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Abstract

The goal of this thesis is the design and development of the QuTech Central
Controller, a system conceived to serve as the hardware/software interface of
a quantum computer. This system represents an evolution of the QuMA mi-
croarchitecture to control a Surface-17 superconducting quantum processor,
even though several architectural mechanisms are used to ensure the compati-
bility of the design with different quantum hardware technologies. In addition
to an expansion of the control microarchitecture, the QuTech Central Con-
troller represents an evolution of the overall system architecture, making use
of a different hardware infrastructure to overcome previous scalability limita-
tions.

The main contributions of this thesis are a proposed centralized microarchitec-
ture capable of controlling up to 17 qubits, the implementation of this microar-
chitecture in a device called the QuTech Central Controller and its testing in
dynamic quantum information processing experiments with superconducting
qubits.
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1
Introduction

To introduce the work developed during this thesis, this chapter starts by pre-
senting an examination of the developments in the field of computer engineer-
ing over the past 50 years, as a way to motivate the need for developments in
quantum computing and the implications that it could have in the way compu-
tation is performed in the future. Then, the objective of the work performed
during this thesis is defined and an outline for this report is given.

1.1 Motivation

Over the past decades an incredible revolution in information technologies
has been observed, a revolution driven mainly by ever increasing computing
power. This increase in computing power has, itself, been motivated by ad-
vances in semiconductor manufacturing capabilities, which have allowed us
to place more transistors (the most basic of computing elements) in a single
chip and drive them at ever faster speeds. In the industry, the observational
law governing the scaling of the number of transistors per processing chip was
dubbed Moore’s Law, after Gordon Moore. On the other hand, the law that
explained the increase of transistor frequencies (the velocity at which we can
drive these computing elements) was called Dennard Scaling, and stated that
as transistors got smaller, their power density would stay constant, therefore
allowing us to scale their speed, while maintaining their temperature within
operating bounds.

However, several factors related to materials science lead to the breakdown of
Dennard scaling, and the consequent need to fix the frequency of operation
of conventional processors. This event lead to the radical end of a period of
history where most performance in classical computers was obtained through
Single Thread performance increase, where a single execution unit was respon-
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2 CHAPTER 1. INTRODUCTION

sible for sequentially processing all information. Therefore, in the search for
new ways to extract more performance from the growing number of transis-
tors that could be placed on computing chips (since Moore’s Law was still in
effect), computer architects turned to Multi-Core architectures, where a single
processor was made up of several processing units, each capable of executing
their own stream of instructions and processing a subset of all the informa-
tion required. This meant that, while these chips took up more resources (an
abundant commodity, at the time) and their programming was more complex,
better overall performance could still be achievable by dividing the problem
in smaller pieces and computing them separately, in a manner analogous to
divide-and-conquer strategies.

Be that as it may, this period was short lived as diminishing returns from par-
allelization were quickly observed, a prediction made in Amdahl’s Law. This
law stated that even if perfect parallelization was achieved, i.e. at no extra
overhead, additional processors would only benefit the parallel section of a
program and, therefore, performance increase would be limited. Diminishing
returns from parallelization, predicted by this law, marked the end of an era
where general purpose multi-core processors were the main way of driving
performance forward in processing systems.

Instead, computer architects started to focus more attention on specializing dif-
ferent processors in their systems to excel at different tasks, combining their
strengths to increase the overall performance of the system. This period could
be called the Heterogenous Computing era and brought us accelerators like
graphics processing units (GPUs), which are most often the reason behind
great increases in performance in computing systems today. Notwithstanding,
a new trend, called the Power Wall, has fundamentally threatened this strategy
for the increase of computer’s performance.

The Heterogeneous and Multi-Core eras were mainly driven by our ability to
manufacture and operate ever increasing amounts of transistors per chip. How-
ever, it has been observed that the exponential increase in power consumed
by these chips, has made it impossible to operate all the transistors in a sin-
gle processor simultaneously, therefore restricting our ability to obtain more
performance by simply increasing the number of execution units on a single
processor. This has been the main factor in the end of the heterogeneous com-
puting era.

All of these trends in processor architecture are visible in Figure 1.1, which
represents a collection, over several years, of performance indicators of differ-
ent microprocessors from different manufacturers. The logarithmic scale on
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the vertical axis perfectly shows how the saturation of single core frequency
(with the end of Dennard scaling) led to a significant decrease in single-thread
performance in the following years.

Figure 1.1: Trends in microprocessor specifications (collected and plotted by M.
Horowitz, O. Shacham, K.Olukotun, L. Hammond and C. Batten, 2015)

Furthermore, the graph shows a clear saturation in the number of processors,
between 2005 and 2010 (Amdahl’s law), after which the increase has been
mainly due to heterogeneous architectures, with GPUs holding massive num-
bers of execution units. Moreover, it highlights the tendency in the saturation
of power per microprocessor, marking the maximum amount of power that is
possible to deliver to a chip, otherwise known as the Power Wall. Finally, the
chart clearly shows how, even after all of these years, Moore’s law still holds
true.

Most recently, a new era has emerged with application specific integrated cir-
cuits (ASICs) processors making up most of our ability to meaningfully in-
crease performance in computing systems. First signs of the rise in popularity
of these ASIC chips, used to accelerate only particular workloads, was seen in
2015. A good example of which is the Google TPU, used to accelerate neu-
ral network training and inference, while delivering superior energy efficiency
results.

However, even ASIC chips, which some would argue are too expensive and
narrow focused for the great majority of the computing community to rip ben-
efits from, don’t hold a good promise for the future of computing. This is



4 CHAPTER 1. INTRODUCTION

because Moore’s law will, eventually, come to an end, as the size of the atom
will stand as the absolute physical threshold to the reduction in feature size of
transistors. Such a limit will lead to the subsequent stagnation of the number
of transistors manufactured per chip and, therefore, the end of progress in our
classical way of computing.

In the previous paragraphs, I have presented several arguments highlighting
the shortcoming of the classical model of computation, also known as the Von
Neumann architecture, or a machine whose data is moved to a processing sys-
tem (from a storage medium) and back, in order to perform computation. It
should be noted that this principle, in itself, already holds back classical ma-
chines in terms of energy efficiency, as nowadays the great majority of energy
consumed by a processor is used to transport data back and forth from memory.
Furthermore, it can only lead us to think that, to keep up with the demand for
ever more powerful information processing systems, which have stimulated so
many other fields of human knowledge, a radical revolution from the way in
which computation is performed today will be required. One may even say it
is essential for the continued development of humankind, through science and
technology.

As will be discussed in the next chapters, Quantum Computers not only hold
the potential to solve many of these challenges, but this new model of com-
puting may also unlock NP-class problems, problems so hard to compute that
they are beyond the grasp of classical machines.

1.2 Objective

The purpose of this thesis is to advance the state-of-the-art in control systems,
enabling the control of larger numbers of qubits. It is my belief that develop-
ments in this area will be crucial for continued progress in the field of quantum
computing.

In particular, the objective of this thesis is the design and development of a mi-
croarchitecture capable of controlling a Surface-17 quantum processor. Such
a system will be based on the previously developed QuMA microarchitecture
and expand its control capability to 17 qubits. Furthermore, the goal is to
implement this microarchitecture, making use of a new hardware platform de-
veloped in-house, to create a device capable of running dynamic quantum in-
formation processing experiments with superconducting qubits. Such a device
will be called the QuTech Central Controller (QCC).
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1.3 Outline

This thesis is organized in six different chapters.

Chapter 2 (Background) provides a brief introduction to quantum information.
Additionally, a description of the quantum model of computation is given, in
order to motivate the need for the development of a central controller. The
chapter will end with an overview into quantum technologies, and in particular
superconducting qubits, so to give an understanding of how all system work
to support quantum computation, from the digital level, to the electrical level
and, finally, into quantum hardware.

Chapter 3 (Related work) presents several devices and architectures developed
by different groups to address the challenge of quantum control, followed by an
analysis into the merits and shortcomings of each of these approaches. These
insights will be used to motivate new features in QCC and give a better under-
standing of the ongoing work on the field.

Chapter 4 (QuTech Central Controller) describes the work performed during
this thesis to design, develop and implement the QuTech Central Controller.
Initially, focus will be given to the change in hardware platforms performed
during this project. Then, focus will be first shifted to the expansion of the
QuMA core, responsible for the sequencing of quantum programs, and then to
the changes in system architecture required to provide all the necessary I/O ca-
pability. The chapter will conclude with a description of the software systems
developed to interface and control this hardware system.

Chapter 5 (Testing and verification) will provide a thorough description of all
the tests performed at different stages of development of QCC to ensure the
system met the desired design requirements and constraints. Furthermore, the
chapter will present tests performed with the final system on the setting of
experiments with superconducting quantum processors, in order to prove suc-
cessful completion of the aforementioned objectives.

Chapter 6 (Conclusions and Outlook), as the name suggests, completes this re-
port with an overview of the contributions made and draws on lessons learned
while working on this thesis to give considerations on future work and provide
an outlook into the broader field of quantum computer architectures.
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2
Background

To fully appreciate the requirements and challenges presented by quantum
computers, it is important to understand the basic principles of quantum in-
formation and quantum computation. It is the purpose of the following chapter
to introduce these, starting with a description of the characteristics of quan-
tum information and following that with a description of the quantum model
of computation. Finally, a brief description of the physical systems that allow
us to encode quantum information will be given, in an attempt to give a full
understanding of how a quantum computer operates.

2.1 Quantum Information

Famously proposed by Richard Feynman in [1], quantum computers operate
in a very different way from their classical counterparts. Their differences start
immediately in the way that either machine encodes information. Computers
available nowadays encode information using bits, which can be in either a 0
or a 1 state, as illustrated in Figure 2.1. However, in quantum computers infor-
mation is encoded in quantum bits or qubits, which can be seen, in a way, as an
extension of bits. In fact, they behave such that they can be 0, 1 or any combi-
nation (up to a normalizing factor) of 0 and 1, meaning that a quantum bit can
be simultaneously in a 0 and a 1 state, a phenomenon called superposition. In-
deed, a quantum state can be represented as in Equation 2.1, highlighting this
phenomenon. However, upon measurement of a qubit, quantum mechanics
dictates the collapse of this superposition state to the measurement result that
is observed. Therefore, the measurement always has a definitive outcome. In-
deed, upon measurement, the superposition of states is translated instead into
the probability that a measurement outcome is observed.

To exemplify this lets return to Equation 2.1, where a qubit is partially (en-
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coded by coefficient ↵1) in the |0i state, and partially (encoded by coefficient
�1) in the |1i state. A measurement of this state would make the qubit collapse
to state |0i with probability |↵1|2 or to state |1i with probability |�1|2, and
would lead to a measurement result of ’0’ and ’1’, respectively.

| i = ↵1 |0i+ �1 |1i , (2.1)

Furthermore, a visual representation of superposition can be had if one de-
scribes a quantum bit as a vector which can be in any position in a 3-
dimensional space called a Bloch Sphere, as illustrated in Figure 2.1.

Figure 2.1: Fundamental units of information in classical and quantum computing

Even though strange at first, superposition is actually predicted by the laws
of Quantum Mechanics and is, indeed, the way in which matter behaves at
the nano-scale level. For the purposes of computation, however, this behavior
is extremely interesting, as it allows the state space of our machine to grow
exponentially with every added qubit. Think of it this way, if a qubit can be in
a superposition, effectively being partially one and partially zero, as described
by Equation 2.1, then two qubits in such a state would effectively represent,
together, every possible combination of 0’s and 1’s, as described in Equation
2.2.

| i = ↵1↵2 |00i+ ↵1�2 |01i+ �1↵2 |10i+ �1�2 |11i , (2.2)

This then means that with every added qubit, the number of states that can be
simultaneously represented grows exponentially as 2n, whereas in a normal
machine only one state can be described, as what instead grows with every
added bit is the range of numbers that can be represented with that one state.
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Now superposition is only one of the reasons why quantum computers are
fundamentally more powerful than classical machines [2]. The second quan-
tum phenomenon which gives quantum computers an edge over their classical
counterparts is called entanglement. Even though harder to explain, this phe-
nomenon means that qubits can be strongly correlated to one another (more
so than classical bits) and, therefore, that operations performed on one, can
strongly influence the other in ways that are not possible to replicate using
classical bits.

