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Abstract

Since the introduction of rough volatility there have been numerous attempts at combining it
with existing models in order to better approximate the volatility surface with a low number
of parameters. The drawback of rough volatility is usually the time needed to compute a
volatility surface. We compare three major rough volatility models and compare their ability
to fit to the market volatility surface. We implement the rough Bergomi, rough Heston and
lifted Heston models and introduce a fourth model by taking a Nelson-Siegel parameterization
for the instantaneous forward variance curve in the rough Bergomi model. We then minimize
the volatility surfaces of the models to that of the market and compare these results through
minimization time, fit and hedging possibilities. We find that for both Bergomi models, a
single volatility surface is seven times faster to compute than for the lifted Heston model,
which in turn is five times faster to compute than for the rough Heston model. Minimization
times for the rough Heston models are comparable, however significantly higher than for the
rough Bergomi models. We also find that the rough Bergomi model is under-parameterised,
this is however fixed by the Nelson-Siegel parameterization, which has a minimization error
in line with that of both Heston models. Finally, hedging specifically against a parameter
rarely improves the outcome, although a hedge against the instantaneous forward variance
curve is consistently good and can improve the error between only a delta hedge by 25-50%
throughout all models.
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Preface

The benefit of rough volatility is to be able to model the whole volatility surface with few
parameter, which is promising in the search for models that are not over-parameterised. This
work aims at comparing these rough volatility models both in how well they describe and fit
the market as well as how fast they are to compute. The goal is to see if it is computationally
feasible to implement rough volatility models in practice. It turns out that rough volatility
models differ in performance, however all have their advantages and disadvantages. The
choice for a single model relies strongly on the motivation for fitting and the context.

This thesis was done in collaboration with IMC Trading, who have been so kind to supply
me with market data and their pricing infrastructure.

Mostly I would like to thank Matthias Thul for guiding me throughout this thesis by
asking critical questions and sharing his knowledge of derivatives pricing with me. Secondly I
would also like to thank Antonis Papapantoleon for helping me for the duration of this thesis
and being an insightful supervisor. Next to this I would also like to thanks Fang Fang for
being a part of my thesis committee. Finally, a big thank you to all my friends and family
who have supported me throughout this time!

Bart van Gisbergen
Delft, June 2022
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1. Introduction

Since the introduction of the Black-Scholes model [1] in 1973 there have been many attempts
at modeling the derivatives market [2]. So far the most succesful models are those with a
stochastic volatility, where both the stock process and the volatility process are driven by
a Brownian motion [3]. Since Volatility is Rough [4] by Gatheral, Jaisson and Rosenbaum
in 2014 there has been a lot of research towards models where the volatility is driven by
a fractional Brownian motion, the difference being that fractional Brownian motion is a
non-Markovian process. These models are called rough volatility models since the volatility
paths are rough in the Hölder sense. Gatheral et al. show that a fractional Brownian
motion would be better at describing the at-the-money skew of the volatility smile as well
as the realized volatility time series than previous stochastic volatility models. However the
fractional Brownian motion, being non-Markovian, induces little closed form solutions and an
increase in computational complexity.

The first rough volatility model was the rough Bergomi model [5]. This model is based
on the n-dimensional Bergomi model [2], but includes a fractional Brownian motion. Pricing
under such a model is done using a Monte Carlo method, for which there has since been a
lot of research to speed up convergence, see [6], [7] and [8]. This model enjoys the fact that
it only has three parameters together with the forward variance curve as an input.

A second, major, rough volatility model introduced was the rough Heston model [9]. This
is comparable to the classical Heston model [3], but where the Brownian motion is again
replaced by a fractional Brownian motion. It is then shown in [10] that this model also only
has three parameters together with the forward variance curve as an input. The affinity of
the model has been proven [11], thus it is natural to use the COS method to price options.
This, however still takes a lot of computation time.

This problem was attempted to be solved in [12], where the fractional kernel is replace
by a sum of deltas, thus taking a Markovian approximation. The model was named the lifted
Heston model. Computationally, it changes the problem of solving the characteristic func-
tion: from solving a fractional Riccati equation to solving an n-dimensional Riccati equation.
However, this still needs numerical approximations. This model also makes an approximation
of the forward variance curve instead of using it as an input, adding three parameters to the
model, bringing it up to six.

The question now becomes, which of these models is most suitable for practical use? In
an attempt to answer this question this work fits these models to the market volatility surface.
We compare not only the fit to the market, but also how fast this fit can be computed and
how well we can predict future surfaces using our fit.

We find that the rough Bergomi model is under-parameterized, but with a Nelson-Siegel
parameterization of the forward variance curve, the fit is just as good as the rough Heston
models, while also being faster in computation time. Next to that we find that the rough
Heston model requires a large computation time for a single volatility surface, but this is
compensated by the fact that it has few parameters to minimize. It does an impressive job
at fitting the market volatility surface for only three parameters. The lifted Heston model
improves the computation time for a single volatility surface by a factor of five, but this does
not improve the total minimization time considerably because of the increased complexity of
the optimization space. Also, the parameters in this model do not seem to be orthogonal.
For a practical application a combination of these two models would be a good consideration.
This report starts off with a background of all three models in chapter 2. This is followed by
an explanation on how we price European options in the Bergomi model and Heston models
in chapter 3 and 4, respectively. The following chapter 5 discusses how the instantaneous
forward variance curve is determined form the market data. Chapter 6 discusses the method
used for minimizing the model volatility surface to that of the market. Then, chapter 7
explains how we compare the obtained results. Subsequently, chapter 8 presents the obtained
results, which is followed by a discussion of these results in chapter 9. Finally, chapter 10
compares the obtained results and draws conclusions.
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2. Background

We start by introducing rough volatility. This is done by first discussing what a rough path is,
leading to the definition of the fractional Brownian motion. After that there is a motivation
for the usage of fractional Brownian motion to describe the path of the volatility process.
Finally we discuss how this is incorporated into the Bergomi and Heston stochastic volatility
models, leading to the rough Bergomi, rough Heston and lifted Heston models.

2.1. Rough Paths
The theory of rough paths was developed in order to develop the theory on stochastic differen-
tial equations in a pathwise setting. Rather than rely on probabilistic properties of processes
(semimartingale structure, adaptedness, ...) instead the theory relies on the regularity con-
ditions on the paths of a process. In order to define the regularity of a process we define
α-Hölder continuity, see [13]

Definition 2.1. We say X : [0, T ] → E is α-Hölder continuous for α > 0 if ∥x∥α < ∞,
where

∥x∥α := sup
t̸=s

|Xt −Xs|
|t− s|α

.

