semi-supervised learning approach

We propose a two-stage semi-supervised learning method for de-
tecting floating litter based on Swapping Assignments between multi-
ple Views of the same image (SwAV). The approach includes a self-
supervised learning stage and supervised learning stage. Fig. 1 shows
the schematic illustration of the SSL method. In the first stage, we
used SwAV to pre-train a ResNet50 network (He et al., 2016) with
a large quantity of unlabeled data. To obtain the final model, we
first created a Faster R-CNN architecture for object detection (Ren
et al., 2015) by adding extra deep learning layers after the pre-trained
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ResNet50. Then, we fine-tuned the resulting model using a limited
amount of labeled data to perform the specific litter detection down-
stream task. We describe SwAV and Faster R-CNN in Sections 3.2 and
3.3, respectively. Section 3.4 presents details on the implementation of
the self-supervised pre-training methods, while the supervised stage is
illustrated in Section 3.5.

3.2. Swapping Assignments between multiple Views of the same image
(SwAV)

SwAV is a cluster-based self-supervised contrastive learning method
(Caron et al., 2020). Models learn the underlying representations from
the data by performing a clustering assignment prediction between
various augmentations (or ‘‘views’’) of the same input image. Fig. 2
shows the schematic illustration of SwAV. The process begins with
data augmentation (e.g., multi-crop and flipping) to generate multiple
views of the input image 𝑋. In Fig. 2, we only show the multi-crop
ugmentation method, that crops an image randomly into two global
iews with standard resolution crops (e.g., 224 × 224 pixels) and
everal local views with smaller resolution crops (e.g., 96 × 96 pixels).

For simplicity, we only present two views (𝑥1, 𝑥2). These views are
processed by the same encoder network 𝑓𝜃 (e.g., ResNet50) followed by
a projection head (e.g., 2-layer multilayer perceptron) to generate two
corresponding feature vectors (𝑧1, 𝑧2). To perform the online clustering
assignment, SwAV uses the Sinkhorn−Knopp algorithm (Cuturi, 2013)
to map the feature vectors to a set of prototypes 𝐶 comprising 𝐾
prototype vectors. Each prototype represents a cluster in the feature
space. This operation results in the generation of the codes 𝑄1 and 𝑄2.
The uniqueness of SwAV lies in its ‘‘swapped’’ prediction mechanism.
Here, the code 𝑄2, derived from the view 𝑥2, is predicted using the
characteristics of the view 𝑥1 and vice versa. This prediction method
leverages the inherent similarities between the views, as they originate
from the same image. Consequently, SwAV refines its learning of data
attributes by forecasting the code of one image view based on the fea-
tures of its counterpart. Appendix B presents more detailed information
of SwAV.

3.3. Faster R-CNN for litter detection

Fig. 3 shows the detailed architecture of the Faster R-CNN with a
ResNet backbone. The Faster R-CNN includes four modules: (1) feature
extraction; (2) object proposal generation; (3) Region of Interest (RoI)
pooling; and (4) classification with a confidence level and location
prediction. Confidence refers to the probability assigned by the Faster
R-CNN when classifying each bounding box. Appendix B presents more
detailed information of the Faster R-CNN.

The ResNet mainly includes two parts: (i) convolutional blocks
Conv1 to Conv4, and (ii) Conv5 (He et al., 2016). Both parts are pre-

trained by SwAV in the self-supervised learning stage. Then, the Faster
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Fig. 1. The schematic illustration of the proposed two-stage semi-supervised learning method. In the self-supervised learning stage (c), we used SwAV to pre-train a ResNet50
encoder network combined with a projection head, using a large number of unlabeled images (a); Then, we added additional deep learning network to ResNet50 backbone to
create a Faster R-CNN architecture. In the supervised learning stage (d), we fine-tuned the Faster R-CNN to learn a specific litter detection downstream task in a supervised manner,
using a limited amount of labeled data (b).
Fig. 2. The schematic illustration of SwAV adapted from Caron et al. (2020). First, each image 𝑋 is augmented into two different views (𝑥1, 𝑥2), that are processed by the encoder
𝑓𝜃 to obtain two feature vectors (𝑧1, 𝑧2). Then, the codes of these two features (𝑄1, 𝑄2) are computed by mapping them to prototypes 𝐶. Finally, SwAV learns data representations
by solving a ‘‘swapped’’ prediction problem, where the code 𝑄2 is predicted using the view 𝑥1 and vice versa.
R-CNN is constructed by using Conv1 to Conv4 as the backbone and
adding Conv5 after the RoI pooling layer.