It should be noted that, according to the quantum circuit model of computation,
operations can then be performed on these qubits through the use of quantum
gates. These can be thought of as somewhat of an analogue to classical logic
gates in conventional digital circuits. They may act on one or more qubits at
a time but, contrary to classical logic gates, the number of qubits in the input
and output of a quantum gate must always be equal. A simple example of a
single-qubit quantum gate is called the Pauli-X gate which maps the |0i state
to the |1i state and the |1i state to the |0i state, in a way analogous with the
NOT classical logic gate. The behavior of quantum gates can perhaps be better
understood by observing Figure 2.2, where the effect of the Pauli-X gate on a
qubit of state |0i (or |1i) on the Bloch Sphere is represented.

Figure 2.2: Effect of the Pauli-X gate on the qubit state

Through the use of quantum gates, in addition to the ability to initialize qubits
and measure them, it is then possible to program a machine to perform quan-
tum computation. In actuality, the DiVincenzo’s criteria [3] set more rigorous
conditions for this to be possible. However, this simple description highlights
how a quantum computer can be programmed to make use of phenomena that
are not available in classical computers, such as superposition and entangle-
ment, to have an edge in processing information. Going back to my claim that
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these machines may help us tackle NP-hard problems, it has been shown to be
possible to factorize very large numbers (i.e. finding which prime numbers can
be multiplied by one another to obtain a given number) very efficiently using
quantum algorithms such as Shor’s algorithm [4]. Such a problem is known
to be very hard to compute classically, so much so that most of modern cryp-
tography has been built on the premise that these problems can’t be solved
effectively. This is but one example of a problem domain only a quantum
computer would allow us to tackle.

Other problems domains that we believe quantum computers could help us
solve, due to other properties of these systems, include molecular simula-
tion [5] and optimization [6]. Therefore, there is reason to believe that these
machines could bring about true disruption to the field of computer engineering
and support computing problems that could not be solved otherwise. Achiev-
ing such could truly be a turning point for the human species, allowing us to
pursue ever greater scientific discoveries and substantially advance our tech-
nological capabilities.

2.2 Quantum Computation

An important realization into the way gate-based quantum computers are ex-
pected to work in the future, is that these machines will work as co-processors
to general-purpose classical computers. There are several reasons why this
would be the case.

Firstly, the no-cloning theorem, a physical principle stating that it is impossi-
ble to create an identical copy of an arbitrary unknown quantum state, limits
the I/O capabilities of quantum computers. Therefore, these machines require
careful initialization of their states. Furthermore, due to the destructive and
probabilistic nature of measurements, quantum computers will either have to
be run a statistically significant number of times per computation, to give the
user an idea of the final state probability distribution, or its results will have to
be checked by classical means.

Secondly, quantum algorithms are most often hybrid in their nature, requir-
ing auxiliary classical computation to be performed before, during and/or af-
ter their execution. A good example of this is the aforementioned factoriza-
tion algorithm. In fact, only the compute intensive part of the computation is
performed on a quantum computer and used to find the period of a specific
function. All remaining computation, required for integer factorization, is per-
formed by a classical computer instead.
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An analogue to this model of computation is found in Graphics Processing
Units (GPUs) and Field Programmable Gate Arrays (FPGAs). In these de-
vices an offload model of computation is used, where a general purpose pro-
cessor prepares, starts and reads back the results of the computation carried
out by these devices. Due to this intrinsic limitation in their way of operat-
ing, these devices are just used to accelerate computation heavy parts of pro-
grams, usually known as kernels. Due to constraints on the types of operations
that quantum computers can perform, they are similarly expected to work as
co-processors (or accelerators) of classical machines, therefore comprising a
heterogeneous computer architecture.

Therefore, we should think of a quantum application as being composed of a
host program, which should run on a central processing unit, and a quantum
kernel, a program to be executed in a quantum computer to accelerate part of
the total computation. An illustration of this model of computation in found in
Figure 2.3.

Figure 2.3: Heterogeneous quantum computation model

2.3 Quantum Technologies

In the previous sections, we have described some of the ways in which Quan-
tum Information Theory will allow the acceleration of computations. However,
to achieve a functional quantum computer, one needs to develop a physical im-
plementation of qubits, so that we may operate them in a system. Furthermore,
we need quantum mechanical effects, such as superposition and entanglement,
to hold true for these systems to have a real quantum computer.

Different technologies have been developed to encode quantum information in
a physical device. This can be done, for example, by encoding information in
the polarization of photons [7]. Other examples of technological implementa-
tions of qubits exist, like ions trapped in electromagnetic fields [8], quantum
dots [9] or nitrogen-vacancy centers in diamond [10], but in the next para-
graphs we will focus on superconducting circuits [11], as a technology that
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has matured more significantly than the rest in recent years.

Superconducting circuits allow us to implement qubits which are, on a funda-
mental level, simple non-linear RC oscillators, as represented in Figure 2.4.
Just as we use voltage levels on electronic circuits to encode classical bits,
the energy potential of these an-harmonic circuits is used to encode quantum
information.

Figure 2.4: Circuit diagram of a superconducting qubit

Indeed, the energy potential diagram of a superconducting circuit, represented
in Figure 2.5, shows how we can encode information on the discretized energy
levels of these circuits, by encoding our 0 bit (state |0i) on the lowest energy
level of our system, and the 1 bit (state |1i) on the level above it. Therefore,
we can go from the |0i state to the |1i state by exciting our system, which is
done by applying specifically tuned microwave pulses to it. The same can be
done to drive transitions from the |1i state to the |0i state.

Figure 2.5: Energy potential diagram of a superconducting qubit (Christian Dickel,
August 2017)

Just like logical gates on traditional computers rely on the switching behavior
of bits, this brief example highlights how operations on quantum computers
consist of specifically tuned microwave pulses, which can be used to imple-
ment single qubit gates, and flux pulses, which can be used to carry out two
qubit gates. Additionally, these pulses can also be used to measure the state of
qubits in somewhat of an analogue to traditional memory access but destruc-
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tive, due to the properties of quantum mechanics. Therefore, a quantum chip is
simply a superconducting circuit where operations are performed by applying
electrical signals. A physical implementation of such a chip can be seen in
Figure 2.6.

Figure 2.6: Superconducting Qubit chip
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3
Related Work

The following chapter will present some of the work that has been carried out
in the field of quantum control. It is the purpose of this chapter to highlight
previous solutions to the challenge of programming and controlling quantum
computing machines, solutions which will be built upon for accomplishing the
objectives presented in this thesis.

3.1 Initial Approaches to Quantum Control

We have seen that electromagnetic pulses are used to control quantum bits. To
understand the importance of accurately controlling which pulses are applied,
two things should be noted. First, we should note that the technologies used
today to implement quantum bits allow only very short lifetimes for these, in
the order of a hundred microseconds, after which their quantum state deco-
heres. Secondly, that the correctness of the operations implemented by the
microwave pulses is highly dependent on the timing at which they are applied.
Therefore, it is extremely important to allow for the rapid and precise timing
of quantum operations.

This is the reason why initial approaches to quantum control relied on the
creation of long waveforms, made up of several smaller waveforms, each of
which representing an operation, which would then be played all at once. We
could then see these long waves as our quantum program, which would be
played through Analog Signal Generators onto the qubits. Similarly, quantum
measurement operations, which can be seen as somewhat of an analogue to
classical memory accesses but that destroy the state of the measured qubits,
relied on Digitizers to read back a waveform containing information of the
state of a qubit.

15
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However, there are several drawbacks to this approach. The first relates to the
fact that programs are written as waveforms, limiting our ability to use high-
level programming features (like parametric gates) to increase the abstraction
available to developers in these platforms. Also, this extremely limits the scala-
bility of our system, as adding qubits or executing longer programs would very
quickly result on the overflow of the memory available on Arbitrary Waveform
Generators (AWGs).

The second drawback relates to the fact that this control scheme requires
the entire sequence of gates that composes our quantum program to be pre-
programmed on the device and to be hard set, meaning that we could not
change the order by which they will be applied. This is particularly limiting for
quantum algorithms, which heavily rely on traditional control flow constructs,
like conditional execution (i.e. conditional gates, gates that may or may not be
applied depending on a measurement result) or repeat-until-success constructs,
to implement the desired functionality.

In fact, most of the shortcoming of such an architecture are directly related
to the four main challenges associated with a quantum control architecture,
which we identify as being:

• scalability (in footprint and cost)
• flexible sequencing control
• signal synchronization
• real-time feedback

Therefore, a better scheme for quantum control was required, one that would
allow the precise (and explicit) timing of quantum operations, while allowing
for fast conditional execution and other control flow constructs. Furthermore,
the scheme should be scalable to bigger quantum processors, and satisfy the
high instruction issue rates constraints of quantum programs.

3.2 Previous Work

To satisfy the aforementioned requirements, new architectures started to be
developed for quantum control based on a hierarchical system view. With
these new approaches, researchers hopped to abstract complexity into different
layers, much like in classical computing systems, and provide flexibility to the
end programmer. The collection of these system, increasing in abstraction
from bottom to top, is commonly called a stack, which creates a complete
platform such that no additional software is needed to support applications. A
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great example of such a control stack is the QuTech Stack, from which we will
borrow for exemplification purposes in the following paragraphs.

In this new system architecture, an analog/digital interface, which was previ-
ously created using off-the-shelf Analog Signal Generators and Digitizers, first
needed to be devised in such a way as to allow flexible digital control of all
analog equipment. This was achieved by using Arbitrary Waveform Genera-
tors and Lock-in Amplifiers (with Analog to Digital Converters), both digitally
controlled through codewords - i.e. sequences of binary bits. These devices
are used to implement single qubit gates, two qubit gates and measurement
operations, by generating the corresponding waveforms and applying them to
the qubit chip.

Additionally, there was the need to develop a device responsible for control-
ling the aforementioned equipment with precise timing, through triggering of
digital control codewords. Such a device was called a Central Controller (CC)
and it establishes the hardware/software layer necessary to provide the required
abstraction and flexibility to an end programmer. The architecture of such a
system is represented by the diagram in Figure 3.1.

Figure 3.1: System architecture of the control hardware used at QuTech

The programming paradigm of our quantum control system also suffered a
change, with the Central Controller acting as the interface between our pro-
gram (software) and the underlying electrical systems (hardware) responsible
for implementing quantum operations. The description in terms of function-
ality and organization of the hardware systems responsible for providing this
interface is usually called a computer architecture, and an implementation of a
particular computer architecture is usually called a microarchitecture.

In this sense, the CC presents an Instruction Set, where all the supported quan-
tum operations are defined. Therefore, to program this machine, we should
simply state the sequence of operations we want to run in a written description,
commonly called QASM, or Quantum Assembly [12]. Our microarchitecture
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will then be charged with triggering the AWGs and Digitizers, at the precise
time, to implement these operations.

This sort of control scheme allows classical control flow structures to be im-
plemented, since our microarchitecture deals with digital representations of
the quantum operations up until the moment they are to be triggered, allow-
ing repetition cycles to be dealt with very efficiently. Furthermore, having a
centralized design allows the CC to very quickly decide on whether or not
to trigger a gate, based on a measurement result it got back from the ADCs,
allowing classical control flow structures, like conditional execution, to be im-
plemented.

However, the level at which we can describe quantum operations to the CC is
still very low. We can only describe the most basic of quantum gates and con-
trol constructs, almost directly implementable in a quantum chip using analog
waveforms. To allow for the high-level description of quantum algorithms, we
need to borrow from computer science and create the same abstractions that
modern programming languages provide, to describe complex functionality
from very basic operations.

