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a b s t r a c t

Deep neural networks (DNNs) are becoming the core components of many applications
running on edge devices, especially for real time image-based analysis. Increasingly,
multi-faced knowledge is extracted by executing multiple DNNs inference models, e.g.,
identifying objects, faces, and genders from images. It is of paramount importance to
guarantee low response times of such multi-DNN executions as it affects not only users
quality of experience but also safety. The challenge, largely unaddressed by the state
of the art, is how to overcome the memory limitation of edge devices without altering
the DNN models. In this paper, we design and implement Masa, a responsive memory-
aware multi-DNN execution and scheduling framework, which requires no modification
of DNN models. The aim of Masa is to consistently ensure the average response time
when deterministically and stochastically executing multiple DNN-based image analyses.
The enabling features of Masa are (i) modeling inter- and intra-network dependency, (ii)
leveraging complimentary memory usage of each layer, and (iii) exploring the context
dependency of DNNs. We verify the correctness and scheduling optimality via mixed
integer programming. We extensively evaluate two versions of Masa, context-oblivious
and context-aware, on three configurations of Raspberry Pi and a large set of popular
DNN models triggered by different generation patterns of images. Our evaluation results
show that Masa can achieve lower average response times by up to 90% on devices
with small memory, i.e., 512 MB to 1 GB, compared to the state of the art multi-DNN
scheduling solutions.
©2022 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Edge devices, such as cameras, wearables, and sensors, are becoming an integral part of our daily life and increasingly
raw on deep neural networks (DNNs) for sophisticated real-time image-based analysis. Instagram [1] enables real-time
nowledge extraction upon captures of images by running the inference of convolutional neural networks (CNNs) – one

of the most widely adopted type of DNN for image processing – directly on users’ devices [2,3]. Autonomous vehicles and
surveillance systems are other examples that need to execute DNN inferences to recognize the surroundings and facilitate
on-line decision making. It is imperative to ensure the responsiveness of DNN inference, i.e., low response time, even on
edge devices for the quality of experience as well as safety.

To extract the numerous information embedded in a single image, inference with multiple different DNNs needs to
be executed — greatly increasing the computational overhead and risk of unresponsiveness. Let us take as an example
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dentifying the number of females in an image. To complete this inference task [4], a first DNN model (i.e. FaceNet)
dentifies the number and location of faces. Then, a second DNN model (i.e. GenderNet) classifies faces into male and
emale. If an image does not contain any faces, GenderNet can be skipped. The execution flow of multiple DNNs naturally
epends on the analysis and the images. We term multi-DNN inference job the analysis of the same image processed by
set of DNN models. In addition to the number of DNN models within a job, the performance of DNN inference highly
epends on how images are generated, e.g., periodically or stochastically. More predictable the arrival patterns and sizes
f inference jobs, more straightforward to manage the response time [5]. Big inference jobs composed of a high number of
arge DNN models can easily increase the response time of small inference jobs that are unfortunately scheduled behind.

In contrast to desktop and server-grade systems, edge devices are known to be constrained in resources, both CPU
nd memory. At the same time, the high accuracy of complex DNNs comes at the cost of intensive memory footprint
nd computation cost. Typical CNN models [6] can take up hundreds of MB memory to store tens of millions model
arameters. Executing the convolution layers of CNNs is CPU intensive, whereas computing the fully-connected layers is
ore memory intensive due to the high number of model weights. It is no mean feat to run multi-DNN inference jobs on
dge devices.
To turn DNNs edge inference from infeasible to reality, the related studies take two orthogonal directions: (i)

inimizing the resource demands of DNNs, and (ii) exploring complementary DNNs resource patterns. The former [7,8]
im to compress and prune models for individual networks — achieving a calculable trade-off with accuracy. However,
he main focus is on single-DNN and provides no additional support for multi-DNN. To execute multi-DNN inference jobs,
xisting DNN frameworks, e.g., PyTorch [9], and Caffe [10], only execute one model at a time, sequentially completing
ll DNNs. The later take a step beyond single-DNN by considering complementary resource usages [7] or intra-network
ependencies [8] without altering the DNN structure and degrading model accuracy. They shed light on how multi-DNN
nferences can be accelerated on devices with narrow resources. However, more realistic workloads, e.g., images are
enerated stochastically, and dynamic multi-DNNs execution flows, are neglected.
In this paper, we design Masa, a highly responsive and memory-aware multi-DNN execution framework. It is an on-

evice middleware. We aim to achieve low average response times for extracting multiple information from captured
mages on edge devices. To efficiently multiplex the limited CPU and memory resources across DNN models, Masa
niquely considers inter- and intra-DNN dependency. For intra-DNN dependency, we model the resource demands in per
ayer granularity. Masa opportunistically schedules the loading and execution of each layer as to leverage complimentary
esource usages of different layers, i.e., interleaving the loading and execution of convolution layers (CPU intensive) and
ully-connected layers (memory intensive). To handle the challenging stochastic workloads, Masa greedily executes DNN
ayers by the principle of smallest memory first followed by their generation order, avoiding the performance penalty
f memory swap. For inter-DNN dependency, we explicitly consider the image context and factor in its impact in the
xecution flow. For instance, the execution of GenderNet in the previous example of identifying females in an image hinges
n the inference outcome of FaceNet. Masa can conservatively load and execute the dependent DNN only upon receiving
he positive signal from its predecessor. This is the context-aware Masa, which can significantly save resources compared
o the context-oblivious Masa [11]. We first analytically show that memory-aware scheduling is probably NP-hard, and
hen evaluate the optimality of the proposed scheduling heuristics via mixed integer programming.

Masa has two key components: an offline network preparator and an online scheduler. The network preparator
plits each DNN by layers and estimates each layer peak memory demand. The scheduler handles layer loading and
xecution of all DNNs by dynamically checking the inter-network dependency, available memory, and estimated memory
emands. We implement Masa on top of Caffe. We extensively evaluate Masa on a large set of multi-DNN inference
cenarios and a representative set of hardware, namely Raspberry Pi And VM configurations. Our evaluation shows that
he memory-aware features of Masa significantly reduces the response times compared to the state of the art multi-DNN
engines.