3.4. SwAV pre-training

To evaluate the benefits of self-supervised pre-training, we used
two pre-training methods for all experiments: (1) SwAV-FTAL, and
4 
(2) SwAV-Scratch (Jia et al., 2023b). The SwAV-FTAL method first
initializes the ResNet backbone with ImageNet weights, and then uses
SwAV to fine-tune all the layers (FTAL) of the backbone on the un-
labeled images. ImageNet weights used in this study were created by
training the ResNet50 on 1.2 million images (1000 categories) from the
full ImageNet dataset. We selected ImageNet weights since transferring
features learned from the ImageNet image classification task to other
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Fig. 3. The schematic illustration of the Faster R-CNN with ResNet backbone. The basic ResNet (yellow blocks) mainly includes two parts: (1) convolutional blocks Conv1 to
Conv4, and (2) Conv5. In the first stage of the Faster R-CNN, the backbone first extracts feature maps from the input data. Then, the Region Proposal Network produces region
proposals from these feature maps. Furthermore, the feature maps and region proposals are fed into the RoI Pooling layer, that converts the feature maps of proposals into fixed
size feature maps for the final classification and location prediction in the second stage. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
domain tasks is a widely used approach to detect floating litter (Jia
et al., 2023a). The SwAV-Scratch method uses SwAV to pre-train the
ResNet50 from scratch. It involves initializing the ResNet50 backbone
with random weights, and then using SwAV to pre-train all the layers
of the backbone on the unlabeled images.

3.5. Fine-tuning for litter detection

To perform the litter detection downstream task, we fine-tuned
Faster R-CNN architectures built on the pre-trained ResNet50 back-
bone. We compared two different approaches for fine-tuning, that entail
freezing either 4 convolutional blocks (F4, from Conv1 to Conv4 in
Fig. 3) or 2 (F2, Conv1 and Conv2) of the ResNet backbone, re-
spectively. During fine-tuning, only the unfrozen layers of the Faster
R-CNN are updated. The F2 method is a common method used to
transfer low-level feature knowledge learned from pre-training to the
downstream task. In contrast, the F4 method transfers both low-level
and high-level feature knowledge. In situations where only a small
dataset is available for model fine-tuning, maintaining relevant high-
level features becomes crucial as it drastically reduces the number of
weights to fine-tune. By examining the F4 modality, we aim to evaluate
whether the high-level features learned via SwAV pre-training enhances
the model’s generalization capabilities in data scarce conditions. This
investigation can help understand whether this approach can lead to
the development of foundational models for litter quantification across
multiple locations (Jia et al., 2023a; Oquab et al., 2023).

4. Experiments

We conducted multiple experiments to investigate the potential of
SSL for floating litter detection. We evaluated both in-domain as well
as out-of-domain generalization capability. In-domain generalization
refers to the model performance on new, unseen images from the
same geographic locations, while out-of-domain generalization refers
to unseen images from other geographic locations. We compared the
results with those obtained from a supervised learning benchmark,
providing a robust reference point. Additionally, we investigated how
the litter detection performance varies with the availability of labeled
data for fine-tuning. This aspect is crucial for assessing the models’
practical applicability in scenarios with limited annotated resources.
Complementing this analysis, we evaluated the relevance of low-level
and high-level representations learned from SwAV pre-training with
respect to generalization. This examination can share further insights
on the suitability of SSL for developing large-scale monitoring networks
for quantifying floating litter across multiple locations.
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Table 2
TU Delft Green Village (TUD-GV), Oostpoort (Delft, Netherlands) and Jakarta
datasets.

Subset Total

TUD-GV Oostpoort Jakarta

Total images 1501 562 526 2589
Total image tiles 44,188 71,445 16,762 132,395
No. image tiles with litter annotated 1969 401 1399 3769
No. annotated litter items 2542 457 2531 5530

4.1. Data selection

We created the Delft-Jakarta dataset by selecting random images
from the TUD-GV, Oostpoort, and Jakarta locations, as reported in
Table 2. These images were sliced into tiles with a standard size of
224 × 224 pixels, to match the input dimensions of ResNet50 (Pham
et al., 2021). Example image tiles are shown in Fig. A.7. We used
the Delft-Jakarta dataset to train and validate the models, and to test
their in-domain generalization performance. We extracted a total of
132,395 image tiles from the Delft-Jakarta datasets. These were used
to randomly create the non-overlapping subsets for self-supervised pre-
training (116,286 tiles), supervised fine-tuning (1756 tiles), validation
(164 tiles), and testing (14,189 tiles), detailed in Table 3. Almost
90% of the tiles were used for self-supervised pre-training with SwAV
(Trainself). These tiles have no labels. We used a maximum of 1756
image tiles for supervised fine-tuning (Train100%), containing a total
of 2628 annotated litter items. The annotations are bounding boxes
representing the location of floating litter items, without further cat-
egorization. To better assess model performance with respect to the
availability of labels, we created six smaller fine-tuning datasets by
reducing the number of tiles and annotations down to 5% (Train80% to
Train5%). We used a maximum of 164 image tiles and 282 annotations
for model validation (Validation100%), maintaining a 9-to-1 ratio with
respect to the data available for fine-tuning. For consistency, we created
six smaller validation datasets (Validation80% to Validation5%). We
created a Test dataset by including 1849 tiles with 2620 annotations. To
better evaluate the models performance with respect to false positives,
we included 12,340 image tiles with no floating litter.

To evaluate out-of-domain generalization, we sliced randomly se-
lected images from the Amsterdam, Groningen and Ho Chi Minh City
datasets, as detailed in Table 4. The tiles in these subsets contain both
images with annotated litter and without litter. Example image tiles are
shown in Fig. A.8.
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Table 3
The Delft-Jakarta subsets used in the experiments.