∥.∥α is a seminorm, in order to define a Banach space we define

Definition 2.2. Cα = {X : ∥X∥α <∞} with norm ∥X∥Cα = |X0|+ ∥X∥α

An α-Hölder rough path is a path which is α′-Hölder continuous for every α′ > α and
where α ≤ 1/2. There is one version of a rough path that is applied to rough volatility, and
that is the fractional Brownian motion, as defined by Mandelbrot and Van Ness [14].

Definition 2.3. For a H ∈ (0, 1) and t > 0 we define the fractional Brownian motion
(fBM) process

BH(t) = BH(0)+
1

Γ(H + 1
2 )

{∫ 0

−∞

[
(t− s)H− 1

2 − (−s)H− 1
2

]
dB(s) +

∫ t

0

(t− s)H− 1
2 dB(s)

}
,

where (B(s))0≤s≤t is a standard Brownian motion.

A property of fBM is (see [14])

E[BH(t)BH(s)] =
1

2
(|t|2H + |s|2H − |t− s|2H). (2.1)

From this it is clear that taking H = 1
2 creates independent increments, which leads to the

standard Brownian motion. In the case where H ≤ 1/2 we see that BH(t) is an α-Hölder
rough path for all 0 < α < H. H is called the Hurst index, from now on we only consider
H ≤ 1/2.
In order to give some intuition on fBM, Figure 1 shows a regular Brownian motion and a
fractional Brownian motion using the same underlying sampling.
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Figure 1: Paths of fractional Brownian motions for different Hurst indices with ∆t = 1/300

As can be seen, the path of the fBM follows that of the Brownian motion. However, it is
much rougher in the sense that the path is less well behaved.
Finally from equation (2.1) we note that E[BH(t)2] = |t|2H , this means that when comparing
fBM to standard BM we get a larger variance for t < 1 and a smaller variance for t > 1. The
distribution is Gaussian, meaning that compared to a Brownian motion, fBM has a much
wider distribution for short times, but a narrower distribution for larger times.

Together with fractional Brownian motion we define the fractional derivative Dr and the
fractional integral Ir for r ∈ (0, 1] as in [14] as

Drf(t) =
1

Γ(r)

∫ t

0

(t− s)r−1f(s)ds

Irf(t) =
1

Γ(1− r)
d

dt

∫ t

0

(t− s)−rf(s)ds.

(2.2)

2.2. Rough Volatility
As first mentioned by Gatheral, Jaisson and Rosenbaum [4], when we artificially model the
at-the-money (ATM) skew for different expiries we notice that we can fit a power function
through it of the form A · Tα−1, where α − 1 < 0. This can be seen by plotting the ATM
skew (ψ(T )) defined as

ψ(T ) :=

∣∣∣∣ ∂∂kσimp(k, T )

∣∣∣∣
k=0

, (2.3)

where k is log-moneyness, T is time to expiry and σimp is the implied volatility. Plotting this
function and the fit gives the following figure
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Figure 2: ATM skew and plot of 0.4 · T−0.39. All data is taken from the Eurostoxx volatility curve on
1/11/2021. Approximation of the ATM skew is done using a numerical symmetric derivative. The fit

excludes the somewhat strange 5th observation.

In section 3.3 of [15], Fukasawa states that considering a simple stochastic volatility
model where the volatility (vol) is driven by a fractional Brownian motion would result in an
ATM volatility skew of order TH−1/2 with H the Hurst parameter of the fBM. This is the
main reason for considering stochastic volatility models where the vol follows a rough path,
specifically a fBM.

2.3. Rough Bergomi
The first pricing model with rough volatility was introduced by Bayer, Friz and Gatheral [5].
They start by considering the n-factor Bergomi model [2] where the instantaneous forward
variance curve ξt(u) is given by

ξt(u) = ξ0(u)E

(
n∑

i=1

ηi

∫ t

0

e−κi(u−s)dW i
s

)
. (2.4)

The instantaneous forward variance curve (FVC) observed at time t is defined as ξt(u) :=
E[Vu|Ft] for u > t with Vu being the instantaneous variance of the log-stock process. E(·)
is the stochastic exponential defined as E(Zt) := exp(Zt − Z0 − 1

2 [Z,Z]0,t).
Bergomi now states that the forward variance curve is determined by n Ornstein-Uhlenbeck
type processes. For n = 1 this would translate to{

ξt(u) = ξ0(u) exp
(
ηe−κ(u−t)Yt − 1

2η
2 exp−2κ(u−t) E[Y 2

t ]
)

dYt = −κYtdt+ dWt,
(2.5)

where (Ws)0≤s≤t is a Brownian motion. The problem now becomes that, when calibrating
to option prices, n = 1 gives an underparameterized model, while n = 2 is often overpa-
rameterized. The idea proposed in [5] is to replace the exponential kernel in (2.4) with a
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fractional kernel. Thus

ξt(u) = ξ0(u)E
(
η

∫ t

0

dWs

(u− s)1−α

)
(2.6)

where α = H + 1/2 with H being the Hurst index of the fractional Brownian motion.
When assuming a constant initial instantaneous forward variance curve of ξ0(u) := σ2

0 , this
translates to a vol process given by

σt =
√
ξt(t) = σ0

√
E
(
η
√
2H

∫ t

0

dWs

(t− s)γ

)
= σ0 exp

{
η

2
Vt −

η2

4
E[V 2

t ]

}
(2.7)

where Vt =
√
2H
∫ t

0
dWs

(t−s)1−α , which is proportional to the Riemann-Liouville representation

of fBM such that Var[Vt] = t2H

Translating this to a price process results inSt = S0E
(∫ t

0

√
VudBu

)
Vu = ξ0(u)E

(
η
√
2H
∫ u

0
1

(u−s)1−α dWs

) (2.8)

where ⟨dBtdWt⟩ = ρdt. Throughout this report (Bs)0≤s≤t and (Ws)0≤s≤t are two Brownian
motions with correlation coefficient ρ, unless otherwise stated.

This aim of this model it to use the forward variance curve as a base for the vol curve
and models the vol by multiplying this with an exponential martingale driven by a fractional
Brownian motion with Hurst index H. The fractional Brownian motion is multiplied by the
volatility of volatility (vol-of-vol) parameter η and it is correlated to the Brownian motion of
the stock process with correlation coefficient ρ.

In order to be unreliant on the initial instantaneous forward variance curve induced from
the market, we introduce the Nelson-Siegel approximation of the forward variance curve. This
is defined by

ξ0(t) = β0 + β1
1− e−t/τ

t/τ
+ β2

(
1− e−t/τ

t/τ
− e−t/τ

)
.