The contributions of Masa are multifold. First of all, Masa is a first of its kind memory-aware and context-aware
multi-DNN execution middleware on edge devices (Section 4). Second, the scheduler of Masa can simultaneously
consider complimentary resource patterns of DNN layers and handle inter-DNN and intra-DNN dependencies when
facing stochastically and deterministically generated images (Section 4.3). Third, Masa is extensively proven to minimize
he average response times of multi-DNN inferences for real-world applications executed on resource-constrained edge
evices (Section 5). Fourth, Masa is analytically validated via mixed-integer programming (Section 3), showing close to
ptimal performance with the advantage of scalability and agility required by real world problems (Section 5.6).

. Preliminary and motivation

CNNs are one of the main types of DNNs for image-based inference. They combine convolution and pooling layers
or feature extraction and complementary fully-connected layers for classification [6]. Fig. 1 presents an exemplary
rchitecture. CNNs are inspired by the organization of the visual cortex. Individual neurons answer to stimuli only in
restricted region of the visual field named receptive field. Multiple such fields overlap to cover the entire visual area.
Convolutional layers divide the image in receptive fields from which they extract features via convolution with a filter

atrix shared across all receptive fields. Initial layers capture low-level features, e.g., edges, color. Subsequent layers
ombine low-level characteristics into higher-level features which allow the network to gain a thorough understanding
2
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Fig. 1. Exemplary CNN architecture comprising convolutional, pooling and fully-connected layers. Flatten reshapes the input to a 1D array. Softmax
performs the final classification.

Fig. 2. Layer size distribution for different networks. The y-axis shows the density of the distribution. The more layers of a certain size are in a
model, the higher the density.

of the images. Pooling layers apply aggregation functions, e.g. max, on fields of convolved features. This reduces noise and
extracts dominant positional and rotational invariant features. Fully-connected layers learn non-linear combinations of
extracted high-level features and classify the image using the softmax. Different CNN architectures vary the number and
hyper-parameters of these layers. Fig. 2 depicts examples for different CNNs.

2.1. Memory differs for networks and their layers

The CNNs runtime memory requirements vary greatly. Traditionally DNNs are loaded in their entirety (bulk) before
being executed [9,10] favoring throughput over memory usage. Larger architectures with more and bigger layers require
more memory.Table 1 shows examples of peak memory demands for different CNNs using Caffe (see Section 5.1 for
details) ranging from 183 MB to 892 MB.

To lower peak memory requirements, especially to run large architectures on memory-constrained (edge) devices, we
modify Caffe to allow fine-grained control on when layers are loaded and executed. However, memory usage can still
significantly differ between layers. Fig. 3(a) summarizes the per-layer peak memory distribution for all CNNs in Table 1.
For each network and layer type the box shows the 25th, 50th, and 75th quartiles while the whiskers extend to the rest
of the distribution. We skip pooling layers since they have negligible memory costs. For most networks, fully-connected
layers have 10× higher memory usage. This is due to the high number of weights, which grows quadratically with the layer
sizes, i.e., equal to the product of fully-connected and its input layer sizes. Convolutional layers only define few weights
since the filter matrix is shared across all receptive fields. An exception is TinyYOLO using only convolutional layers. A
memory-aware scheduler needs to balance the memory usage with preloading layers for consistent performance.

2.2. Memory matters — intra-network

The memory demands of modern CNNs can easily exceed the available memory, especially on resource-constrained
edge devices, deteriorating inference responsiveness. Swapping allows OSs to execute programs with peak memory
requirements that exceeds the available physical RAM by offloading memory pages to the swap space on disk. When
a program accesses a memory page in the swap space a page fault is generated and the program execution is halted until
the memory page has been restored to RAM. Since disk is orders of magnitude slower than RAM, programs can incur
significant slowdowns based on the frequency of page faults. We demonstrate such an effect by bulk loading SceneNet as
an example. Fig. 3(b) shows its mean execution time split per layer type under diminishing available memory. We repeat
each experiment 10 times. Error bars report the standard deviation. The peak memory usage of SceneNet is 892 MB. If
the available memory is above this value, i.e., 2 GB and 1 GB RAM, execution time remains unaffected. Lower values of
3
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Fig. 3. Memory usage: differences and impact on inference times of single- and multi-DNN.

vailable memory results in longer execution time as swapping kicks in. The higher the overcommitted memory the more
age faults are generated, resulting in a higher execution speed penalty. With 256 MB RAM, the execution time is 7.2×
lower compared to 1 GB RAM. From the split layer statistics, one can see that the lower the memory requirements are
he lower the slowdown is because the probability of a page fault is lower. With 512 MB RAM, the fully-connected layers
re already affected significantly (2.5× slowdown), while the effect on convolution layers is (still) negligible. Overall this

underlines how memory-awareness matters for good performance.

2.3. Memory matters - inter-networks

Multi-DNN inference easily exacerbates the detrimental effects of insufficient memory. Each network increases
memory usage. Without coordination, this increases the probability of page faults which negatively affect execution time.
We exemplify this effect by running two instances of the same network (MemNet) to ease comparison. Each instance
is pinned to a separate core, i.e., the instances share memory but no compute resources. We first run the two instances
in parallel (without any coordination). Then we run one instance after the other (naive coordination). We repeat each
experiment 10 times. Fig. 3(c) compares the mean execution time of one MemNet instance across the two scenarios.
Error bars indicate the standard deviation. Each MemNet instance uses 880 MB peak memory. When memory is sufficient,
i.e., 2 GB RAM, both cases have similar execution times. The no-coordination case is slightly slower due to contention
on other resources, i.e., mainly loading the weights from disk. However with multiple networks and no-coordination
memory becomes a bottleneck already at 1 GB RAM. Here the no-coordination case is 7.8× slower. With 512 MB RAM,
oth cases are degraded but no-coordination is still 3.9× worse. Naive coordination does better but potentially misses
ut on complementary resource usages. This highlights the increased challenge and need for coordination when doing
ulti-DNN inference.

