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Abstract. We present a coinductive framework for defining and reasoning about the

infinitary analogues of equational logic and term rewriting in a uniform way. We define
∞
=,

the infinitary extension of a given equational theory =R, and →∞, the standard notion of
infinitary rewriting associated to a reduction relation →R, as follows:

∞
= := νR. (=R ∪ R)∗

→∞ := µR. νS. (→R ∪ R)∗ ; S

Here µ and ν are the least and greatest fixed-point operators, respectively, and

R := { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | f ∈ Σ, s1R t1, . . . , snR tn } ∪ Id .

The setup captures rewrite sequences of arbitrary ordinal length, but it has neither the
need for ordinals nor for metric convergence. This makes the framework especially suitable
for formalizations in theorem provers.

1. Introduction

We present a coinductive framework for defining infinitary equational reasoning and infinitary
rewriting in a uniform way. The framework is free of ordinals, metric convergence and partial
orders on terms which have been essential in earlier definitions of the concept of infinitary
rewriting [12, 28, 31, 27, 26, 3, 2, 4, 21].

Infinitary rewriting is a generalization of the ordinary finitary rewriting to infinite terms
and infinite reductions (including reductions of ordinal length greater than ω). For the

Key words and phrases: infinitary rewriting, infinitary equational reasoning, coinduction.
∗ This is a modified and extended version of [16] which appeared in the proceedings of RTA 2015.
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definition of rewrite sequences of ordinal length, there is a design choice concerning the
exclusion of jumps at limit ordinals, as illustrated in the ill-formed rewrite sequence

a→ a→ a→ · · ·︸ ︷︷ ︸
ω-many steps

b→ b

where the rewrite system is R = { a→ a, b→ b }. The rewrite sequence remains for ω steps
at a and in the limit step ‘jumps’ to b. To ensure connectedness at limit ordinals, the usual
choices are:

(i) weak convergence (also called ‘Cauchy convergence’), where it suffices that the sequence
of terms converges towards the limit term, and

(ii) strong convergence, which additionally requires that the ‘rewriting activity’, i.e., the
depth of the rewrite steps, tends to infinity when approaching the limit.

The notion of strong convergence incorporates the flavor of ‘progress’, or ‘productivity’, in
the sense that there is only a finite number of rewrite steps at every depth. Moreover, it
leads to a more satisfactory metatheory where redex occurrences can be traced over limit
steps.

While infinitary rewriting has been studied extensively, notions of infinitary equational
reasoning have not received much attention. Some of the few works in this area are by
Kahrs [26] and by Lombardi, Ŕıos and de Vrijer [32], see Related Work below. The reason
is that the usual definition of infinitary rewriting is based on ordinals to index the rewrite
steps, and hence the rewrite direction is incorporated from the start. This is different for the
framework we propose here, which enables us to define several natural notions: infinitary
equational reasoning, bi-infinite rewriting, and the standard concept of infinitary rewriting.
All of these have strong convergence ‘built-in’.

We define infinitary equational reasoning with respect to a system of equations R, as a

relation
∞
= on potentially infinite terms by the following mutually coinductive rules:

s (=R ∪
∞
↽⇁)∗ t

s
∞
= t

s1
∞
= t1 · · · sn

∞
= tn

f(s1, s2, . . . , sn)
∞
↽⇁ f(t1, t2, . . . , tn)

(1.1)

The relation
∞
↽⇁ stands for infinitary equational reasoning below the root. The coinductive

nature of the rules means that the proof trees need not be well-founded. Reading the rules
bottom-up, the first rule allows for an arbitrary, but finite, number of rewrite steps at any
finite depth (of the term tree). The second rule enforces that we eventually proceed with
the arguments, and hence the activity tends to infinity.

Cω
∞
= a

Cω
∞
↽⇁ C(a) C(a) =R a

Cω
∞
= a

Figure 1: Derivation of Cω
∞
= a.
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Example 1.1. Let R consist of the equation

C(a) = a .

We write Cω to denote the infinite term C(C(C(. . .))), the solution of the equation X = C(X).

Using the rules (1.1), we can derive Cω
∞
= a as shown in Figure 1. This is an infinite proof

tree as indicated by the loop in which the sequence Cω
∞
↽⇁ C(a) =R a is written by

juxtaposing Cω
∞
↽⇁ C(a) and C(a) =R a.

Many of the proof trees we consider in this paper are regular trees, that is, trees having
only a finite number of distinct subtrees. These infinite trees are convenient since they
can be depicted by a ‘finite tree’ enriched with loops . However, we emphasise that our
framework is not limited to regular trees.

Example 1.2. For an example involving non-regular proof trees, let R consist of the
equation

b(x) = C(b(S(x))) .

Then we can derive b(x)
∞
= Cω by the non-regular proof tree shown in Figure 2.

b(x) =R C(b(S(x)))

b(S(x)) =R C(b(S(S(x))))

...

b(S(S(x)))
∞
= Cω

C(b(S(S(x))))
∞
↽⇁ Cω

b(S(x))
∞
= Cω

C(b(S(x)))
∞
↽⇁ Cω

b(x) = Cω

Figure 2: Non-regular proof tree for b(x) = Cω.

Using the greatest fixed-point constructor ν, we can define
∞
= equivalently as follows:

∞
= := νR. (=R ∪ R)∗ , (1.2)

where R, corresponding to the second rule in (1.1), is defined by

R := { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | f ∈ Σ, s1 R t1, . . . , sn R tn } ∪ Id . (1.3)

This is a new and interesting notion of infinitary (strongly convergent) equational reasoning.
Now let R be a term rewriting system (TRS). If we use →R instead of =R in the

rules (1.1), we obtain what we call bi-infinite rewriting
∞→ :

s (→R ∪
∞
⇁)∗ t

s
∞→ t

s1
∞→ t1 · · · sn

∞→ tn

f(s1, s2, . . . , sn)
∞
⇁ f(t1, t2, . . . , tn)

(1.4)
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corresponding to the following fixed-point definition:
∞→ := νR. (→R ∪ R)∗ . (1.5)

We write
∞→ to distinguish bi-infinite rewriting from the standard notion →∞ of (strongly

convergent) infinitary rewriting [35]. The symbol ∞ is centered above → in
∞→ to indicate

that bi-infinite rewriting is ‘balanced’, in the sense that it allows rewrite sequences to be
extended infinitely forwards, but also infinitely backwards. Here backwards does not refer to
reversing the arrow ←R. For example, for R = {C(a)→ a } we have the backward-infinite

rewrite sequence · · · → C(C(a))→ C(a)→ a and hence Cω
∞→ a. The proof tree for Cω

∞→ a

has the same shape as the proof tree displayed in Figure 1; the only difference is that
∞
= is

replaced by
∞→ and

∞
↽⇁ by

∞
⇁. In contrast, the standard notion →∞ of infinitary rewriting

only takes into account forward limits and we do not have Cω →∞ a.
We have the following strict inclusions:

→∞ ( ∞→ ( ∞
= (1.6)

In our framework, these inclusions follow directly from the fact that the proof trees for →∞
(see below) are a restriction of the proof trees for

∞→ which in turn are a restriction of the

proof trees for
∞
=. It is also easy to see that each inclusion is strict. For the first, see above.

For the second, just note that
∞→ is not symmetric.

Finally, by a further restriction of the proof trees, we obtain the standard concept of
(strongly convergent) infinitary rewriting→∞. Using least and greatest fixed-point operators,
we define:

→∞ := µR. νS. (→ ∪ R)∗ ; S , (1.7)

where ; denotes relational composition in diagrammatic order, that is:

x (R ; S) y ⇐⇒ ∃z. x R z ∧ z S y .
The greatest fixed point defined using the variable S is a coinductively defined relation.
Thus only the last step in the sequence (→ ∪ R)∗ ; S is coinductive. This corresponds to the
following fact about reductions σ of ordinal length: every strict prefix of σ must be shorter
than σ itself, while strict suffixes may have the same length as σ.

If we replace µ by ν in (1.7), we get a definition equivalent to
∞→ defined by (1.5). To

see that it is at least as strong, note that Id ⊆ S.
Conversely, →∞ can be obtained by a restriction of the proof trees obtained by the

rules (1.4) for
∞→. Assume that in a proof tree using the rules (1.4), we mark those occurrences

of
∞
⇁ that are followed by another step in the premise of the rule (i.e., those that are not

the last step in the premise). Thus we split
∞
⇁ into ⇁∞ and

<
⇁∞. Then the restriction to

obtain the relation →∞ is to forbid infinite nesting of marked symbols
<
⇁∞. This marking

is made precise in the following rules:

s (→ ∪ <
⇁∞)∗ ; ⇁∞ t

s→∞ t

s1 →∞ t1 · · · sn →∞ tn

f(s1, s2, . . . , sn) (<)⇁∞ f(t1, t2, . . . , tn) s (<)⇁∞ s
(1.8)

Here ⇁∞ stands for infinitary rewriting below the root, and
<
⇁∞ is its marked version.

The symbol (<)⇁∞ stands for both ⇁∞ and
<
⇁∞. Correspondingly, the rule in the middle is

an abbreviation for two rules. The axiom s ⇁∞ s serves to ‘restore’ reflexivity, that is, it
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models the identity steps in S in (1.7). Intuitively, s
<
⇁∞ t can be thought of as an infinitary

rewrite sequence below the root, shorter than the sequence we are defining.
We have an infinitary strongly convergent rewrite sequence from s to t if and only if

s →∞ t can be derived by the rules (1.8) in a (not necessarily well-founded) proof tree
without infinite nesting of

<
⇁∞, that is, proof trees in which all paths (ascending through

the proof tree) contain only finitely many occurrences of
<
⇁∞. The depth requirement in the

definition of strong convergence arises naturally in the rules (1.8), in particular the middle
rule pushes the activity to the arguments.

The fact that the rules (1.8) capture the infinitary rewriting relation→∞ is a consequence
of a result due to [28] which states that every strongly convergent rewrite sequence contains
only a finite number of steps at any depth d ∈ N, in particular only a finite number of root
steps →ε. Hence every strongly convergent reduction is of the form (

<
⇁∞ ;→ε)

∗; ⇁∞ as in
the premise of the first rule, where the steps

<
⇁∞ are reductions of shorter length.

We conclude with an example of a TRS that allows for a rewrite sequence of length
beyond ω.

a→ε C(a)

a→∞ Cω

C(a) ⇁∞ Cω

a→∞ Cω

Figure 3: A reduction a→∞ Cω.

like Figure 3

a→∞ Cω

like Figure 3

b→∞ Cω

f(a, b)
<
⇁∞ f(Cω,Cω) f(Cω,Cω)→ε D

f(a, b)→∞ D

Figure 4: A reduction f(a, b)→∞ D.

Example 1.3. We consider the term rewriting system from [12] with the following rules:

f(x, x)→ D a→ C(a) b→ C(b) .

We then have a→∞ Cω, that is, an infinite reduction from a to Cω in the limit:

a→ C(a)→ C(C(a))→ C(C(C(a)))→ · · · →ω Cω .

Using the proof rules (1.8), we can derive a→∞ Cω as shown in Figure 3. The proof tree in
Figure 3 can be described as follows: We have an infinitary rewrite sequence from a to Cω

since we have a root step from a to C(a), and an infinitary reduction below the root from
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C(a) to Cω. The latter reduction C(a) ⇁∞ Cω is in turn witnessed by the infinitary rewrite
sequence a→∞ Cω on the direct subterms.

We also have the following reduction, now of length ω + 1:

f(a, b)→ f(C(a), b)→ f(C(a),C(b))→ · · · →ω f(Cω,Cω)→ D .

That is, after an infinite rewrite sequence of length ω, we reach the limit term f(Cω,Cω), and
we then continue with a rewrite step from f(Cω,Cω) to D. Figure 4 shows how this rewrite
sequence f(a, b)→∞ D can be derived in our setup. We note that the rewrite sequence
f(a, b)→∞ D cannot be ‘compressed’ to length ω. So there is no reduction f(a, b)→≤ω D.

Related Work. While a coinductive treatment of infinitary rewriting is not new [8, 25, 22],
the previous approaches only capture rewrite sequences of length at most ω. The coinductive
framework that we present here captures all strongly convergent rewrite sequences of arbitrary
ordinal length.

From the topological perspective, various notions of infinitary rewriting and infinitary
equational reasoning have been studied in [26]. The closure operator SE from [26] is closely

related to our notion of infinitary equational reasoning
∞
=. The operator SE is defined by

SE(R) = (S ◦ E)?(R) where

(i) E(R) is the equivalence closure of R, and
(ii) S(R) is the strongly convergent rewrite relation obtained from (single steps) R,
(iii) and f?(R) is defined as µx.R ∪ f(x).

Although defined in very different ways, the relations SE(→) and
∞
= typically coincide.

In [32], Lombardi, Ŕıos and de Vrijer introduce infinitary equational reasoning based on
limits to reason about permutation equivalence of infinitary reductions that are modelled by
proof terms.

Martijn Vermaat has formalized infinitary rewriting using metric convergence (in place
of strong convergence) in the Coq proof assistant [36], and proved that weakly orthogonal
infinitary rewriting does not have the property UN of unique normal forms, see [20]. While
his formalization could be extended to strong convergence, it remains to be investigated to
what extent it can be used for the further development of the theory of infinitary rewriting.

Ketema and Simonsen [29] introduce the notion of ‘computable infinite reductions’ [29],
where terms as well as reductions are computable, and provide a Haskell implementation of
the Compression Lemma for this notion of reduction.

This current paper is an extended version of [16]. The most important changes are:

(i) We have introduced a novel notion of permutation equivalence on infinitary rewrite
sequences, which we call parallel permutation equivalence. We show that two rewrite
sequences are parallel permutation equivalent if and only if they are represented by
the same proof tree in our framework, see Section 8.

(ii) We have rewritten and extended the description of the Coq formalisation of the
Compression Lemma (Section 9).
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Outline. In Section 2 we introduce infinitary rewriting in the usual way based on ordinals,
and with convergence at every limit ordinal. Section 3 is a short explanation of (co)induction
and fixed-point rules. The two new definitions of infinitary rewriting →∞ based on mixing
induction and coinduction, as well as their equivalence, are spelled out in Section 4. Then,
in Section 5, we prove the equivalence of these new definitions of infinitary rewriting with

the standard definition. In Section 6 we present the above introduced relations
∞
= and

∞→ of
infinitary equational reasoning and bi-infinite rewriting. In Section 7 we compare the three

relations
∞
=,
∞→ and →∞. In Section 8 we present our new work on parallel permutation

equivalence and canonical proof trees. As an application, we show in Section 9 that our
framework is suitable for formalizations in theorem provers. We conclude in Section 10.

2. Preliminaries on Term Rewriting

We give a brief introduction to infinitary rewriting. For further reading on infinitary rewriting
we refer to [31, 35, 6, 21], for an introduction to finitary rewriting to [30, 35, 1, 5].

A signature Σ is a set of symbols f each having a fixed arity ar(f) ∈ N. Let X be an
infinite set of variables such that X ∩ Σ = ∅. The set Ter∞(Σ,X ) of (finite and) infinite
terms over Σ and X is coinductively defined by the following grammar:

t ::=co x | f( t, . . . , t︸ ︷︷ ︸
ar(f) times

) (x ∈ X , f ∈ Σ) .