To this end, and on top of the stack, reside high-level programming languages,
in the QuTech Stack called OpenQL. Embedded in C++ or Python, well-known
classical programming languages, OpenQL enables the description of quan-
tum programs by making calls to other complex functions. This allows the
creation of feature-rich libraries of quantum programs, in order to increase the
efficiency of software development for these machines. Furthermore, it allows
more effective and efficient manipulation of classical information and of the
results of quantum computation.

After having described our quantum program in a high-level language, there
is still the need to translate these high-level operations to the sets of instruc-
tions understood by our Central Controller, if we wish to run our program in a
quantum machine. To achieve this, we make use of compilers, programs that
known how high-level functionality can be built from low-level features, to au-
tomatically write code that is understandable by the microarchitecture. We can
think of an analogue in classical computing, where a compiler can implement
exponentiation through consecutive multiplications of a number by itself. In
effect, the operations and optimizations a compiler is capable of making are
much more complex. Nevertheless, this example illustrates how a compiler,
having information related to the program we want to build and the infrastruc-
ture used to implement it, can intelligently translate and optimize our code.
Furthermore, the translation of the high-level description of a quantum pro-
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gram to a standardized, technology independent, low-level representation of it,
like cQASM [12], would allow multiple compilation infrastructures, like Scaf-
fCC [13], ProjectQ [14] or LIQUi|i [15], to target the same quantum hardware
or, even, allow the simulation of the program using a backend such as the
QuTech QX Simulator [16], as represented in Figure 3.2.

Figure 3.2: Quantum Compilation Infrastructure [16]

However, due to the characteristics of the aforementioned computing model
for quantum computers, the compilation model for such a machine is slightly
more complex. Since quantum programs are very often hybrid in nature, they
may be composed of both quantum kernels and host programs, in addition
to the auxiliary classical instructions required by the quantum kernel, such as
conditional control flow structures. Therefore, a hybrid compilation frame-
work is required, such that a host program written in a classical programming
language like C++ can be compiled using classical compilation systems, while
a quantum kernel, written in a quantum programming language like OpenQL,
would be compiled by a quantum compilation system.

Such a compilation model is represented in Figure 3.3, with a hybrid compila-
tion infrastructure generating a binary representation of a host program, to be
run on a CPU, and a quantum compiler generating quantum code, made up of
both quantum instruction (operations to be applied to the quantum chip) and
classic auxiliary instructions (operations to be run on the central controller to
support quantum computation).
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Figure 3.3: Quantum programming and compilation model [17]

All of the aforementioned technologies are combined in the full-stack to create
a platform such that no additional software is needed to support the implemen-
tation of quantum applications, in an architecture capable of satisfying the ini-
tial requirements for scalability, flexible control, synchronization and real-time
feedback. A visual representation of such a control stack is presented in Figure
3.4 and illustrates how algorithms are built on top of high-level programming
languages, themselves making use of a compiler to be able to build on top of
a Quantum Instruction Set Architecture, provided by our Central Controller,
which then controls the hardware levels below to achieve the desired function-
ality. This represents the state-of-the-art in terms of quantum control systems,
and the best way known to date to control a universal gate-based quantum
computer.

Figure 3.4: Full-stack quantum computing [17]
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3.3 State-of-the-art

The focus of this thesis will be the microarchitecture that acts as an interface
between quantum software and hardware. In this section, a description of CC-
Light will be provided, given its role as the first implementation of the QuMA
microarchitecture, a control microarchitecture developed at QuTech to target
Surface-7 qubit chips within the framework of the aforementioned QuTech
Stack.

The primary objective of this section will be to develop an understanding of
the benefits and drawbacks associated with CC-Light’s hardware, firmware and
software implementations, in order to build from QuMA version-2 onto newer
control microarchitectures.

Furthermore, other devices that have been developed to tackle the challenge
of low-level quantum control, and that have recently been made commercially
available, will be presented and evaluated. In particular, focus will be given to
highlighting the advantages and shortcomings of different solutions to the chal-
lenge of programming and controlling quantum computers, solutions which
may help address the objectives presented in this thesis.

3.3.1 CC-Light

The CC-Light is a controller developed at QuTech for dynamic quantum in-
formation processing experiments. This system can be seen in Figure 3.5 and
implements a quantum microarchitecture known as QuMA, which represents a
32-bit instruction set instantiation of the eQASM executable quantum instruc-
tion set architecture [17] targeting a Surface-7 quantum processor.

Figure 3.5: Central Controller Light system (J.C. de Sterke, QuTech, 2018)
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The full control system consists of a Central Controller, CC-Light, responsible
for orchestrating slave devices, which comprise our analog-digital interface,
for microwave control, flux control and measurement.

In particular, pulses are generated with Zurich Instruments High-Density Ar-
bitrary Waveform Generators and are either directly applied to qubits, for flux
operations, or modulated using a Rohde & Schwarz microwave source, for
microwave operations. To implement the latter, an analog equipment called the
Vector Switch Matrix is required for duplicating microwave pulses and rout-
ing these, while tailoring the waveforms to individual qubits using a frequency
reuse scheme [18]. Furthermore, to carry-out measurements, a discrimina-
tion unit is implemented using two Zurich Instruments Ultra-High Frequency
Quantum Controllers. These generate measurement pulses, sample received
signals and determine measurement results. A frequency multiplexing scheme
allows measurements of up to 9 qubits per unit.

All of these devices are controlled by the CC-Light using codeword triggers,
sent through a 32-bit digital interface working at 50 MHz. That is besides the
Vector Switch Matrix, which is controlled through digital signalling running
at 400 MSa/s. The equipment comprising the analog/digital interface (ADI) of
this system can be seen in yellow in the micro-architectural diagram shown in
Figure 3.6

Figure 3.6: Quantum microarchitecture implementing an instantiation of eQASM for
the control of a Surface-7 quantum processor [17]

The Central Controller, itself, can be seen to the left of the ADI in Figure 3.6,
and is comprised of a Classical Pipeline and a Quantum Pipeline. The former
is responsible for processing classical operations auxiliary to the execution



3.3. STATE-OF-THE-ART 23

of quantum computation, such as branches and simple logical and arithmetic
operations, and the latter is responsible for multi-level decoding and precise
triggering of codeword-based events, being highlighted in blue on the afore-
mentioned diagram.

Therefore, for the purposes of quantum control, the most important part of the
microarchitecture is the Quantum Pipeline, the architecture of which will be
described next.

Quantum Pipeline

Instructions destined for the quantum pipeline arrive through the classical
pipeline, where the instruction memory is located. Upon reaching the quan-
tum pipeline, the Quantum Instruction Decoder interprets the instruction into
either a WAIT operation, a Register Setting operation or a quantum operation.
Following is an explanation of the role of all functional units in the quantum
pipeline, motivated by a description of how these three types of operations are
processed.

A quantum operation represents an instruction which will be subsequently de-
coded into an operation to be performed on the quantum processor. Multi-level
decoding in QuMA makes use of a microcode unit to translate every instruc-
tion into a micro-operation, allowing the underlying physical implementation
of the quantum processor to be abstracted away from the programmer-visible
ISA of our machine, therefore making QuMA quantum technology agnos-
tic. Furthermore, QuMA allows the specification of quantum operations in
a Very Long Instruction Word (VLIW) format, allowing the exploitation of
instruction-level parallelism intrinsic to quantum programs. Therefore, quan-
tum operations processed in VLIW lanes in parallel need to be combined,
an operation performed by the Operation Combination unit. The last step of
QuMA’s multi-level decoding scheme consists of combining different micro-
operations to be triggered simultaneously into device operations, the final rep-
resentation of quantum operations in the quantum pipeline before they are sent
as codeword’s to the ADI. This is done by the Device Event Distributor.

WAIT instructions are the mechanism used in QuMA to efficiently and explic-
itly define the timing of quantum operations. In this way, a programmer is
capable of explicitly defining when an operation is to be applied. This mecha-
nism uses the Timestamp Manager to create a timing event every time a WAIT
instruction is received, and stores it in a queue on the Timing Control Unit.
Each timing event can them be associated with multiple device events on the
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Timing Control Unit and, therefore, multiple events may be very efficiently
triggered in parallel. Furthermore, this allows the Timing Control Unit to serve
as the interface between the non-deterministic timing part of the pipeline and
the time deterministic part, guaranteeing that our microarchitecture can work
as fast as possible to ensure continuous processing of the quantum program
while ensuring the triggering of quantum operations with very precise timing.

Register setting operations form the indirect qubit addressing mechanism used
to increase the efficiency of qubit addressing in QuMA. Through this mecha-
nism, an instruction first defines a set of qubit targets in the Target Registers,
which may then be used by subsequent quantum operations as an operand.
Therefore, a single-qubit operation may either be applied to a single qubit, by
defining a single-qubit target, or to multiple qubits, by defining a multi-qubit
target. The definition of both of these targets is done through the Set Mask
Immediate for Single-qubit operations (SMIS) instruction. Finally, two-qubit
operations can be performed by first defining a two-qubit target with the Set
Mask Immediate for Two-qubit operations (SMIT) instruction, which again
may hold a single qubit pair or multiple of these, allowing a way of operation
analogous to Single Instruction Multiple Data (SIMD) in classical computers.

In the Quantum Pipeline, the Qubit Measurement Result Register is also worth
noting, for its role in providing fast conditional execution. The fast conditional
execution mechanism allows executing or canceling a single-qubit operation
based on the execution flag register of the target qubit. This flag register is au-
tomatically derived by the microarchitecture from the last measurement result
of the qubit using pre-defined combinatorial logic.

An overview of all quantum operations available in this instantiation of
eQASM is presented in Table 3.1 but a reader interested in finding more details
is encouraged to read [17].

Improvements to scalability

It should also be noted that the 2nd version QuMA microarchitecture imple-
mented in CC-Light, already makes a concerted effort to address many of the
scaling problems encountered with previous centralized control microarchi-
tectures. In particular, it addresses the instruction issue rate problem, which
concerns the potential inability of the microarchitecture to issue and process
all instructions required to control all qubits before such operations should be
triggered.

This issue is alleviated by increasing the instruction information density
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through the use of single operation multiple qubits execution, indirect qubit
addressing mechanisms and a more efficient method for explicit timing speci-
fication (through the use of pre-intervals built into quantum instructions). Fur-
thermore, a VLIW architecture is used to take advantage of the instruction-
level parallelism, combining two parallel and different operations in a single
instruction. However, I leave the specifics of each to [17], where these mecha-
nisms are detailed.

Critical appraisal

CC-Light allows codeword-based instrument control and measurement au-
tomation through a unified interface accessible for high-level quantum pro-
gramming languages through a compilation infrastructure. As the main advan-
tages of this architecture, five should be highlighted:

• capability to explicitly specify timing of operations, achieved through
the use of queue-based timing control scheme;

• power to implement program flow control, including (fast or comprehen-
sive) run-time feedback, through either auxiliary classical instructions or
automatically derived measurement flags;

• flexibility provided by the expressive definition of eQASM assembly,
where quantum operations are defined at compile time instead of QISA
design time

• agnosticism to quantum hardware implementation, through the use of
multi-level decoding;

• scalability potential through the increase of the instruction information
density, to alleviate the instruction issue rate problem.

However, CC-Light still has some shortcomings, particularly related to its im-
plementation as a centralized architecture, i.e. a single entity through which
all control and data paths flow, which may soon become a bottleneck for the
processing and distribution of instructions in such a system. As the main dis-
advantages of this microarchitecture, the following should be noted:

• centralized design presents a grave scalability concern both by constrain-
ing the operation of all interface devices to the instruction issue rate
capability of the QuMA pipeline and by the subsequent challenge in sat-
isfying the input/output requirements of such a design in any individual
platform;

• lack of full integration presents both a scalability challenge, in terms of
cost and footprint, and also a control challenge, limiting the performance
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of the control system to that of its interface devices;
• rigid control scheme, due to the translation and sequencing of quantum

gates at the firmware level, leaves QuMA inflexible to changes in chip
size, layout or instrument configuration.