. Constraint programming model

The layer scheduling can be modeled as a combinatorial optimization problem with constraints, i.e. Constraint
atisfaction Problem [12]. Concretely, given the set of layer tasks T we want to find an ordering which minimizes the
akespan.

.1. Formal definition

Let T = {t1, t2, . . . , tn} be the set of n tasks to be scheduled across a set of k workers W = {w1, w2, . . . , wk}. As tasks
are not fixed to any worker, we need to keep track of task-worker-assignment relation with the variable X . Xt,w is 1 if
the task t is assigned to the worker w and 0 otherwise. Each task ti has a completion time c = si + pi given by a task
start time si plus a task processing time pi ≥ 0. The scheduler tries to decide the starting times S = si and assignments
X of all tasks such that the completion time of the last task is minimized. From this we define formally the optimization
problem as:

min
S,X

max
ti∈T

ci (1a)

s.t.
∑

Xti,w = 1, ∀ti ∈ T (1b)

w∈W

4
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o

Fig. 4. Example how the memory allocated by a loading task ti must be retained because the execution task tj expects it to be available.

[si, ci] ∩ [sj, cj] = ∅, ∀ti, tj ∈ T : i ̸= j, Xti,w = Xtj,w = 1, w ∈ W (1c)

ci ≤ sj, ∀ti, tj ∈ T : φ(tj, ti) = 1 (1d)

Mtasks(τl)+Mlocked(τl)≤ Msystem,∀τl (1e)

where:

Mdirect (τl) =
∑
ti∈T

ψ(τl, si, ci)mdirect
i (2)

Mlocked(τl) =
∑

ti,tj∈T :θ (tj,ti)=1

ψ(τl, si, cj)mlocked
j,i (3)

.2. Task relation constraints

We do not want to load or execute a layer multiple times. Constraint (1b) ensures that each task is assigned exactly
nce. An assigned task occupies a worker for a time interval specified by the tuple [si, ci]. Since each worker can handle

one task at a time, all intervals on the same worker must be non-overlapping. Constraint (1c) ensures this by requiring that
the intersection of all intervals belonging to a given worker is the empty set. Tasks can have dependencies on other tasks,
i.e. task ti must end before task ti starts if task tj depends on task ti. We model these dependencies via the dependency
relation function φ(ti, tj):

φ(tj, ti) =
{
1 if task tj depends on ti
0 otherwise

Constraint (1d) ensures that the schedule respects these dependencies.

3.3. Simple memory model

Tasks execute three types of actions: layer loading, executing, and unloading. Both layer loading and executing result
in an increase of memory usage. Loading parameters moves them from disk to memory. Likewise, layer execution stores
the intermediate variables and results in memory. On the contrary, layer unloading once completed frees up the memory.
We use a simple memory model which assigns to each task ti a direct memory usage of mdirect

i ≥ 0.
Every task uses memory to execute. We must guarantee that at any point in time the memory usage does not exceed

the available memory pool of the system Msystem. The total memory used at each point in time τ is given by sum of the
memory usages mi of all running tasks ti at time τ . To know if a task is running at time τ , Eq. (2) uses the indicator
function ψ(τ , si, ci):

ψ(τ , si, ci) =
{
1 si ≤ τ ≤ ci
0 otherwise.

To be able to efficiently solve the problem we further discretize the time as τl.

3.4. Locked memory model

Modeling the used memory at time τl with only the direct memory underestimates the memory requirements. Tasks
which belong to the same layer are highly coupled to each other, as can be seen in Fig. 4. The ordering between loading,
execution and unloading tasks related to a given layer exists because the execution task uses the memory allocated by
the loading task for the parameters from disk. Hence some tasks use not only their own memory but also parts of the
memory allocated by other tasks. θ (ti, tj) captures this relationship:

θ (tj, ti) =
{
1 if task tj requires access to memory allocated by task ti
0 otherwise

(4)

To incorporate the locked memory model into the our optimization problem we introduce a new interval parameter.
Given a task tj using memory allocated by ti the locked memory interval is defined by [si, cj], where si and cj are the start
and completion time of the interval where the memory shared between tasks t and t is in use. This memory usage of
i j

5
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Fig. 5. Architecture of Masa.

uch an interval is denoted by the locked memory mlocked
j,i locked from the ith task to the jth task. Eq. (3) computes the

otal locked memory Mlocked as the sum of the locked memory of all intervals active at time τ using again the indicator
function ψ .

Constraint (1e) completes the problem definition ensuring that at any time τl the total memory given by the sum of
direct and Mlocked is below the system limit. Using this problem we evaluate the optimality of Masa in Section 5.6.

. Masa

We design Masa, a memory-aware multi-DNN inference framework on edge devices. Masa can efficiently process
obs composed of images and DNNs and responsively provide requested analyses, e.g., inferring faces and genders. We
irst describe the architecture, core components, and implementation, then a detailed memory-aware scheduling problem
nalysis — demonstrating its hardness.

.1. Architecture overview

Masa is composed of an offline model preparator and an online scheduler as shown in Fig. 5. The offline inputs are
he candidate set of trained DNN models and the online inputs are the images and specific networks. Following the
bservations of 2.1, Masa models each layer of networks as a task in a dependency graph such that those tasks can be
cheduled with high flexibility. For instance, when a new inference task of high priority arrives, the conventional execution
f the entire networks can either complete the task or abort it — limited flexibility. In contrast, Masa can switch models
y temporarily suspending the execution of low priority tasks or run them concurrently due to such a finer-granularity
ask modeling.

Model Preparator. All trained DNNs are first processed offline by the model preparator, from model downloading,
plitting, to profiling. Each DNN model gets split by layer, and their corresponding weight parameters are stored in
eparate files. We then profile the active memory usage of each layer by offline execution of the DNNs. The details of
he profiling steps are provided in Section 4.2.

Scheduler. The scheduler is responsible for constructing two types of tasks for each network layer, namely loading
odel parameters from disk into memory and execution of such a layer. We abbreviate them as loading and execution

asks.
The scheduler constructs the dependency graph for tasks of each DNN and then distributes those tasks to free workers

ased on their dependency graph. Loading tasks have to be strictly executed prior to the execution tasks of the same layers.
ore importantly, the scheduler dynamically monitors the memory usages and estimated memory requirements for tasks
f all DNNs that are ready. The estimated memory requirement is obtained from the profiler. The detailed algorithms of
he scheduler are described in Section 4.3. When all tasks from a DNN are completed, the inference results are sent as a
esponse to the application.