This means that Ter∞(Σ,X ) is defined as the largest set T such that for all t ∈ T , either
t ∈ X or t = f(t1, t2, . . . , tn) for some f ∈ Σ with ar(f) = n and t1, t2, . . . , tn ∈ T . So the
grammar rules may be applied an infinite number of times, and equality on the terms is
bisimilarity. See further Section 3 for a brief introduction to coinduction.

We write Id for the identity relation on terms, Id := {〈s, s〉 | s ∈ Ter∞(Σ,X )}.

Remark 2.1. Alternatively, the set Ter∞(Σ,X ) arises from the set of finite terms, Ter(Σ,X ),
by metric completion, using the well-known distance function d defined by d(t, s) = 2−n if
the n-th level of the terms t, s ∈ Ter(Σ,X ) (viewed as labeled trees) is the first level where
a difference appears, in case t and s are not identical; furthermore, d(t, t) = 0. It is standard
that this construction yields 〈Ter(Σ,X ), d〉 as a metric space. Now, infinite terms are
obtained by taking the completion of this metric space, and they are represented by infinite
trees. We will refer to the complete metric space arising in this way as 〈Ter∞(Σ,X ), d〉,
where Ter∞(Σ,X ) is the set of finite and infinite terms over Σ.

Let t ∈ Ter∞(Σ,X ) be a finite or infinite term. The set of positions Pos(t) ⊆ N∗ of t
is defined by: ε ∈ Pos(t), and ip ∈ Pos(t) whenever t = f(t1, . . . , tn) with 1 ≤ i ≤ n and
p ∈ Pos(ti). For p ∈ Pos(t), the subterm t|p of t at position p is defined by t|ε = t and
f(t1, . . . , tn)|ip = ti|p. The set of variables Var(t) ⊆ X of t is Var(t) = {x ∈ X | ∃ p ∈
Pos(t). t|p = x}.

A substitution σ is a map σ : X → Ter∞(Σ,X ); its domain is extended to Ter∞(Σ,X )
essentially by corecursion: σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)) (cf. [33, Example 2.5(iv)
and Remark 3.2]). For a term t and a substitution σ, we write tσ for σ(t). We write x 7→ s
for the substitution defined by σ(x) = s and σ(y) = y for all y 6= x. Let � be a fresh variable.
A context C is a term Ter∞(Σ,X ∪ {�}) containing precisely one occurrence of �. For
contexts C and terms s we write C[s] for C(� 7→ s).
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A rewrite rule `→ r over Σ and X is a pair (`, r) of terms `, r ∈ Ter∞(Σ,X ) such that
the left-hand side ` is not a variable (` 6∈ X ), and all variables in the right-hand side r occur
in `, Var(r) ⊆ Var(`). Note that we require neither the left-hand side nor the right-hand
side of a rule to be finite.

A term rewriting system (TRS) R over Σ and X is a set of rewrite rules over Σ and
X . A TRS induces a rewrite relation on the set of terms as follows. For p ∈ N∗ we define
→R,p ⊆ Ter∞(Σ,X )× Ter∞(Σ,X ), a rewrite step at position p, by C[`σ]→R,p C[rσ] if C
is a context with C|p = �, ` → r ∈ R, and σ : X → Ter∞(Σ,X ). We write →ε for root
steps, →ε = { (`σ, rσ) | ` → r ∈ R, σ a substitution }. We write s →R t if s →R,p t for
some p ∈ N∗. A normal form is a term without a redex occurrence, that is, a term that is
not of the form C[`σ] for some context C, rule `→ r ∈ R and substitution σ.

A natural consequence of this construction is the notion of weak convergence: we say
that t0 → t1 → t2 → · · · is an infinite reduction sequence with limit t, if t is the limit of
the sequence t0, t1, t2, . . . in the usual sense of metric convergence. In contrast, the central
notion of strong convergence requires, in addition to weak convergence, that the depth of
the redexes contracted in successive steps tends to infinity when approaching a limit ordinal
from below. This condition rules out the possibility that the action of redex contraction
stays confined at the top, or stagnates at some finite level of depth.

Definition 2.2. A transfinite rewrite sequence (of ordinal length α) consists of an initial
term t0 and a sequence of rewrite steps (tβ →R,pβ tβ+1)β<α such that for every limit ordinal
λ < α we have that if β approaches λ from below, then

(i) the distance d(tβ, tλ) tends to 0 and, moreover,
(ii) the depth of the rewrite action, i.e., the length of the position pβ, tends to infinity.

The sequence is called strongly convergent if α is a successor ordinal, or there exists a term
tα such that the conditions (i) and (ii) are fulfilled for every limit ordinal λ ≤ α; we then
write t0 →∞ord tα. The subscript ord is used in order to distinguish →∞ord from the equivalent
relation →∞ as defined in Definition 4.3. We sometimes write t0 →α

ord tα to explicitly
indicate the length α of the sequence. The sequence is called divergent if it is not strongly
convergent.

There are several reasons why strong convergence is beneficial; the foremost being that in
this way we can define the notion of descendant (also residual) over limit ordinals. Also the
well-known Parallel Moves Lemma and the Compression Lemma fail for weak convergence,
see [34] and [12] respectively.

3. (Co)induction, Fixed Points and Relations

We briefly introduce the relevant concepts from (co)algebra and (co)induction that will be
used later throughout this paper. For a more thorough introduction, we refer to [24]. There
will be two main points where coinduction will play a role, in the definition of terms and in
the definition of term rewriting.

Terms are usually defined with respect to a type constructor F . For instance, consider
the type of lists with elements in a given set A, given in a functional programming style:

type List a = Nil | Cons a (List a)

The above grammar corresponds to the type constructor F (X) = 1 + A × X where the
1 is used as a placeholder for the empty list Nil and the second component represents
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the Cons constructor. Such a grammar can be interpreted in two ways: The inductive
interpretation yields as terms the set of finite lists, and corresponds to the least fixed point
of F . The coinductive interpretation yields as terms the set of all finite or infinite lists, and
corresponds to the greatest fixed point of F . More generally, the inductive interpretation of
a type constructor yields closed finite terms (with well-founded syntax trees), and dually,
the coinductive interpretation yields closed possibly infinite terms. For readers familiar with
the categorical definitions of algebras and coalgebras, these two interpretations amount to
defining closed finite terms as the initial F -algebra, and closed possibly infinite terms as the
final F -coalgebra.

In order to formally define finite and infinite terms over a signature Σ and a set
of variables X , consider the associated type constructor GΣ,X (Y ) = X + FΣ(Y ) where
FΣ(Y ) = {f(y1, . . . , yn) | f ∈ Σ, y1, . . . , yn ∈ Y, n = ar(f)}. Then Ter(Σ,X ) is the least
fixed point of GΣ,X and Ter∞(Σ,X ) is the greatest fixed point of GΣ,X .

Equality on finite terms is the expected syntactic/inductive definition. Equality of
possibly infinite terms is bisimilarity. For instance, in the above example, two finite or
infinite lists are equal if and only if they are related by a List-bisimulation, which is a
relation R ⊆ List a × List a such that for all pairs in R are of the form

(i) (Nil, Nil), or
(ii) (Cons a σ, Cons b τ) such that a = b and (σ, τ) ∈ R.

Throughout this paper, we define and reason about relations on the set T := Ter∞(Σ,X ) of
terms. Such relations are elements of the powerset of T × T , which we view as a complete
lattice L := P(T × T ) in which joins and meets are given by unions and intersections of
relations. Relations on terms can thus be defined as least and greatest fixed points of
monotone operators on L, using the Knaster-Tarski fixed point theorem. In L, an inductively
defined relation is a least fixed point µX.F (X) of a monotone F : L → L. Dually, a
coinductively defined relation is a greatest fixed point νX.F (X) of a monotone F : L→ L.
We will make frequent use of the fact that νY. F (Y ) is the greatest post-fixed point of F ,
that is,

νY. F (Y ) =
⋃
{X ∈ L | X ⊆ F (X) }, (3.1)

and µY. F (Y ) is the least pre-fixed point of F , that is,

µY. F (Y ) =
⋂
{X ∈ L | F (X) ⊆ X } (3.2)

The above properties can be expressed as the following fixed point rules:

X ⊆ F (X)

X ⊆ νY. F (Y )
(ν-rule)

F (X) ⊆ X
µY. F (Y ) ⊆ X

(µ-rule) (3.3)

These proof rules, in fact, show the connection to the more abstract categorical notions
of induction and coinduction. This can be seen by viewing L as a partial order (L,⊆). A
partial order (P,≤) can, in turn, be seen as a category in which the objects are the elements
of P and there is a unique arrow X → Y if X ≤ Y . A functor on (P,≤) is then nothing
but a monotone map F ; an F -coalgebra X → F (X) is a post-fixed point of F ; and a final
F -coalgebra is a greatest fixed point of F . Dually, an F -algebra F (X)→ X is a pre-fixed
point of F , and an initial F -algebra is a least fixed point of F . The two proof rules express
the universal properties of these final and initial objects.
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We will use a number of basic operations on relations. These include union (∪), reflexive,
transitive closure (∗), relation composition in diagrammatic order (;), and relation lifting
which we define now.

Definition 3.1. For a relation R ⊆ T × T we define its lifting R (with respect to Σ) by

R := { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | f ∈ Σ, ar(f) = n , s1 R t1, . . . , sn R tn } ∪ Id .

It is straightforward to verify that all these operations are monotone (in all arguments).
Hence any map F : L→ L built from these operations will have a unique least and greatest
fixed point.

4. New Definitions of Infinitary Term Rewriting

We present two new definitions of infinitary rewriting s→∞ t, based on mixing induction
and coinduction, and prove their equivalence. In Section 5 we show they are equivalent to
the standard definition based on ordinals. We summarize the definitions:

A. Derivation Rules. First, we define s→∞ t via a syntactic restriction on the proof trees
that arise from the coinductive rules (1.8). The restriction excludes all proof trees that
contain ascending paths with an infinite number of marked symbols.

B. Mixed Induction and Coinduction. Second, we define s→∞ t based on mutually mixing
induction and coinduction, that is, least fixed points µ and greatest fixed points ν.

In contrast to previous coinductive definitions [8, 25, 22], the setup proposed here captures
all strongly convergent rewrite sequences (of arbitrary ordinal length).

Throughout this section, we fix a signature Σ and a term rewriting system R over Σ.
We also abbreviate T := Ter∞(Σ,X ).

Notation 4.1. Instead of introducing separate derivation rules for transitivity, we write a
reduction of the form s0  s1  · · · sn as a sequence of single steps:

s0  s1 s1  s2 · · · sn−1  sn

conclusion

This allows us to write the subproof immediately above a single step.

4.1. Derivation Rules.

Definition 4.2. We define the relation →∞ ⊂ T × T as follows. We have s→∞ t if there
exists a (finite or infinite) proof tree δ deriving s→∞ t using the following five rules:

s (
<
⇁∞ ∪ →ε)

∗ ; ⇁∞ t

s→∞ t
split

s1 →∞ t1 · · · sn →∞ tn

f(s1, s2, . . . , sn) (<)⇁∞ f(t1, t2, . . . , tn)
lift

s (<)⇁∞ s
id

such that δ does not contain an infinite nesting of
<
⇁∞, that is, such that there exists no

path ascending through the proof tree that meets an infinite number of symbols
<
⇁∞. The

symbol (<)⇁∞ stands for ⇁∞ or
<
⇁∞; so the second rule is an abbreviation for two rules;

similarly for the third rule.
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In the above definition, we tacitly assume that the root steps are derived by axioms of
the form

`σ →ε rσ
`→ r ∈ R, σ a substitution

(4.1)

For keeping the proof trees compact, we will just write `σ →ε rσ in the proof trees not
mentioning rule and substitution.

We give some intuition for the rules in Definition 4.2. The relations
<
⇁∞ and ⇁∞

are infinitary reductions below the root. We use
<
⇁∞ for constructing parts of the prefix

(between root steps), and ⇁∞ for constructing a suffix of the reduction that we are defining.
When thinking of ordinal indexed rewrite sequences σ, a suffix of σ can have length equal to
σ, while the length of every prefix of σ must be strictly smaller than the length of σ. The
five rules (split, and the two versions of lift and id) can be interpreted as follows:

(i) The split-rule: the term s rewrites infinitarily to t, s →∞ t, if s rewrites to t using
a finite sequence of (a) root steps, and (b) infinitary reductions ⇁∞ below the root

— where infinitary reductions preceding root steps must be shorter than the derived
reduction.

(ii) The lift-rules: the term s rewrites infinitarily to t below the root, s (<)⇁∞ t, if the
terms are of the shape s = f(s1, s2, . . . , sn) and t = f(t1, t2, . . . , tn) and there exist
reductions between the arguments: s1 →∞ t1, . . . , sn →∞ tn.

(iii) The id-rules allow for the rewrite relations (<)⇁∞ to be reflexive, and this in turn yields
reflexivity of →∞. For variable-free terms, reflexivity can already be derived using the
other rules. For terms with variables, this rule is needed (unless we treat variables as
constant symbols).

For an example of a proof tree, we refer to Example 1.3 in the introduction.

4.2. Mixed Induction and Coinduction. The next definition is based on mixing induc-
tion and coinduction. The inductive part is used to model the restriction to finite nesting of
<
⇁∞ in the derivations of Definition 4.2. The induction corresponds to a least fixed point µ,
while a coinductive rule to a greatest fixed point ν.

Definition 4.3. We define the relation →∞ ⊆ T × T by

→∞ := µR. νS. (→ε ∪ R)∗ ; S . (4.2)

We argue why →∞ is well-defined. Let L := P(T × T ) be the set of all relations on
terms. Define functions G : L× L→ L and F : L→ L by

G(R,S) := (→ε ∪ R)∗ ; S and F (R) := νS.G(R,S) = νS. (→ε ∪ R)∗ ; S . (4.3)

It can easily be verified that F and G are monotone, in all their arguments, with respect to
set-theoretic inclusion. Hence F and G have unique least and greatest fixed points.

In particular, the relation →∞ given by (4.2) is well-defined.
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4.3. Equivalence. We show equivalence of Definitions 4.2 and 4.3. Intuitively, the µR
in the fixed point definition corresponds to the nesting restriction in the definition using
derivation rules. If one thinks of Definition 4.3 as µR.F (R) with F (R) = νS.G(R,S) (see
equation (4.3)), then Fn+1(∅) are all infinite rewrite sequences that can be derived using
proof trees where the nesting depth of the marked symbol

<
⇁∞ is at most n.

To avoid confusion we write →∞der for the relation →∞ defined in Definition 4.2, and
→∞fp for the relation →∞ defined in Definition 4.3. We show →∞der = →∞fp . Definition 4.2
requires that the nesting structure of

<
⇁∞der in proof trees is well-founded. As a consequence,

we can associate to every proof tree a (countable) ordinal that allows to embed the nesting
structure in an order-preserving way. We use ω1 to denote the first uncountable ordinal, and
we view ordinals as the set of all smaller ordinals (then the elements of ω1 are all countable
ordinals).