This will add four parameters to the model (β0, β1, β2 and τ), we name this the 7 parameter
rough Bergomi model, abbreviated as rB7p. Note that we consider the initial instantaneous
forward variance curve starting at t = 0, thus we do not specify a stochastic process for
the parameters. This means we do not need to worry about the consistency of the FVC.
Consistency meaning that the instantaneous variance Vt must always be a non-negative
martingale. This then ensures that the price process of variance swaps is free of arbitrage.
See [16] for more details on consistency.

2.4. Rough Heston
A second major model incorporating rough volatility is the rough Heston model introduced
by El Euch and Rosenbaum [11]. The idea behind this model is to first consider the classical
Heston model given by 

dSt = St

√
VtdBt

dVt = λ(θ − Vt)dt+ ν
√
VtdWt

⟨dBtdWt⟩ = ρdt.

(2.9)

El Euch and Rosenbaum now introduce a rough volatility process by introducing the kernel
(t− s)α−1, where α = H + 1/2. Doing this leads to the following volatity process

Vt = V0 +
1

Γ(α)

∫ t

0

(t− s)α−1
(
λ(θ(s)− Vs)ds+ ν

√
VsdWs

)
. (2.10)

It is then observed by El Euch and Rosenbaum [10] that we can simplify the rough
Heston model if we take into consideration the initial instantaneous forward variance curve:
ξ0(t) = E[Vt] for t > 0. They show that

λθ(s) = Dα(E[V.]− V0)(t) + λE[Vt] (2.11)
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As observed in [4], smiles flatten consistently with the scaling properties of historical vol,
thus there is no need for an extra mean reversion parameter λ, hence we can consider λ→ 0.
Taking this assumption and plugging (2.11) back into equation (2.10), we can rewrite the
rough Heston model as follows

dSt = St

√
VtdBt

Vt = ξ0(t) +
ν

Γ(H+1/2)

∫ t

0

√
Vs

(t−s)1−α dWs

⟨dBtdWt⟩ = ρdt,

(2.12)

where ξ0(t) can be obtained from the market, as explained in Chapter 5. We will be using
this version of the rough Heston model from now on.

Intuitively, this model aims to set a base vol implied by the market through the instanta-
neous forward variance curve. It then describes the vol process with the fractional Brownian
motion, driven by the Hurst parameter H, and the vol-of-vol parameter ν. Finally we have a
correlation coefficient, ρ, between the Brownian motions.

2.5. Lifted Heston
After observing that pricing under the rough Heston model was very computationally in-
tenstive, Abi Jaber [12] introduced the lifted Heston model. In this model we replace the
fractional kernel in the volatility process by a sum of delta peaks. This then results in the
following system 

dSt = St

√
VtdBt

Vt = g0(t) +
∑n

i+1 ciU
i
t

dU i
t = (−xiU i

t − λVt)dt+ ν
√
VtdWt

⟨dBtdWt⟩ = ρdt.

(2.13)

The idea here is that the forward variance curve is given by g0(t) and on top of this we add
a weighted sum of zero mean processes U i with weight ci. These processes start at zero and
are driven by the same Brownian motion, but mean revert at different speeds (xi).
If we take expectations on both sides of the volatility process we obtain

E[Vt] + λ

n∑
i=1

ci

∫ t

0

e−xi(t−s)E[Vs]ds = g0(t). (2.14)

We parameterize g0(t) by defining

g0(t) := V0 + λθ

n∑
i+1

ci

∫ t

0

e−xi(t−s)ds = V0 + λθ

n∑
i=1

ci
xi

(1− e−xit), (2.15)

where V0, θ > 0, this is in line with (2.9).
The idea behind the model is to set constants xi, ci such that we get a good Markovian

approximation of a rough process, this is explained in section 4.4. Next to that we have the
same H, η and ρ parameters as before. We have introduced the θ, λ and V0 parameters and
with these describe the instantaneous forward variance curve (FVC) g0(t). θ can be seen as
the long term variance, λ as a measure of speed of mean reversion to this long term variance
and V0 as the base variance.

In this work we choose to let the FVC of the lifted Heston model be independent of the
market induced FVC. This choice is based on the fact that this is an approximation of the
rough Heston model. Since an analysis of the level of approximation is done in [12] it is
interesting to see how these models compare with and without the use of the information of
the instantaneous forward variance curve obtained from the market.



3. Pathwise Simulation

There is no closed form solution to the rough Bergomi model from (2.8), thus a path sim-
ulation is needed in order to price options. The idea of a path simulation is to do a Monte
Carlo simulation of possible paths of the underlying and use these to price the option. This
chapter starts by discussing an approximation scheme for integrals [6], followed by applying
this technique to the rough integral in (2.8). This greatly decreases the amount of time steps
needed in the simulation. The chapter concludes with an explanation of the Romano Touzi
trick [17], a method which utilizes the full path in order to price products with a closed form
solution to the Black-Scholes equation. Using this method decreases the amount of paths
needed to price far out-of-the-money and in-the-money options.

3.1. Hybrid Scheme
The hybrid scheme was introduced by Bennedsen, Lunde and Pakkanen [6]. Using this scheme
greatly improves the computation time as our approximation for the fractional integral around
the origin is better. The goal of the scheme is to give an approximation of

X(t) =

∫ t

−∞
g(t− s)σ(s)dWs,

where g(x) = xαLg(x) for x ∈ (0, 1], α ∈ (− 1
2 ,

1
2 ) \ {0} and Lg(x) is a slowly varying

function at 0. Slowly varying meaning limx→0
L(tx)
L(x) = 1 for any t > 0. In our case we have

σ(s) = 1. The idea behind the method then becomes to approximate the integral by a sum
and split this sum into two parts∫ t

0

(t− s)αdWs ≈
κ∑

k=1

Lg

(
k

n

)∫ t− k
n+ 1

n

t− k
n

(t− s)αdWs +

Nn∑
k=κ+1

g

(
b∗k
n

)(
Wt− k

n+ 1
n
−Wt− k

n

)

:=

κ∑
k=1

Lg

(
k

n

)
Wi−k,k +

Nn∑
k=κ+1

g

(
b∗k
n

)
Wi−k,0.

(3.1)

By Proposition 2.8 of [6] we must take

b∗k =

(
kα+1 − (k − 1)α+1

α+ 1

)1/α

, k ≥ κ+ 1,

in order to minimize the asymptotic mean squared error (MSE), defined as

lim
n→∞

E
[∣∣∣X(t)− X̂n(t)

∣∣∣2] ,
where X̂n(t) approximates X(t). In equation (3.1) we define the terms Wi,j . We now note
that we can simulate these terms by simulating an order-(κ+ 1) i.i.d. multivariate Gaussian
distribution with mean zero and covariance matrix Σ given by

Σ1,1 =
1

n
, Σ1,j = Σj,1 =

(j − 1)α+1 − (j − 2)α+1

(α+ 1)nα+1
,

Σj,j =
(j − 1)2α+1 − (j − 2)2α+1

(2α+ 1)n2α+1
, for j = 2, . . . , κ+ 1

(3.2)

Σj,k =
1

(α+ 1)n2α+1

[
(j − 1)α+1(k − 1)α 2F1

(
−α, 1, α+ 1,

j − 1

k − 1

)
−

(j − 2)α+1(k − 2)α 2F1

(
−α, 1, α+ 2,

j − 2

k − 2

)]
, for 1 < j < k ≤ κ+ 1,

(3.3)

7
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where 2F1 is the hypergeometric function, defined as

2F1(a, b, c, z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!

with

(a)n :=

{
1, n = 0,

a(a+ 1) . . . (a+ n− 1), n > 0.