Learning method Training dataset Validation dataset Test dataset No. tiles

Name No. annotated
litter items

No. tiles Name No. annotated
litter items

No.
tiles

Name No. annotated
litter items

No.
tiles

without litter

Self-supervised Trainself 0 116,286

Semi-supervised and supervised

Train100% 2628 1756 Validation100% 282 164

Test 2620 1849 12,340

Train80% 2076 1389 Validation80% 224 117
Train60% 1594 1059 Validation60% 171 100
Train40% 1013 702 Validation40% 115 70
Train20% 527 368 Validation20% 62 55
Train10% 282 180 Validation10% 27 22
Train5% 124 84 Validation5% 13 9
Table 4
The Amsterdam, Groningen and Ho Chi Minh City datasets used to evaluate out-of-domain generalization.

Subset Total

Amsterdam Groningen Ho Chi Minh City

Total images 9 63 27 99
Total image tiles 3623 5544 13,032 22,199
No. image tiles with litter annotated 152 439 766 1357
No. annotated litter items 204 525 1091 1820
No. image tiles without litter 3471 5105 12,266 20,842
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4.2. Developed models and experiments

For brevity, we indicated models built via pre-training with the
SwAV-FTAL method and fine-tuning with the F2 method, as SwAV-
FTAL-F2 across all experiments. Other models are named in the same
way, e.g., SwAV-FTAL-F4, SwAV-Scratch-F2, and SwAV-Scratch-F4. We
compared the effectiveness of SSL against baseline supervised learning
models which are developed without the SwAV pre-training step. These
models are Faster R-CNNs fine-tuned on labeled data, built on ResNet50
backbones initialized with ImageNet weights (see Fig. 1(b) and (d)).
For consistency, we used two types of baseline models: (1) Baseline-F2,
and (2) Baseline-F4, that uses the F2 and F4 methods for fine-tuning,
respectively.

We developed all models by using the Delft-Jakarta subsets in
Table 3. Specifically, we built the SSL models by first pre-training a
ResNet50 encoder with a projection head of 2-layer multilayer per-
ceptron on the Trainself subset. We then fine-tuned the Faster R-CNN
erived from the ResNet50 backbone on all the seven available subsets
or supervised learning, i.e., Train100% to Train5%. We performed model
alidation on the respective Validation subsets. The Baseline supervised
earning models are developed in the same fashion, but without SwAV
re-training. The Delft-Jakarta Test subset is used for evaluating the in-
omain generalization. On the other hand, we evaluated out-of-domain
eneralization using the image tiles from Amsterdam, Groningen and
o Chi Minh City detailed in Table 4. For out-of-domain generalization,
e tested only the models fine-tuned using the maximum amount of

he Delft-Jakarta labeled data, i.e., Train100%. We used the SwAV-
TAL-F2, SwAV-Scratch-F2 and Baseline-F2 methods to evaluate the
uality of transferred low-level representations. Similarly, we investi-
ated the relevance of high-level representations by implementing the
wAV-FTAL-F4, SwAV-Scratch-F4 and Baseline-F4 methods.

.3. Performance assessment

To assess model performance of floating litter detection, we used
wo commonly employed metrics: (i) AP50, representing the Average
recision (AP) with an Intersection over Union (IoU) threshold of 50%
nd (ii) F1-score computed using the same threshold (Jia et al., 2023a).
he IoU measures the ratio of the overlap area of prediction and ground
ruth to their union area, which is described as follows Padilla et al.
2020):

𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝑏𝑏𝑜𝑥𝑝𝑟𝑒𝑑 ∩ 𝑏𝑏𝑜𝑥𝑔𝑡) (1)

𝑎𝑟𝑒𝑎(𝑏𝑏𝑜𝑥𝑝𝑟𝑒𝑑 ∪ 𝑏𝑏𝑜𝑥𝑔𝑡)
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here 𝑏𝑏𝑜𝑥𝑝𝑟𝑒𝑑 and 𝑏𝑏𝑜𝑥𝑔𝑡 are the predicted bounding box and the
round-truth bounding box, respectively. The larger the IoU, the greater
he overlap of these two bounding boxes. After setting an IoU threshold,
e can compute the elements of the confusion matrix for the object
etection task. For each ground-truth box, we have a True Positive
TP) if there is at least one overlapping predicted box with IoU equal
r above the threshold. Predicted boxes overlapping the ground-truth
ith IoU less than the threshold are marked as False Positives (FP). If
ore bounding boxes sufficiently overlap with the ground truth, we
ark as TP only the one with the highest confidence (Dollár and Lin,
014). The others are marked as FP. FPs also include incorrect detec-
ion of nonexistent objects. False Negatives (FN) are the undetected
round-truth bounding boxes.

The AP is the average precision of the models for a given IoU thresh-
ld. It is computed as the area under the precision–recall curve (Jia
t al., 2024). Appendix B presents more detailed information of the
recision–recall curve. The precision 𝑝 and recall 𝑟 are expressed as
ollows:

= 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

𝑟 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

Precision measures the accuracy of the positive predictions, denoted
by the ratio of correctly identified positive cases (TP) to the total
number of cases identified as positive (TP + FP). On the other hand,
recall is the ratio of correctly identified positive cases (TP) to the actual
total positive cases (TP + FN). It assesses the model’s ability to detect
all relevant instances. After creating the precision–recall curve, we can
calculate AP by integrating the area under it:

𝐴𝑃 = ∫

1

0
𝑝(𝑟)𝑑𝑟 (4)

The F1-score is computed as the harmonic mean of 𝑝 and 𝑟, is
calculated as follows:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑝 ∗ 𝑟
𝑝 + 𝑟

(5)

More detailed information of the AP and F1-score can be found in
Appendix B.