Definition 4.4. Let δ be a proof tree as in Definition 4.2, and let α be an ordinal. An
α-labeling of δ is a labeling of all symbols

<
⇁∞der in δ with elements from α such that each

label is strictly greater than all labels occurring in the subtrees (all labels above).

Lemma 4.5. Every proof tree as in Definition 4.2 has an α-labeling for some α ∈ ω1.

Proof. Let δ be a proof tree and let L(δ) be the set of positions of the symbol
<
⇁∞der in δ.

For positions p, q ∈ L(δ) we write p < q if p is a strict prefix of q. Then we have that <−1 is
well-founded, that is, there is no infinite sequence p0 < p1 < p2 < · · · with pi ∈ L(δ) (i ≥ 0)
as a consequence of the nesting restriction on

<
⇁∞der.

By transfinite recursion, the well-founded order on L(δ) extends to a well-order, isomor-
phic to some ordinal α — and α < ω1 since L(δ) is a countable set.

Definition 4.6. Let δ be a proof tree as in Definition 4.2. We define the nesting depth of δ
as the least ordinal α ∈ ω1 such that δ admits an α-labeling. For every α ≤ ω1, we define
a relation →∞α,der ⊆ →∞der as follows: s →∞α,der t whenever s →∞der t can be derived using a
proof with nesting depth < α. Likewise we define relations ⇁∞α,der and

<
⇁∞α,der .

As a direct consequence of Lemma 4.5 we have:

Corollary 4.7. We have →∞ω1,der
=→∞der.

Theorem 4.8. Definitions 4.2 and 4.3 define the same relation, →∞der =→∞fp .

Proof. We begin with →∞fp ⊆ →∞der. Recall that F (→∞der) is the greatest fixed point of

G(→∞der, ), see (4.3). Also, we have ⇁∞der =
<
⇁∞der =→∞der , and hence

F (→∞der) = (→ε ∪ →∞der )∗ ; F (→∞der) = (→ε ∪ <
⇁∞der)

∗ ; F (→∞der) (4.4)

F (→∞der) = Id ∪ { 〈f(~s), f(~t)〉 | ~s F (→∞der) ~t } (4.5)

where ~s, ~t abbreviate s1, . . . , sn and t1, . . . , tn, respectively, and we write ~s R ~t if we
have s1 R t1, . . . , sn R tn. Employing the µ-rule from (3.3), it suffices to show that

F (→∞der) ⊆ →∞der. Assume 〈s, t〉 ∈ F (→∞der). Then 〈s, t〉 ∈ (→ε ∪ <
⇁∞der)

∗ ; F (→∞der). Then

there exists s′ such that s (→ε ∪ <
⇁∞der)

∗ s′ and s′ F (→∞der) t. Now we distinguish cases
according to (4.5):

s (→ε ∪ <
⇁∞der)

∗ t t ⇁∞ t
id

s→∞ t
split

s (→ε ∪ <
⇁∞der)

∗ s′

δ1 · · · δn

s′ ⇁∞ t
lift

s→∞ t
split
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Here, for i ∈ {1, . . . , n}, δi is the proof tree for si →∞ ti obtained from si F (→∞der) ti by
corecursively applying the same procedure.

Next we show that→∞der ⊆ →∞fp . By Corollary 4.7 it suffices to show→∞ω1,der
⊆ →∞fp . We

prove by well-founded induction on α ≤ ω1 that →∞α,der ⊆ →∞fp . Since →∞fp is a fixed point

of F , we obtain →∞fp = F (→∞fp ), and since F (→∞fp ) is the greatest fixed point of G(→∞fp , ),

using the ν-rule from (3.3), it suffices to show the inclusion

(∗) →∞α,der ⊆ G(→∞fp ,→∞α,der) := (→ε ∪ →∞fp )∗ ;→∞α,der .

Thus assume that s→∞α,der t, and let δ be a proof tree of nesting depth ≤ α deriving
s→∞α,der t. The only possibility to derive s→∞der t is an application of the split-rule with the

premise s (→ε ∪ <
⇁∞der)

∗ ; ⇁∞der t. Since s→∞α,der t, we have s (→ε ∪ <
⇁∞α,der)

∗ ; ⇁∞α,der t. Let
τ be one of the steps

<
⇁∞α,der displayed in the premise. Let u be the source of τ and v the

target, so τ : u
<
⇁∞α,der v. The step τ is derived either via the id-rule or the lift-rule. The

case of the id-rule is not interesting since we then can drop τ from the premise. Thus let the
step τ be derived using the lift-rule. Then the terms u, v are of form u = f(u1, . . . , un) and
v = f(v1, . . . , vn) and for every 1 ≤ i ≤ n we have ui →∞β,der vi for some β < α. Thus by

induction hypothesis we obtain ui →∞fp vi for every 1 ≤ i ≤ n, and consequently u→∞fp v.

We then have s (→ε ∪ →∞fp )∗ ; ⇁∞α,der t, and hence s G(→∞fp ,→∞α,der) t. This concludes the

proof.

5. Equivalence with the Standard Definition

In this section we prove the equivalence of the coinductively defined infinitary rewrite rela-
tions→∞ from Definitions 4.2 (and 4.3) with the standard definition based on ordinal length
rewrite sequences with metric and strong convergence at every limit ordinal (Definition 2.2).
The crucial observation is the following theorem from [31]:

Theorem 5.1 (Theorem 2 of [31]). A transfinite reduction is divergent if and only if for
some n ∈ N there are infinitely many steps at depth n.

We are now ready to prove the equivalence of both notions:

Theorem 5.2. We have →∞ =→∞ord.

Proof. We write ⇁∞ord to denote a reduction →∞ord without root steps, and we write →α
ord

and ⇁α
ord to indicate the ordinal length α.

We begin with the direction→∞ord ⊆ →∞. We define a function T (and T′(<)) by guarded

corecursion [9], mapping rewrite sequences s →α
ord t (and s ⇁α

ord t) to infinite proof trees
derived using the rules from Definition 4.2. This means that every recursive call produces a
constructor, contributing to the construction of the infinite tree. Note that the arguments
of T (and T′(<)) are not required to be structurally decreasing.
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We do case distinction on the ordinal α. If α = 0, then t = s and we define

T(s→0
ord s) =

T′(s ⇁0
ord s)

s→∞ s
split

T′(<)(x ⇁
0
ord x) = x (<)⇁∞ x

id

T′(<)(f(t1, . . . , tn) ⇁0
ord f(t1, . . . , tn)) =

T(t1 →0
ord t1) · · · T(tn →0

ord tn)

f(t1, . . . , tn) (<)⇁∞ f(t1, . . . , tn)
lift

If α > 0, then, by Theorem 5.1 the rewrite sequence s→α
ord t contains only a finite number

of root steps. As a consequence, it is of the form:

s = s0  s1 · · · s2n  s2n+1 = t

where for every i ∈ {0, . . . , 2n}:
(i) for even i, si  si+1 is an infinite reduction below the root Si : si ⇁

βi
ord si+1, and

(ii) for odd i, si  si+1 is a root step si →ε si+1,

where βi < α if i < 2n and βi ≤ α if i = 2n. For i < 2n we have βi < α since every strict
prefix must be shorter than the sequence itself. We define

T(s→α
ord t) =

δ0 δ1 · · · δ2n

s→∞ t
split

where, for 0 ≤ i < n,

δi =


si →ε si+1 for odd i,

T′<(Si : si ⇁
β
ord si+1) for even i with i < 2n,

T′(Si : si ⇁
β
ord si+1) for even i with i = 2n.

For reductions S : s ⇁α
ord t with α > 0 we have s = f(s1, . . . , sn) and t = f(t1, . . . , tn)

for some f ∈ Σ of arity n and terms s1, . . . , sn, t1, . . . , tn ∈ Ter∞(Σ,X ). Moreover, for every

i with 1 ≤ i ≤ n, there are rewrite sequences Si : si →≤αord ti obtained by selecting from S
the subsequence of steps on the i-th argument. These steps are not necessarily consecutive,
but selecting them nonetheless gives rise to a well-defined reduction. We define:

T′(<)(s ⇁
α
ord t) =

T(S1 : s1 →≤αord t1) · · · T(Sn : sn →≤αord tn)

s (<)⇁∞ t
lift

The obtained proof tree T(s→α
ord t) derives s→∞ t. To see that the requirement that

there is no ascending path through this tree containing an infinite number of symbols
<
⇁∞

is fulfilled, we note the following. The symbol
<
⇁∞ is produced by T′<(s ⇁β

ord t) which is
invoked in T(s→α

ord t) for a β that is strictly smaller than α. By well-foundedness of < on
ordinals, no such path exists.

We now show →∞ ⊆ →∞ord. We prove by well-founded induction on α ≤ ω1 that
→∞α ⊆ →∞ord. This suffices since →∞ =→∞ω1

. Let α ≤ ω1 and assume that s→∞α t. Let δ be
a proof tree of nesting depth < α witnessing s→∞α t. The only possibility to derive s→∞ t
is an application of the split-rule with the premise s (→ε ∪ <

⇁∞)∗ ; ⇁∞ t. Since s →∞α t,
we have s (→ε ∪ <

⇁∞α )∗ ; ⇁∞α t. By induction hypothesis we have s (→ε ∪ →∞ord)∗ ; ⇁∞α t,

and thus s→∞ord ; ⇁∞α t. We have ⇁∞α =→∞α , and consequently s→∞ord s1 →∞α t for some
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term s1. Repeating this argument on s1 →∞α t, we get s→∞ord s1 →∞ord s2 →∞α t. After n
iterations, we obtain

s→∞ord s1 →∞ord s2 →∞ord s3 →∞ord s4 · · · (→∞ord)−(n−1) sn (→∞α )−n t

where (→∞α )−n denotes the nth iteration of x 7→ x on →∞α .
Clearly, the limit of {sn} is t. Furthermore, each of the reductions sn →∞ord sn+1 are

strongly convergent and take place at depth greater than or equal to n. Thus, the infinite
concatenation of these reductions yields a strongly convergent reduction from s to t (there
is only a finite number of rewrite steps at every depth n).

6. Infinitary Equational Reasoning and Bi-Infinite Rewriting

6.1. Infinitary Equational Reasoning.

Definition 6.1. Let R be a TRS over Σ, and let T = Ter∞(Σ,X ). We define infinitary

equational reasoning as the relation
∞
= ⊆ T × T by the mutually coinductive rules:

s (←ε ∪ →ε ∪
∞
↽⇁)∗ t

s
∞
= t

s1
∞
= t1 · · · sn

∞
= tn

f(s1, s2, . . . , sn)
∞
↽⇁ f(t1, t2, . . . , tn)

where
∞
↽⇁ ⊆ T × T stands for infinitary equational reasoning below the root.

Note that, in comparison with the rules (1.1) for
∞
= from the introduction, we now have

used←ε ∪ →ε instead of =R. It is not difficult to see that this gives rise to the same relation.

The reason is that we can ‘push’ non-root rewriting steps =R into the arguments of
∞
↽⇁.

Example 6.2. Let R be a TRS consisting of the following rules:

a→ f(a) b→ f(b) C(b)→ C(C(a)) .

Then we have a
∞
= b as derived in Figure 5 (top), and C(a)

∞
= Cω as in Figure 5 (bottom).

Definition 6.1 of
∞
= can also be defined using a greatest fixed point as follows:

∞
= := νR. (←ε ∪ →ε ∪ R)∗ ,

where R was defined in Definition 3.1. The equivalence of these definitions can be established
in a similar way as in Theorem 4.8. As remarked at the end of section 3, the map
R 7→ (←ε ∪ →ε ∪ R)∗ is monotone, and consequently the greatest fixed point exists.

We note that, in the presence of collapsing rules (i.e., rules ` → r where r ∈ X ),

everything becomes equivalent: s
∞
= t for all terms s, t. For example, having a rule f(x)→ x

we obtain that s
∞
= f(s)

∞
= f2(s)

∞
= · · · ∞= fω for every term s. This can be overcome by

forbidding certain infinite terms and certain infinite limits.
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a→ε f(a)

a→ε f(a) f(a)
∞
↽⇁ fω

a
∞
= fω

f(a)
∞
↽⇁ fω

fω
∞
↽⇁ f(b) f(b)←ε b

fω
∞
= b

fω
∞
↽⇁ f(b) f(b)←ε b

a
∞
= b

(as above)

a
∞
= b

C(a)
∞
↽⇁ C(b) C(b)→ε C(C(a))

C(a)
∞
= Cω

C(C(a))
∞
↽⇁ Cω

C(a)
∞
= Cω

Figure 5: An example of infinitary equational reasoning, deriving C(a)
∞
= Cω in the TRS R

of Example 6.2. Recall Notation 4.1.

6.2. Bi-Infinite Rewriting. Another notion that arises naturally in our setup is that of
bi-infinite rewriting, allowing rewrite sequences to extend infinitely forwards and backwards.
We emphasize that each of the steps →ε in such sequences is a forward step.

Definition 6.3. Let R be a term rewriting system over Σ, and let T = Ter∞(Σ,X ). We

define the bi-infinite rewrite relation
∞→ ⊆ T × T by the following coinductive rules

s (→ε ∪
∞
⇁)∗ t

s
∞→ t

s1
∞→ t1 · · · sn

∞→ tn

f(s1, s2, . . . , sn)
∞
⇁ f(t1, t2, . . . , tn)

where
∞
⇁ ⊆ T × T stands for bi-infinite rewriting below the root.

If we replace
∞
= and →∞ by

∞→, and
∞
↽⇁ and ⇁∞ by

∞
⇁, then Examples 1.1 and 1.3 are

illustrations of this rewrite relation.
Again, like

∞
=, the relation

∞→ can also be defined using a greatest fixed point:
∞→ := νR. (→ε ∪ R)∗ .

As remarked at the end of section 3, R 7→ (→ε ∪ R)∗ is monotone, and hence the greatest
fixed point exists. Also, the equivalence of Definition 6.3 with this ν-definition can be
established similarly.
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7. Relating the Notions

Lemma 7.1. Each of the relations →∞,
∞→ and

∞
= is reflexive and transitive. The relation

∞
= is also symmetric.

Proof. Follows immediately from the fact that the relations are defined using the reflexive-
transitive closure in each of their first rules.

Theorem 7.2. For every TRS R we have the following inclusions:

→∞ ∞→
( →∞ ∪→∞)∗

(
∞→∪ ∞→)∗ ∞

=⊆ ⊆
⊆ ⊆

⊆

Moreover, for each of these inclusions there exists a TRS for which the inclusion is strict.

Proof. The inclusions →∞ ( ∞→ ( ∞
= have already been established in the introduction,

see equation (1.6). The inclusion →∞ ( ( →∞ ∪→∞)∗ is well-known (and obvious). Also
∞→ ( (

∞→∪ ∞→)∗ is immediate since
∞→ is not symmetric.

The inclusion ( →∞ ∪→∞)∗ ⊆ (
∞→∪ ∞→)∗ is immediate since →∞ ⊆ ∞→. Example 1.1

witnesses strictness of this inclusion. The reason is that, for this example, →∞ =→∗ as the
system does not admit any forward limits. Hence ( →∞ ∪→∞)∗ is just finite conversion on

potentially infinite terms. Thus Cω
∞→ a, but not Cω ( →∞ ∪→∞)∗ a.