.2. Memory profiler

In order to make memory-aware scheduling decisions, Masa needs accurate estimates of the memory requirements
er layer. An underestimation of the memory usage causes the scheduler to over commit its memory budget and thereby
ikely causing paging and slowdowns. An overestimation of the memory usage can lead to under utilization of precious
esources.

The memory profiler aims to precisely estimate the peak memory usage per layer which demands a finer granularity
han existing well-known off-the-shelf profilers. We hence resort to query the kernel via the /proc/self/statm
nterface to track the RAM usage of the process. Specifically, we execute each layer of a network in isolation by a single
orker during profiling. To track the memory usage from the beginning of a layer task to its end, we spawn a parallel
hread which continuously probes the consumed memory. The mean time between probing of the profiler thread is
.12 ± 5.5 µs, which is significantly lower than the execution time of the smallest layer considered in our evaluation.
able 1 lists the storage space of each network and peak run-time memory usage. One can see that the active memory

sage is multiple times higher than the storage space.

6
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Algorithm 1: Masa scheduling algorithm
1 Function ValidTask(task):
2 c ← BusyWorkersCount() // busy worker count
3 M ← GetFreeMemorySpace() // available memory
4 return c == 0 ∨ task.req_memory ≤ M

5 Function ScheduleTask(w, tasks):
6 for task ∈ tasks do
7 M ← GetFreeMemorySpace() // available memory
8 if ValidTask(task) then
9 M = M − task.req_memory

10 w.Assign(task)
11 return True
12 end
13 return False

14 Procedure Masa()
15 W ← IdleWorkers() // set of idle workers
16 for w ∈ W do
17 exec, load← ReadyTasks() // ready tasks by type
18 if not ScheduleTask(w, exec) then
19 ScheduleTask(w, load)
20 end
21 return

4.3. Scheduler

The scheduler sends the loading and execution tasks of all layers of DNNs that are requested for specific images to
orkers. It ensures that the memory occupancy is within the space limit. The scheduler follows two principles: (i) the task
ependency, i.e., loading task of layer j should be completed before starting its execution task, and (ii) a hybrid order of
ayer type and memory constraint within and across multiple DNNs. As such, Masa incorporates the memory dependency
at the inter- and intra-network levels.

The loading and execution tasks of all layers across all specified DNNs are kept sorted into two groups: the waiting and
ready group. Tasks start in the waiting group. Once all their dependencies are satisfied they are moved to the ready group.
Dependencies are resolved based on the dependencies graphs defined by the multi-DNN job and each DNN model. Tasks
in the ready group are sorted to optimize memory consumption in a greedy fashion. Alg. 1 summarizes the scheduler
pseudocode. Execution tasks are prioritized over loading tasks since they free up memory upon completion. Tasks are
sorted by increasing memory consumption. Function ReadyTasks() on line 17 lists tasks in ascending order of memory
usage. When one or more workers are available, tasks are pulled from the ready group in order, checking each time if
their estimated required memory exceeds the available memory. If not, the task is started via the function Assign() on
line 10; otherwise the next task is checked. In case none of the ready tasks fits the available memory and all workers are
idle, we forgo the memory constraint to allow one task to run to ensure progress (line 4). In this case we start the task
with the smallest required memory of the preferred type, i.e., execution before loading.

4.4. Implementation

We altered the Caffe framework to support layer-by-layer loading and execution of DNNs. This enables partial
execution of DNNs and optimization of (multi-DNN) inference on edge devices. We term this new framework EdgeCaffe.1

Pool of workers. Layer tasks are computed by workers. The scheduler assigns task to free workers from the pool. Once
completed the worker returns to the pool.

Scheduler. EdgeCaffe coordinates the work between the workers via the scheduler. The scheduler pulls multi-DNN
jobs from the arrival queue, queries the model information from the network storage, builds the necessary layer handling
tasks and resolves the dependency graph. This allows to assign tasks such that the correct network layers are present for
computation without violating any dependency. Completed jobs are pushed to the finished queue.

Network Storage. Trained DNNs are saved on disk in the Network Storage. A prepared network consists of split model
files containing one or a few layers each, as well as a model description. Other components can fetch a (subset of) model
from disk through the Network Storage API by providing the model name. Arrival and Finish Queue. The arrival queue
stores multi-DNN job requests to be processed by the scheduler. Once completed the reference results are pushed to the
finish queue ready to be consumed by the application(s).

1 https://github.com/bacox/edgecaffe.
7
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.5. Extension to context-aware network execution

Complex inference tasks require multiple networks to extract all the relevant information. These networks often
epend on each other. For example an object detection network first detects if there are any humans in an image before a
eparate network can detect human specific features like age or gender on the detected humans. This creates a cascading
elationship between networks within an inference task. With this relationship in mind, it does not make sense to run all
he networks on all the inputs all the time. In our example, the age and gender estimation networks can be skipped when
o humans are detected. Hence the execution of downstream network(s) is conditioned on the result of the upstream
etwork(s). We term this context-aware execution of networks.
The implementation of Masa in Section 4.4 does not consider any inter-network dependencies other than the fact

hat all the networks share the same memory resource. In order to support context-aware execution we modify Masa
o leverage the domain knowledge of the user to define the inter-network dependencies. The user describes how the
etworks depend on each other via two additional network properties. The first one specifies the upstream network(s)
nd the second the conditions that determine the necessity of execution. With this we can for example express that
aceNet depends on TinyYolo and that the output label of TinyYolo needs to have at least one human in order for the
xecution of FaceNet to be required. Masa uses the defined inter-network dependency to ensure that during scheduling
he start of the execution of TinyYolo precedes the start of the execution of FaceNet. Moreover, we added support to
bort networks that already started execution but are deemed unnecessary due to the output of an upstream network
uring run-time. Aborted networks are automatically transferred to Masa ‘s finished queue. Any downstream networks
re aborted as well due to the fact that the necessity of execution is a transitive property.
We consider two policies for context-aware network execution. The first, called CA-wait, naively waits for upstream

networks to finish before deciding if execution of any downstream network is necessary. The second, called CA-preempt
first starts all upstream networks but allows any downstream network to start in parallel if the resources allow for it. If
the outcome of any upstream network causes the execution of a downstream network to be unnecessary, this already
running downstream network is aborted. The intuition behind is that this speeds up the total execution in scenarios where
there is a high probability of a positive output of upstream networks since we avoid idle waiting of parallel threads. For
example with the inter-network relations described in Fig. 9(b), if a dataset has a high number of images with people,
CA-preempt is expected to be faster on average because we have to run all the networks with high probability.