4.4. Training setup and procedure

We implemented all experiments with Python 3.8.16 and PyTorch
1.8.1, in combination with the VISSL (Goyal et al., 2021) and the
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Detectron2 (Wu et al., 2019) libraries. We trained and tested all models
on a NVIDIA Tesla V100S PCIe GPU (32 GB) (Delft High Performance
Computing Centre (DHPC), 2022). We used default VISSL hyperparam-
eters for SwAV pre-training, including a cluster with 3000 prototypes.
We pre-trained for 100 epochs, using the SGD optimizer with cosine
annealing learning rate scheduling (Loshchilov and Hutter, 2016), with
the initial rate of 0.075 and the minimum value of 7.5 × 10−5. We
applied four default VISSL data augmentation methods: (1) multi-crop
with 8 views (2 × [224 × 224] + 6 × [96 × 96]), (2) horizontal flipping,
(3) color distortion, and (4) Gaussian blur. In the supervised learning
stage, we fine-tuned the Faster R-CNN with default Detectron2 hyperpa-
rameters, including an SGD optimizer with a fixed learning rate of 0.02,
a weight decay of 0.0001 and a momentum of 0.9. Before making the
final predictions and computing performances, we refined the output
bounding boxes via Non-Maximum Suppression (NMS) (Hosang et al.,
2017). Appendix B presents the detailed information of NMS. For all
experiments and developed models, we used a commonly employed
IoU NMS threshold value of 0.5. We implemented the Baseline methods
using the same fine-tuning hyperparameters. We trained all models
for 100 epochs, saving the learned parameters yielding the highest
validation accuracy.

5. Results and discussion

5.1. In-domain detection performances for varying data availability

Fig. 4 compares the AP50 detection performance on Delft-Jakarta
Test subset for the SwAV-FTAL-F2, SwAV-Scratch-F2 and Baseline-F2
methods. The three methods perform similarly when relatively more
data is available for fine-tuning (i.e., Train60% to Train100% subsets),
with an AP50 ranging from 62.8% to 65.8%. When less labeled data is
available (i.e., Train5% to Train40% subsets), the SwAV-FTAL-F2 method
performs best in most cases, obtaining an AP50 ranging from 44.3%
to 60.4%. This yields a slight improvement in AP50 of up to 2.3%,
compared to the baseline method (AP50 = 44.4%∼59.3%). The SwAV-
Scratch-F2 method performs worst (AP50 = 37.3%∼57.4%), yielding
a slight decrease in AP50 varying from 5% to 7.1%, compared to the
baseline method in half of these cases. Fig. 4 also indicates a general
upward trend in performance with increasing amount of labeled data,
regardless of the approach used. The observed performance plateau
could be attributed not only to the limited size of our labeled dataset,
but also to the lack of hyper-parameter tuning and the fact that only
a single training run was conducted, due to computational limitations
(SwAV pre-training time: 12 min/epoch). The stochastic nature of neu-
ral network training means that multiple runs yields different results,
possibly influencing the observed performance ceiling (Punjani and
Fleet, 2021).

At first glance, these results suggest that transferring low-level
representations learned by SwAV on unlabeled, but relevant data, does
not yield substantial improvements with respect to simple transfer
from ImageNet. In particular, learning from scratch via SwAV hinders
performance when little data is available for fine-tuning, although the
situation rapidly improves when more labels are available. However,
one must consider that the ImageNet dataset (1.2 million images)
contains over 10 times more images than the Trainself subset used for
SwAV pre-training. The availability of large amounts of data enables
ResNet50 to learn robust low-level features that are used by the deeper
layers fine-tuned for the downstream litter detection task with Faster R-
CNN. Furthermore, the ImageNet pre-trained weights are the product of
extensive optimization on substantial computational resources, which
contrasts sharply with our constrained SwAV pre-training that involved
limited runs and no hyper-parameter tuning. Despite these limitations,
we achieved comparable results, showcasing the potential effectiveness
of our methodology. Better performances can be obtained by scaling
the datasets and the computational efforts. Literature reports strong
7 
Fig. 4. AP50 detection performance of the SwAV-FTAL-F2, SwAV-Scratch-F2 and
Baseline-F2 methods on the Test subset with different proportion of labeled data for
fine-tuning.

Fig. 5. AP50 detection performance of the SwAV-FTAL-F4, SwAV-Scratch-F4 and
Baseline-F4 methods on the Test subset with different proportion of labeled data for
fine-tuning.

increases in SSL performances with larger SwAV pre-training datasets,
e.g., from 1.2 million to 14 million to 1 billion (Goyal et al., 2022).