The inclusion (
∞→∪ ∞→)∗ ⊆ ∞= follows from the fact that

∞
= includes

∞→ and is symmetric
and transitive. Example 6.2 witnesses strictness: C(a) = Cω can only be derived by a rewrite
sequence of the form:

C(a)
∞→ C(fω)

∞← C(b)→ C(C(a))
∞→ C(C(fω))

∞← C(C(b))→ C(C(C(a)))
∞→ · · ·

and hence we need to change rewriting directions infinitely often whereas (
∞→∪ ∞→)∗ allows

to change the direction only a finite number of times.

Definition 7.3. For relations S ⊆ Ter∞(Σ,X )× Ter∞(Σ,X ) we define
∞
T (S) := νR. (S−1 ∪ S ∪R)∗ .

Lemma 7.4. We have
∞
T (S) =

∞
T (
∞
T (S)) for every S ⊆ Ter∞(Σ,X )× Ter∞(Σ,X ).

Proof. For every relation S we have S ⊆ (S−1 ∪ S ∪ R)∗ and hence S ⊆
∞
T (S) by (3.3).

Hence it follows that
∞
T (S) ⊆

∞
T (
∞
T (S)). For

∞
T (
∞
T (S)) ⊆

∞
T (S) we note that

∞
T (
∞
T (S)) = (

∞
T (S)−1 ∪

∞
T (S) ∪

∞
T (
∞
T (S)) )∗ by definition

= (
∞
T (S) ∪

∞
T (
∞
T (S)) )∗ by symmetry of

∞
T (S)

= ( ( S−1 ∪ S ∪
∞
T (S) )∗ ∪

∞
T (
∞
T (S)) )∗ by definition

= ( S−1 ∪ S ∪
∞
T (S) ∪

∞
T (
∞
T (S)) )∗

= ( S−1 ∪ S ∪
∞
T (
∞
T (S)) )∗ since

∞
T (S) ⊆

∞
T (
∞
T (S))

Thus
∞
T (
∞
T (S)) is a fixed point of R 7→ (S−1 ∪ S ∪R)∗, and hence

∞
T (
∞
T (S)) ⊆

∞
T (S).
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It follows immediately that
∞
= is closed under

∞
T (·).

Corollary 7.5. We have
∞
= =

∞
T (
∞
=) for every TRS R.

Proof. We have
∞
= =

∞
T (→ε) =

∞
T (
∞
T (→ε)) =

∞
T (
∞
=).

The work [26] introduces various notions of infinitary rewriting. We comment on the

notions that are closest to the relations
∞→ and

∞
= introduced in our paper. First, we note

that it is not difficult to see that
∞→ (→→t where →→t is the topological graph closure of →.

The paper [26] also introduces a notion of infinitary equational reasoning with a strongly
convergent flavour, namely:

SE(R) = (S ◦ E)?(R)

where

(i) E(R) is the equivalence closure of R, and
(ii) S(R) is the strongly convergent rewrite relation obtained from (single steps) R,
(iii) and f?(R) is defined as µx.R ∪ f(x).

Lemma 7.6. We have SE(→) ⊆ ∞
= for every TRS R.

Proof. The following containments are immediate:

(i) → ⊆ ∞
=,

(ii) E(
∞
=) =

∞
=, and

(iii) S(
∞
=) ⊆

∞
T (
∞
=) =

∞
= (Corollary 7.5).

From the definition of SE(·) as a least fixed point, the claim follows.

It could be reasonable to conjecture that SE(→) and
∞
= coincide. We now show that

this is not the case.

Example 7.7. Consider the iTRS R consisting of the rules

c(b(x))→ a(a(x))

c(a(x))→ b(b(x))

Notice that aω
∞
= bω in R. One possible derivation δ of this fact is given below where

δ is the same as δ, but with all pairs mirrored and premises of the split rule are listed in
reverse order. We also use that b(bω) = bω and a(aω) = aω.

a(a(aω))←εc(b(a
ω))

δ

c(b(aω))
∞
↽⇁c(b(bω))

δ

c(bω)
∞
↽⇁c(aω)

δ

c(a(aω))
∞
↽⇁c(a(bω)) c(a(bω))→εb(b(b

ω))

aω
∞
= bω

One does not have 〈aω, bω〉 ∈ SE(R), however. Let us sketch a proof of this. First, notice
that, for any relation R, SE(R) can alternatively be described as

SE(R) := µx.R ∪ S(E(x)) = µx.R ∪ E(x) ∪ S(x) = µx.R ∪ E(S(x)) (7.1)

This is because a prefixed point of the composition S ◦E is a prefixed point of both monotone
operators E and S, and vice versa. We are particularly interested in the operator appearing
on the right-hand side of (7.1). After a single iteration, it yields the usual concept of
infinitary conversion in the iTRS R.
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Observe that R is in fact a string rewrite system. Being orthogonal, and having no
collapsing rules, we know that R satisfies both iCR and iSN. Therefore, infinitary conversion
in R is characterized by canonical semantics S, consisting of infinitary normal forms. It is
easy to see that these are precisely

S = {w ∈ {a, b}m | m ≤ ω} t {wcn | w ∈ {a, b}∗, n ≤ ω}
= {wcn | w ∈ {a, b}m,m+ n ≤ ω}

It is a curious fact that E(S(·)) does not yet stabilize at (=S), the equality of infinitary
normal forms. But it does stabilize after one more iteration — without relating aω and bω.

To see this, consider a sequence of =S-steps

s0 →∞ · →∞ s1 →∞ · →∞ s2 →∞ · · · with lim
n→∞

sn = s∞ (7.2)

By infinitary rewriting theory, for each n, we can find standard, ω-compressed reductions

ρn : sn →∞ s := NF∞(s0) ∈ S (7.3)

Let us say that a finite prefix w ≤ s is stable if we can find a number N , a prefix v ≤ s∞,
and a reduction ν : v →∗ w such that, for all n ≥ N :

– sn = vs′n
– ρn factors as ρn = ν ◦ ρ′n, where ρ′n : s′n → s′ and s = ws′.

If every prefix of s is stable, then it is easy to see that s∞ →∞ s; then the infinite
conversion (7.2) yields no new pairs in SE(R).

Otherwise, there is a maximal stable prefix w — which may or may not be empty.
Fixing this w = wmax , with respective N , v, and ν, we find that

– s = ws′, s∞ = vs′∞, ν : v → w;
– s′N →∞ · →∞ s′N+1 →∞ · · ·, with limn→∞ s

′
n = s′∞;

– s′n →∞ s′ for n ≥ N ;

We claim that s′∞ = cω. For suppose s′∞ ∈ {ckxu | k ≥ 0, x ∈ {a, b}, u ∈ {a, b, c}≤ω}.
After k steps of outermost reduction, the outermost letter becomes y ∈ {a, b}, and there is
no longer a redex present at the root. By continuity of the sequence {s′n}, this even happens
at each n ≥M , for some M ≥ N . But now y becomes a stable prefix of s′, and wy a stable
prefix of s — contradicting maximality of w. So s′∞ = cω. Now, unless s′ = cω as well,
trivializing the whole thing, the reductions ρ′n must be non-trivial, yielding subterms of form
aa(x) or bb(x). Then s′ has a prefix resulting from a reduction of a term of form ckau or
ckbu to normal form — for arbitrarily large k. A cursory examination of the rules reveals
that the only two possibilities for such prefixes are a(ab)k and b(ba)k. Since the k indeed is
unbounded as s′n → s′∞, we conclude that s′ ∈ {a(ab)ω, b(ba)ω}.

Thus, the only pairs added to (=S) by the operator S(·) are those of the form 〈wα, vcω〉,
where v →∗ w and α ∈ {a(ab)ω, b(ba)ω}. The equivalence generated by these relations
corresponds to infinitary conversion in the augmented iTRS:

R+ := R∪

{
a(ab)ω → cω

b(ba)ω → cω

Let us denote this conversion by =S+ . It remains to show that SE(=S+) coincides with
=S+ . We proceed as before, starting with a chain of R+-conversions

s0 →∞ · →∞ s1 →∞ · →∞ s2 →∞ · · · with lim
n→∞

sn = s∞ (7.4)



20 J. ENDRULLIS, H. N. HANSEN, D. HENDRIKS, A. POLONSKY, AND A. SILVA

We remark that R+ is still confluent, owing to lack of overlap.
Even though compression fails due to the presence of rules with infinite left sides, this

failure happens to be completely innocuous: if any of these rules are ever used in a reduction
sequence, they will replace an infinite part of the term by a normal form which cannot
interact with anything — and the finite prefix which remains is strongly normalizing (since
R+ is finitarily SN). In particular, for any R+-reduction ρ : u →∞ u′, the following are
equivalent:

– ρ cannot be compressed to length ω;
– ρ factors as u→∞ wα→ wcω, where α ∈ {a(ab)ω, b(ba)ω} and u→∞ wα is is an infinite

reduction.

We thus again obtain standard, (ω + 1)-compressed reductions

ρn : sn →∞ s := NF∞(s0) ∈ S (7.5)

If it so happens that, no reduction ρn fires any of the new rules, then it is evident that
(s, s∞) is already included in =S+ . Otherwise, if one of the new rules is ever fired, then
s = wcω. If t is any term, and ρ is a reduction from t to a normal form of the shape wcω,
then ρ factors as ρf ◦ ρi ◦ ρ!, where

– t = t0ti;
– ρf : t0 →∗ w;
– ρi : ti →∞ α are reductions in R, where α ∈ {a(ab)ω, b(ba)ω};
– ρ! : α→ cω.

Applying this observation for each ρn from (7.5), we conclude that the initial part ρfn
must eventually stabilize (due to stabilization of prefixes as sn

n→∞−→ s∞). For the same
reason, we have that ρ!

n must eventually settle on one of the two new rules, with the target
of ρi converging to its left side. The remaining reductions ρi, being pure R-reductions, are
covered by our earlier analysis, and so we conclude that s∞ = s0

∞s
i
∞, with s0

∞=S+w, and
si∞=S+c

ω.
Finally, let us remark why it suffices to consider limits of length ω. This is settled by

induction on the sequence length β.
As decisively settled in TeReSe, a strongly convergent sequence is necessarily of at-most-

countable length β.
If β is a successor ordinal, then we conclude by finite induction from the greatest limit

ordinal less than β.
Otherwise, β will be a limit ordinal, and we shall be able to produce a sequence

s0, sβ(1), sβ(2), . . . as before, with sβ(i) →∞ · →∞ s0.
The same analysis applies, and we deduct that sβ →∞R+ NF(s0).

8. Correspondence of Proof Trees and Rewrite Sequences

In this section, we investigate the correspondence between ordinal-indexed rewrite sequences
and coinductive proof trees. We define a correspondence relation that makes precise when a
rewrite sequence is represented by a certain proof tree. In general, this correspondence is a
many-to-many relation: a proof tree represents a class of rewrite sequences, and a rewrite
sequence can be represented by different proof trees.

We then define canonical proof trees for →∞ in such a way that every ordinal-indexed
rewrite sequence has a unique representative among the canonical proof trees. More precisely,
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there is a many-to-one correspondence between rewrite sequences and canonical proof trees.
To characterise the class of rewrite sequences represented by the same canonical proof
tree, we introduce a notion of equivalence on infinitary rewrite sequences, called parallel
permutation equivalence. Thereby two rewrite sequences are considered equivalent if they
differ only in the order of steps in parallel subtrees.

Notation 8.1. For a rewrite sequence S : s0 →α
R sα consisting of steps (sβ → sβ+1)β<α

arising from the application of the rule `β → rβ with substitution σβ at position pβ,
respectively, we introduce the following notation

rul(S, β) = `β → rβ

pos(S, β) = pβ

sub(S, β) = σβ

for every β < α.

8.1. The Correspondence Relation. Assume that we have a term f(s1, . . . , sn) and
rewrite sequences on the direct subterms S1 : s1 →α1 t1, . . . , Sn : sn →αn tn. As these
rewrite sequences occur in parallel subterms, any interleaving of them gives rise to a rewrite
sequence f(s1, . . . , sn) →β f(t1, . . . , tn). The following definition introduces the notion of
interleaving on the basis of a monotonic bijective embedding of the disjoint union α1] . . .]αn
into β.

Definition 8.2. Let f ∈ Σ of arity n. Let Si : si →αi ti be rewrite sequences of length αi
for every i ∈ { 1, . . . , n }. A rewrite sequence T : f(s1, . . . , sn)→β f(t1, . . . , tn) of length β
is called an interleaving of S1, . . . , Sn with root f if there exists a bijection

ξ : ({1} × α1 ∪ . . . ∪ {n} × αn)→ β

such that for every i ∈ { 1, . . . , n } and every γ < αi we have:

(i) pos(T, ξ(i, γ)) = i · pos(Si, γ) (corresponding position in the i-th argument),
(ii) rul(T, ξ(i, γ)) = rul(Si, γ) (same rule),
(iii) sub(T, ξ(i, γ)) = sub(Si, γ) (same substitution), and
(iv) for every γ′ < γ it holds that ξ(i, γ′) < ξ(i, γ) (monotonic embedding).

The following definition introduces the correspondence between coinductive proof trees
and ordinal-indexed rewrite sequences.

Definition 8.3. Let R be a term rewriting system. We define the correspondence relation
between proof trees (with respect to Definition 4.2) and ordinal-indexed rewrite sequences
as the largest relation such that the following conditions hold:

(i) A proof tree of the form

δ1 δ2 · · · δn

s→∞ t
split

corresponds to a rewrite sequence S : s →α t if S is the concatenation of rewrite
sequences S1, . . . , Sn such that δi corresponds to Si for every i ∈ { 1, . . . , n }.

(ii) A proof tree of the form s→ε t only corresponds to the rewrite sequence s→ε t.
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(iii) A proof tree of the form

δ1 δ2 · · · δn

f(s1, s2, . . . , sn) (<)⇁∞ f(t1, t2, . . . , tn)
lift

corresponds to a rewrite sequence S : s→α t if S is an interleaving of rewrite sequences
S1, . . . , Sn with root f such that the proof tree δi corresponds to the rewrite sequence
Si for every i ∈ { 1, . . . , n }.

(iv) A proof tree of the form

s (<)⇁∞ s
id

only corresponds to the empty rewrite sequence s→0 s.

Remark 8.4. Note that a proof tree corresponds to more than one rewrite sequence if and
only if it contains an application of the lift-rule with (at least) two premises that do not
correspond to empty rewrite sequences. The lift-rule introduces choice in the ‘construction’
of the rewrite sequence by allowing for an arbitrary interleaving of the rewrite sequences on
the arguments.

The following example illustrates that a proof term can correspond to an infinite number
of ordinal-indexed rewrite sequences.

Example 8.5. We consider the proof trees in Figures 3 and 4:

(i) The proof tree for a→∞ Cω corresponds to the only rewrite sequence a→ω Cω.
(ii) The proof tree for b→∞ Cω corresponds to the only rewrite sequence b→ω Cω.
(iii) The proof tree for f(a, b)

<
⇁∞ f(Cω,Cω) corresponds to all possible interleavings of

a→ω Cω and b→ω Cω applied to the respective subterms f(a, b). Note that there are
continuum many rewrite sequences that all have length ω or ω · 2.