5. Evaluation

This section presents our in-depth evaluation of Masa using real-world DNN applications on representative edge
devices.

5.1. Experimental setup

Edge Devices. We consider RaspberryPi (termed RPi) as representative edge devices because of its wide adaptability
and ease of programming. Specifically, we select three configurations of RPi: (i) RPi 3B+ equipped with Cortex-A53
(1.4 GHz) and 1 GB memory, (ii) RPi 4B with Cortex-A72 (1.5 GHz) and 2 GB memory, and (iii) RPi 4B with Cortex-A72
(1.5 GHz) and 4 GB memory. To emulate the scenario of multiple applications on edge devices, we only consider memory
sizes of 512 MB, 1 GB and 2 GB in the following evaluations. Each RPi is equipped with a SanDisk Extreme 64 GB microSD
card for storage.

Multi-DNN Jobs. We consider 9 types of DNNs (AgeNet, GenderNet, FaceNet, SoS, GoogleNet, TinyYOLO, EmotionNet,
MemNet, and SceneNet) to analyze images from the EDUB-Seg dataset [13,14]. We note that as the models are not altered,
e.g., compressed or pruned, the model accuracy is not impacted. Each network conducts various kinds of image analysis,
e.g., inferring age, gender, and salient objects, and differs in structure and size. Table 1 summarizes all considered networks
listing the disk space and active memory usage obtained from our profiler. EmotionNet is the largest network in terms of
absolute storage space, i.e., in the order of 380 MB. SceneNet is the largest network in terms of memory usage, i.e., in the
order of 890 MB. Networks listed in Table 1 are commonly used for multi-DNN inference applications like lifelogging [7].
We emulate scenarios of multi-DNN inference by executing multiple of such DNN models on periodic and stochastic
image arrivals. The specific composition and number of DNN models are given in each subsection. For periodical case,
single images arrive with a fixed interval. For stochastic case, both inter-arrival times and number of DNNs per image
follow normal and uniform distribution, respectively.

Performance Measures. We aim to optimize average response times for multi-DNN jobs. The response time is
measured from the moment the image arrives till the time all DNN models complete execution. For deterministic arrivals,
we also set deadlines which are imperative for safety critical systems. All values presented are averaged over 150 images
and more than 450 DNN inferences.

Comparison. We compare Masa against Bulk and DeepEye [7]. Bulk executes one DNN at a time by first loading
all layers at once and then executing them. DeepEye interleaves the execution and loading of convolution and fully-
connected layers. Different from Masa, DeepEye acts on the granularity of layer type, instead of individual layers and is
not aware of their memory usages by loading one type of network layers at once. We implement both approaches on
EdgeCaffe and use two worker threads.
8
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Table 1
Overview of used DNNs in the experimental setup.
Networka Inference Storage space (MB) Memory usage (MB) Layers

conv fc total

AgeNet [4] Age 44 183 3 3 19
GenderNet [4] Gender 44 186 3 3 19
FaceNet [15] Face 217 875 5 3 23
SoS [16] Saliency 218 875 5 3 21
GoogleNet [16] Saliency 23 404 22 2 151
TinyYOLO [17] Object 62 263 9 – 39
EmotionNet [18] Emotion 378 761 5 3 22
MemNet [19] Memorability 217 880 5 3 22
SceneNet [20] Object 221 892 5 3 23

aThe architecture for SoS, GoogleNet, TinyYOLO, EmotionNet and MemNet are AlexNet, GoogleNet, Darknet, VGG-S and Hybrid-CNN respectively.

Fig. 6. Average response times of deterministic image arrivals for Bulk, DeepEye and Masa.

.2. Deterministic image analysis

We consider three types of workload scenarios that analyze periodically images: (i) three small DNNs: AgeNet,
enderNet and TinyYOLO, (ii) three mixed DNNs both small and large: AgeNet, EmotionNet, and FaceNet, and (iii)
ifelogging scenario where 5 DNNs automatically annotate captured images: TinyYOLO, EmotionNet, MemNet, SceneNet,
nd SoS. The DNNs used in the lifelogging scenario are typical networks used to give useful annotations to images
aptured during a lifelogging activity [7]. The images arrive every 20, 200, 200 s for small, mixed and lifelogging scenarios,
espectively, and the analysis of multi-DNN needs to be completed before the arrival of the next job.

We summarize all three scenarios in Fig. 6. For small and mixed networks, Masa achieves the lowest response time,
railed by Bulk and DeepEye across all combinations of workload scenarios and RPi configurations, as shown in Figs. 6(a)
nd 6(b). The performance of DeepEye often has the highest response times because multiple DNNs are greedily loaded
nto memory and cause costly memory swap operations. Meanwhile, due to consideration of intra-network dependency,
asa outperforms Bulk by at least 30%, in case of 512 MB memory.
Another observation worth mentioning is the trend of performance gain of Masa. It has significant performance gains

n devices with smaller memory, i.e., 512 MB, whereas the performance gain on 2 GB memory is less significant. Moreover,
he relative performance gains of Masa against other approaches is the highest on small devices and homogeneous DNNs,
ompared to large devices and mixed workloads. This can be explained by the balanced task times of execution and
oading and avoidance of memory swapping. Fig. 6(c) summarizes the average response time of the lifelogging application
hat emulates a real-life application, executing 5 DNN inferences for every captured image. Similar trends as for the
revious two scenarios can be observed:Masa can effectively allocate the limited worker threads and memory to minimize
esponse time. The average response time of Masa with 1 GB memory is similar to Bulk and DeepEye running on 2 GB
emory. In other words, Masa can achieve almost 50% resource saving without degrading response times.