Addressing these will be both of particular importance for successfully scal-
ing the QuMA microarchitecture to control greater numbers of qubits, a topic
which will be covered in the next chapters, and for developing next-generation
systems, which may bolster better scaling properties, provide full-integration
and a more flexible definition of sequenced codewords for any quantum pro-
gram.
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3.3.2 Raytheon BBN APS2

Outside the scope of the QuTech stack, introduced in Section 3.2, other devices
have been developed to tackle the challenge of low-level quantum control, and
have been made commercially available. An example of such a system, the Ar-
bitrary Pulse Sequencer 2 (APS2) was developed by Raytheon BBN Technolo-
gies for the control and readout of dynamic quantum information processing
experiments on superconducting qubits [19].

A fully-populated APS2 system can be seen in Figure 3.7 and is composed
of 9 APS2 modules and a trigger distribution module (TDM), which provide
full control capability for a maximum of 8 qubits. Given its distributed ar-
chitecture, to program the APS2 a quantum kernel needs to be translated into
multiple separate binary executables which will run concurrently on each of
the APS2’s modules.

Figure 3.7: Raytheon BBN Technologies APS2 system [19]

In this scheme, precise timing is achieved via WAIT periods with the trigger
distribution module generating an external signal that provides simultaneity
and a method for synchronization of multiple modules. Additionally, a barrier-
type instruction dubbed SYNC can be used to allow synchronization after non-
deterministic waiting periods by stalling the processing of instructions until all
execution queues are empty.

Critical appraisal

The main advantage of the APS2 is its distributed architecture, which leads to
more natural scalability of the system. In particular, challenges like the instruc-
tion issue rate problem are more easily addressable on such a system, since
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separate instruction streams are used to generate concurrent operation on indi-
vidual modules. Furthermore, extending control capability to more qubits can
more naturally be achieved by connecting APS2 systems together. Nonethe-
less, the system is currently only capable of fully controlling up to 8 qubits
in a single enclosure. Therefore, and since no updates have been announced
to add support for configurations of multiple APS2 systems together, the real
advantage of implementing a distributed architecture is questionable at this
point.

However, the distributed nature of the APS2 architecture does lead to some
of the most significant shortcomings of this system. Furthermore, the loosely-
coupled architecture of the system, in addition to its lack of native support
for auxiliary classical instructions, hinders its ability to implement hybrid
quantum-classical algorithms. The main disadvantages of the APS2 can be
summarized as:

• Lack of support for comprehensive feedback (flexible and arbitrary deci-
sion logic) or for auxiliary classical instructions (real-time computation).
This hinders the system’s ability to implement hybrid quantum-classical
algorithms, requiring host processor intervention for complex feedback,
leading to likely catastrophic control latency;

• Complex compilation process requiring generation of multiple binaries
from a single quantum application and conversion of quantum semantics
into low-level operations (waveform output and program flow control).
This is significantly more complex than what is required for CC-Light,
which uses a single binary executable and explicit definition of timing
and quantum semantics at the instruction level. However, it does allow
more flexibility by decoupling the translation of quantum instructions
into their respective waveforms (done in software) from the firmware
implementing the pulse sequencer, therefore removing dependencies on
chip layout and qubit count;

• Requirement for precise inter-module synchronization, due to dis-
tributed nature of the architecture, implemented through fragile inter-
connect network. This limits the immediate scalability of the system
to multiple APS2 enclosures, required for controlling greater number of
qubits;

• No support for output instructions during inter-module synchronization.

These shortcomings make the Raytheon APS2 system incapable of satisfying
the control requirements of a heterogeneous, loosely-coupled computing sys-
tem capable of supporting a hybrid quantum-classic quantum model of com-
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putation.

3.3.3 Keysight HVI Engine

The Quantum Engineering Toolkit (QET) is a system developed by Keysight
Technologies for the control of single and multi-qubit architectures. It con-
sists of several hardware systems, which can be seen in Figure 3.8, and their
respective control and calibration software packages. In particular, this toolkit
is composed of:

• Chassis supporting a modular system composed of PXIe arbitrary
wave generators (AWG), digitizers (DIG), embedded controllers and
microwave-frequency local oscillators;

• I/Q Modulators/Demodulators systems for up-conversion of pulses to
microwave frequency and down-conversion to DC, baseband or inter-
mediate frequencies;

• Software environment for development of the necessary control se-
quences and for signal path manipulation;

• Labber software suite for high-level experimental control, visualization
and result data management

Figure 3.8: Hardware systems composing Keysight Technologies’ Quantum Engi-
neering Toolkit [20]

For the purposes of this thesis, focus is given to Keysight’s Hard Virtual In-
strument (HVI) Engine, a sort of High Level Sequencer which provides the
capability to create time-deterministic control sequences to be executed by the
hardware modules in parallel. Therefore, and similarly to the CC-Light and
APS2, the HVI Engine is responsible for the orchestration of a quantum com-
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puting experiment, enabling synchronous control of the signal generation and
acquisition modules, and feedback by implementing decision making between
AWG and digitizer modules.

Critical appraisal

Notwithstanding the lack of details on its implementation and characteristics,
such as latency, the claimed ability to synchronously control signal generation
across several ports, modules or even multiple chassis, is one of the greatest
advantages of this system, in addition to its modularity. Furthermore, classic
auxiliary operations like arithmetic operations are supported, allowing (at least
theoretical) hybrid quantum-classical algorithm support. Additionally, custom
real-time FPGA-based processing can be added to the data path, between the
acquisition and the transmission of data to the computer, allowing for more
comprehensive feedback support.

However, similarly to the APS2 system, the programming of this device re-
quires generation of multiple binaries from a single quantum application and
conversion of quantum semantics into low-level operations. Additionally, the
requirement on writing these as time-driven flowcharts exacerbates this issue
by leading to slower programming and difficult code reuse.

Therefore, the shortcomings of this system, together with the lack of de-
tailed information on its implementation and operation characteristic, make
the Keysight QET system inapt at tackling the challenge presented by the need
for scalable, high-level control of a quantum processor.
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4
QuTech Central Controller

The following chapter will describe the work performed to implement the
QuTech Central Controller (QCC), a device created to support dynamic
quantum information processing experiments on superconducting qubits. This
device will be based on an expanded QuMA core, targeting a Surface-17
quantum processor, and make use of a new hardware architecture developed at
QuTech for next-generation quantum controllers. In particular, focus will be
given to how the main limitations of a centralized architecture were overcome,
and how these culminated in the new architecture for quantum control called
the QuTech Central Controller.

The first section details how the QuMA architecture was ported to a new hard-
ware platform, developed in-house to accommodate next-generation central
controllers. Then, a description of how the 2nd version QuMA microarchitec-
ture was expanded to provide support for the control of 17 qubits will be given.
Following this, focus will be shifted to how the interface scaling challenge was
addressed, through the redesign of the system to a semi-distributed architec-
ture. Finally, the software infrastructure developed to interface and control this
microarchitecture will be presented. This chapter will conclude with a sum-
mary of all aforementioned modifications, as a way to review the work that
was performed during this project.

4.1 Platform Change

The initial instantiation of eQASM to target a Surface-7 quantum processor
was implemented in CC-Light through the use of an Intel Altera Cyclone
V System-on-a-chip, incorporating a Field Programmable Gate Array and a
ARM-based Cortex-A9 MPCore as a hard processor system, in addition to

33
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other interface and peripheral devices.

However, for the next generation central controllers, there was a concerted
effort to switch platforms to a Xilinx Zynq-7000 SoC, a device incorporating
a Kyntex-7 FPGA and a similar dual-Core ARM-based Cortex-A9 MPCore
processing system, shown in Figure 4.1 in its board package. The reasons for
this change are beyond the scope of this report. To implement QuMA in this
new platform several changes were required, which will be detailed next.

Figure 4.1: FPGA and processing system used at QuTech for the control of quantum
experiments (Vlothuizen W.J., QuTech)

Firstly, there was a need to migrate all project files to Xilinx’s design suite, to
allow the use of its synthesis and integration toolchains. At this stage, there
was also the need to regenerate the Hard Processing System previously avail-
able in the Altera platform and used to interface with the QuMA microar-
chitecture through AXI-based transactions. The generation of this Processing
System in Xilinx’s toolchain allowed maintaining this form of interfacing un-
changed.

Then, there was the need to remove vendor specific pragmas and pre-
compilation commands from all VHDL files describing QuMA’s implemen-
tation. These pragmas, otherwise known as compiler directives, are additional
commands given to the compiler to influence how VHDL code will be synthe-
sized into an equivalent hardware representation. Since these define constructs
with no predefined language semantics, new directives had to be specified for
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Xilinx’s compilation infrastructure, to ensure proper synthesis of the design.

Next, all vendor specific Intellectual Property (IP) had to be removed and re-
generated for the new platform. In particular, all First In First Out (FIFO)
data elements generated using the Quartus tooling and used to implement the
timing control and measurement result analysis units, among others, had to be
regenerated using Xilinx’s FIFO LogiCORE v13.2 and simulated for correct
operation. The reset behavior of these memory elements was of particular con-
cern and their timings presented some issues in intermediate designs, problems
which we will cover in Chapter 5.1.

Finally, first-stage and universal boot-loaders had to be created for the new
platform. The first-stage boot-loader is responsible for loading the bitstream of
our synthesized design into the reconfigurable fabric of the System-on-a-Chip
(SoC). Furthermore, it is responsible for configuring the Processing System of
the SoC at boot time. On the other hand, the universal boot loader is responsi-
ble for loading the device’s operating system kernel, allowing the booting of a
custom embedded Linux distribution from the SoC’s Hard Processing system.
This software system will allow the creation of the interface to the QuTech
Central Controller, allowing its configuration, control and the transfer of infor-
mation through an internet protocol running over an ethernet link.

4.2 QuMA Core Expansion

The necessity for the QuTech Central Controller came from the need to ex-
perimentally control a Surface-17 quantum chip, a schematic of which can be
found in Figure 4.2. Such a quantum processor provides the necessary fabric
of fast-flux-tunable transmon qubits interacting with nearest neighbors, as well
as the necessary quantum and classic interconnect [18] to implement quantum
error correction cycles required for the surface code quantum error correcting
code [21]. It should be noted that the purple lines represented in Figure 4.2 are
the feedlines and resonators required to perform measurements of the qubits,
while the yellow (red) lines represent the I/O used to apply flux (microwave)
operations to qubits and the orange lines represent the coupling buses used to
mediate two-qubit interactions.

Such a surface code array could implement a distance-3 logical qubit, the ba-
sic unit of information in a fault-tolerant quantum computer, allowing great
progress in research into error correction in quantum computers. Therefore,
there was the need to expand the QuMA version-2 microarchitecture to allow
the individual control of 17 qubits, to implement the control scheme necessary
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Figure 4.2: Schematic of a Surface-17 quantum processor, highlighting quantum and
classical interconnect [18]

for such an application.

To expand QuMA v2 to satisfy the control requirements of QCC, several mod-
ifications to the quantum pipeline were necessary. An initial project into the
expansion of QuMA v2 had already identified and implemented some of these.
However, the need to migrate hardware platforms lead to the need to rebuild
an expanded version of QuMA v2. The following sections will be dedicated
to describing the changes that were performed and to explain how the scaling
challenges associated with a centralized architecture were addressed in QCC.