The next example shows that some rewrite sequences can be represented by multiple proof
trees.

Example 8.6. There are multiple proof trees for the rewrite sequence a→ω Cω, for example
the proof trees shown in Figures 3 and 6.

a→ε C(a)

a→ε C(a)

a→∞ C(a)

C(a) ⇁∞ C(C(a))

a→∞ Cω

C(a) ⇁∞ Cω

C(a)→∞ Cω

C(C(a)) ⇁∞ Cω

a→∞ Cω

Figure 6: A second proof tree for a→∞ Cω.
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Example 8.7. Let R consist of the rule f(x) → g(x). Figures 7 and 8 show proof trees
corresponding to rewrite sequences fω →ω gω. The proof tree in Figure 7 corresponds to the
rewrite sequence

fω → g(fω)→ g(g(fω))→ · · · →ω gω ,

and the proof tree in Figure 8 corresponds to

fω → g(fω)→ g(f(g(fω)))→ g3(fω)→ g4(fω)→ g5(fω)→ · · · →ω gω .

Note that, by Remark 8.4, these rewrite sequences are unique. Both proof trees correspond
to precisely one rewrite sequence since they do not contain applications of the lift-rule (rules
with conclusion ⇁∞) with multiple premises.

fω →ε g(fω)

fω →∞ gω

g(fω) ⇁∞ gω

fω →∞ gω

Figure 7: A proof tree for fω → g(fω)→ g(g(fω))→ · · · →ω gω.

fω →ε g(fω)

fω →ε g(fω)

fω →∞ g(fω)

fω ⇁∞ f(g(fω)) f(g(fω))→ε g(g(fω))

Figure 7

fω →∞ gω

g(fω) ⇁∞ gω

g(fω)→∞ gω

g(g(fω)) ⇁∞ gω

fω →∞ gω

g(fω) ⇁∞ gω

fω →∞ gω

Figure 8: A proof tree for fω → g(fω)→ g(f(g(fω)))→ g3(fω)→ g4(fω)→ · · · →ω gω.

8.2. Canonical Proof Trees and Parallel Permutation Equivalence. In order to have
a unique proof tree for every ordinal-indexed rewrite sequence, we introduce ‘canonical’
proof trees for →∞. We show that the correspondence of canonical proof trees and rewrite
sequences is a one-to-many relationship, and we characterise the class of rewrite sequences
represented by a canonical proof tree in terms of ‘parallel permutation equivalence’.
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Definition 8.8. A proof tree for →∞ is called canonical if

(i) every application of the split rule is an instance of the canonical split rule

s (
<
⇁∞ ;→ε)

∗ ; ⇁∞ t

s→∞ t
canonical split , and

(ii) every application of the id rule is an instance of

x (<)⇁∞ x
canonical id

In contrast with the split rule from Definition 4.2, the canonical split rule replaces

(
<
⇁∞ ∪ →ε)

∗ by (
<
⇁∞ ;→ε)

∗ .

Thereby the canonical form enforces that
<
⇁∞ and →ε alternate.

The canonical id rule replaces

s (<)⇁∞ s by x (<)⇁∞ x .

Thereby it enforces unique proof trees for empty rewrite sequences (using rules lift and
canonical id).

Definition 8.9. Let p, q ∈ N∗ be positions. We define

(i) p ≤ q if pr = q for some r ∈ N∗,
(ii) p ‖ q if p 6≤ q and q 6≤ p.

If p ‖ q, then we say that p and q are parallel (to each other).

Recall that we consider ordinals α to be the set of all smaller ordinals: α = {β | β < α}.
This allows us to speak about functions f : α→ β.

Definition 8.10. Let R be a term rewriting system. Let S : s→∞R t1 and T : s→∞R t2 be
strongly convergent rewrite sequences of length α and β, respectively.

The rewrite sequence S is called parallel permutation equivalent to T if there exists a
bijection f : α→ β such that

(i) rul(S, γ) = rul(T, f(γ)) and pos(S, γ) = pos(T, f(γ)) for every γ < α, and
(ii) pos(S, γ1) ‖ pos(S, γ2) whenever γ1 < γ2 < α and f(γ1) > f(γ2).

Observe that, the bijective mapping f : α → β defines a permutation of the steps in the
sequence S. The condition (i) guarantees that the step indexed by γ in S corresponds to the
step indexed by f(γ) in T as follows: both steps must arise from the same rule applied at
the same position. The condition (ii) ensures that steps that have been permuted (changed
their relative order in the sequence), arise from contractions at parallel positions.

In the following definition we select a subsequence of the steps of T that corresponds to
(the permutation of) a prefix of S. For this purpose, we consider a step to be the application
of a certain rule at a certain position. We do not take into account the source and the target
of the steps as these may change due to preceding steps being dropped (not selected).

Definition 8.11. Let S : s0 →α
R sα and T : t0 →β

R tβ be parallel permutation equivalent
with respect to the bijection f : α→ β. Let κ ≤ α, and define S′ as the prefix of S of length
κ. We define the permutation of S′ with respect to f as the rewrite sequence obtained from
T by selecting the subsequence of steps at indexes γ < β for which f−1(γ) < κ.
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As dropping (not selecting) a step changes all subsequent terms in the sequence, we
need to show that the selected steps still form a rewrite sequence (the rules are applicable at
the designated positions).

Proof of well-definedness of Definition 8.11. To prove that the selected subsequence of steps
from T forms a rewrite sequence, we show that every non-selected (dropped) step is parallel
to all subsequent selected steps. As a consequence, the dropped steps do not influence
the applicability of the selected steps. Let us consider a step that is dropped, that is
γ < β with f−1(γ) ≥ κ, and a subsequent step that is selected, γ′ with γ < γ′ < β and
f−1(γ′) < κ. From parallel permutation equivalence of S and T it follows immediately that
pos(T, γ) ‖ pos(T, γ′) since f−1(γ′) < κ ≤ f−1(γ) and γ < γ′.

Lemma 8.12. Let S : s0 →α
R sα and T : t0 →β

R tβ be parallel permutation equivalent with
respect to the bijection f : α→ β. Every prefix S′ of S is parallel permutation equivalent to
the permutation of S′ with respect to f .

Proof. Follows immediately from parallel permutation equivalence of the rewrite sequences
S and T together with Definition 8.11 since the order of the selected steps is preserved (both
from S to S′ as well as from T to the subsequence of selected steps of T ).

The following lemma states that parallel permutation equivalent sequences converge to
the same target term.

Lemma 8.13. If the rewrite sequences S : s0 →α
R sα and T : t0 →β

R tβ are parallel
permutation equivalent, then we have sα = tβ.

Proof. We prove the claim by induction on α. Let S : s0 →α
R sα and T : t0 →β

R tβ be
rewrite sequences that are parallel permutation equivalent. Let f : α→ β be such that the
conditions of Definition 8.10 are fulfilled. We distinguish cases for α:

(i) If α = 0, it follows that β = 0. Then s0 = t0 by definition of parallel permutation
equivalence (the starting terms of the reductions must be equal).

(ii) If α is a successor ordinal α = α′ + 1, we proceed as follows.

Let S′ be the prefix s→α′ sα′ of S of length α′. In other words, S′ is the rewrite
sequence obtained from S by dropping the last step sα′ → sα.

Let T ′ be the permutation of S′ with respect to f . So, T ′ is the rewrite sequence
s→β′ uβ′ with β′ ≤ β obtained from T by dropping the step tf(α′) → tf(α′)+1. Let

(`→ r) = rul(T, f(α′)) p = pos(T, f(α′)) σ = sub(T, f(α′))

Recall that the step tf(α′) → tf(α′)+1 can be dropped from T as its position is parallel
to the positions of all subsequent steps in T : pos(T, f(α′)) ‖ pos(T, γ) for every γ with
f(α′) < γ < β. From this fact it also follows that

uβ′ |p = tf(α′)|p = `σ tβ|p = tf(α′)+1|p tβ = uβ′ [rσ]p (8.1)

Observe that S′ is shorter than S as we have removed the last step. In contrast, the
length of T ′ may be less or equal to the length of T . For example, dropping the 5th
step from an ω-long sequence does not decrease its length.

From parallel permutation equivalence of S and T , it follows by Lemma 8.12 that S′

and T ′ are parallel permutation equivalent. By induction hypothesis, we may conclude
that sα′ = uβ′ . From (8.1) it follows that

sα′ |p = `σ sα = sα′ [rσ]p
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since rul(S, α′) = rul(T, f(α′)) = `→ r and pos(S, α′) = pos(T, f(α′)) = p. Then

sα = sα′ [rσ]p = uβ′ [rσ]p = tβ .

(iii) Assume α is a limit ordinal. We use s =n t to denote that the terms s and t coincide
up to depth n. For sα = tα it suffices to show that sα =n tα for every n ∈ N.

Let n ∈ N be arbitrary. By strong convergence of S there exists a strict prefix S′

of S that contains all steps of S at depth ≤ n. So, if κ is the length of S′, then all
steps in S at index an γ ≥ κ have depth > n. Let T ′ be the permutation of S′ with
respect to f . By Lemma 8.12, S′ and T ′ are permutation equivalent, and by induction
hypothesis, they have the same final term, say final term u. As all steps in S after the
last step of S′ are at depth > n we obtain u =n sα. Likewise, we get u =n tβ since T ′

contains all steps of T that are at depth ≤ n. Hence sα =n tβ.

This concludes the proof.

Proposition 8.14. Parallel permutation equivalence is an equivalence relation.

Proof. We prove reflexivity, symmetry and transitivity:

(a) Reflexivity. Parallel permutation equivalence of a rewrite sequence S : s→α t to itself
is witnessed by choosing f as the identity function on α in Definition 8.10; then both
conditions in the definition are trivially fulfilled.

(b) Symmetry. Let S : s →α t be parallel permutation equivalent to T : s →β t with
witnessing bijection f : α → β. Then parallel permutation equivalence of T to S is
witnessed by f−1; we check both conditions of Definition 8.10:

(i) rul(T, γ) = rul(T, f(f−1(γ))) = rul(S, f−1(γ)) and
pos(T, γ) = pos(T, f(f−1(γ))) = pos(S, f−1(γ)) for every γ < β

(since f−1(γ) < α)
(ii) We have

γ1 < γ2 < β with f−1(γ1) > f−1(γ2)

⇐⇒ f−1(γ2) < f−1(γ1) < α with f(f−1(γ2)) = γ2 > γ1 = f(f−1(γ1))

Hence pos(T, γ1) ‖ pos(T, γ2) whenever γ1 < γ2 < β and f−1(γ1) > f−1(γ2).
(c) Transitivity. Let S : s →α t be parallel permutation equivalent to T : s →β t and

T : s →β t parallel permutation equivalent to U : s →δ t witnessed by bijections
f : α→ β and g : β → δ, respectively. Then parallel permutation equivalence of S to U
is witnessed by g ◦ f ; we check both conditions of Definition 8.10:

(i) rul(S, γ) = rul(T, f(γ)) = rul(U, g(f(γ))) and
pos(S, γ) = pos(T, f(γ)) = pos(U, g(f(γ))) for every γ < α, and

(ii) Assume that γ1 < γ2 < α with g(f(γ1)) > g(f(γ2)). Then either f(γ1) > f(γ2) or
f(γ1) < f(γ2) ∧ g(f(γ1)) > g(f(γ2)). In the former case, pos(S, γ1) ‖ pos(S, γ2)
follows from parallel permutation equivalence of S to T . In the latter case, it
follows from parallel permutation equivalence of T to U .

The following lemma implies that the witnessing function f in the definition of parallel
permutation equivalence is unique (for fixed rewrite sequences S and T ).
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Lemma 8.15. Let S : s →α t and T : s →β t be rewrite sequences. Let α′ ≤ α and let
f : α′ → β be an an injective function with the properties

(i) rul(S, γ) = rul(T, f(γ)) and pos(S, γ) = pos(T, f(γ)) for every γ < α′, and
(ii) pos(S, γ1) ‖ pos(S, γ2) whenever γ1 < γ2 < α′ and f(γ1) > f(γ2).
(iii) pos(T, γ1) ‖ pos(T, γ2) whenever γ1 < γ2 < β, γ1 is not in the image of f , but γ2 is,

Then f is unique with these properties ( for fixed S, T , α′).
Moreover, among the ordinals ≤ α, there exists a largest ordinal α′ such that a function f

with these properties exists.

Before we prove the lemma, let us give some intuition for the conditions (i)–(iii). Item (i)
ensures that f correctly embeds S into T in the sense it respects redex position and the
applied rule. Condition (ii) guarantees that f only swaps steps that are at parallel positions.
Finally, condition (iii) requires that steps in T that are not in the image of f must be parallel
to all subsequent steps in T that are in the image of f .

Proof of Lemma 8.15. We prove uniqueness of f by induction on α′

The base case α′ = 0 is trivial.
For α′ a successor ordinal, α′ = α′′+1, we argue as follows. Let f, g : α′ → β be injective

functions fulfilling the properties (i)–(iii). Then by induction hypothesis, the functions f |α′′
and g|α′′ coincide. Assume, for a contradiction, f(α′′) 6= g(α′′). Without loss of generality
we may assume f(α′′) < g(α′′). Then f(α′′) < g(α′′) < β and f(α′′) is not in the image of g,
but g(α′′) is. However, pos(T, f(α′′)) = pos(S, α′′) = pos(T, g(α′′)), contradicting property
(iii) for the function g. Hence f and g coincide.

Let α′ be a limit ordinal and let f, g : α′ → β be injective functions fulfilling the
properties (i)–(iii). Assume, for a contradiction, that f(α′′) 6= g(α′′) for some α′′ < α′.
However, we have that α′′ + 1 < α′ since α′ is a limit ordinal. By induction hypothesis we
obtain f |α′′+1 coincides with g|α′′+1. Thus f(α′′) = g(α′′), contradicting our assumption.
Hence, f and g coincide. This concludes the proof of uniqueness of f .

We write P (α′) if there exists an injective function f : α′ → β with properties (i)–(iii).
It remains to be shown that there exists a largest ordinal α′ ≤ α for which P (α′) holds.
Let ξ be the supremum (union) of all ordinals ξ′ ≤ α for which P (ξ′); note that this set is
non-empty since always P (0) holds. If P (ξ), then ξ is the largest of these ordinals. Thus
assume ¬P (ξ). Then ξ is a limit ordinal. Note that ξ′′ < ξ′ and P (ξ′) imply P (ξ′′). As
a consequence we have P (ξ′) for every ξ′ < ξ. As the length of every rewrite sequence is
countable [35], it follows that α and thus ξ are countable. Every countable limit ordinal
has cofinality ω. Thus there exist ordinals ξ1 < ξ2 < ξ3 < . . ., each of which < ξ, such that
ξ =

⋃
{ ξi | i ∈ N }. Then P (ξi) for every i ∈ N. For every i ∈ N, there exists an injective

function fi : ξi → β fulfilling properties (i)–(iii) for α′ = ξi. From the uniqueness (shown
above), it follows that fi coincides with fj |ξi for every i < j. As a consequence, we can
define f : ξ → β by

f(ξ′) = fi(ξ
′) whenever i ∈ N and ξ′ < ξi .