Another computational note is that we can express both terms in (3.1) as a discrete
convolution, which can be efficiently calculated using the fast Fourier transform. This is less
relevant for the first term, since κ is usually small (κ ≤ 3). However, this is relevant for the
second term in (3.1), which then becomes

Nn∑
k=κ+1

g

(
b∗k
n

)
Wi−k,0 =

Nn∑
k=1

ΓkΞi−k = (Γ ∗ Ξ)i,

where

Γk :=


0, k = 1, . . . , κ

g

(
b∗k
n

)
, k = κ+ 1, . . . , Nn

Ξk :=Wk, k = −Nn, . . . , nT − 1.

3.2. Romano Touzi Trick
The goal of this trick, as introduced in [17], is to give a better estimation of the true value of
a derivative when using a Monte Carlo simulation. The main idea is to, instead of assigning
a single value to the path at maturity T , to assign a probability distribution to the final value
at time T . This is done by taking into consideration the realized volatility of the path, thus
utilizing the full path instead of only the value at maturity. The method is explained in the
following proposition

Proposition 3.1. Suppose we have a stochastic volatility process under the martingale mea-
sure Q {

dFt

Ft
= σ(Yt)

√
1− ρtdW 1

t + σ(Yt)ρtdW
2
t

dYt = βtdt+ γtdW
2
t .

(3.4)

Then the associated admissible arbitrage price of the European call option is given by

V Call
t = EQ

t

[
V Call,BS
t

(
Fte

Zt,T ;
1

T − t

∫ T

t

(1− ρ2u)σ2
udu

)]
,

where V Call,BS
t (Ft, σ

2
t ) is the Black-Scholes option price for a European call given the forward

stock value Ft and (normalized) variance σ2
t and Zt,T =

∫ T

t
ρvσudW

2
u − 1

2

∫ T

t
ρ2uσ

2
udu.

Remark 3.2. Romano and Touzi give a more general framework for this in [17], but this
formulation already takes into consideration some extra assumptions. Also note that since
we do not work with a measure change, we assume that this is all under the same risk-neutral
measure.

Proof. Integrating (3.4) gives

FT = Fte
Zt,T exp

(
−1

2

∫ T

t

σ2
u(1− ρu)2du+

∫ T

t

σu
√
1− ρ2udW 1

u

)
.

Now realize that Zt,T is independent of W 1
t , so we can say that

log

(
FT

FteZt,T

)
Q−→ N

(
−1

2
V 2
t,T , V

2
t,T

)
,
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where Vt,T =
√∫ T

t
(1− ρ2u)σ2

udu. Thus calculating the price for a European call option

can be done using the Black-Scholes formula where the underlying asset price is replaced by
Ste

Zt,T and the volatility parameter is replaced by Vt,T /
√
T − t.

Applying this to rough Bergomi means splitting the process into two parts with indepen-
dent Brownian motions B̃, W̃ , obtaining

Ft = F0E
(
ρ

∫ t

0

√
VudB̃u

)
E
(√

1− ρ2
∫ t

0

√
VudW̃u

)
.

Thus applying the Romano Touzi trick results in

logFT ∼ N
(
log E

(
ρ

∫ t

0

√
VudB̃u

)
− 1

2
(1− ρ2)

∫ t

0

Vudu , (1− ρ2)
∫ t

0

Vudu

)
.

Hence the final call price is given by

V Call,BS
t

(
E
(
ρ

∫ t

0

√
VudB̃u

)
, (1− ρ2)

∫ t

0

Vudu

)
.



4. Characteristic Function Pricing

4.1. COS Method
One of the recent developments of option pricing through the characteristic function has been
to price European options using the COS method, introduced by Fang and Oosterlee [18].
This method utilizes an approximation of the inverse Fourier transform, in order to price
options. In this method we try to approximate the density function f(x) when given a
characteristic function ϕ(ω), using their relationship via the Fourier transform

ϕ(ω) =

∫
R
eixωf(x)dx, f(x) =

1

2π

∫
R
e−iωxϕ(ω)dω. (4.1)

The idea is to approximate this integral using the cosine expansion, given by

f(θ) =

∞∑
k=0

′
Ak cos(kθ) with Ak =

2

π

∫ π

0

f(θ) cos(kθ)dθ, (4.2)

where
∑∞

k=0

′
denotes the sum where the first term is multiplied by 1

2 . The above cosine
expansion holds for functions supported on [0, π], this can be changed to an arbitrary interval
[a, b] using a change of variables. This means we only take ω ∈ [a, b] in (4.1) and truncate
the integral. Now our coefficients Ak become

Ak ≈
2

b− a
ℜ
{
ϕ

(
kπ

b− a

)
exp

(
−ikπ a

b− a

)}
. (4.3)

To determine the truncation range [a, b] we use the method as suggested in [18] and take

[a, b] :=

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
with L ≈ 10, (4.4)

where ci refers to cumulant i. How we determine these cumulants is explained in section 5.2.
The value of N is set at 500, as this seems to be enough to get a good convergence of the
characteristic function. In order to calculate f(θ) we need to truncate the sum from

∑∞
k=0

′

to
∑N−1

k=0

′
. This creates a second error in the method.

Eventually we would like to price a product at time t with pay-off V (ST , T ), where ST is
the price of the underlying at T , which is the maturity. Following the computations in [18]
we find that we can do this in the following way

er(T−t)V (St, t) ≈
b− a
2

N−1∑
k=0

′
ℜ
{
ϕ

(
kπ

b− a

)
exp

(
−ikπ a

b− a

)}
Vk, (4.5)

where

Vk :=
2

b− a

∫ b

a

V (y, T ) cos

(
kπ
y − a
b− a

)
dy.

We note that the COS method makes use of the fact that density functions tend to be
smooth, thus only few terms (N) will already give a good approximation. Also, the density
function decays rapidly to zero as y → ±∞, so we can also truncate [a, b] at reasonable values
without losing a lot of accuracy. Finally we note that the evaluation of the characteristic
function is independent of the pay-off structure. In practice this means that we can use the
same evaluations of the characteristic function for multiple option strikes.