Instruction Reformatting

The increase of the amount of individually addressable qubits has an imme-
diate effect on the instruction word used in QuMA. However, this effect is
somewhat reduced due to QuMA’s use of an indirect qubit addressing mech-
anism. Indeed, quantum instructions only specific a target register (either for
single or two qubit operations), which is addressed with 5 bits in this specific
implementation. Therefore, by maintaining this addressing scheme in QCC,
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1 6 5 13 7
0 opcode Sd Imm

SMIS Dst SReg Qubit Mask

1 6 5 4 16
0 opcode Td Imm

SMIT Dst TReg Qubit Pair Mask

1 6 5 3 17
0 opcode Sd Imm

SMIS Dst SReg Qubit Mask

1 6 6 2 1 16
0 opcode Td Fp Imm

SMIT Dst TReg Field

Position

Qubit Pair Mask

Figure 4.3: Format of the SMIS and SMIT instructions used in CC-Light (top two),
and SMIS and SMIT instructions used in QCC (bottom two)

only the register setting instructions (SMIS and SMIT) will need to be mod-
ified to support addressing up to 17 qubits. The format of SMIS and SMIT
instructions used in CC-Light can be observed in the top two images presented
in Figure 4.3.

Given the 32-bit instruction word instantiation of eQASM in CC-Light, there
are enough bits available in the instruction word to encode the additional 10
qubits addressable in QCC for single-qubit operations. Therefore, the qubit
mask field of the SMIS instruction was simple enlarged to 17 bits for QCC, as
represented in the 3rd image presented in Figure 4.3.

However, for two-qubit operations, this is no longer the case. Indeed, the
topology of a Surface-17 quantum chip allows 48 different two-qubit pairs, as
illustrated in Figure 4.2. It should be noted that each coupling bus in Figure
4.2 represents a potential two-qubit interaction and that each edge represent-
ing such an interaction should be directed since a CNOT gate, for example,
has a different effect on the control and the target qubits, leading to 48 differ-
ent potential two-qubit interactions that need to be individually addressed in a
Surface-17 chip.

Therefore, to introduce minimal change to the way the SMIT instructions op-
erate in QCC, it was decided to establish a new scheme for the setting of two-
qubit target registers, where the Qubit Pair Mask would be split between three
different instructions, each identified with a unique Field Position, so that they
could then be re-combined for proper storing in the Mask Register File. Fur-
thermore, the number of two-qubit target registers was expanded from 32 to
64, to account for the additional number of potential two-qubit pairs. This was
done in an attempt to reduce the potential overhead incurred by requiring a
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change of the Qubit Target Registers during the execution of a quantum pro-
gram. This scheme for the setting of two-qubit target registers in QCC lead to
the changes in format of the SMIT instruction represented in the bottom image
of Figure 4.3.

Instrumentation and Qubit Topology

In addition to the changes in addressing mechanisms introduced in QCC, the
increase of the number of individually addressable qubits also had an effect in
the requirements on the Analog/Digital interface, implemented through the use
of Arbitrary Waveform Generators (AWG) and Ultra High-Frequency Quan-
tum Controllers (UHFQC), as previously described. Indeed, an AWG or UH-
FQC device has a limited number of input/output channels and, therefore, a
change in the number of addressable qubits requires the control of additional
such devices.

For Surface-17, a microwave frequency reuse scheme is used, as described
in [18] and, therefore, only two AWGs are required for microwave operations,
in addition to a Vector Switch Matrix (VSM) device, necessary to implement
the reuse scheme. Also, the need to individually control 17 flux-tunable qubits
adds the need for an additional three AWGs, to apply flux operations. Finally,
three UHFQC devices will be used for measurement of all 17 qubits through
the three available feedlines.

These changes required modifications to the Device Event Distributor, the unit
responsible for combining micro-operations into device events, used for trig-
gering the aforementioned analog devices. In addition to expanding the Device
Event Distributor to the extra devices used for controlling Surface-17, the de-
coding of target qubits to instruments assigned to implement operations on
them had to be changed, to satisfy the new chip topology.

For microwave drives, qubits were assigned to AWGs according to the qubit
frequency group where they belonged. Therefore, all qubits highlighted blue
in Figure 4.4 were assigned to the same device, as were those highlighted in
orange, green and yellow. Moreover, for flux operations, qubits were assigned
to AWGs according to their qubit number, represented in red in Figure 4.4.
Thus qubits 0 to 7 were assigned to the first AWG and similarly for all other
qubits. Finally, for measurement operations, qubits were assigned to UHFQC
devices according to the feedline assigned to them. Hence, qubits 0 and 3 were
assigned to the first device and similarly for the rest.

However, changes in the qubit plane topology also influenced the way in which
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Figure 4.4: Feedline and microwave frequency scheme for a Surface-17 quantum
processor

quantum instructions are decoded throughout the Quantum Pipeline. In par-
ticular, changes to the physical addresses of individual qubits, and to the ad-
dresses of two-qubit pairs, required a new decoder scheme for selecting micro-
operations from the Microcode Unit. Therefore, the Microcode Address De-
coder was changed to reflect the new physical addresses of qubits, specified by
the numbers visible in the topology diagram represented in Figure 4.4. Fur-
thermore, the Measurement Result Analysis unit, responsible for interfacing
with the UHFQC devices to read-back measurement results, was modified to
account for the new feedline topology, and so was the Measurement Issue Gen-

eration unit, responsible for dispatching measurement triggers. It should be
noted that the way in which the UHFQC devices work allows them to take as
input from the QCC a measurement operation and to output a discriminated
measurement result after concluding the measurement operation.

Finally, the Timing Control Unit, responsible for maintaining the deterministic
timing domain in our microarchitecture, was expanded to include device event
queues for all additional instruments, concluding the necessary modifications
to interface with the Surface-17 quantum processor.

Before concluding the expansion of the QuMA Core, the control and data paths
of the microarchitecture add to be expanded to operate 17 qubits and the Classi-
cal Pipeline, where the Measurement Register File (used to store measurement
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results) is located, similarly expanded.

The AXI driver, responsible for mediating communications between the
Cortex-based Processing System and the registers and memory located within
QuMA, was also expanded to allow setting new control signals for QuMA
configuration.

Scaling Challenges

Having completed the expansion of the QuMA core to target a Surface-17
quantum processor, the proposed design was tested with a synthetic bench-
mark, to determine whether the instruction issue rate was sufficient to suc-
cessfully drive all devices in parallel. Such a benchmark had to be made of
consecutive parallel operations on all qubits, to ensure maximal pressure on
the instruction fetch and decode units. The successful fulfillment of this exper-
iment indicated that the mitigation schemes implemented in QuMA version 2
to reduce the instructions issue rate problem, namely VLIW architecture, in-
direct qubit addressing and efficient timing specification, were sufficient for
an architecture controlling up to 17 qubits. A thorough description of all the
experiments that were ran to test the expanded QuMA core are presented in
Chapter 5.1.

However, not all challenges associated with the limitations of a centralized
architecture were surpassed with the expansion of QuMA. Again, these chal-
lenges were determined to be:

• instruction issue rate problem
• input/output from FPGA
• scalability

Having addressed the scalability challenge by manually enlarging all the con-
trol and data paths in the microarchitecture to support the control of 17 qubtis
individually, and the instruction issue rate problem through the use of 2-way
VLIW, indirect qubit addressing and efficient timing specification, we have yet
to address the input/output challenge. Indeed, even though QCC should now
be capable to implement all of the desired functionality, the FPGA platform it
is implemented in only has 48 additional pins available for I/O, whereas the
interfaces used to communicate with all of the analog instrumentation require
an aggregated 288 pins for communication. Addressing this challenge will re-
quire us to soften the limits of what we understand as a centralized architecture,
and will be the focus of the next chapter.
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4.3 System Redesign

Having completed the design for a QuMA core targeting the control of 17 qubit
chips, there was the need to build the interface capability to connect the control
signals generated in that system to the device responsible for generating the
corresponding analog waveforms for qubit control.

Given the high-demand for parallel, low-speed signalling from the control unit
to these devices, there are not enough extra pins in the FPGA package to be
used to implement such interfaces. To solve this problem, the system archi-
tecture of QCC was redesigned to allow a semi-distributed control approach,
where serialization of signals to an intermediate platform is used to increase
the output throughput achievable from the limited number of I/O pins available
in the FPGA package where the QuMA core is implemented.

System Architecture

A diagram of the full system architecture of QCC is represented in Figure
4.5 and was designed to combine a CORE platform, implementing the QuMA
core, with up to 12 IO platforms. These IO platforms are made up of similar
FPGA boards, combining a hard processing system with reconfigurable logic
fabric, and are connected to the CORE platform through a custom designed
backplane, allowing high-speed serial communication between the CORE and
IO boards. Furthermore, the system incorporates a power supply unit (PSU),
a clock distribution network and an Ethernet switch, connecting all boards
together in a star configuration.

Such an architecture allows the scaling of the interface of the QuMA core
through the serialization of all IO communication. By increasing the speed
at which information is sent from the CORE to the IO boards, it is possible
to achieve sufficient throughput with reduced requirements on the number of
IO pins. This scheme calls for high-speed serial communication between the
CORE and IO boards, and the subsequent de-serialization of these signals in
the IO board, therefore allowing the combined system to drive all instruments
through the initial parallel protocol.

In particular, the parallel protocol requires digital communication through 32
pins at 50 MHz. Since 48 pins are available in the CORE FPGA package, it was
decided to dedicate 4 pins for communication with each of the 12 IO boards,
of which 2 pins will be required for implementing a serial synchronization
protocol, as will be detailed in the section dedicated to the I/O Board Design.
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Figure 4.5: Next-generation quantum controller hardware diagram (Vlothuizen W.J.,
2017, adapted)

Therefore, serialization of data to 800 MHz was required to achieve similar
throughput using 2 pins as would be achieved through a parallel interface of
32 pins running at 50 MHz.

Feedback Latency Analysis

A very important part of a quantum program resides in the ability to perform
feedback based on measurement results. What’s more, most know quantum
algorithms (and other control schemes, like active qubit reset) require the use
of classically controlled gates, which make use of this feedback mechanism.

The requirements on this form of feedback are especially stringent for a system
which aims to achieve quantum error correction through the use of stabilizer-
based quantum error correction codes (like is the case with Surface-17). This
is because, in order to implement such error correction schemes, one needs to
constantly perform measurements of certain qubits (known as ancilla qubits)
and apply operations on others (known as data qubits), depending on the mea-
surement results obtained from the first. The duration of the cycles consisting
of these operations is vital for the success of the correction scheme. Therefore,
the design of QCC was done in such a way as to achieve the smallest possible
feedback latency loop. To understand what went into this decision, it is first
important to understand the mechanism for feedback used in the QuMA core.
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Due to the latency associated with operating digital equipment, such as the
ZI UHFQC and AWG, it was decided that fast-feedback, the mechanism in
QuMA that allows feedback with latencies of the order of a hundred nanosec-
onds (for conditional execution of gates), should instead be implemented
through the VSM, a completely analog device used to duplicate, route and tai-
lor waveforms to individual qubits. It should be noted that the VSM is driven
by purely analog signals and, therefore, is not contingent on the 50 MHz pro-
tocol implemented for communication with all other analog-interface devices.

Therefore, the feedback scheme should start with a measurement operation be-
ing sent to the UHFQC, quickly followed by sending (to the AWG) the micro-
wave operation we want to condition on the measurement result, even when
no information is available in the QCC to determine whether or not this op-
eration is to be performed. Instead, when the measurement result is returned
to the QCC, a mask operation is quickly sent to the VSM to either route the
signal sent by the AWG to the qubit (in case the measurement result supports
performing this operation) or to block it. Such a scheme allows avoiding the
latency associated with executing conditional execution on the AWG, reducing
the feedback loop cycle to its minimum by using the fastest equipment avail-
able (a completely analog-controlled set of switches in the VSM) to perform
Go/No-go decisions on measurement results. A visual representation of this
feedback scheme is presented in Figure 4.6.

Figure 4.6: Illustration of feedback mechanism implemented in QuMA

It should be noted that all qubit operations have a predefined duration and that,
therefore, by tuning the delay added to the lines used to operate each device,
it is possible to calibrate all the equipment so that a go/no-go decision on the
VSM coincides with the receiving of the corresponding microwave coming
from the AWG. Additionally, it should also be noted that feedback latency for
QuMA is defined as the time between a measurement result being received and
a signal being sent to the VSM for triggering the correct routing decision.