We claim that f is injective and has the properties (i)–(iii) and hence P (ξ) holds; contradicting
the above assumption. Injectivity and property (i) are immediate. Property (ii) follows from
the fact that for γ1 < γ2 < ξ there exists i ∈ N such that γ1, γ2 < ξi (since ξ is the supremum
of the ξi’s). Then fi fulfilling property (ii) for γ1, γ2 implies f fulfilling property (ii) for γ1, γ2.
Analogously, property (iii) follows from the following observation: whenever γ1 < γ2 < β, if
γ2 is in the image of f and γ1 is not, then there exists some i such that γ2 is in the image of
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fi (because f is the union of all fj), while γ1 is not (since the image of f contains that of all
fj).

Lemma 8.16. Let S : s→α t be a rewrite sequence. Then S is of the form

S = S1 ; S2 ; S3 ; · · · ; S2n+1

for some n ∈ N such that for every i ∈ { 1, . . . , 2n } we have:

(i) for odd i, Si : si →α si+1 is a reduction below the root,
(ii) for even i, Si : si →ε si+1 is a root step.

If S is parallel permutation equivalent to T : s→β t, then T is of the form:

T = T1 ; T2 ; T3 ; · · · ; T2n+1

such that Si is parallel permutation equivalent to Ti for every i ∈ { 1, . . . , 2n+ 1 }.

Proof. From the definition of parallel permutation equivalence, it follows that

(?) no steps can swap the order with a root step.

As a consequence, T contains the same root steps as S, in the same order. Hence T is of the
form T = T1 ; T2 ; T3 ; · · · ; T2n+1 such that for every i ∈ { 1, . . . , 2n } we have:

(i) for odd i, Ti : ti →α ti+1 is a reduction below the root,
(ii) for even i, Ti : ti →ε ti+1 is a root step, the same as Si.

From (?) it moreover follows that Si is parallel permutation equivalent to Ti for every
i ∈ { 1, . . . , 2n+ 1 }. The reason is that there cannot be a step s ∈ Si with f(s) ∈ Tj where
i, j are odd and j 6= i. For otherwise, this would imply a swap of s with respect to the root
step Si+1 (if i < j) or the root step Si−1 (if i > j).

The next definition extracts the order in which certain rule applications occur in a
rewrite sequence. A rule application is formally a pair 〈ρ, p〉 ∈ R×N∗ consisting of a rewrite
rule and a position. A step in a rewrite sequence of length α is a triple 〈β, ρ, p〉 where β < α
is an index and 〈ρ, p〉 is a rule application. Given a rewrite sequence S, consider the sequence
of rule applications that take place at each step in S. We are interested in the subsequence
of all those 〈ρ, p〉 that fall in a given set P ⊆ R× N∗.

Definition 8.17. Let S : s→α t be a rewrite sequence. The rule application sequence of S
is the sequence rulapp(S) : α → R× N∗ given by rulapp(S)(β) = 〈rul(S, β), pos(S, β)〉 for
all β < α. Given a set P ⊆ R× N∗ of rule applications, we define the P -projection of S as
the subsequence projP (S) of rulapp(S) obtained by picking all rule applications in P .

In other words, projP (S) is a function projP (S) : β → P for some ordinal β ≤ α together
with an embedding f : β → α such that:

(i) f is an embedding: projP (S)(γ) = 〈 rul(S, f(γ)), pos(S, f(γ)) 〉 for every γ < β,
(ii) f is increasing: f(γ1) < f(γ2) whenever γ1 < γ2 < β, and
(iii) f selects all rule applications in P : for all steps 〈γ, rul(S, γ), pos(S, γ) 〉 in S, if

〈 rul(S, γ), pos(S, γ) 〉 ∈ P then γ is in the image of f .

We say that rewrite sequences S1 and S2 have the same order of rule applications in
P ⊆ R× N∗ if projP (S1) = projP (S2) (here we mean point-wise equality).

It should be clear that for given S and P , projP (S) is well-defined.
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Example 8.18. Consider a rewrite system with rules (ρ1) a(x) → a(a(x))
(ρ2) b(x) → b(b(x))
(ρ3) f(x, y) → f(a(c), b(c))

Then we can rewrite

S : f(a(c), b(c)) → f(a(a(c)), b(c)) using 〈ρ1, 0〉
→ f(a(a(a(c))), b(c)) using 〈ρ1, 0〉
→ f(a(a(a(c))), b(b(c))) using 〈ρ2, 1〉
→ f(a(c), b(c)) using 〈ρ3, ε〉
→ f(a(c), b(b(c))) using 〈ρ2, 1〉
→ f(a(a(c)), b(b(c))) using 〈ρ1, 0〉

Taking P = {〈ρ1, 0〉, 〈ρ2, 1〉}, we get that projP (S) = 〈ρ1, 0〉, 〈ρ1, 0〉, 〈ρ2, 1〉, 〈ρ2, 1〉, 〈ρ1, 0〉,
and, in particular, β = 5.

The following lemma states, for a given proof tree, the order of non-parallel rule
applications is the same in every rewrite sequence corresponding to the proof tree.

Lemma 8.19. Let δ be a proof tree (Definition 4.2) and let P ⊆ R× N∗ be a set of rule
applications such that for every 〈ρ1, p1〉, 〈ρ2, p2〉 ∈ P we have p1 ∦ p2. If rewrite sequences S
and T both correspond to δ, then projP (S) = projP (T ).

Proof. It suffices to consider the case that P consists of at most 2 elements since:

projP (S) = projP (T ) ⇐⇒ ∀Q ⊆ P. (|Q| ≤ 2 =⇒ projQ(S) = projQ(T )) .

We prove that for all proof trees δ and all P ⊆ R× N∗ with |P | ≤ 2, if rewrite sequences
S and T correspond to δ, then projP (S) = projP (T ). So let δ, S, T, P be as stated, and
assume that P = {〈ρ1, p1〉, 〈ρ2, p2〉}; we allow 〈ρ1, p1〉 = 〈ρ2, p2〉. Without loss of generality,
we assume that p1 ≤ p2. The proof is by well-founded induction on the length of p2. First
we note that if δ is a single root step or a single application of id, the result is immediate.

Base case: Here we have p2 = p1 = ε which means that P contains only root step
applications. We distinguish cases according to the root of δ. If the root of δ is obtained
from a split-application, then the root steps in S and T must occur in the same order, hence
projP (S) = projP (T ). In case the root of δ is obtained from a lift-application, then S and T
cannot contain any root steps, hence we are also done.

Induction step: Assume that p2 = ip′2 and define

P ′ =

{
{〈ρ2, p

′
2〉}, if p1 = ε

{〈ρ1, p
′
1〉, 〈ρ2, p

′
2〉}, if p1 = ip′1

By induction, we may assume that the property holds for the set of rule applications P ′.
For (ρ, p) ∈ (R× N∗), we define i · (ρ, p) = (ρ, ip). For functions h : β → R× N∗, we

define (i · h) : β → R× N∗ by by (i · h)(γ) = i · h(γ).
We distinguish cases for the shape of δ. If δ is of the form:

δ1 : s1 →∞ t1 δ2 : s2 →∞ t2 · · · δn : sn →∞ tn

f(s1, . . . , sn) (<)⇁∞ f(t1, . . . , tn)
lift

then S, respectively T , is an interleaving of rewrite sequences S1, . . . , Sn, respectively
T1, . . . , Tn, corresponding to δ1, . . . , δn. In particular, Si : si →∞ ti and Ti : si →∞ ti
correspond to δi. Since S cannot contain root steps, we have that 〈ρ1, ε〉 is not in the
image of projP (S), so if p1 = ε then projP (S) = i · projP ′(Si). If p1 = ip′i, then all
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ρ1- and ρ2-applications in P are on the i’th subterm, and since interleaving preserves
order of steps in this subterm, we again have that projP (S) = i · projP ′(Si). Similarly,
projP (T ) = i · projP ′(Ti). Now, projP (S) = projP (T ) follows from the induction hypothesis.

If δ is of the form
δ1 δ2 · · · δn

s→∞ t
split

then S, respectively T , is a concatenation of S1, . . . , Sn, respectively T1, . . . , Tn, corresponding
to the trees δ1, . . . , δn. Hence it suffices to show that projP (Si) = projP (Ti) for all i = 1, . . . , n.
For all δi’s that are a single node or an id-application, this holds. The remaining δi’s must
have a root that is obtained from a lift-application, and the result now follows from the
lift-case.

Next, we characterise the correspondence of canonical proof trees and rewrite sequences.

Theorem 8.20. We have the following facts about canonical proof trees:

(i) Every rewrite sequence corresponds to precisely one canonical proof tree.

(ii) Rewrite sequences S : s0 →α
R sα and T : t0 →β

R tβ are represented by the same
canonical proof tree if and only if they are parallel permutation equivalent.

Proof. First, note that every rewrite sequence corresponds to a canonical proof tree. This
follows by an inspection of the proof of Theorem 5.2: for every rewrite sequence S : s→α t,
the proof tree T(S) is canonical and corresponds to S.

Second, we show that canonical proof trees coincide if they correspond to rewrite
sequences that are parallel permutation equivalent. As a direct consequence, we obtain that
every rewrite sequence corresponds to precisely one canonical proof tree, establishing (i).

Notation: For a strongly convergent rewrite sequence R : s →α
ord t, we write TR to

denote an arbitrary canonical proof tree TR : s →∞ t corresponding to R. Note that, a
priori, the tree TR can be different from T(R). If R is a rewrite sequence below the root,

then we moreover write T
′(<)
R for a canonical proof tree T

′(<)
R : s (<)⇁∞ t corresponding to R.

Let S : s →α
ord t and T : s →β

ord t be rewrite sequences that are parallel permutation
equivalent. We show that TS = TT by coinduction, that is: if S and T are parallel
permutation equivalent, then TS and TT have the same root and all subtrees arise again
from parallel permutation equivalent rewrite sequences. As S and T are parallel permutation
equivalent, from Lemma 8.16 it follows that S and T are of the forms:

S = S1 ; S2 ; S3 ; · · · ; S2n+1

T = T1 ; T2 ; T3 ; · · · ; T2n+1
(8.2)

for some n ∈ N such that for every i ∈ { 1, . . . , 2n+ 1 } we have:

(a) for odd i, Si and Ti are reductions below the root,
(b) for even i, Si and Ti are a root steps, and
(c) Si is parallel permutation equivalent to Ti for every i ∈ { 1, . . . , 2n+ 1 }.
In particular, by Lemma 8.13, Si and Ti have the same source and target term for every
i ∈ { 1, . . . , 2n }, say source ui and target ui+1.

We consider the root of the proof trees TS : s→∞ t and TT : s→∞ t. The only way to
derive →∞ is by an application of the split-rule. Due to (8.2), (a) and (b), and the form of
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the canonical split-rule, it follows that TS and TT must be of the form:

TS =
T′<S1

u2 →ε u3 T′<S3
u4 →ε u5 · · · u2n →ε u2n+1 T′S2n+1

u1 →∞ u2n+2

split

TT =
T′<T1 u2 →ε u3 T′<T3 u4 →ε u5 · · · u2n →ε u2n+1 T′T2n+1

u1 →∞ u2n+2

split

As a consequence TS and TT have the same root and, due to (c), the subtrees arise from
rewrite sequences below the root that are again parallel permutation equivalent.

Let S : s→α
ord t and T : s→β

ord t be rewrite sequences below the root that are parallel

permutation equivalent. We consider the root of the proof trees T
′(<)
S and T

′(<)
T and observe

that (<)⇁∞ can only be derived using the id-rule or the lift-rule. In case one of the trees is
derived using the canonical id-rule, it follows that s = t = x for some variable x ∈ X , and
there is only one possible proof tree deriving x (<)⇁∞ x:

T
′(<)
S = T

′(<)
T =

x (<)⇁∞ x
id

Thus, assume that both T
′(<)
S and T

′(<)
T are derived using the lift-rule. Then s = f(s1, . . . , sn)

and t = f(t1, . . . , tn) for some f ∈ Σ of arity n and terms s1, . . . , sn, t1, . . . , tn. The proof
trees must be of the following forms:

T
′(<)
S =

TS1 . . . TSn

f(s1, . . . , sn) (<)⇁∞ f(t1, . . . , tn)
lift

T
′(<)
T =

TT1 . . . TTn

f(s1, . . . , sn) (<)⇁∞ f(t1, . . . , tn)
lift

Where, for i ∈ { 1, . . . , n }, Si is the subsequence of S on the i-th argument of f , and Ti is
the subsequence of T on the i-th argument of f . Since S and T are parallel permutation

equivalent, it follows that Si and Ti are, for every i ∈ { 1, . . . , n }. As a consequence, T
′(<)
S

and T
′(<)
T have the same root and the subtrees arise from rewrite sequences that are parallel

permutation equivalent. This concludes the coinduction, hence TS = TT .
It remains to be shown that rewrite sequences that are not parallel permutation equivalent

have different canonical proof trees. Let S : s→α
ord t and T : s→β

ord t be rewrite sequences
that are not parallel permutation equivalent. Note that, due to strong convergence, S and
T contain only a finite number of steps at every depth n. Moreover, we may assume that:

(?) For every rule ρ ∈ R and position p ∈ N∗, S and T contain the same number of steps
arising from an application of ρ at position p.

If (?) was violated, then S and T cannot correspond to the same proof tree. The reason is
that, from a given proof tree one can derive the steps at position p with respect to rule ρ.

By Lemma 8.15 there exists a largest ordinal α′ ≤ α such that there exists an injective
function f : α′ → β with the properties

(i) rul(S, γ) = rul(T, f(γ)) and pos(S, γ) = pos(T, f(γ)) for every γ < α′, and
(ii) pos(S, γ1) ‖ pos(S, γ2) whenever γ1 < γ2 < α′ and f(γ1) > f(γ2).

(iii) pos(T, γ1) ‖ pos(T, γ2) whenever γ1 < γ2 < β, γ1 is not in the image of f , but γ2 is,
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and this function f is unique. As S and T are not parallel permutation equivalent, it follows
that either

(a) α′ < α, or
(b) α′ = α and there exists β′ < β that is not in the image of f .

Note that (b) would contradict (?) as all of the steps of S are in the domain of f but the
image of f does not contain all of the steps of T . Then T would have to contain more steps
than S at some position p ∈ N∗.

Thus assume that α′ < α. Then there exists some index γ < β such that γ is not in the
image of f , rul(S, α′) = rul(T, γ) and pos(S, α′) = pos(T, γ). For otherwise, if γ would not
exist, we had a contradiction with (?) as then S contained more steps than T at position
pos(S, α′) with respect to rule rul(S, α′). We define g : α′ + 1→ β by g(ξ) = f(ξ) for every
ξ < α′ and g(α′) = γ. Then g is injective and satisfies property (i). For property (ii) of g, we
only need to consider the case that γ2 = α′, so γ1 < γ2 = α′ < α′ + 1 and g(γ2) = γ < g(γ1).
Then γ < f(γ1) and γ is not in the image of f , while f(γ1) is. Then it follows from
property (iii) of f that pos(T, γ) ‖ pos(T, f(γ1)). Hence pos(T, g(γ2)) ‖ pos(T, g(γ1)) and
pos(S, γ2) ‖ pos(S, γ1). Thus g satisfies property (ii). However, due to the choice of α′, g
cannot satisfy all properties (i)– (iii); hence property (iii) has to fail. For property (iii) of g,
it suffices to consider the case that γ2 = γ since γ is the only element in the image of g that
is not in the image of f . So, due to failure of property (iii) for g, we have:

(†) There exist γ1 < γ such that γ1 is not in the image of g and pos(T, γ1) ∦ pos(T, γ). Note
that, in particular, γ > 0 since otherwise property (iii) would hold.