Regardless of the above limitations in our SwAV implementation,
the SSL methods outperform the baseline when considering other met-
rics. Table 5 reports the Test dataset confusion matrix, precision, re-
call and F1-score for the three methods fine-tuned on Train100%. The
Baseline-F2, yields overall marginally better recall (0.74 vs. 0.71), but
substantially lower precision (0.48 vs. 0.57) than the SSL methods. This
results in a lower F1-score (0.58 vs. 0.63) due to a much higher number
of FPs. Similar worse performances are found for images without litter,
where the number of FPs of the baseline is around double that of the
SSL methods.

The benefits of SwAV pre-training clearly emerge when preserving
the high-level feature representations, as reported in Fig. 5. The re-
sults show that both the SwAV-FTAL-F4 and SwAV-Scratch-F4 methods
significantly outperform the Baseline-F4 benchmark, regardless of the
amount of labeled data available for fine-tuning. The SwAV-FTAL-F4
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Table 5
Confusion matrix, Precision, Recall and F1-score on the Delft-Jakarta Test subset for models fine-tuned on the Train100%
dataset. False positives are also reported for 12,340 additional images without litter.

Method Test dataset Images without litter

TP FN FP Precision Recall F1-score FP

SwAV-FTAL-F2 1850 770 1391 0.57 0.71 0.63 3666
SwAV-Scratch-F2 1832 788 1359 0.57 0.70 0.63 3594
Baseline-F2 1926 694 2093 0.48 0.74 0.58 7453

SwAV-FTAL-F4 1775 845 2024 0.47 0.68 0.55 6788
SwAV-Scratch-F4 1680 940 1373 0.55 0.64 0.59 3192
Baseline-F4 1590 1030 2296 0.41 0.61 0.49 9167
Fig. 6. Example of predicted bounding boxes for the Faster R-CNN on the Delft-Jakarta Test subset and images without litter using (1) SwAV-FTAL-F4, (2) SwAV-Scratch-F4, and
(3) Baseline-F4 methods. The models were fine-tuned on the Train100% subset. Common misdetections of Baseline-F4 include the identification of waves ((a) and (e)), organic
materials (b), and reflection of structures on banks (c) and bridge (d) as litter. Ground-truth litter is shown in red bounding boxes in the top row. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
method performs best in most cases, achieving an AP50 ranging from
39.9% to 60.5%. The SwAV-Scratch-F4 method performs worse when
very limited labeled data is available, but then achieves comparable or
higher scores, with the highest reported score of 60.9% for Train80%.
The baseline method obtains AP50 varying between 19.3% and 51.1%.
These values are particularly low when little data is available for
fine-tuning (i.e., Train5 and Train10% subsets), where SwAV-FTAL-F4
and SwAV-Scratch-F4 yield improvements in AP50 of up to 20%. The
SSL approaches only requires 20% of the labeled data (527 annotated
litter items) to achieve similar or better performance (AP50 = 53.3%)
than what obtained by the baseline method with 100% of labeled
data (2628 annotated litter items, AP50 = 51.1%). Similar to the
plateau discussed in Fig. 4, the drop in performance when moving
from Train80% to Train100% can be linked to the limited overall size
of our labeled dataset, the randomness of single runs, and lack of
hyper-parameterization. For example, Bolton et al. (2023) reported
8 
a similar phenomenon caused by the lack of hyper-parameterization.
They trained DL models to identify aircraft engine types with a learning
rate of 0.01, but the performance drops as the size of training data.
However, when setting the learning rate to 0.001, they found the
performance improvement with the increase of training dataset size.

The better performance of the SSL methods are further detailed in
Table 5 for the three models fine-tuned on Train100%. The Baseline-
F4 performs the worst in all metrics, with a substantial decrease in
TP, followed by a detrimental increase in both FN and FP. Inter-
estingly, the SwAV-Scratch-F4 method retains the highest F1-score
(0.59), due to a substantially lower number of FP. The lower preci-
sion of Baseline-F4 suggests that the high-level features learned from
ImageNet are not sufficiently relevant to the specific nuances of the
litter detection task. Visual inspection of the predicted bounding boxes
highlights that Baseline-F4 wrongly identifies waves, organic mate-
rial, and the reflection of structures on banks and bridge as litter,
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as shown for example in Fig. 6. SwAV pre-training helps the models
distinguish between the features of litter and non-litter items, as well
as background characteristics. ImageNet initialization may partially
hinder this process if insufficient data is available for fine-tuning, as
hinted by the lower precision of SwAV-FTAL-F4 with respect to SwAV-
FTAL-F2 and SwAV-Scratch-F4. Nonetheless, initializing SwAV with
ImageNet weights seems useful when labeled data is particularly scarce
(e.g., Train5% to Train20% subsets).