.3. Stochastic image analysis

Here, we consider stochastic image analyses, where either the image arrivals or the number of DNN inferences, or
oth are generated stochastically. This workload scenario is more complex than the periodic cases due to the intricate
ntra-network dependency and heterogeneity of inference jobs.

Specifically, two types of stochastic scenarios are evaluated with increasing randomness. Scenario I: a single DNN
nference randomly drawn from the nine listed in Table 1 is requested upon the arrival of images following a normal
istribution with mean equal to the sum of the average execution times of the candidate models and standard deviation
f 200 ms. Due to the high variance of inter-arrival times, multiple DNNs need to be processed at the same time. Scenario II:
mages arrive periodically but the composition of multiple DNNs is randomly requested following a uniform distribution.
9
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Fig. 7. Average response times of stochastic scenario I for Bulk, DeepEye and Masa.

Fig. 8. Average response times of stochastic scenario II for Bulk, DeepEye and Masa.

or each scenario, we evaluate Masa on three memory configurations and three traffic intensities. We normalize the traffic
ntensity with respect to the mean of the execution time of all networks in the scenario, as such values of 0.8, 1.0 and 1.2
re evaluated. The higher the value of traffic intensity becomes, the more challenging it is to achieve low response times.
Figs. 7 and 8 summarize the average response times of the aforementioned stochastic scenarios and the relative

erformance gain with respect to Bulk and DeepEye. Similar trends as the deterministic case can be observed: Masa
chieves the lowest response times for small memory and high traffic intensity. In terms of absolute values, here the
elative gains are significantly higher than for the deterministic scenarios which only need to cope with predictable
orkloads.
Scenario I. In Fig. 7, one can clearly see that the performance gains of Masa against Bulk and DeepEye are more

ronounced for higher traffic intensity and lower memory. In the cases of 1 GB and 512 MB memory (shown in Figs. 7(b)
nd 7(c)), we reduce the average response times up to 90%, compared to the second best policy. In the case of 2 GB
emory shown in Fig. 7(a), we are slightly worse especially for the lighter traffic intensity. This can be explained by

he fact that under light traffic greedy loading algorithms like Bulk and DeepEye are better to recover from the impact
f memory paging than under heavy traffic. Moreover, we would like to point out that the average response times of
ulk and DeepEye increase from around 6 up to several hundreds seconds when memory space is reduced from 2 GB to
12 MB. In contrast, Masa can show only a 1.5X increase of the response times relative to the memory reduction, i.e., from
seconds at 2 GB up to 60 s at 512 MB.
Scenario II. In Fig. 8 we can see that Masa is still the best performing policy, trailed by DeepEye then Bulk. As this

cenario is slightly more predictable than scenario I due to the periodic image arrivals, the performance gain is slightly
ower than scenario I. DeepEye is able to manage the response time by greedily interleaving the model loading and
xecution. Here, Masa can maintain close to superlinear ratio between average response times and available memory,
.e., from 3 s at 2 GB up to 30 s at 512 MB at a traffic intensity of 1.

Masa is able to achieve such remarkable results due to its intelligent memory management and interleaved execution
f DNN layers. We also evaluate the effectiveness of Masa on different number of worker threads. Masa can robustly
nsure low response times, whereas Bulk and DeepEye cannot properly take advantage of multiple worker threads.

Increasing the number of workers to a value larger than 2 allows Masa to better interleave tasks when multiple DNNs are
executed concurrently. This flexibility in scaling is not seen in Bulk and DeepEye. For example, doubling the number of
workers from 2 to 4 under a random high traffic intensity and 3 small DNNs, Masa reduces the mean response time by
79% compared to 15% and 9% achieved by DeepEye and Bulk, respectively. Due to the space limit, we skip the detailed
presentation of such results.

5.4. Context-aware image analysis

To evaluate the benefits of context-aware network execution we consider the two inter-network dependency scenarios
shown in Fig. 9. The first scenario, termed light (see Fig. 9(a)), uses FaceNet to detect faces and infer subsequently the
10
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Fig. 9. DNN relationship diagrams used to evaluate the CA-wait and CA-preempt.

Fig. 10. Heavy scenario: average makespan under label probabilities varying from 0 (downstream networks never executed) to 1 (downstream
networks always executed) and on different platforms (top row: RPi, bottom row: VM) and available memory.

age and gender via AgeNet and GenderNet. Here the execution of AgeNet and GenderNet is dependent on the result of
FaceNet. The second scenario, termed heavy, extends the light scenario with three additional networks (see Fig. 9(b)). We
condition the execution of FaceNet on the presence of people as detected by TinyYolo and additionally infer emotions from
detected faces via EmotionNet. Moreover, MemNet independently assigns a memorability score to each input. Compared to
the light scenario, the added downstream network (EmotionNet) and the deeper dependency graph of the heavy scenario
lead to a higher difference in computational load between positive and negative outcomes of any upstream network. This
is especially true for TinyYolo located at the root of the dependency graph. In addition, MemNet increases the base system
load.

We evaluate both scenarios on the Raspberry Pis and virtual machines with different amounts of memory. To determine
the impact of the context-aware execution we fix the label probability of the root network to given values. A label
probability of 0.4 means that 40% of the outputs of the root network causes the downstream networks to be executed.
Instead, the remaining 60% of the outputs of the root network causes the downstream networks to be skipped or aborted.
To warrant the same behavior for both scenarios we ensure that the intermediate FaceNet always provides positive output,
i.e. if executed will always trigger the execution of its downstream networks too. We repeat the experiment for different
label probabilities and compare the two context-aware execution policies CA-wait and CA-preempt against the normal
asa algorithm.
Heavy scenario. Fig. 10 clearly shows that both CA-wait and CA-preempt outperform Masa under almost all platform

onfigurations and label probabilities. As expected the gap with respect to Masa becomes larger the lower the label
robability is since downstream networks are executed with lower frequency reducing linearly the average makespan. One
an further see that CA-preempt falls behind CA-wait with lower label probability. We impute this fact to the interference
etween parallel execution of networks. The early started downstream networks slow down the upstream networks even
f they are aborted later on. The effect varies with the available memory. Since we take explicitly into account only the
vailable free memory, with higher amounts of memory CA-preempt allows more networks to be executed concurrently.
11
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Fig. 11. Light scenario: average makespan under label probabilities varying from 0 (downstream networks never executed) to 1 (downstream
etworks always executed).