44 CHAPTER 4. QUTECH CENTRAL CONTROLLER

I/O Board Design

Having a monolithic architecture, CC-Light is particularly suited for this
scheme because the delay, required to calibrate the devices, can be added to
the signalling cables (in the case of the VSM) before the final signal is sent to
the device, therefore preventing the calibration delay from counting towards
the feedback latency loop. This is because the delay is added before a decision
based on the measurement result has to be made, therefore attenuating the im-
pact of delay added for calibration of device communications in the feedback
latency of the system. Another way to think of this is to consider that delay
is being added while we are waiting for the measurement result to be received
from the UHFQC for a conditional decision to be possible. In CC-Light, since
all signals (including the 400 MHz signal used to communicate with the VSM)
are generated and received in the same FPGA package, such a scheme is easily
implemented.

However, the semi-distributed nature of QCC, and the fact that communica-
tion between the boards is done at 50 MHz (even for the IO board controlling
the VSM device) means that the VSM control signal has to be up-converted
from 50 MHz to 400 MHz on the respective IO board, to implement the 2.5 ns
delay increments that were found to be necessary to properly configure com-
munication with this device. Therefore, all the delay that can be added before
conditioning the execution of a signal on a measurement result, something that
can only be done on the CORE board (since this is the one where measure-
ment results are available) is minimally limited to 20 ns, due to the interface of
the CORE board being limited to 50 MHz. Thus smaller delay increments (of
2.5 ns) have to be applied to the VSM signal in the respective IO board, after
conditional execution has been performed.

This means that, in the worst case scenario where 17.5 ns of delay are required
to configure communication with the VSM, the feedback latency of the system
could be worsen by that amount. With these considerations in mind, the IO
board was designed to include the following three main components.

First, a set of configurable delay modules capable of implementing 2.5 ns de-
lay increments up to 17.5 ns of total delay. It should be noted that only a total
of 17.5 ns should ever be implemented in the IO side, since 20 ns delay incre-
ments can be added in the CORE side, resulting in a reduced feedback latency
loop, while still satisfying communication requirements.

Secondly, a de-serialization module to allow the IO board to receive (or send)
data from (or to) the CORE at 800 MHz through the 4 available serial lanes.
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The scheme for synchronization of the serializers has evolved over time to ad-
dress some of the problems encountered with data loss and corruption, which
will be covered in Chapter 5.1. However, as a very basic insight into the op-
eration of SERDES, these devices make use of a string of pulses, output from
a serializer and received by the de-serializer, to determine if there is align-
ment between lanes and to correct for the miss-reception of signals. This is
the reason why, from the 4 serial lanes running at 800 MHz, we only obtain
an effective throughput similar to that achieved by 2 such lanes, as the rest
are used for implementing this synchronization protocol. Furthermore, bitslip
mechanisms where developed to allow data alignment, i.e., to determine where
the MSB and LSB are in the serial data stream, in addition to the inclusion of
delay mechanisms used to overcome setup/hold violations in the registering
of data received from the serial lines. All of these mechanisms require proper
configuration, whether to determine how much delay should be added for syn-
chronization or to configure the SERDES direction, since communication can
be bi-direction.

Thirdly, an AXI interface driver to make use of the Hard-Processing System
available in the SoC for configuration of all of the aforementioned parameters
from the software layer, through AXI-mediated transactions. The need to be
able to configure all of these parameters from a higher abstraction level is justi-
fied by the necessity to run more complex algorithms in order to automatically
determine the appropriate parameters for each. This requirement will be satis-
fied by the implementation of a software system composed of system drivers
and control software, which will be introduced in the next chapter.

4.4 Control Software Architecture

The main goal of the control software package of QCC is to allow the con-
figuration, calibration and control of the QuMA core and all its supporting
hardware. One of the main challenges of its design was to maintain the same
high-level interface to QCC as was previously available in CC-Light, in order
to allow the effortless transition between the two systems, even after a ma-
jor change in hardware design, which led to the implementation of QCC in a
semi-distributed architecture. To understand the control software architecture
of QCC it is helpful to recognize its three main components:

1. Linux Kernel Modules, used to allow interfacing with QuMA’s memory
and register files from the Processing System embedded in the same
SoC, through AXI-based transactions. This will be referred to as the
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Device Kernel.
2. Control software running on top of the embedded Linux distribution,

available in the Processing System. This software package allows the
automatic configuration of all the hardware supporting the QuMA core
and creates the server which established the interface to QCC. It will be
referred to as the Device Manager.

3. A Python Driver running on the host computer, which is responsible for
establishing communication with the QCC device and supporting high-
level interfacing with it, for configuration, calibration and control.

To better understand how all the systems work together to achieve the desired
functionality, the control flow necessary to perform a quantum computing ex-
periment is presented as a flowchart in Figure 4.7 for the QuTech stack. This
chart will serve as a reference to guide our description of the functionality
of each of the three main components of the control software system in the
following sections.

Figure 4.7: Full-stack control flow for a quantum computing experiment
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Linux Kernel Modules

In order to allow interfacing with the QuMA core, implemented in the FPGA
available in the Xilinx SoC, a custom embedded Linux distribution is run from
the Hard Processing System available in the same package. Both systems are
setup in a slave/master AXI-based configuration, allowing access to the ad-
dress space of QuMA from the Processing System.

To allow the Linux Kernel to access this hardware device, a Linux Kernel Mod-
ule had to be developed to support QCC. Kernel Modules are pieces of code
that can be loaded and unloaded into the kernel upon demand. They extend
the functionality of the kernel without the need to reboot the system, providing
translation between user-level software and the hardware devices implement-
ing the low-level functionality. A diagram of this hierarchy is presented in
Figure 4.8.

Figure 4.8: Kernel modules are translators between user-level software and hardware
devices

Therefore, the Kernel Module developed to support the control of QuMA had
to satisfy several requirements.

First, it was necessary to perform the memory mapping of the device memory
(instruction memory and control store) to a user’s address space. This was done
due to a decision to use direct memory mapping to handle memory transfers,
whereas the setting and reading of registers was chosen to be done through
explicit copying of data from user space to kernel space. This step also required
handling of the physical address translation of QuMA.

Then, to handle the setting and reading of registers in QuMA, methods were
defined to perform copying of data from user space to kernel space and back,
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in addition to validating all variables according to their allowed values.

Finally, the Kernel Modules needed to define all IOCTL system calls for
device-specific input/ouput operations. These instruct the Linux Kernel on
how to deal with device-specific system calls for all functionality related to
QuMA, from the uploading of the instruction program and control store, to the
setting of delays for inter-device communications, to starting and stopping the
device and providing version information on the firmware.

Control Software

The Control Software package running on the SoC’s processing system creates
the outside interface of the QCC, in addition to configuring all of the internal
systems to perform the required functionality. Therefore, the Control Software
is made-up of several individual packages, as shown in Figure 4.7. In particu-
lar, it is composed of the Device Manager, the Interpreter and the SCPI server.
In the next paragraphs, each of these sub-systems will be analyzed, to describe
their functionality and the design decisions that went into each.

The SCPI server provides the external interface of QCC. SCPI stands for Stan-
dard Commands for Programmable Instruments, and it defines a standard for
syntax and commands to use in controlling programmable test and measure-
ment devices. Therefore, it provides a Transmission Control Protocol - Inter-

net Protocol (TCP/IP) network socket where a host computer can connect to
send and receive commands using a SCPI client.

The Interpreter works in parallel with the SCPI server, to interpret the SCPI
commands received by the server and trigger the appropriate replies. There-
fore, it defines all commands that QCC responds to, including all commands
necessary to upload and retrieve the instruction memory and control store, and
to set all QuMA registers. To implement these commands, it makes use of the
functionality provided by the Device Manager to trigger IOCTL system calls,
which are handled by the Linux Kernel Module to interface with the QuMA
core implemented in hardware.

The Device Manager is the main software engine of QCC. It is responsible for
defining all the methods that implement the functionality required to handle
SCPI commands received by the QCC. To do this, it makes use of the system
calls defined by the Linux Kernel Module to access functionality provided by
the QuMA core. In addition to this, the Device Manager is responsible for
configuring the QuMA core and all supporting infrastructure when the QCC
device is initialized. In particular, the Device Manager launches three pro-
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cesses on start to achieve this.

First, a process is launched to lock and monitor the PLL, a hardware unit
available in the Xilinx SoC and responsible for generating the internally used
clocks, from the external reference clock distributed to all hardware devices.

Then, a ZeroMQ-based high-performance asynchronous communication sys-
tem is launched to provide communication capability between all CORE and
IO boards available in QCC. Such a scheme allows maintaining a single inter-
face point to QCC, while providing the ability to interface to all of the boards
that make up the device individually. This is done by passing SCPI commands
received by the CORE SoC through to the IO SoC, where they are handled
by a similar command interpreter. Furthermore, this intra-QCC communica-
tion system will be critical to QCCs ability to automatically configure itself on
initialization. The internal structure of QCC device modules is represented in
Figure 4.9, highlighting all inter-board communication.

Figure 4.9: Internal structure of QCC device modules

Finally, a configuration process is launched. This process will take care to
automatically configure the SERDES infrastructure according to the function-
ality of each IO board. For example, an IO board responsible for interfac-
ing with a UHFQC should have bi-directional serial communication with the
CORE, whereas for a IO board interfacing with a AWG, only a uni-directional
serial signal is required. Furthermore, a algorithm is launched to configure
the SERDES delay steps, used to avoid HOLD/SETUP violations in the input
registers to the serial lanes. The algorithm starts after all boards communicate
to indicate that the initial configuration of the PLL and SERDES directions as
been successfully concluded, since only then can the delay configuration start.
It works by sequentially going through the 32 delay steps of 39 pico-seconds
available, each time performing a count of pulses successfully received from
the other side, to determine if synchronization was successful. Due to the
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aforementioned potential timing violations on the input registers, a set of de-
lay values will lead to improper synchronization. The algorithm will obtain
these through access to QuMA’s registers and determine the best delay value
to use.

Python Driver

Having completed the development of all control software running inside of
QCC, attention was focused on the software required to communicate and con-
trol QCC from a host computer. This was done by creating a Python driver
class responsible for implementing a SCPI client, capable of interfacing with
the SCPI server available in the QCC.

In addition to completing the high-level interface to the QCC device, the
Python driver is also responsible for obtaining the QISA program and the con-
tents of the control store from the OpenQL compiler, required to properly con-
figure QCC for a specific experiment. Furthermore, this driver completes the
assembling of the QISA program to be uploaded. It should again be noted
that the Control Store holds the microcode, which determines how each oper-
ation is translated into device events, and that the QISA program contains the
compiled program, expressed in instructions understood by QuMA.

Having concluded the description of the Control Software Architecture of
QCC, it is now possible to understand the full flow of control operations re-
quired to run an experiment through the QuTech stack. This flow is schemati-
cally represented in Figure 4.10.

Figure 4.10: Internal structure of QCC device modules
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4.5 Summary

The following is a detailed description of the main modifications performed
to the QuMA microarchitecture, the Central Controller device and the control
software stack in order to support the control of 17 qubits. It is the combination
of these three systems that make the QuTech Central Controller.

• Development of the Linux Kernel Drivers used to create the interface
between the QuMA core and the Hard Processing System;

• Development of the Control Software responsible for implementing the
external interface of QCC and for managing the low-level configuration
of the device parameters.