Define a set of rule applications P = {χ1, χ2 }, where

χ1 = 〈rul(T, γ1), pos(T, γ1)〉
χ2 = 〈rul(T, γ), pos(T, γ)〉

We compare the order of rule applications in P in the rewrite sequences S and T . From
properties (ii) and (iii) it follows that f maps the i-th χ1-step in S to the i-th χ1-step in T ,
and likewise the i-th χ2-step in S to the i-th χ2-step in T . Then it follows from (†) that S
and T do not contain the same order of rule applications in P . By Lemma 8.19 it follows
that S and T cannot arise from the same proof tree.

9. A Formalization in Coq

The standard definition of infinitary rewriting, using ordinal length rewrite sequences and
strong convergence at limit ordinals, is difficult to formalize. The coinductive framework we
propose, is easy to formalize and work with in theorem provers. We discuss the important
steps of the formalisation of infinitary rewriting and the compression lemma.

9.1. Formalisation of Relations and Vectors. We have formalised binary relations and
properties of relations, such as reflexivity, transitivity, inclusion and equality, as follows.

Formalisation 1 (Relations and properties of relations).

Variables A : Type.

Definition relation := A -> A -> Prop.
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Definition reflexive (R : relation) := forall x, R x x.

Definition transitive (R : relation) := forall x y z, R x y -> R y z -> R x z.

Definition subrel (R R’ : relation) := forall x y, R x y -> R’ x y.

Definition eqrel (R R’ : relation) := subrel R R’ /\ subrel R’ R.

Note that we have formalised relations as functions.

We have moreover formalised operations on relations such as composition, union and
the reflexive transitive closure.

Formalisation 2 (Operations on relations).

Definition compose (R S : relation) : relation :=

fun a c => exists b, R a b /\ S b c.

Definition Runion (R S : relation) : relation :=

fun a b => R a b \/ S a b.

Inductive refl_trans_close (R : relation) : relation :=

| refl_trans_step : subrel R (refl_trans_close R)

| refl_trans_refl : reflexive (refl_trans_close R)

| refl_trans_trans : transitive (refl_trans_close R).

Notation "R ;; S" := (compose R S) (right associativity).

Notation "R (+) S" := (Runion R S) (right associativity).

Notation "R *" := (refl_trans_close R) (left associativity).

Our formalisation of vectors is based on the formalisation of vectors by Pierre Boutillier
(in the Coq standard library). Thereby a vector v of length n with elements from A is a
function v : Fin n→ A. Here Fin n is an n-element set; for example Fin 4 consists of the
following elements

Fin 4 = { First 3,

Next (First 2),

Next (Next (First 1))

Next (Next (Next (First 0))) }

Formalisation 3 (Vectors and a map operation).

Inductive Fin : nat -> Type :=

| First : forall n, Fin (S n)

| Next : forall n, Fin n -> Fin (S n).

Definition vector (n : nat) := Fin n -> A.

Definition vmap (n : nat) (f : A -> B) : vector A n -> vector B n :=

fun v i => f (v i).

9.2. Formalisation of Infinite Terms. For the formalisation of terms, we begin with the
set of variables and the signature.

Formalisation 4 (Variables and Signature).
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Record variables : Type := Variables {

variable :> Type;

beq_var : variable -> variable -> bool;

beq_var_ok : forall x y, beq_var x y = true <-> x = y

}.

Record signature : Type := Signature {

symbol :> Type;

arity : symbol -> nat;

beq_symb : symbol -> symbol -> bool;

beq_symb_ok : forall x y, beq_symb x y = true <-> x = y

}.

Notably, next to the set of variables and functions symbols itself, our formalisation includes
functions beq var and beq symb for a decidable equality on the variables and function
symbols, respectively. The functions beq var ok and beq symb ok guarantee that the
decidable equality coincides with the standard equality in Coq.

Recall that a term is either

(i) a variable x ∈ X , or
(ii) a function symbol f ∈ Σ together with a vector of terms of length ar(f).

The inductive interpretation of this principle yields the finite terms (finite term in Coq),
the coinductive interpretation gives rise to the finite and infinite terms (term in Coq).

Formalisation 5 (Finite and Infinite Terms).

Variable F : signature.

Variable X : variables.

Inductive finite_term : Type :=

| FVar : X -> finite_term

| FFun : forall f : F, vector finite_term (arity f) -> finite_term.

CoInductive term : Type :=

| Var : X -> term

| Fun : forall f : F, vector term (arity f) -> term.

In Coq, there is no extensional equality, that is, ∀x. f(x) = g(x) does not imply f = g.
Similarly, infinite terms s, t that coincide on every position, are not necessarily equal with
respect to the standard equality = in Coq. As a consequence, equality = is not suitable
to work with infinite terms in Coq. We therefore work with bisimilarity ∼, as is common
practice in coalgebra. Terms are bisimilar if and only if they coincide on every position.

Formalisation 6 (Bisimilarity on terms).

CoInductive term_bis : term -> term -> Prop :=

| Var_bis : forall x, term_bis (Var x) (Var x)

| Fun_bis : forall f v w, (forall i, term_bis (v i) (w i)) ->

term_bis (Fun f v) (Fun f w).

Infix " [~] " := term_bis (no associativity, at level 70).

In the sequel, we write ∼ for bisimilarity of terms in Coq.
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9.3. Formalisation of Term Rewriting Systems. Next, we formalise rewrite rules and
term rewriting systems as lists of rules. In the following definition, we leave is var, vars,
inc and list implicit; the function

(i) is var : term → bool returns true if and only if the given term is a variable,
(ii) vars : finite term → (X → Prop) returns the set of variables in a term,
(iii) inc stands for set inclusion, and
(iv) list is the implementation of lists in the standard library of Coq.

Formalisation 7 (Rules and term rewriting systems). These are formalized as

Record rule : Type := Rule {

lhs : finite_term;

rhs : term;

rule_wf : is_var lhs = false /\ inc (vars rhs) (vars lhs)

}.

Definition trs := list rule.

A rule consists of a finite left-hand side (lhs) and finite or infinite right-hand side (rhs),
and a proposition rule wf stating that the lhs is not a variable, and the variables in rhs

are a subset of the variables in lhs.

Remark 9.1. We note that the definition of rules could easily be generalised to infinite
left-hand sides. This is not a restriction of our coinductive framework for infinitary rewriting.
In the literature, infinitary term rewriting systems are typically defined to have finite left-
hand sides to keep matching (with respect to left-linear rules) decidable. We have chosen to
adopt this restriction as our goal was a formalisation of the Compression Lemma which only
holds for term rewrite systems with finite (and linear) left-hand sides.

We introduce substitutions as maps from variables to finite or infinite terms.

Formalisation 8 (Substitution).

Definition substitution := X -> term.

CoFixpoint substitute (sigma : substitution) (t : term) : term :=

match t with

| Var x => sigma x

| Fun f args => Fun f (vmap (substitute sigma) args)

end.

The substitute function applies a substitution to a finite or infinite term.

9.4. Formalisation of Infinitary Rewriting. The closure of the rules under substitutions
gives rise to root steps on finite and infinite terms.

Formalisation 9 (Root steps on finite and infinite terms).

Variable system : trs.

Inductive root_step : relation term :=

| Root_step :

forall (s t : term) (r : rule) (u : substitution),

In r system ->
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substitute u (lhs r) [~] s ->

substitute u (rhs r) [~] t ->

root_step s t.

As discussed above, we must include bisimilarity ∼ since the equality = in Coq is too strict.
Here ‘In r system’ checks whether r (a rule) occurs in system (a list of rules).

We formalise the lifting operation R (Definition 3.1) as follows.

Formalisation 10 (Lifting).

Inductive lift (R : relation term) : relation term :=

| lift_id : forall s t, s [~] t -> lift R s t

| lift_step :

forall (f : F) (s t : vector term (arity f)),

(forall i, R (s i) (t i)) ->

forall fs ft, Fun f s [~] fs -> Fun f t [~] ft -> lift R fs ft.

Again, we include bisimilarity ∼ instead of the standard equality = in Coq.

We use the root step rewrite relation and the lifting operation to introduce infinitary
strongly convergent reductions. Our coinductive definition (Definition 4.3) is based on mixed
induction and coinduction:

→∞ := µR. νS. (→ε ∪ R)∗ ; S .

Unfortunately, Coq has no support for mutual inductive and coinductive definitions.
To overcome this problem, we employ the fact that the greatest fixed point νS. F (S) is

the union of all S for which S ⊆ F (S) (under the condition that F : L→ L is monotone);
see further Section 3. In other words, νS. F (S) is the smallest relation T such that S ⊆ T
whenever S ⊆ F (S). Hence, we have

→∞ := µR.

( the smallest T such that:
for all relations S,
S ⊆ (→ε ∪ R)∗ ; S =⇒ S ⊆ T

)
(9.1)

This definition lends itself to a formalisation in Coq.

Formalisation 11. Formalisation of (9.1):

Inductive ired : relation (term F X) :=

| Ired :

forall S : relation (term F X),

subrel S ((root_step (+) lift ired)* ;; lift S) ->

subrel S ired.

Here ;; is relation composition, (+) is the union, and * the reflexive-transitive closure. The
statement Inductive ired in the formalisation corresponds to µR in (9.1), and thus ired
corresponds to R.

While Formalisation 11 is correct, it turns out that Coq is not able to generate a good
induction principle from the definition. The generated induction principle is:

ired_ind : forall P : term -> term -> Prop,

( forall S : relation term,

subrel S ((root_step (+) lift ired)* ;; lift S) -> subrel S P )

-> subrel ired P
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In mathematical notation this reads as follows:

∀P.
(
∀S.

(
S ⊆ (→ε ∪ ired)∗ ; S

)
→ S ⊆ P

)
→ ired ⊆ P

Note that, in particular we have ired = (→ε ∪ ired)∗. As a consequence, we already have
to show ired ⊆ P as part of the induction step. Hence, this induction principle is void.

To overcome this problem, we adapt (9.1) and Formalisation 11 as follows:

→∞ := µR.

( the smallest T such that:
for all relations S and I,
I ⊆ R =⇒ S ⊆ (→ε ∪ I)∗ ; S =⇒ S ⊆ T

)
(9.2)

To help Coq generate a good induction principle, we introduce an auxiliary relation I, and
we replace the occurrences of R in the body of the definition by I. To preserve the semantics
of the definition, we require I ⊆ ired. (In other words, I is a lower-approximant of R.)

To see that (9.1) and (9.2) give rise to the same relation →∞, we argue as follows. If
we were to replace I ⊆ R by I = R in (9.2), then both definitions would obviously coincide.
However, both definitions also coincide without the replacement since sets I ( R do not
contribute due to monotonicity.

We formalise (9.2) as follows.

Formalisation 12 (Strongly convergent rewrite relation). 1

Inductive ired : relation term :=

| Ired :

forall S I : relation term,

subrel I ired ->

subrel S ((root_step (+) lift I)* ;; lift S) ->

subrel S ired.

Remark 9.2. For this definition, Coq generates the following good induction principle:

ired_ind : forall P : term -> term -> Prop,

( forall S I : relation (term F X),

subrel I ired ->

subrel I P ->

subrel S ((root_step (+) lift I)* ;; lift S) ->

subrel S P) ->

subrel ired P

Thus in order to prove →∞ ⊆ P , it suffices to show

I ⊂ →∞ =⇒ I ⊆ P =⇒ S ⊆ (→ε ∪ I)∗ ; S =⇒ S ⊆ P
for every relation I and S. Below, we will see in several examples, that this is a useful
induction principle that is easy to work with.

1Note that canonical proof trees could be formalised by a small adaptation of this formalization. On the
one hand, the restricted (canonical) proof trees can simplify proofs whose source is (a proof tree for) an
infinite reduction. On the other hand, the restriction might complicate proofs whose target is (a proof tree
for) an infinite reduction. To combine the advantages of both choices, it would be interesting to formally
prove that every proof tree can be transformed into an equivalent canonical proof tree.
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9.5. Formalisation of Omega Rewriting. In order to formalise the Compression Lemma,
we need rewrite sequences of length ≤ ω. To formalise →≤ω, we use

→≤ω := νR. (→∗ ;R) (9.3)

That is, a rewrite sequence of length ≤ ω is a finite rewrite sequence followed by rewrite
sequences of length ≤ ω on subterms (below the root). Using dovetailing, this gives rise to
the usual concept of rewrite sequences indexed by an ordinal ≤ ω.

As above for →∞, we have:

→≤ω :=
the smallest T such that:
for all relations S, S ⊆ (→∗ ; S) =⇒ S ⊆ T (9.4)

This definition can be formalised in Coq as follows.

Formalisation 13 (Rewrite sequences of length at most ω).

Inductive ored : relation term :=

| Ored :

forall S : relation term,

subrel S (mred ;; lift S) ->

subrel S ored.

Here mred are finite rewrite sequences →∗.
To keep the proof of compression in Coq as simple as possible, we have chosen to define

the finite rewrite relation →∗ in a non-standard way. We introduce mred as the smallest
relation S that fulfils the following conditions:

(i) mred bis: if s S t, s ∼ s′ and t ∼ t′, then s′ S t′,
(ii) mred refl: S is reflexive,
(iii) mred trans: S is transitive,
(iv) mred root: →ε ⊆ S, and
(v) mred fun: if u1 S v1, . . . , un S vn, then f(u1, . . . , un) S f(v1, . . . , vn).

Let us check that mred indeed is the finite rewrite relation →∗:
(a) For mred ⊆ →∗ note that the finite rewrite relation →∗ fulfils all these criteria.
(b) For →∗ ⊆ mred we argue as follows. We have →ε ⊆ mred by mred root. By mred fun

together with mred refl it follows that mred is closed under contexts. Thus → ⊆ mred.
By mred refl and mred trans we obtain that →∗ ⊆ mred.

Hence mred =→∗.
Formalisation 14 (Finite rewriting relation on infinite terms).

Inductive mred : relation term :=

| mred_bis :

forall s s’ t t’, s [~] s’ -> t [~] t’ -> mred s t -> mred s’ t’

| mred_refl :

forall s, mred s s

| mred_trans :

forall s t u, mred s t -> mred t u -> mred s u

| mred_root :

forall (s t : term F X) , root_step s t -> mred s t

| mred_fun :

forall (f : F) (u v : vector (term F X) (arity f)),

(forall i : Fin (arity f), mred (u i) (v i)) ->

mred (Fun f u) (Fun f v).
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Notation 9.3. In the remainder of this section, we will write

→m for mred , →i for ired , →o for ored , and →r for root step.

We have formalised Lemma 9.6 to show that Formalisation 13 of ored indeed corresponds
to Equation 9.3. We first prove two auxiliary facts.