5.2. Out-of-domain generalization capability

The results illustrated in Section 5.1 suggest that when sufficient
fine-tuning data is available, the SSL approach does not offer significant
in-domain generalization advantages with respect to simple transfer
of ImageNet pre-trained models. This can change by overcoming the
discussed constraints on the small datasets used for SwAV pre-training
and the limited computational resources. Despite these limitations, the
scenario shifts favorably towards SSL when considering out-of-domain
generalization, as done for zero-shot floating litter detection to the
unseen locations in Amsterdam, Groningnen and Ho Chi Minh City.
As shown in Fig. 7 for all models fine-tuned on Train100%, SwAV
pre-trained methods consistently match or surpass baseline perfor-
mances. For example, in the Amsterdam dataset, both SwAV-FTAL-F4
and Baseline-F2 achieved a AP50 of around 45%. In Groningen, SwAV-
FTAL-F4 outperforms the best baseline model by 12.7%, reaching
an AP of 49.5%. In Ho Chi Minh City, SwAV-FTAL-F2 exceeds the
baseline by over 7.5% with a 20.6% AP50. Further analysis on the
confusion matrices and related metrics in Tables C.1–C.3. reinforces
SwAV’s advantage in out-of-domain scenarios. Except for Baseline-F2 in
Groningen, which exhibits high precision and fewer FPs due to subpar
sensitivity, the SSL models lead in all other metrics for all case studies.
These better performances are reflected also in the visual inspection
of the detections, done for SwAV-FTAL-F4 and Baseline-F4 on some
example images of the three unseen case studies in Fig. 8. The baseline
method displays fewer correct detection and increased misdetections,
especially with respect to organic material, waves and other distur-
bances or reflective elements on the water surface. These findings
collectively suggest that SwAV pre-training notably aids in adapting
to new environments, particularly when retaining high-level features.
The F4 SSL models are the best overall performers, despite we did not
employ the best models emerging from the Delft-Jakarta Test dataset
for the evaluation of out-of-domain generalization (i.e., those fine-
tuned on Train80%). Expectedly, performance dips in more challenging
conditions, e.g., in Ho Chi Minh City. Here, factors like lower resolution
at the ground due to higher sensor elevation and the introduction of
drone imagery, which were not part of the training dataset, further
differentiate this dataset from the Delft-Jakarta dataset used for model
development.

5.3. Towards foundational models for litter detection in water bodies

The development of large-scale monitoring networks for automated
quantification of litter pollution in (fresh)water bodies requires models
with superior generalization capabilities (Jia et al., 2023a). These
models must predict accurately in a zero-shot or few-shot manner,
quantifying litter with minimal prior data on specific locations. Nu-
merous studies demonstrated the effectiveness of fine-tuning models
pre-trained on general datasets like ImageNet and COCO (Lin et al.,
2014) for litter detection at specific locations (van Lieshout et al., 2020;
Wolf et al., 2020). However, these models falter to retain good per-
formances when applied to varied locations, environmental conditions,
and sensor settings (van Lieshout et al., 2020; Jia et al., 2023b). This
limitation underscores the need for a more robust approach rooted in
the development of foundational models.

Foundational models are a recent transformative paradigm in Deep
Learning. By leveraging vast amounts of data via self-supervision, these
9 
Fig. 7. Zero-shot generalization capability of the models fine-tuned on Train100% for
the three unseen locations: Amsterdam, Groningen, and Ho Chi Minh City.

models achieve remarkable general understanding and adaptability,
which allows them to reach unprecedented performances when fine-
tuned for specialized tasks. This paradigm shift is exemplified by the
OpenAI GPT series, a family of self-supervised foundational models
that, in their latest iterations, launched the current Artificial Intelli-
gence (AI) revolution by enabling the development of ChatGPT via
specialization (Brown et al., 2020; Achiam et al., 2023). Similar re-
markable examples for computer vision exists, e.g., the DINOv2 model
from Meta AI and INRIA (Oquab et al., 2023), or the Prithvi founda-
tional model for Earth Observation developed by IBM and NASA on the
Harmonized Landsat and Sentinel 2 dataset (Jakubik et al., 2023).

We believe foundational models tailored for floating litter detection
could significantly enhance our ability to monitor and mitigate this en-
vironmental issue at scale, whether from camera imagery or satellites.
While DINOv2 or Prithvi have already shown promising results for fine-
tuned critical applications, e.g., medical imaging and flood inundation
mapping, there is evidence that restricting the focus of the datasets used
for self-supervised pre-training can be more beneficial (Li et al., 2023;
Huix et al., 2024).

The SSL methods we proposed consistently outperform the standard
practice of simply using ImageNet pre-trained models for out-of-domain
generalization, especially in the case of the SwAV-FTAL-F4 methods.
The focus of this work was not to develop models for actual deployment
in monitoring networks, but to show clear evidence that the features
extracted by SSL are superior to those of a comprehensive dataset
such ImageNet, as already reported in other fields (Huix et al., 2024).
Using more data for fine-tuning, such as it was done in existing studies
leveraging pre-trained models, yields better performances (Jia et al.,
2023b).