Fig. 12. Effect of input batching on Masa with different batch sizes and 1 GB memory VM.

hereby it increasingly slows down the execution of the first network. Finally, similar trends are observed across both
Pis or VMs only on different time schedules due to the faster VM hardware.
Light scenario. Using a lighter workload the difference between CA-wait and Masa becomes less clear. Here the

otential gain from not executing the downstream networks is reduced due to the lower height and number of nodes
n the dependency tree, and the fact that AgeNet and GenderNet are rather lightweight networks. Hence, context aware
xecution has no clear advantage over regular execution of Masa. This is clearly shown in Fig. 11. For brevity the RPi
esults are not shown, but the same observations as for the heavy scenario hold.

.5. Batching of inputs

The previous sections considered inference tasks where a single input was given at a time. The execution of multiple
nput for the same set of networks can be executed as a batch. This allows to pipeline the processing and discount the
etwork loading operation across multiple inputs increasing the processing throughput. However, at the same time it
rows the memory footprint of the inference task to store the additional intermediate layer outputs. We compare the
esults of batched against individual arrivals using a 2-network inference task under the same number of arrivals. For
xample, with a batch size of 8, the batched task consists of 1 arrivals of 8 inputs (1 × 8) while the individual task
onsists of 8 arrivals of 1 input (8 × 1). Masa is not able to split a network in sub-layer components and thus a network
xecuted with batched inputs will always have a larger memory footprint. Fig. 12(a) shows the average per input inference
ime. On the one hand batched inputs profit from reusing loaded layers across multiple inputs which reduces the number
f cache misses. This can be seen in Fig. 12(b). On the other hand the increasing memory footprint of larger batch sizes
bliges Masa to increasingly delay layer tasks until enough free memory is available. Overall, as batch sizes increase, this
eads first to better then to worse per input inference times than individual arrivals with batch size 8 giving the best
esults. With 32 inputs, the more fine grained control over the memory usage given by individual arrivals overcomes any
atching benefit.

.6. Optimality of Masa

We evaluate the optimality of Masa using the multi-network scheduling problem defined in Section 3. Due to the
omplexity of the optimization problem, we can only find the optimal solution for small scale problems. In particular,
12
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Fig. 13. Optimality (a) and sensitivity to memory estimates (b) of Masa.

Fig. 14. Energy analysis: Masa, CA-wait, and CA-preempt.

e consider herein scheduling two 4-layers networks, i.e. total of 24 tasks, with no inter-network dependencies. We find
he optimal solution using the solver from Google OR-Tools and compare against the makespans achieved by Masa for
ifferent numbers of workers. Fig. 13(a) shows that Masa is able to quite closely achieve the optimal makespan under all
umber of workers (worst optimality ratio is 1.22 with 4 workers). When the number of workers increases Masa is even
ble to equal the optimal solution. More workers simplifies the problem by giving Masa more opportunities to choose
he better tasks.

.7. Sensitivity Analysis of Memory Estimate

Here, we test the robustness of Masa in response to inaccurate memory estimates. To such an end, we multiply the
rofiled memory requirements of all layers in AgeNet by 0.5 and 0.75 to show under-estimation and by 1.25 and 1.5
o show over-estimation of memory. We run a batch of 6 AgeNet networks with a repetition of 20 image arrivals. We
ummarize the results in Fig. 13(b). The under-estimated memory values cause the algorithm to load too many networks
t the same time while the over-estimated memory values cause the algorithm to under-utilize the available memory. In
he case of severely underestimation (the 0.5 multiplier), the average response times increase from 0.8 to 1.4 s as well as
he standard deviation. Overall, conservative estimation of memory (even up to 50% higher than actual values) only incur
mall percentage increases of response times, e.g. 11.5% for 50% overestimation.

.8. Energy consumption

We conclude our evaluation with an analysis of energy efficiency. Energy efficiency can be critical for battery operated
dge devices. We monitor the power consumption of the RPi device. As the on-board tools of the RPi are unfit for
ccurately measuring power, we use an external power monitor (Joy-IT JT-TC66C) to measure the voltage and current
rawn from the power supply and derive the corresponding energy consumption in terms of Wh.
Fig. 14(a) compares Masa against Bulk and DeepEye for the deterministic three small DNN inference described in

Section 5.2 with 150 input images. The energy values are on a par with the measured response times. As a result, the
energy consumption of Masa is the lowest. Masa is explicitly designed to increase the responsiveness of DNN inference on
edge. This leads to shorter inference times which reduce the energy consumption. Next, we compare Masa against the two
types of context-aware execution. Figs. 14(b) and 14(c) show the energy usages for the light and heavy workload scenario
described in Section 5.4 under decreasing label probabilities. One can clearly see that CA-wait and CA-preempt benefit
13
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Table 2
Overview of prior-art.
Method Multi-DNN Stochasticity No DNN similarity Memory aware Architecture