• Added serialization infrastructure to QuMA core for the implementation
of an inter-board serial communication protocol;

• Design of IO Core responsible for the de-serialization and tailoring of
serial signals received from the QuMA Core;

• Expansion of the control and datapaths on the QuMA Core for operation
of up to 17 qubits;

• Reformatting of SMIT instruction for expansion of indirect addressing
mechanism to 17 qubits, including modifications to the assembler, the
quantum instruction decode unit and the qubit mask management units;

• Expansion of Timing Control Unit to additional UHFQC and AWG de-
vices used, respectively, for measurement and flux control;

• Removal of vendor specific IP and constructs and migration of project
design files;

• Rebuild of Hard Processing System and AXI bus interconnect on new
hardware platform;



52 CHAPTER 4. QUTECH CENTRAL CONTROLLER



5
Testing and verification

This chapter presents a compilation of all the verification and testing routines
performed for the QuTech Central Controller.

In the Verification section, focus will be given to the tests performed at several
stages of the development of QCC, either to certify viability of a particular de-
sign solution, or to verify correct functionality of the implemented sub-system.
Therefore, the chapter will cover tests performed after the migration to a differ-
ent platform, to ensure that functionality was maintained, and then follow each
of the design steps of the development of QCC, to ensure that the behavior
expected from the system was observed. In particular, the correct operation of
the expanded QuMA core will be tested, followed by testing of the SERDES
infrastructure and of the drivers and control software developed for the system.

The Testing section will instead describe the tests performed on the system
after development was completed, so to determine whether or not functionality
was developed as per requirement. Therefore, tests will be, for the first time,
performed on the final hardware platform of QCC, and will see this system
integrated in the quantum control rack currently used in the DiCarlo laboratory
at QuTech to perform quantum computing experiments.

5.1 Verification

Platform Migration

Having completed the migration of all design files to the Xilinx Design Envi-
ronment, as well as the re-generation of the Processing System and all vendor-
specific IP, attention was focused on the verification of these changes. Due to
the unavailability of behavioral models for the Processing System, it was im-
possible to simulate this modification. However, attention had been previously

53
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given to ensure the compatibility of the design, which was possible given the
use of a standardized, AXI-based communication scheme between the Hard
Processing System and QuMA.

However, it was possible to test the regenerated vendor-specific IP, consisting
mainly of First-in first-out memory elements. A behavioral model of these
memory elements was used to integrate them into the VHDL simulation en-
vironment used to verify correct operation of the QuMA core. This simula-
tion environment consists of the behavioral models describing all the units that
QuMA is composed of, in addition to the set of scripts and signal drivers re-
quired to perform the simulation, and is powered by a QuestaSim simulation
engine [22].

In particular, this environment allows the simulation of all aspects related to
the operation of QuMA. From the system reset operation representing its start,
to the uploading of the control store and instruction memory, to the genera-
tion of a sequenced set of codewords to send to the devices making up the
analog/digital interface. Furthermore, it is possible to simulate feedback in-
structions through the inclusion of behavioral models emulating the operation
of the measurement equipment, therefore allowing the simulation of complex
functionality like fast-conditional execution and memory writing and reading.

To verify correct operation of the system, a synthetic quantum program was
written to include the triggering of operations on all quits at consecutive times.
Such a quantum program would guarantee the need to use all memory elements
for correct operation, therefore allowing the test of all these through the com-
parison of the output from the timing control unit, to the expected sequence of
gates.

Upon initial testing, a problem was detected with the system since the exe-
cution of such a program led to the loss of the initially triggered codewords.
After careful examination, the problem was individuated to the FIFO memory
elements composing the timing control unit. Indeed, a difference in reset be-
havior from these memory elements to the ones previously used in the Altera
platform, lead to the loss of data first transmitted to them. This erroneous be-
havior is observed in the simulation result presented in Figure 5.1, where all
the internal signals of the FIFO used for time-stamps are displayed.

In particular, attention should be focused on the din, wr en and wr data count

buses, used respectively for supplying the data to be stored, providing the valid
signal for the storing of data present on the din bus and counting the number
of time-stamps stored. It should be observed that, between 11.4 us and 11.5 ns
of simulation, six time-stamps are supplied (in bus din) for storage while the
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Figure 5.1: Evidence of erroneous reset behaviour observed for FIFOs regenerated
for Xilinx platform

wr en signal is asserted high. However, only two of those six time-stamps are
actually stored in the FIFO, as indicated in the wr data count bus at the 11.5
ns mark. This lead to the loss of the initial 4 time-stamps and explains the loss
of several of the initially triggered codewords, since time-stamps are used to
trigger operations at a precise time.

After close analysis of the operation of the FIFO memory elements, it was
determined that this loss of information was explained by the need to wait for
a set number of cycles after reset, before proper operation could be ensured.
Indeed, the memory elements generated for the Xilinx platform assumed a
period after reset where its use was not allowed, and had done so without
assertion of the full flag, commonly used to signal incapability to store more
information. Therefore, the unit responsible for managing the timing control
memory elements was unable to stall the pipeline until storing on the FIFO
was allowed, and data was lost.

To correct this error, the memory elements were regenerated with an updated
reset behavior. After compilation of the new design, simulation with the same
synthetic program now led to correct operation, as can be observed in Figure
5.2. Indeed, the storing of the first 6 time-stamps is now successful, with
the wr data count bus now reading 6 fully written values. Furthermore, all
the outputs of the timing control unit displayed the expected set of sequenced
codewords, guaranteeing correct operation of the entire pipeline.

This set of tests allowed verification of the correct operation of the QuMA core
after migration of platforms and led to the task of expanding the QuMA core
to support control of 17 quits, work which was detailed in Section 4.2.
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Figure 5.2: Reset behaviour obtained for FIFOs after correction

QuMA Core Expansion

To verify correct operation of the system after expansion of the QuMA core
to control 17 qubits, a synthetic quantum program was written to include the
triggering of operations on all quits at consecutive times. This was done to
guarantee that maximum stress was placed on the instruction issue unit, con-
sisting of the instruction fetch and decodes units. In this way, it would be
possible to determine if the measures taken to address the instruction issue rate
problem (concretely VLIW architecture, efficient timing specification and in-
direct qubit addressing) were sufficient for the control of 17 qubits by simply
comparing the outputs of the timing control unit to the expected sequenced set
of gates.

In particular, attention will be given to the VSM control signals in Figure 5.3,
for simplicity in describing the observed behaviour, even though all output
signals were individually checked.

The first two signals in Figure 5.3 represent the clock driving the output of the
timing control unit and the instruction currently in the Instruction Decode Unit
of QuMA, respectively. For reference, it should be noted that the output of the
Timing Control Unit is driven on cycles of 20 ns due to the requirements of
the digital protocol used to communicate with the analog/digital interface. The
three signals after those represent the status of the pipeline (valid instruction,
invalid instruction or stall of the pipeline), the digital representation of the cur-
rent instruction being decoded and the disassembled instruction, respectively.

Therefore, the program consists of the triggering of both microwave AWGs
and their respective channels on the VSM, as can be seen in signal Current-

Disas, which represents the instructions being processed, in a human-readable
manner. In particular, CW 01 represents a microwave operation, and s0 is the
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Figure 5.3: Sequenced gates for VSM control program simulation on the expanded
QuMA core

target register holding the qubit addresses to which the operations will be ap-
plied.

Since operations are to be applied on all qubits, it is expected that all 16 chan-
nels of the VSM should switch on when an operation is triggered. Indeed, that
is what we observe with the VsmTrigger signal switching on a cycle after the
first instruction is received (time marked in yellow in Figure 5.3). It should be
noted that the latency between the reception of an instruction and the switching
of the output signal is due to these being governed by different stages of the
pipeline.

In order to correctly observe the disassembled instructions for the sequencing
of quantum operations, only a small time windows from the simulation was
taken. However, simulation over several milliseconds proved the correct oper-
ation of the entire pipeline, by displaying a digital set of pulses consistent with
the consecutive set of operations triggered by our quantum program.

Having verified the modification done to the QuMA core to extend its con-
trol to 17 qubits, attention was shifted to the verification of the SERDES in-
frastructure, used to bridge the CORE and IO boards together, to allow the
implementation of the full QCC system architecture.

Serial Communication

In order to test the serializer/de-serializer infrastructure, a simulation of the
communication between two of these modules was first simulated. In Figure
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5.4 we can see the result of this simulation.

Figure 5.4: Simulation of SERDES synchronization protocol.

The first set of signals represent the three clocks used by the SERDES. Sig-
nal i ref clk is the 50 MHz clock signal used to power the entire timing con-
trol unit; i par clk is the 100 MHz signal used to sample the data signals and
i ser clk is a 400 MHz signal used to drive the Double Data Rate units, re-
sponsible for creating the 800 MHz signal used to connect the CORE and IO
boards.

The second set of signals corresponds to the SERDES configuration sig-
nals. These include i dir which encodes the direction (input or output) of the
SERDES, i dly which represents the added delay (for calibration of the serial
signals) and i sync threshold, the threshold value used to assert proper syn-
chronization of serial delays. These are the signals affected upon by the control
software to configure the SERDES infrastructure. Additionally, the second set
of signals include the parallel data ( par data), i.e. the information to be seri-
alized, the de-serialized information recovered on the output side (o par data)
and a bit to assert when correct synchronization was found (o sync done).

Finally, the third set of signals represents the 4 ((0) to (3)) serial lanes used
for communication between serializers and de-serializers. The most important
for the purpose of this test are signals in bus (0) and (2), used for sending a
train of pulses from the serializers to the de-serializers, in order to allow the
configuration of the calibration delays.

Indeed, signal s sync cnt represents the count of pulses properly received by
the de-serializer, which is compared against the threshold count and used to
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indicate when correct synchronization between the SERDES was achieved.

Therefore, a simple test were no input is supplied to the SERDES, allows
the visualization of this synchronization protocol, with an increasing count
of pulses received in signal s sync count proving the correct functioning of
the serializers synchronization algorithm. In Figure 5.4, the assertion of signal
s sync count is not seen as the threshold used was too high to display the entire
count on a single image.

Making use of Chipscope, a tool which allows us to probe the signals in an
FPGA, we can now see in actual synthesized hardware the mechanism for the
serialization of information working. This is shown in Figure 5.5.

Figure 5.5: Chipscope image represents signals received from IO in experiment and
additional configuration signals

It should be noted that the algorithm used by the driver to synchronize the se-
rial links asserted 15 (ox0f) as the best value for the serial line delay, as can
be seen in signal inst CC IO/SerializerDelayValue. This lead to the count of
pulse trains represented in signals inst CC IO/inst qcc ... iserdes rvrsd[0] 4

and inst CC IO/inst qcc ... iserdes rvrsd[2] 4. Since synchronization was
correct, this count surpassed the threshold value and lead to both SyncDone bits
being asserted high. Signal inst CC IO/inst qcc ... iserdes rvrsd[2] 3 should
be ignored, as it was only used for proper triggering of Chipscope.

Running the synthetic program described in the previous section, which should
consecutively trigger all 16 bits of the VSM, we can use Chipscope again to
observe that all 16 of these signals are properly received at the IO board, as
shown in Figure 5.6. This demonstrates correct operation of SERDES infras-
tructure.

Control Software and Drivers

To conclude this section on the verification of QCC, focus will be shifted to
the test of the control software and drivers used to interface with the device.
To achieve this, experiments will be run from a computer, connecting to QCC
and executing on the analog/digital interface. To ensure that correct results are
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Figure 5.6: Chipscope image from VSM IO board showing proper reception and
alignment of all signals generated from All-VSM program

obtained, the analog lines will be monitored using an oscilloscope.

In particular, staircase experiments will be used since they provide a simple
way to visually verify the results. A staircase experiment consists of repeatedly
triggering consecutive codewords, each associated to a pulse of decreasing (or
increasing) amplitude. The results should therefore look similar to a staircase.

A Python script was written to connect to QCC from a measurement computer
and assemble such a QISA program to run. First, a program triggering con-
secutive codewords on the AWG system was written. Having connected an
oscilloscope to the analog channels of this device, the waves shown in Figure
5.7 were observed.

Figure 5.7: Microwave drive from a staircase experiment running on QCC and a ZI
AWG-8
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This proved for the first time that the drivers were capable of interfacing with
and controlling the QCC and that the QCC itself was capable of triggering the
AWGs at precise times.