More importantly, in our preliminary explorations, we used a
dataset of around 100k images for SwAV pre-training, sourced from
very few, albeit different, locations. Drawing parallels from other
fields, we argue that scaling this approach is necessary to yield more
robust models (Goyal et al., 2022). Importantly, the state-of-the-art
performances obtained by DINOv2, partly due to SwAV mechanics,
indicate that careful selection of data is more important than gathering
billions of images. Nevertheless, to address a problem of global scale,
we must significantly expand our dataset to include millions of images
from diverse geographical locations. This approach not only enhances
the model’s effectiveness but also aligns with the principles of equitable
artificial intelligence, ensuring the model’s applicability across various
global contexts (Manjarrés et al., 2021). Gathering vast quantities of
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Fig. 8. Detection results of the Faster R-CNN with ResNet50 backbone on Amsterdam, Groningen, and Ho Chi Minh City subsets using SwAV-FTAL-F4 and Baseline-F4 methods.
The models were fine-tuned on the Train100% subset. Both methods can detect litter items in (b), (c) and (f), and only the SwAV-FTAL-F4 method can detect the litter item in (a).
Common misdetection of the Baseline-F4 method includes identifying organic materials (d) and wave ((e) and (f)) as litter. Ground-truth litter is shown in red bounding boxes in
the top row. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
diversified data is a necessary step, but not sufficient. Additional efforts
must be directed towards implementation strategies, hyper-parameter
optimization, and the selection of suitable Deep Learning architectures.
For instance, considering the efficacy of transformers in state-of-the-art
foundational models like GPT, DINOv2, and Prithvi, adopting similar
architectures could be beneficial (Dosovitskiy et al., 2020).

6. Conclusions

Deep Learning methods for computer vision offer new opportunities
to enhance floating litter detection in (fresh)water bodies. These meth-
ods process images and videos to quantify litter. However, traditional
supervised learning requires extensive labeled data, a time-consuming
and expensive process. Although transfer learning models trained on
comprehensive datasets like ImageNet help reduce data requirements
for specific locations, they lack the broader generalization essential
for developing structural monitoring strategies operating at scale. To
address this issue, we introduced a semi-supervised learning (SSL)
approach based on SwAV, a self-supervised method that pre-trains
Deep Learning models by discerning data patterns without requiring
annotated images.

To demonstrate the suitability of this new approach, we carried out
experiments on camera images from the Delft (the Netherlands) and
Jakarta (Indonesia) using a Faster R-CNN with a ResNet50 backbone.
We compared the performance of standard transfer learning from Ima-
geNet against the use of SwAV pre-training on around 100k unlabeled
images. All models were fine-tuned using a maximum of around 1.8k
images from the same locations. Our results show that the SSL approach
performs at par or better than the supervised learning benchmark in
average precision and F1-score, when tested on unseen images gathered
from the same locations of the training dataset. The improvements are
more noticeable when less data (up to ≈200 images with around 300
annotated litter items) is available for fine-tuning and with respect to
the prediction of false positives. More importantly, testing for zero-
shot generalization capability on unseen locations in Ho Chi Minh
City (Vietnam), Amsterdam and Groningen (Netherlands) shows the
clear superiority of SSL. This is mainly due to the extraction of better
high-level representations via SwAV pre-training on relevant unlabeled
10 
images. Better performances are reported when initializing the SSL
models with ImageNet weights. While we tested this new approach only
for river surfaces, it can also be applied to other freshwater bodies and
extended to saltwater bodies, provided that images are captured using
similar devices (i.e., static cameras).

This paper aims to contribute to pave the way for the development
of self-supervised foundational models specifically for litter detection.
This transformative approach can yield substantial impact as seen in
other fields through foundational models like the GPT series, DINOv2,
and Prithvi. Achieving this goal will involve a collective effort to
gather a much broader range of images across the globe. Additionally,
more focus is needed on thorough hyper-parameter optimization and
effective implementation strategies, as well as exploring advanced Deep
Learning architectures, e.g., transformers. Apart from the development
of foundational models, other explorations could focus on a multi-class
object detection downstream task aimed at identifying various litter
categories of interests, e.g., bags and nets.
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Appendix A. Dataset information and image examples

Appendix B. Methodology and evaluation metrics

B.1. Swapping Assignments between multiple Views of the same image
(SwAV)

Two major core components of SwAV are clustering assignment and
multi-crop augmentation strategy. SwAV’s clustering assignment avoids
the direct comparison of negative and positive pairs in contrastive
learning. That reduces the computational overhead and potential noise
introduced by large sets of negative samples, leading to more efficient
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and robust model training compared to other contrastive learning meth-
ods. The multi-crop augmentation strategy improves performance of
self-supervised methods with only a small increase in the memory and
computational cost. These allow SwAV outperform other recent and
successful contrastive learning methods (e.g., the Simple framework
for Contrastive Learning of visual Representations and Momentum
Contrast) on the ImageNet classification benchmark (Caron et al.,
2020).

Fig. 2 shows the ‘‘swapped’’ prediction mechanism in SwAV. Given
two image views (𝑥1 and 𝑥2), we computed their code 𝑄1 and 𝑄2
by mapping their feature vectors (𝑧1 and 𝑧2) to a set of prototypes
𝐶 comprising 𝐾 prototype vectors, as detailed in Section 3.2. Then,
the ‘‘swapped’’ prediction problem is solved using the following loss
function:

𝐿
(

𝑧1, 𝑧2
)

= 𝑙
(

𝑧1, 𝑄2
)

+ 𝑙
(

𝑧2, 𝑄1
)

(6)

where 𝑙 (𝑧,𝑄) measures the fit between the feature 𝑧 and the code 𝑄. It
can be computed as follows:
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where 𝐶k is the 𝑘th prototype vector in 𝐶, and 𝜏 denotes the tempera-
ture parameter that controls the sharpness of the probability distribu-
tion (Caron et al., 2020).
Fig. A.1. Monitoring setups at the Oostpoort.
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Fig. A.2. Examples of Oostpoort images.
Fig. A.3. Examples of Amsterdam images.
B.2. Faster R-CNN

The Faster R-CNN is a two-stage detection network. In the first stage
of the Faster R-CNN, the backbone extracts relevant feature maps from
the input data. Then, the region proposal network, a fully convolutional
network, generates region proposals from the shared feature maps.
These region proposals together with the feature maps are fed into the
RoI pooling layer, performs the pooling operation to integrate feature
maps of region proposals with different scales into fixed size feature
maps. In the second stage, the extra-network predicts the category with
a confidence level and the precise location of objects from each region
proposal in the fixed size feature maps.