Finally we calculate Vk for a put option. For this we will use the method introduced by
Le Floc’h [19] and use the put-call parity to obtain call prices. Le Floc’h observed that for
short maturities the original COS method was unsuitable to approximate far in-the-money
call prices because the cosine coefficients for the put option were computed relatively to
the strike K, but the truncation range was relative to the spot price (namely dependent on

10
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the cumulants). In order to solve this he used cosine coefficients which were relative to the
forward F . The coefficients then become

V Put
k =

2

b− a
(−Fχk(a, z) +Kψk(a, z)) , (4.6)

where z = log K
F , y = log ST

F

χk(c, d) :=
1

1 +
(

kπ
b−a

)2
[
cos

(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a
sin

(
kπ
d− a
b− a

)
ed − kπ

b− a
sin

(
kπ
c− a
b− a

)
ec

]
(4.7)

and

ψk(c, d) :=

{
b−a
kπ

{
sin
(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

)}
, k ̸= 0,

d− c, k = 0.

Do note that the functions χ and ψ need to now be evaluated for each strike (which wasn’t
the case in the original derivation in [18]).

Details of the derivations of (4.3), (4.5) and (4.6) are given in Appendix A

4.2. Affine Volterra Processes
Now that we have a pricing method through characteristic functions, we need to determine
what the characteristic functions of the rough Heston and lifted Heston model are. This is
done by utilizing the exponential-affine transform formula stated in Theorem 4.3 of [20]. An
affine Volterra process is defined as

Definition 4.1. Let K ∈ L2
loc(R+,Rd×d), a : Rd → Rd×d, b : Rd → Rd, a = σσ⊤ and

X0 be deterministic. An affine Volterra process with state space E is a continuous E-valued
solution Xt of

Xt = X0 +

∫ t

0

K(t− s)b(Xs)ds+

∫ t

0

K(t− s)σ(Xs)dWs, (4.8)

where

a(x) = A0 + x1A
1 + . . .+ xdA

d

b(x) = b0 + x1b
1 + . . .+ xdb

d

with Ai ∈ Rd×d and bi ∈ Rd.

The exponential-affine transform formula is then defined in the following theorem, see [20]

Theorem 4.1. Let X be an affine Volterra process and fix some T <∞, u ∈ (Cd)∗ and let
f ∈ L1([0, T ], (Cd)∗). Assume ψ ∈ L2([0, T ], (Cd)∗) solves the Riccati-Volterra equation

ψ = uK +

(
f + ψB +

1

2
A(ψ)

)
∗K,

where ∗ denotes the convolution, B = (b1 . . . bd) and A(ψ) = (ψA1ψ⊤, . . . , ψAdψ⊤). Then
the process {Yt, 0 ≤ t ≤ T} defined by

Yt = Y0 +

∫ t

0

ψ(T − s)σ(Xs)dWs −
1

2

∫ t

0

ψ(T − s)a(Xs)ψ(T − s)⊤ds

Y0 = uX0 +

∫ T

0

(
f(s)X0 + ψ(s)b(X0) +

1

2
ψ(s)a(X0)ψ(s)

⊤
)
ds

(4.9)
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satisfies

Yt = E[uXT + (f ∗X)T |Ft] +
1

2

∫ T

t

ψ(T − s)a(E[Xs|Ft])ψ(T − s)⊤ds

for all 0 ≤ t ≤ T . The process {exp{Yt}, 0 ≤ t ≤ T} is a local martingale and, if it is a true
martingale, one has the exponential-affine transform formula

E [ exp{uXT + (f ∗X)T }| Ft] = exp{Yt}, t ≤ T.

We now set the following assumptions on kernel K and let ∆hK(t) = K(t+ h)

K ∈ L2
loc(R+,R) and there is γ ∈ (0, 2] such that

∫ h

0

K(t)2dt = O(hγ)

and

∫ T

0

(K(t+ h)−K(t))2dt = O(hγ) for every T <∞.
(4.10)

∆hK(.) is nonnegative, not identically zero, non-increasing and continuous on

(0,∞), and its resolvent of the first kind L∆h
is nonnegative and

non-increasing in that s 7→ L∆h
([s, s+ t]) is non-increasing for all t ≥ 0.

(4.11)

Now considering the log-price process{
logSt = logS0 −

∫ t

0
Vs

2 ds+
∫ t

0

√
VsdBs

Vt = V0 +
∫ t

0
K(t− s)

(
λ(θ − Vs) + ν

√
VsdWs

)
.

This is an affine Volterra process with

A0 = A1 = 0, A2 =

(
1 ρν
ρν ν2

)
b0 =

(
0
λθ

)
, (b1 b2) =

(
0 − 1

2
0 −λ

)
Then we know the following theorem holds by Theorem 7.2(ii) in [20].

Theorem 4.2. Assume K satisfies (4.10) and (4.11) for all h ∈ [0, 1]. Let u ∈ (C2)∗ and
f ∈ L1

loc(R+, (C2)∗) be such that

ℜψ1 ∈ [0, 1], ℜu2 ≤ 0, and ,ℜf2 ≤ 0,

where ψ1 = u1 + 1 ∗ f1. Then the process Xt = (logSt, Vt) has a unique continuous
weak solution for any initial condition (logS0, V0) ∈ R×R+. Moreover the Riccati-Volterra
equation

ψ2 = u2K +K ∗ F (ψ1, ψ2)

has a unique global solution ψ2 ∈ L2
loc(R+,C∗), which satisfies ℜψ2 ≤ 0. Moreover, the

exponential-affine transform formula holds, given by

E [exp(uXT + (f ∗X)T ] = exp

{
ψ1(T ) logS0 + u2g0(T ) +

∫ T

0

F (ψ1, ψ2)(s)g0(T − s)ds

}
,

(4.12)
with

F (ψ1, ψ2) = f2 +
1

2
(ψ2

1 − ψ1) + (ρνψ1 − λ)ψ2 +
ν2

2
ψ2
2 .



13

4.3. Characteristic Function of Rough Heston
The characteristic function of the rough Heston model follows straight from Theorem 4.2 as

done in [11], we now need to make sure that the kernel K(t) = tα−1

Γ(α) satisfies assumptions

(4.10), (4.11).
Verifying the first assumption is done by∫ h

0

(K(t))2dt =

∫ t

0

t2α−2

Γ(α)2
dt

=
1

Γ(α)2

∫ h

0

t2α−2dt

=
1

Γ(α)2
1

2α− 1
h2α−2 = O(h2α−1).