Lemma 9.4 (ored subrel). We have →o ⊆ →m ;→o.

Proof. Let s→o t. By definition of →o there exists a relation S ⊆ →o such that S ⊆ →m ;S
and s S t. As s→m ; S t and S ⊆ →o, we have s→m ;→o t.

Lemma 9.5 (subrel lift ored ored). We have →o ⊆ →o.

Proof. Let s→o t. Define S =→o ∪ 〈s, t〉. Then we have s S t. To prove s→o t, it suffices
(by definition of →o) to show that S ⊆ →m ; S. By Lemma 9.4, we have →o ⊆ →m ;→o,
and hence →o ⊆ →m ; S. Moreover, we have 〈s, t〉 ∈ →m ; S as a consequence of reflexively
of →m, and since s→o t and →o ⊆ S imply s S t. This concludes the proof.

Lemma 9.6 (ored ok). We have →o =→m ;→o.

Proof. By Lemma 9.4 it suffices to show that →m ;→o ⊆ →o. Let s→m t→o u. Then, by
Lemma 9.5, we have s→m t→o u. By definition of →o there exists a relation S ⊆ →o such
that S ⊆ →m ; S and t S u. Thus t →m t′ S u for some t′. Define S′ = S ∪ 〈s, u〉. Then
s S′ u and S′ ⊆ →m ; S′ since s →m t′ S′ u by mred trans and S ⊆ S′. Hence s →o u by
definition of →o using S′.

9.6. Formalisation of the Compression Lemma. Using the above definitions, we will
now prove the Compression Lemma. The proof realises a transformation of →∞ proof trees
into →≤ω proof trees.

Lemma 9.7 (Compression Lemma). Let R be a left-linear term rewriting system with finite
left-hand sides. Whenever there is an infinite reduction from s to t (s →∞ t) then there
exists a reduction of length at most ω from s to t (s→≤ω t).

We have formalised the Compression Lemma as follows:

Lemma 9.8. For left-linear trs’s we have →i ⊆ →o.

The condition finite left-hand sides is part of the formalisation of trs’s, see above. In the
remainder of this section we tacitly assume that the underlying trs is left-linear. This is a
necessary condition for all lemmas 9.9–9.15.

We present the proof of Lemma 9.8 as close as possible to to our formalisation in Coq.
We begin with a few auxiliary lemmas.

Lemma 9.9 (ored match). If s→o `σ for a finite, linear term `, then s→m `τ for some
substitution τ with ∀x. τ(x)→o σ(x).

Proof. The proof proceeds by induction on `. If s →o `σ, then there exists a term t such
that s →m t →o `σ. Assume that ` is a variable, say ` = x. Then define τ(x) = t and
τ(y) = σ(y) for every y 6= x. We have τ(x) = t→o `σ = σ(x). Then s→m `τ , and we have
∀x. τ(x)→o σ(x) since →o ⊆ →o by Lemma 9.5 and →o is reflexive.

If ` is not a variable, let ` = f(`1, . . . , `n). Then t→o `σ implies that t = f(t1, . . . , tn)
for some terms t1, . . . , tn, and we have ti →o `iσ for every i ∈ {1, . . . , n}. Then by induction
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hypothesis, we have ti →m `iτi and ∀x. τi(x)→o σ(x) for every i ∈ {1, . . . , n}. From linearity
of ` it follows that `1, . . . , `n do not share any variables. Consequently, we can define the
substitution τ as follows: τ(x) = τi(x) if x ∈ Var(`i) and τ(x) = σ(x) if x 6∈ Var(`).
Then `iτ = `iτi for every i ∈ {1, . . . , n} and `τ = f(`1τ1, . . . , `nτn). Moreover we have
∀x. τ(x)→o σ(x) by definition of τ . It remains to show s→m `τ . Using mred fun we get
t = f(t1, . . . , tn)→m f(`1τ1, . . . , `nτn) = `τ . By mred trans we obtain s→m `τ .

Lemma 9.10 (subsitution ored). Let t be a (finite or infinite) term and σ, τ substitutions
such that σ(x)→o τ(x) for every x ∈ Var(t). Then tσ →o tτ .

Proof. By definition of →o it suffices to find a relation S such that tσ S tτ and S ⊆ →m ; S.
We define S =→o ∪ { 〈uσ, uτ〉 | u a term }. We show S ⊆ →m ; S. We have

→o ⊆ →m ;→o ⊆ →m ; S (9.5)

by Lemma 9.6.
So consider uσ S uτ for some term u. If u is a variable, then uσ = σ(u)→o τ(u) = uτ .

Then uσ →m ; S uτ follows from (9.5). Thus, let u = f(u1, . . . , un) for some symbol f and
terms u1, . . . , un. Then we have uσ = f(u1σ, . . . , unσ) S f(u1τ, . . . , unτ) = uτ , and clearly
S ⊆ →m ; S. Hence S ⊆ →m ; S.

Lemma 9.11 (ored rstep). We have →o ;→r ⊆ →o.

Proof. Let ` → r ∈ R be a rule, σ a substitution and consider s →o `σ →r rσ. Then by
Lemma 9.9 we have s →m `τ for some substitution τ with ∀x. τ(x) →o σ(x). We have
rτ →o rσ by Lemma 9.10, and thus rτ →m t→o rσ for some t by Lemma 9.6. Then also
s→m `τ →r rτ →m t→o rσ and s→m t→o rσ by mred root and mred trans. Hence we
have s→o rσ by Lemma 9.6.

Lemma 9.12 (ored mred). We have →o ;→m ⊆ →o.

Proof. The proof proceeds by induction on the definition of →m in s →o t →m u. The
induction step is trivial for mred bis, mred refl and mred trans. For mred root the claim
follows from Lemma 9.11. Here we only consider the case of mred fun. Then t = f(t1, . . . , tn)
and u = f(u1, . . . , un) for some symbol f and ti →m ui for every i ∈ {1, . . . , n}. From
s →o t it follows that s →m s′ →o t = f(t1, . . . , tn) for some s′. Hence s′ = f(s1, . . . , sn)
with si →o ti for every i ∈ {1, . . . , n}. By the induction hypothesis, we obtain si →o ui for
every i ∈ {1, . . . , n}, and, consequently, s→m s′ →o u. Finally, s→o u by Lemma 9.6.

Lemma 9.13 (ored ored). We have →o ;→o ⊆ →o and →o ;→o ⊆ →o.

Proof. Define S = (→o ;→o)∪ (→o ;→o). We show S ⊆ →o. By definition of →o it suffices
that S ⊆ →m ; S. We have:

→o ;→o ⊆ →o ; (→m ;→o) ⊆ →o ;→o (9.6)

by Lemma 9.6 and Lemma 9.12, and

→o ;→o ⊆ (→m ;→o) ;→o ⊆ →m ; (→o ;→o) ⊆ →m ; (→o ;→o) ⊆ →m ; S

by Lemma 9.6, associativity, definition of · . This proves S ⊆ →m ; S.
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Lemma 9.14 (ored mix). We have (→r ∪→o )∗ ⊆ →o.

Proof. Define S = (→r ∪→o ). We prove S∗ ⊆ →o by induction on (the definition of) the
reflexive transitive closure:

(i) refl trans step: For s S t we have either s →r t or s →o t. Then s →o t as a
consequence of either Lemma 9.11 or Lemma 9.6, respectively.

(ii) refl trans refl: For s ∼ t we s →m t by mred bis and mred refl. Hence s →o t
since →m ;→o ⊆→o by Lemma 9.6 and →o is reflexive by lift id.

(iii) refl trans trans: For s S∗ u S∗ t we obtain s →o u and u →o t by induction
hypothesis. Then s→o t follows from Lemma 9.13.

Lemma 9.15 (ored liftR). We have R ⊆ →o ; R implies R ⊆ →o.

Proof. Define S = (→o ; R) ∪ (→o ; R). We show S ⊆ (→m ; S):

→o ; R ⊆ →o ; (→o ; R) ⊆ →o ; R

by R ⊆ →o ; R and Lemma 9.13, and

→o ; R ⊆ (→m ;→o) ; R ⊆ →m ; (→o ; R) ⊆ →m ; S

by Lemma 9.6. Hence S ⊆ (→m ; S) and consequently S ⊆ →o. Note that R ⊆ →o ; R ⊆ S.
Thus R ⊆ S ⊆ →o.

We are ready to prove compression.

Proof of Lemma 9.8. The proof proceeds by induction on →i. By the induction principle
discussed in Remark 9.2 we have to show

I ⊂ →i =⇒ I ⊆ →o =⇒ S ⊆ (→r ∪ I)∗ ; S =⇒ S ⊆ →o

for every relation I and S. So let I ⊆ (→i ∩→o) and S ⊆ (→r ∪ I)∗ ; S. Since I ⊆ →o we
get (→r ∪ I)∗ ⊆ (→r ∪ →o)

∗ ⊆ →o by Lemma 9.14. Consequently, S ⊆ →o ; S and, by
Lemma 9.15, we obtain S ⊆ →o. Hence →i ⊆ →o.

To the best of our knowledge this is the first formal proof of this well-known lemma.
The formalization is available at [17].

10. Conclusion

We have proposed a coinductive framework which gives rise to several natural variants of
infinitary rewriting in a uniform way:

(a) infinitary equational reasoning
∞
= := νy. (←ε ∪ →ε ∪ y)∗,

(b) bi-infinite rewriting
∞→ := νy. (→ε ∪ y)∗, and

(c) infinitary rewriting →∞ := µx. νy. (→ε ∪ x)∗ ; y .

We believe that (a) and (b) are novel. As a consequence of the coinduction over the term
structure, these notions have the strong convergence built-in, and thus can profit from the
well-developed techniques (such as tracing) in infinitary rewriting.

We have given a mixed inductive/coinductive definition of infinitary rewriting and
established a bridge between infinitary rewriting and coalgebra. Both fields are concerned
with infinite objects and we would like to understand their relation better. In contrast to
previous coinductive treatments, the framework presented here captures rewrite sequences of
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arbitrary ordinal length, and paves the way for formalizing infinitary rewriting in theorem
provers (as illustrated by our proof of the Compression Lemma in Coq).

Concerning proof trees/terms for infinite reductions, let us mention that an alternative
approach has been developed in parallel by Lombardi, Rı́os and de Vrijer [32]. While we
focus on proof terms for the reduction relation and abstract from the order of steps in parallel
subterms, they use proof terms for modeling the fine-structure of the infinite reductions
themselves. Another difference is that our framework allows for non-left-linear systems. We
believe that both approaches are complementary. Theorems for which the fine-structure of
rewrite sequences is crucial, must be handled using [32]. (But note that we can capture
standard reductions by a restriction on proof trees and prove standardization using proof
tree transformations, see [22]). If the fine-structure is not important, as for instance for
proving confluence, then our system is more convenient to work with due to simpler proof
terms.

Our work lays the foundation for several directions of future research:

(i) The coinductive treatment of infinitary λ-calculus [22] has led to elegant, significantly
simpler proofs [10, 11] of some central properties of the infinitary λ-calculus. The
coinductive framework that we propose enables similar developments for infinitary
term rewriting with reductions of arbitrary ordinal length.

(ii) The concepts of bi-infinite rewriting is novel, and the theory of infinitary equational
reasoning is still underdeveloped. It would be interesting to study these concepts.
Is there an equivalent of ordinal-indexed rewrite sequences for bi-infinite rewriting
(maybe using Conway’s surreal numbers [7])? Is it possible to establish some sort of
Compression Lemma for bi-infinite rewriting?

Moreover, it would be fruitful to compare the Church–Rosser properties
∞
= ⊆ →∞ ; →∞ and ( →∞ ;→∞)∗ ⊆ →∞ ; →∞ .

(iii) The formalization of the proof of the Compression Lemma in Coq is just the first step
towards the formalization of all major theorems in infinitary rewriting.

It would also be interesting to formalise infinitary equational reasoning
∞
= and

bi-infinite rewriting
∞→ in Coq. We expect that it is straightforward to adapt our Coq

formalization of infinitary rewriting →∞ to equational reasoning
∞
= and bi-infinite

rewriting
∞→. The latter two concepts have significantly simpler definitions in the fixed

point calculus.
(iv) It is interesting to investigate how the coinductive framework should be extended to

incorporate the infinitary analysis of meaningless terms. [3, 2, 4, 21] This would be
the natural stepping-stone to the formalization of confluence theorems in infinitary
rewriting extended with ⊥-reduction.

(v) We believe that the coinductive definitions will ease the development of new techniques
for automated reasoning about infinitary rewriting. For example, methods for proving
(local) productivity [14, 18, 38], for (local) infinitary normalization [37, 15, 13], for
(local) unique normal forms [20], and for analysis of infinitary reachability and infinitary
confluence. Due to the coinductive definitions, the implementation and formalization
of these techniques could make use of circular coinduction [23, 19].
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[32] C. Lombardi, A. Ŕıos, and R.C de Vrijer. Proof Terms for Infinitary Rewriting. In Rewriting and Typed
Lambda Calculi (RTA-TLCA 2014), volume 8560 of Lecture Notes in Computer Science, pages 303–318.
Springer, 2014.

[33] S. Milius. Completely iterative algebras and completely iterative monads. ic, 196:1–41, 2005.
[34] J.G. Simonsen. On Confluence and Residuals in Cauchy Convergent Transfinite Rewriting. Information

Processing Letters, 91(3):141–146, 2004.
[35] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2003.
[36] M. Vermaat. Infinitary Rewriting in Coq. Available at url http://martijn.vermaat.name/

master-project/.
[37] H. Zantema. Normalization of Infinite Terms. In Proc. Conf. on Rewriting Techniques and Applications

(RTA 2008), number 5117 in LNCS, pages 441–455, 2008.
[38] H. Zantema and M. Raffelsieper. Proving Productivity in Infinite Data Structures. In Proc. Conf. on

Rewriting Techniques and Applications (RTA 2010), volume 6 of Leibniz International Proceedings in
Informatics, pages 401–416. Schloss Dagstuhl, 2010.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 9404, USA

http://martijn.vermaat.name/master-project/
http://martijn.vermaat.name/master-project/

	1. Introduction
	2. Preliminaries on Term Rewriting
	3. (Co)induction, Fixed Points and Relations
	4. New Definitions of Infinitary Term Rewriting
	4.1. Derivation Rules
	4.2. Mixed Induction and Coinduction
	4.3. Equivalence

	5. Equivalence with the Standard Definition
	6. Infinitary Equational Reasoning and Bi-Infinite Rewriting
	6.1. Infinitary Equational Reasoning
	6.2. Bi-Infinite Rewriting

	7. Relating the Notions
	8. Correspondence of Proof Trees and Rewrite Sequences
	8.1. The Correspondence Relation
	8.2. Canonical Proof Trees and Parallel Permutation Equivalence

	9. A Formalization in Coq
	9.1. Formalisation of Relations and Vectors
	9.2. Formalisation of Infinite Terms
	9.3. Formalisation of Term Rewriting Systems
	9.4. Formalisation of Infinitary Rewriting
	9.5. Formalisation of Omega Rewriting
	9.6. Formalisation of the Compression Lemma

	10. Conclusion
	Acknowledgments

	References