B.3. Bounding box refinement with Non-Maximum Suppression

Non-Maximum Suppression (NMS) is a post-processing technique
often applied after object detection to eliminate redundant bounding
12 
boxes, and ensure that each detected object is represented by the single
most probable box (Hosang et al., 2017). It compares the overlap of
boxes using Intersection over Union (IoU) and suppresses all boxes
except the one with the highest confidence score when the overlap
exceeds a specific threshold. The IoU NMS threshold of 0.5 is a common
value that balances the need to reduce box overlap against the risk of
missing closely spaced objects.

B.4. Evaluation metrics

The average precision (AP) is calculated by integrating the area
under the precision–recall curve. For object detection, the precision–
recall curve is computed by (i) sorting all detections in descend-
ing order based on their confidence level, (ii) accumulating all TPs
and FPs, (iii) and computing 𝑝 and 𝑟 for each cumulative detection
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Fig. A.4. Monitoring setups at Groningen.

Fig. A.5. Examples of Groningen images. The images used in the experiments are cropped to omit the structure.
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Fig. A.6. Examples of Ho Chi Minh City images collected by (a) drones and (b) cameras.

Fig. A.7. Examples of images tiles (224 × 224 pixels) from TUD-GV, Jakarta and Oostpoort dataset.
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Fig. A.8. Examples of images tiles (224 × 224 pixels) from Amsterdam, Groningen and Ho Chi Minh City dataset.
Table C.1
Model performances of the Faster R-CNN with ResNet50 backbone using various methods on Amsterdam images. The model
was fine-tuned on the Train100% dataset.

Method Images with litter annotated Images without litter

TP FN FP Precision Recall F1-score FP

SwAV-FTAL-F2 81 123 90 0.47 0.40 0.43 1530
SwAV-Scratch-F2 83 121 109 0.43 0.41 0.42 1839
Baseline-F2 114 90 160 0.42 0.56 0.48 2617

SwAV-FTAL-F4 138 66 241 0.36 0.68 0.47 2249
SwAV-Scratch-F4 104 100 129 0.45 0.51 0.48 1695
Baseline-F4 95 109 180 0.35 0.47 0.40 2115
Table C.2
Model performances of the Faster R-CNN with ResNet50 backbone using various methods on Groningen images. The model
was fine-tuned on the Train100% dataset.

Method Images with litter annotated Images without litter

TP FN FP Precision Recall F1-score FP

SwAV-FTAL-F2 143 382 53 0.73 0.27 0.40 430
SwAV-Scratch-F2 117 408 56 0.68 0.22 0.34 401
Baseline-F2 165 360 28 0.85 0.31 0.46 67

SwAV-FTAL-F4 283 242 137 0.67 0.54 0.60 151
SwAV-Scratch-F4 227 298 99 0.70 0.43 0.53 219
Baseline-F4 208 317 167 0.55 0.40 0.46 468
(Dollár and Lin, 2014; Padilla et al., 2020). In the computation of 𝑟
for the accumulated detections, the denominator term is constant and
equal to the total amount of ground-truth boxes.

AP is an average measure that can sometimes obscure model weak-
nesses, e.g., a model might achieve good AP through a few highly
accurate detections but perform poorly on others. The computation
method for the precision–recall curve can also introduce challenges
since the precision at each recall level can be subject to fluctua-
tions due to the model’s varying confidence levels across different
detections (Padilla et al., 2020).
15 
The F1-score captures a model’s accuracy in detecting objects (re-
call) while minimizing incorrect detections (precision), making it cru-
cial for contexts where false positives and false negatives have signif-
icant implications. Thus, combining AP50 and F1-score allows for a
more thorough assessment of both localization accuracy and overall
detection efficacy.

Appendix C. Confusion matrices and performance metrics for out-
of-domain generalization

See Tables C.1–C.3.
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Table C.3
Model performances of the Faster R-CNN with ResNet50 backbone using various methods on Ho Chi Minh City images. The
model was fine-tuned on the Train100% dataset.

Method Images with litter annotated Images without litter

TP FN FP Precision Recall F1-score FP

SwAV-FTAL-F2 340 751 1128 0.23 0.31 0.27 5889
SwAV-Scratch-F2 268 823 613 0.30 0.25 0.27 5291
Baseline-F2 254 837 1436 0.15 0.23 0.18 7326

SwAV-FTAL-F4 310 781 954 0.25 0.28 0.26 4009
SwAV-Scratch-F4 272 819 434 0.39 0.25 0.30 2946
Baseline-F4 236 855 929 0.20 0.22 0.21 4300
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