Noting that 2α− 1 ∈ (0, 2] thus verifies the first part. The second part is verified by utilizing
the Taylor expansion of K(t+ h) = tα−1 + 1

α−1 t
α−2h+O(h2). Thus∫ T

0

(K(t+ h)−K(t))2 =
1

Γ(α)

∫ T

0

((t+ h)α−1 − tα−1)2dt

=
1

Γ(α)

∫ T

0

1

(α− 1)2
t2α−2h2 +O(h4)dt = O(h2),

verifying (4.10).
Secondly we show (4.11), this is due to an argument based on the monotonicity of ∆hK.
Theorem 5.5.4 of [21] states that if a kernel is monotone, then it has a resolvent of the first
kind, f , which is completely monotone, this means that (−1)kf (k)(t) ≥ 0,∀t > 0, k ∈ N.
Knowing that ∆hK is monotone and positive concludes the reasoning.
Thus by Theorem 4.2 and taking u1 = ia, u2 = 0 and f1 = f2 = 0 we obtain

E [exp{iaSt}] = exp
{
ia logS0 + θλI1h(a, t) + V0I

1−αh(a, t)
}
,

where h is the solution to the fractional Riccati equation

Dαh(a, t) =
1

2
(−a2 − ia) + λ(iaρν − 1)h(a, s) +

(λν)2

2
h2(a, s), I1−αh(a, 0) = 0,

where Dα and I1−α are defined in (2.2).

4.3.1. Numerical Approximation
The characteristic function is entirely defined through the fractional Riccati equation{

Dαh(a, t) = F (a, h(a, t)), I1−αh(a, 0) = 0

F (a, x) = 1
2 (−a

2 − ia) + λ(iaρν − 1)x+ (λν)2

2 x2.

Applying the fractional integral operator Iα to both sides gives

h(a, t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (a, h(a, s))ds. (4.13)

Numerically solving this equation is done using the Adams method, as explained in [22]. For
this, define a time grid (tk)k∈N with mesh ∆, so tk = ∆k. Then estimate the integral in
(4.13) by a trapezoidal approximation of F ,

ĥ(a, tk+1) =
1

Γ(α)

∫ tk+1

0

(tk+1 − s)α−1F (a, ĥ(a, t))ds,

with

F (a, ĥ(a, t)) =
tj+1 − t
tj+1 − tj

F (a, ĥ(a, tj))+
t− tj

tj+1 − tj
F (a, ĥ(a, tj+1)), t ∈ [tj , tj+1), 0 ≤ j ≤ k.
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Calculating the integral results in

ĥ(a, tk+1) =
∑

0≤j≤k

aj,k+1F (a, ĥ(a, tj)) + ak+1,k+1F (a, ĥ(a, tk+1)), (4.14)

with

a0,k+1 =
∆α

Γ(α+ 2)
(kα+1 − (k − α)(k + 1)α),

aj,k+1 =
∆α

Γ(α+ 2)
((k − j + 2)α+1 + (k − j)α+1 − 2(k − j + 1)α+1), 1 ≤ j ≤ k,

and ak+1,k+1 =
∆α

Γ(α+ 2)
.

Now note that ĥ(a, tk+1) is on both sides of (4.14), making this scheme implicit. Thus we

use a pre-estimation of ĥ(a, tk+1), called a predictor and denote it by ĥP (a, tk+1). This
predictor is calculated using a left-hand side integration of (4.13):

ĥP (a, tk+1) =
1

Γ(α)

∫ t

0

(t− s)α−1F (a, ĥ(a, tj))ds.

Therefore
ĥP (a, tk+1) =

∑
0≤j≤k

bj,k+1F (a, ĥ(a, tj)),

where

bj,k+1 =
∆α

Γ(α+ 1)
((k − j + 1)α − (k − j)α), 0 ≤ j ≤ k.

So the final approximation is given by

ĥ(a, tk+1) =
∑

0≤j≤k

aj,k+1F (a, ĥ(a, tj)) + ak+1,k+1F (a, ĥ
P (a, tk+1)).

4.4. Characteristic Function of Lifted Heston
For the lifted Heston model we choose K(t) =

∑n
i cie

−xit for ci, xi, where these are chosen
to approximate the fractional kernel used in the rough Heston model as explained in subsection
4.4.2. Note that K(t) is the Laplace transform of µ(dx) =

∑n
i ciδxi

(dx).
Also set the initial instantaneous forward variance curve g0 defined in (2.15) equal to

g0(t) = V0 + λθ

n∑
i=1

ci

∫ t

0

e−xi(t−s)ds = V0 + λθ

∫ t

0

e−x(t−s)µ(dx).

Now following the reasoning in section 4 from [23], consider the process

dUt(x) =

(
−xUt(x)− λ

(
g0(t) +

∫ ∞

0

Ut(z)µ(dz)

))
dt+ν

√
g0(t) +

∫ ∞

0

Ut(z)µ(dz)dWt.

By Theorem 4.2, Ut has a unique continuous weak solution. Given the initial condition
U0 = 0 this solution is given by

Ut =

∫ t

0

e−x(t−s)
(
−λVsds+ ν

√
VsdWs

)
where

Vt = g0(t) +

∫ ∞

0

Ut(z)µ(dz).
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In order to apply Theorem 4.2, the conditions on K must be checked. (4.10) holds with
γ = 1, since

∫ h

0

(∑
i

cie
−xit

)2

dt =
∑
i

∑
j

cicj

∫ h

0

e−(xi+xj)tdt

=
∑
i

∑
j

cicj
xi + xj

[e−(xi+xj)h − 1] = O(h)

and ∫ h

0

∑
i

cie
−xi(t+h) −

∑
i

cie
−xitdt =

∑
i

ci(e
−xih − 1)

∫ T

0

e−xitdt = O(h),

both following from the Taylor expansion of eh. Secondly we show (4.11), which is due to
the same argument as before. Again noting Theorem 5.5.4 of [21], which states that if a
kernel is monotone, then it has a resolvent of the first kind which is completely monotone.
Knowing that ∆hK is monotone and positive concludes the reasoning.
We can now use (4.12) and take u1 = ia, u2 = 0 and f1 = f2 = 0. Thus we can now
conclude that the characteristic function of the lifted Heston model is given by

E [ia logST ] = exp

{
logS0 +

∫ T

0

F

(
u,

n∑
i

ciψ
i(s)

)
g0(T − s)ds

}
(4.15)

where

∂tψ
i = −xiψi + F

(
u,

n∑
i

ciψ
i(s)

)
, ψi(0) = 0

and

F (u, v) =
1

2
(u2 − u) + (ρνu− λ)v + ν2

2
v2.

4.4.1. Numerical Approximation
In order to solve the characteristic function for the lifted Heston model we thus need to solve
the following system of equations{

∂tψ
i = −xiψi + F

(
u,
∑n

i ciψ
i(s)
)
, ψi(0) = 0, i = 1, . . . , n

F (u, v) = 1
2 (u

2 − u) + (ρνu− λ)v + ν2

2 v
2.