To achieve a similar result in controlling the UHFQCs, used to measure qubit,
a program was written to trigger consecutive measurements of different qubits.
Since a UHFQC works by playing a measurement wave through a feedline and
reading back the result, associating different qubits to measurement waves of
increasing amplitudes should lead to a similar staircase being observed on the
feedlines. Indeed, upon connecting the scope to these feedlines, the staircase
shown in Figure 5.8 was observed.

Figure 5.8: Readout pulses from a staircase experiment running on QCC and a ZI
UHFQC

5.2 Testing

After verifying basic functionality of the system, the next step was to build the
final hardware platform implementing the QuTech Central Controller.

This consisted of 9 Xilinx Zynq-7000 SoC platforms to implement the IO
boards, a single similar SoC board implementing the CORE, and a backplane
implementing the serial communication system, in addition to an Ethernet
switch, which guaranteed TCP/IP communication between all boards.

An image of the final system can be seen in Figures 5.9 and 5.10, with the IO
boards occupying the top half of the second image and the single CORE occu-
pying the bottom. Additionally, it is possible to see the (detached) cooling strip
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and the power supply unit (bottom left), responsible for maintaining thermals
and supplying power to all systems.

Figure 5.9: Front view of the enclosure of QCC (Vlothuizen W.J., QuTech)

The disposition of all IO boards side-by-side on the back of the enclosure
was done so to achieve high density of QCC interfaces to the analog/digital
instrumentation. Each of the large vertical connectors presented in Figure 5.11
provide the digital interface running at 50 MHz required to interface with each
of the UHFQCs and AWGs.

Figure 5.10: Top view of the enclosure of QCC, complete with all cooling, power,
ethernet, core and io boards (Vlothuizen W.J., QuTech)

Finally, to allow running quantum information processing experiments on su-
perconducting qubits, the QCC system was integrated in the full control rack
used within QuTech, which is depicted in Figure 5.12. This rack is composed
(top to bottom) of the host computer, the radio-frequency sources used to gen-
erate clocks and signals for modulation, the AWGs, a set of mixers used to
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Figure 5.11: Backside view of the enclosure of QCC, highlighting all of the I/O
available for interfacing with the analog instrumentation (Vlothuizen W.J., QuTech)

generate control signals, the Central Controller itself, the Vector Switch Ma-
trix used to route signals, the UHFQCs and, finally, a set of amplifiers used to
drive final signals to the qubits.

Having assembled the full system required for quantum control, the final step
was to perform experiments controlling actual qubits, to test the QCC under
normal working conditions. Attention was focused on four experiments, aimed
at highlighting all possible control scenarios, in an attempt to show any poten-
tial bugs or shortcoming of the architecture under test.

To test calibration routines, Qubit Spectroscopy experiments were first run.
These were followed by Randomized Benchmarking experiments, aimed at
showing single-qubit control capability. Then, Simultaneous AllXY experi-
ments were used to prove multi-qubit control. Finally, Chevron experiments
allowed proof of two-qubit control capability. A description of these experi-
ments and their results will be the subject of the next sections.

It should be noted that all experiments were performed on a Surface-7 quantum
processor since no Surface-17 quantum chips were available for testing at the
time of writing. However, this allowed the use of CC-Light, the control archi-
tecture developed for Surface-7, to create a baseline of performance expected
from the quantum processor, allowing confirmation of the results obtained with
QCC.

Indeed, all results presented in the following sections were validated, prov-
ing correct implementation of the extended control microarchitecture and the
capacity of QCC to control quantum computing experiments.
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Figure 5.12: Complete quantum control system used to perform quantum computing
experiments (J.C. de Sterke, QuTech, 2018)
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Calibration Experiments

Before any experiment with qubits is possible, it is necessary to determine the
frequencies at which each of the qubits in the quantum processor is operat-
ing. This is part of the calibration routines that need to be performed before a
quantum computer is ready for use.

The aim of this first experiment was to prove that QCC could be used to per-
form these routines. In particular, for the calibration of qubit frequencies, spec-
troscopy experiments were used, in which the QCC generates a set of micro-
wave pulses followed by a measurement. By changing the frequency with
which each of these pulses is modulated, it is possible to determine at which
frequency the qubit sits by observing the measurement results.

The QASM file used to program the QCC to perform this experiment is pre-
sented in Figure 5.13.

Figure 5.13: QASM program used to perform spectroscopy experiments.

After running this experiment on a particular qubit, a graph such as the one
presented in Figure 5.14 was plotted. It can clearly be seen that the qubit was
found at 5.882 GHz, a value consistent with what was obtained with the CC-
Light for the same qubit.

Single-qubit Control

Having concluded the calibration experiments, attention was focused on Ran-
domized Benchmarking experiments. Randomized Benchmarking was chosen
as an experiment that is capable of demonstration single-qubit control. In par-
ticular, this experiment is made up of 3000 rounds of different arrangements
of operations, each composed of sequences of different gates. The number of
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Figure 5.14: Plotted results from the qubit spectroscopy experiment.

operations in these sequences varies from 2 to 2000. Furthermore, each of the
groups of operations is especially crafted to add to identity and should have no
effect on the resulting state of the qubit. Therefore, randomized benchmarking
is commonly used to assess the fidelity of single-qubit operations.

The QASM file used to program the QCC to perform this experiment is pre-
sented in Figure 5.15.

Figure 5.15: QASM program used to perform Randomized Benchmarking experi-
ment.

The results from running this experiment are presented in Figure 5.16 and
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show a single qubit fidelity of 99.5%, a result that is not representative of
the capability of the quantum processor but that is consistent with the value
obtained by CC-Light. Successful completion of this experiment demonstrated
QCC’s capability to implement single-qubit control and readout.

Figure 5.16: Plotted results from the randomized benchmarking experiment.

Multi-qubit Control

Having demonstrated single-qubit control, an AllXY experiment was used to
prove the capability of QCC to implement multiple qubit control. In particular,
the AllXY experiment consists of applying pairs of gates to qubits in such a
way that the expected measurement outcomes produce a characteristic stair-
case pattern. This is done using combinations of gates from the Pauli set, in
addition to the identity gate.

The QASM file used to program the QCC to perform this experiment is pre-
sented in Figure 5.17.

The results of the experiment are plotted in Figure 5.18, where the top image
represents the results from the first qubit, and the bottom image the results
from the second qubit being controlled in parallel. In the first image, a line is
represented in orange where results were expected to fall, showing a deviation
from the expected results. However, since similar results were obtained for
CC-Light, the observed deviation was attributed to problems unrelated to the
QCC and likely associated to the calibration of the analog equipment used to
interface with qubits. Therefore, this experiment successfully demonstrated
the capability of QCC to drive multiple qubits.
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Figure 5.17: QASM program used to perform AllXY experiment.

Figure 5.18: Plotted results from the AllXY experiment.
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Two-qubit Control

Finally, a Chevron experiment was used to prove the capability of QCC to
implement two-qubit control. The specifics of this experiment are beyond
the scope of this thesis but its purpose is to perform flux-controlled exci-
tation swapping. Therefore, it makes use of two-qubit operations, allowing
the demonstration of two-qubit control using QCC. Furthermore, it should be
noted that a chevron pattern is expected from each of the qubits targeted in this
experiment and that the excited state probabilities of the two should be inverted
in these diagrams.

The QASM file used to program the QCC to perform this experiment is pre-
sented in Figure 5.17.

Figure 5.19: QASM program used to perform Chevron experiment.

The results of this experiment are plotted in Figures 5.20 and 5.21, and show
the expected patterns out of both qubits used in this experiment. Therefore,
successful completion of this experiment demonstrated QCC’s capability to
implement two-qubit control, leading to the successful completion of all tests
performed to QCC.
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Figure 5.20: Plotted results from the Chevron experiment on the first qubit.

Figure 5.21: Plotted results from the Chevron experiment on the second qubit.



6
Conclusion and Outlook

This chapter presents a summary of the work developed during this thesis, in
addition to an analysis of the results and contributions made with this work.
Furthermore, close examination of the limitations of the system developed
during this thesis and its implications on the future of quantum control will
be provided. The chapter will conclude with a set of predictions and recom-
mendations in an outlook onto the future of the field of quantum control.

6.1 Conclusion

The objective of this thesis was the design and development of a control ar-
chitecture based on the QuMA model and capable of controlling a Surface-17
quantum processor.

To achieve this, the QuMA control microarchitecture was first expanded to al-
low the control of 17 qubits. This lead to the redesign of the mechanisms used
to implement indirect qubit addressing, the extension of the Timing Control

Unit as well as the expansion of the datapath and control.

Next, the design was migrated to a new hardware platform, capable of sup-
porting the additional interfaces required for the Surface-17 control scheme.
Furthermore, the system architecture of a central controller was re-imagined
to include several FPGA packages implementing a semi-distributed architec-
ture. In this platform, high-speed serial communication links between these
packages were used to overcome the limitation in I/O capability associated
with the initial monolithic design.

Then, a control software architecture was created to allow automatic low-level
configuration of the developed design and to support external interfacing and
control, allowing the use of this device as part of the existing control systems
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employed for quantum computing experiments.

Finally, the aforementioned hardware and software designs were implemented
in a device called the QuTech Central Controller and extensively tested in
quantum information processing experiments with superconducting qubits.
Successful completion of calibration routines, in addition to demonstrations
of single-qubit, two-qubit and multi-qubit control in these experiments consti-
tuted sufficient proof of correct operation of the device.

Overall, this thesis successfully demonstrated that the QuMA control architec-
ture could be expanded to control a Surface-17 quantum processor and pro-
vided a first step in incorporating the new control architecture into the systems
used to conduct superconducting quantum computing experiments.

6.2 Outlook

The research presented in this thesis opens a number of research lines that
should be explored in the future. These are motivated both by the challenges
presented by the design developed in this thesis and by the requirements en-
visioned for a next-generation quantum control system, which should foment
new developments in the field of quantum computing. In this section, I will
draw on the lessons learned while developing this thesis to provide a set of
recommendations on the research lines that should be addressed in the future.

A big part of the design of QCC has concerned overcoming the limitations
presented by a centralized architecture. Whether it be the instruction issue rate
problem, addressed with techniques such as VLIW, or the input/output scaling
challenge, addressed through the serialization of signals in a semi-distributed
system architecture, there are several ways in which a centralized architecture
has fundamentally limited the scalability of the control system. For continued
developments on the field of quantum computing, it is important that research
and development efforts are focused on distributed architectures, as a means
to more fundamentally address the issue of scaling control in the future. How-
ever, doing so will raise several challenges, both at the control system level,
with the need for truly scalable and high-performance communication and syn-
chronization, and at the compiler level, with the need to compile for multiple
targets. The solution to these challenges will define how quantum control is ex-
erted and fundamentally determine what will be achievable with these systems
in the future.

Another important step to guarantee that the field of quantum control contin-
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ues to evolve to support cutting edge research on quantum computing is the
development of a fully-integrated and modular control system. Full integra-
tion of all instrumentation required for quantum control, from the sequence
processor of quantum operations, to the generation of analog waveforms and
the amplification and modulation devices required for tailoring control pulses
to individual qubits, will allow the creation of the first standardized unit cell
for quantum control. Achieving this will greatly simplify the schemes cur-
rently used for quantum control and address concerns on the maintainability
and reliability of these systems. Furthermore, full integration of these systems
will help reduce their footprint and cost, providing a more scalable scheme to
control ever greater numbers of qubits.

An outlook into the future of quantum control would not be complete without a
reference to Quantum Error Correction. QEC encompasses several techniques
employed to mitigate the fragility of coherent quantum systems [23], as a way
to allow the development of large scale quantum computers. However, it has
long been understood that for large quantum systems these techniques are not
feasible for software-managed error correction schemes [24]. Therefore, it is
imperative to develop hardware-managed error correction schemes to tackle
this challenge. Any future control microarchitecture should no doubt support
these.
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