GPU/NPU/TPU CPU

MCDNN [23] ✔ ✗ ✗ ✔ ✔ ✔

DeepEye [7] ✔ ✗ ✔ ✗ ✗ ✔

NeuOS [8] ✔ ✗ ✔ ✗ ✔ ✔

NestDNN [24] ✔ ✗ ✗ ✔ ✗ ✔

DeepMon [25] ✗ ✗ – ✔ ✔ ✗

PatDNN [26] ✗ ✗ – ✔ ✔ ✔

DeepCache [27] ✗ ✗ – ✔ ✔ ✔

DART [28] ✔ ✗ ✔ ✗ ✔ ✔

PREMA [29] ✗ ✗ ✔ ✗ ✔ ✗

Layerweaver [30] ✔ ✗ ✔ ✔ ✔ ✗

AI-MT [31] ✔ ✗ ✗ ✗ ✔ ✗

Lee et al. [32] ✔ ✗ ✗ ✔ ✔ ✔

Wang et al. [33] ✗ ✗ ✔ ✗ ✗ ✔

Hu et al. [34] ✗ ✗ ✔ ✗ ✗ ✔

MASA ✔ ✔ ✔ ✔ ✗ ✔

from the conditional inference execution of dependent DNNs compared to Masa. Moreover, CA-wait benefits from its
onservative nature compared to CA-preempt, by avoiding wasting energy on preempted computations. Consequently,
CA-wait outperforms both CA-preempt and Masa when the label probability decreases. The gains are higher in the
eavy scenario due to its increased computational inference load. On average for all possible label probabilities, CA-
ait outperforms Masa by 10% in the light scenario and CA-wait and CA-preempt outperform Masa by 54% and 37%
espectively in the heavy scenario.

.9. Limitations

Masa assumes that trained models can be split into independent stages, e.g. DNN layers, which fit the available
emory. Models that cannot be split or have layers larger than the available memory, will have a lowered response

ime performance. Models where the input of a layer depends on multiple preceding layers, e.g. shortcuts in Residual
etworks, also increases the peak memory usage of stages which can reduce the effectiveness of Masa. In the worst
ase, the performance of Masa defaults to the same level as the baseline Bulk. However, given the non-uniformity of the
memory usage of the layers in a DNNs (Fig. 2), the reduction in effectiveness will mostly affect the execution of the few
large layers and not the entirety of the model. A possible solution to reduce the memory footprint of the model stages
(sub-layers) can be using adaptive DNN partitioning [21,22]. The offline model preparation currently uses only the model
properties ignoring the properties of the target hardware device. While this makes it possible to perform the model
preparation in an offline fashion, it can create limitations if the chosen model split is not compatible with the target
hardware. Taking the properties of the target hardware into account would give the end-user more flexibility when it
comes to deploying pre-trained models to edge devices. In future work this could be incorporated into Masa.

6. Related work

We compare Masa with state-of-the-art DNN inference frameworks under two aspects, memory awareness and
multi-DNN focus, summarized in Table 2.

Memory-aware DNN Inference. As the size and complexity of DNN applications have grown, their need for computing
resources and memory has increased tremendously. It is particularly vital to manage and control the execution of DNNs
on edge devices that have limited RAM. Existing solutions resort to model compression [35,36], quantization. [37], or
network pruning [26,35] to reduce the memory demands of DNNs. DeepMon [25] and DeepCache [27] are mobile deep
learning inference frameworks which accelerate CNNs execution using cache mechanisms for processing convolutional
layers. Jiang et al. [37] use graph optimizations and quantization to increase the performance of CNNs in terms of inference
speed. Yang et al. [35] propose a mixed pruning method with a minimal accuracy penalty, which reduces the number of
parameters in a DNN by removing redundant layers. PatDNN [26] is a pattern-based DNN pruning framework, including
compressed weight storage, register load redundancy elimination, and parameter auto-tuning. Dynamic DNNs are used
to adaptively skip a subset of computations to stay within the available memory or time budget while minimizing the
degradation of inference accuracy [33,34]. The common theme of aforementioned approaches is to tradeoff the accuracy
for the resource efficiency for a single DNN, whereas Masa manages the memory requirements of multiple DNNs without
altering the network structure and its resource demands.

Multiple DNNs. Running multiple models on the same device at the same time or sharing resources with other
processes is an effective but challenging way to multiplex the limited available resources. Several recent studies [7,8,
24,38,39] propose solutions to efficiently run multi-DNN inference such that energy consumption, response time and
14
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ccuracy can be optimized. NeuOS [8] minimizes a three-dimensional space, including latency, accuracy, and energy at
he layer granularity for multi-model execution. DeepEye [7] and Layerweaver [30] use interleaving of layers to optimize
he execution of multiple DNNs. [38] dynamically determines which DNN should be selected to process a given input by
onsidering the desired accuracy and inference time. NestDNN [24] allows concurrent model execution by scaling down
esource demands by using multi-capacity models and surrendering accuracy. MCDNN [23] and AI-MT [31] rely on model
haring of variants with the same base model to efficiently run the same model type with different tasks. DART [28] groups
subset of DNN layers (task-level stage) and assigns them to workers of CPUs and GPUs to minimize task response times
y balancing tasks over resources. PREMA [29] enables multi-network execution on Neural Processing Units (NPU) by
reempting low priority tasks in favor of high priority tasks. [32] proposes a weights virtualisation scheme that enables
fficient packing of multiple DNNs in a single memory space. MemA [40] compares the effect of the execution time of a
ulti-DNN inference in the context of different scheduling algorithms but has difficulties to adapt to unexpected changes

n the available memory space. The aforementioned studies accelerate inference time of multi-DNNs by leveraging the
imilarity across DNNs to reduce the computation, without being aware of their active memory usages. Different from
hem, the proposed Masa dynamically schedules DNNs according to the active memory status and does not rely on the
imilarity of DNN structures.

. Conclusion

Motivated by the importance and emerging trend of conducting real-time image analyses at edge devices, we design
nd implement Masa, a responsive memory-aware and context-aware multi-DNN execution middleware. Masa carefully
odels and manages the run-time memory usage of convolutional and fully-connected layers of all DNNs. As such, it

everages the complimentary CPU/memory usage patterns and dependencies of layers within and across networks to
fficiently schedule multiple DNN inferences simultaneously. We evaluate Masa on comprehensive workload scenarios,
.e., combinations of 9 different DNNs on three hardware configurations of Raspberry Pi and VMs. Our results show
hat Masa can achieve optimality ratios close to one and significantly reduce the average response times of multi-DNN
nferences by up to 90%, compared to state-of-art multi-DNN solutions. Masa is particularly effective for challenging
cenarios where the available memory is low, e.g., 512 MB to 1 GB memory, and multiple DNN inferences are conducted
n stochastically captured images. For future work, we will focus on additionally considering energy efficiency and extend
asa to applications with different and mixed types of DNNs.
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