(4.16)

Since there is no closed form solution, we use a numerical scheme to approximate this n-
dimensional Riccati equation. We will first look at the most simple approximation scheme, as
described in [12], called the explicit-implicit Euler scheme. Define a time grid (tk)k∈N with
mesh size ∆t. Approximate the first equation of (4.16) by

∂tψ
i = −xiψi, i = 1, . . . , n, (4.17)

for which the solution is given by

ψi(t) = ψi(0)e−xit, i = 1, . . . , n.

An explicit Euler scheme would take ψ̂i(tk+1) = (1−xi∆t)ψ̂i(tk). The stability condition of
this scheme would be ∆t ≤ 1

xi
,∀i = 1, . . . , n. Since we have x20 ≈ 6418, this would require

almost 13, 000 time steps for an expiry two years out. In order to get around this we consider
the implicit Euler method

ψ̂i(tk+1) = ψ̂i(tk)− xi∆tψ̂i(tk+1) =⇒ ψ̂i(tk+1) =
1

1 + xi∆t
ψi(tk).
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Thus the full scheme regarding the numerical approximation becomes{
ψ̂i(tk+1) =

1
1+xi∆t

(
ψ̂i(tk) + ∆tF

(
u,
∑n

j=1 cjψ
j(tk)

))
, i = 1, . . . , n

ψ̂i(0) = 0.
(4.18)

Alternations to this method are replacing 1
1+xi∆t by e−xi∆t, however this could result

in numerical errors. One could also consider adding the terms constant and linear in ψi to
(4.17)

∂tψ
i = −xiψi +

1

2
(u2 − u) + (ρνu− λ)

∑
j ̸=i

cjψ
j + (ρνu− λ)ciψi.

This differential equation has a closed form solution given by

ψi(t) = ψi(0)eait +
bi
ai
(1− e−ait)

with

ai =
1

2
(u2 − u) + (ρνu− λ)

∑
j ̸=i

cjψ
j

bi = −xi + (ρνu− λ)ci.

Finally, one could consider implementing higher order Runge-Kutta methods for solving
(4.18), as suggested in [12].

4.4.2. Approximating the Rough Kernel
Finally we must define our ci, xi, i = 1, . . . , n. We want to choose xi, ci such that K(t) =∑n

i cie
−xit best describes the fractional kernel Kα = tα−1

Γ(α) . We now choose a measure µ(dx)

such that the Laplace transform of this measure gives us Kα, this is done by taking

Kα(t) =

∫ ∞

0

e−xtµ(dx), µ(dx) =
x−α

Γ(α)Γ(1− α)
dx.

We now approximate µ(t) ≈
∑n

i=1 ciδxi
(t) using methods from [24] section 3.1. They

describe how the function W (t) =
∫∞
0
U(x, t)f(x)dx can be approximated by Ŵ (t) =∑

i ciU(ηi, t) by choosing

ci =

∫ ξi+1

ξi

f(x)dx, ηi =

∫ ξi+1

ξi
xf(x)dx∫ ξi+1

ξi
f(x)dx

.

Taking f(x) = x−α

Γ(α)Γ(1−α) and taking the geometric partition ηi = r
i−n/2
n for some rn > 0

results in

ci =
(r1−α

n − 1)r
(α−1)(1+n/2)
n

Γ(α)Γ(2− α)
r(1−α)i
n , xi =

1− α
2− α

r2−α
n − 1

r1−α
n − 1

ri−1−n/2
n , i = 1, . . . , n.

In [12] they show that if (rn)n≥1 satisfies

rn ↓ 1, and lim
n→∞

n log rn =∞,

then the lifted Heston model converges towards the rough Heston model as n goes to infinity.
They also compare the lifted Heston model for different values of n and rn and suggest taking
n = 20 and rn = 2.5 for a good approximation of the lifted Heston vol curve to that of the
rough Heston. Thus we also take these values in our implementation.



5. Forward Variance Curve

An input to the rough Bergomi and rough Heston model is the forward variance curve. This
chapter explains how to approximate the forward variance curve and the cumulants, as needed
in (4.4), from market data. This is done using the Breeden-Litzenberger formula.

5.1. Volatility Derivatives
Let us consider a European call option with strike K and maturity T , then the price at current
time t (V Call(St,K)) can be represented as

V Call(St,K) = e−rT

∫ ∞

K

(x−K)ϕST
(x)dx,

where ϕST
is the probability density function of the price of the underlying at maturity (ST ).

Now differentiating V Call(St,K) twice to K gives

∂2

∂K2
V Call(St,K) = e−rT ∂2

∂K2

∫ ∞

K

(x−K)ϕST
(x)dx

= e−rT ∂

∂K

{
−(K −K)ϕST

(K) +

∫ ∞

K

∂

∂K
(x−K)ϕST

(x)dx

}
= e−rT ∂

∂K

{
−
∫ ∞

K

ϕST
(x)dx

}
= e−rTϕST

(K),

where we first apply the Leibniz integral rule and then the fundamental theorem of calculus.
The same holds for a European put (V Put(St,K)), where we find that

∂2

∂K2
V Put(St,K) = e−rTϕST

(K)

For notation sake we now introduce Ṽ Call and Ṽ Put as the undiscounted call and put prices
respectively and denote the future of the underlying by F and consider them all at time
t < T . The put-call parity now reads Ṽ Call(K) − Ṽ Put(K) = F − K. Using this we now
consider a general pay-off g(ST ), as done in chapter 11 of [25], this is given by

E [g(ST )|St] =

∫ ∞

0

g(K)ϕST
(K)dK

=

∫ F

0

∂2Ṽ Put

∂K2
g(K)dK +

∫ ∞

F

∂2Ṽ Call

∂K2
g(K)dK

=
∂Ṽ Put

∂K
g(K)

∣∣∣∣∣
F

K=0

−
∫ F

0

∂Ṽ Put

∂K
g′(K)dK

+
∂Ṽ Call

∂K
g(K)

∣∣∣∣∣
∞

K=F

−
∫ ∞

F

∂Ṽ Call

∂K
g′(K)dK

=
∂K − F
∂K

(F )g(F )−
∫ F

0

∂Ṽ Put

∂K
g′(K)dK −

∫ ∞

F

∂Ṽ Call

∂K
g′(K)dK

= g(F )− Ṽ Put(K)g′(K)
∣∣∣F
K=0

+

∫ F

0

Ṽ Put(K)g′′(K)dK

− Ṽ Call(K)g′(K)
∣∣∣∞
K=F

+

∫ ∞

F

Ṽ Call(K)g′′(K)dK

= g(F ) +

∫ F

0

Ṽ Put(K)g′′(K)dK +

∫ ∞

F

Ṽ Call(K)g′′(K)dK.

(5.1)
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Thus for a general pay-off g(ST ) which is twice differentiable we can determine a fair value
by integrating over weighted out-of-the-money call and put prices. This is often referred to
as the Breeden-Litzenberger formula.

5.2. Cumulants
The cumulants of log(St/F ) are needed for two reasons. Firstly we want to use this to
determine a truncation range for the COS method. In [18], equation (49) determines the
truncation range as in (4.4). Secondly the cumulants are needed to determine the forward
variance curve, which is described in section 5.3.
In order to determine the cumulants we take the function g(St) = logn (ST /F ). First we
note that for n ≥ 2

∂2

∂K2
logn

(
K

F

)
=

∂

∂K

n

K
logn−1

(
K

F

)
=

n

K2

[
(n− 1) logn−2

(
K

F

)
− logn−1

(
K

F

)]
.

Now using equation (5.1) one can verify

E
[
logn

(
ST

F

)∣∣∣∣St

]
=

∫ F

0

Ṽ Put(K)
n

K2

[
(n− 1) logn−2

(
K

F

)
− logn−1

(
K

F

)]
dK

+

∫ ∞

F

Ṽ Call(K)
n

K2

[
(n− 1) logn−2

(
K

F

)
− logn−1

(
K

F

)]
dK.

In the case of n = 1

E
[
log

(
ST

F

)∣∣∣∣St

]
= −

∫ F

0

Ṽ Put(K)

K2
dK −

∫ ∞

F

Ṽ Call(K)

K2
dK.

Usually in the COS method the cumulants are known from the model, however for the rough
volatility models this is not the case. Hence we infer the cumulants from the market curve
by taking a weighted integral over the out-of-the-money puts and calls.

5.3. Forward Variance Curve
The Breeden-Litzenberger formula can also be used to determine the discrete instantaneous
forward variance curve, as done in chapter 11 of [25]. Let us assume that there are no
interest rates and dividends, so F = S0, then by Itô’s lemma and working under the risk-
neutral measure we find that

E
[
log

(
ST

S0

)]
= E

[∫ T

0

d log(St)

]
= E

[∫ T

0

dSt

St
−
∫ T

0

σ2
St

2
dt

]
= −E

[∫ T

0

σ2
St

2
dt

]
.

Note that the last step holds under the risk-neutral measure. Hence the total variance of St

over [0, T ] as follows

E

[∫ T

0

σ2
St
dt

]
= −2E

[
log

(
ST

S0

)]
= 2

{∫ F

0

Ṽ Put(ST ,K)

K2
dK +

∫ ∞

F

Ṽ Call(ST ,K)

K2
dK

}
,

(5.2)
Now the instantaneous forward variance (ξT1,T2) is defined as the annualized variance between
times T1 and T2. Thus the total variance in terms of ξTi−1,Ti

is given by

E

[∫ T

0

σ2
St
dt

]
= lim

NT→∞

NT∑
i=1

ξTi−1,Ti
(Ti−1 − Ti) ≈

Nexp∑
i=1

ξTi−1,Ti
(Ti−1 − Ti), (5.3)

where Nexp is the number of expiries. The sum is taken to Nexp because a vol curve is needed
from the market to determine ξTi−1,Ti . We can then approximate our forward variance by
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combining equations (5.2) and (5.3) as follows

ξTi−1,Ti
=

1

Ti−1 − Ti
E

[∫ Ti

Ti−1

σ2
St
dt

]

=
2

Ti−1 − Ti

{∫ F

0

Ṽ Put(STi
,K)− Ṽ Put(STi−1

,K)

K2
dK +

∫ ∞

F

Ṽ Call(STi ,K)− Ṽ Call(STi−1K)

K2
dK

}
.

This then creates a step function for the forward variance curve as implied by the market.
Note that this is the same as the discrete forward variance as defined in chapter 5 of [26].



6. Fitting

The goal of this research is to fit our models to the market data, there are many ways to
approach such a problem. This chapter explains the fitting methods used and the reasons
why. Fitting is done using a weighted root-mean-square error (RMSE) and is done in two
stages. The first stage is a global search using differential evolution, the second stage then
uses this result and finds a local minimum with a Nelder-Mead algorithm.

6.1. Weights
In order to fit the model vol surface to the market vol surface we add weights to different
parts of the vol surface depending on how well the surface approximates the actual implied
volatility. We add weights in two different ways, one according to the vega and another
according to the market spread.

Multiplying our weights by vega would mean that we add a term ∂V/∂σ to the weights,
where V is the price of an option. This essentially translates the objective from a minimization
in vol space to a minimization in price space. On the other hand if we do not multiply by
vega we only minimize in vol space. As a mid-way we therefore multiply our weights by the
square-root of vega, thus we take into consideration the minimization in vol space and in
price space equally.

Inspired by the solution in chapter 13.2 of [27], we also weigh the point on a vol surface
according to the market spread. This way we take into consideration where along the vol
curve the market is most sure about the vol. We do this by weighing the terms in the MSE
with

wi,spread =
1

V
Call/Put,ask
i (K)− V Call/Put,bid

i (K)
.

Here V Call/Put refers to the out-of-the-money call or put price, dependent on the strike.
Finally we normalize all the weights to sum to one in order to get a result in the units of
vol-points.

6.2. Differential Evolution
For the global search we use a differential evolution algorithm as first introduced in [28].
Differential evolution is a method based on agents in search-space and is used because it
does not use the gradient and does not rely on a convex objective function, which we know
is not the case for volatility models.

The differential evolution algorithm requires three inputs:

1. N is the number of agents, usually set around 10 times the number of input parameters
to the objective function.

2. Cr is the crossover rate, a constant which determines if an agent is accepted, usually
set around 0.8.

3. F is the differential weight, a multiplication constant, usually set at 0.7.

The algorithm for minimizing a function f : Rn → R is as follows

Distribute all agents in X = {xi, i = 1, . . . , N} randomly in search space according to a
uniform distribution in each parameter
while termination criterion is not met do

for each agent xi ∈ X do
Pick three random agents a, b, c ∈ X, where a ̸= b ̸= c ̸= xi
Generate n uniformly distributed random numbers rj ∼ U(0, 1), j = 1, . . . , n
for j = 1, . . . , n do

20
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Set {
yi = ai + F (bi − ci) , if rj < Cr

yi = xi , if rj ≥ Cr

Define yi = [yi,1, . . . , yi,n]
end for
if f(yi) ≤ f(xi) then

xi ← yi
end if

end for
end while.

A modification to the algorithm as implemented by the scipy package is that F is a random
variable distributed as U(0.5, 1). The stopping criteria will depend on the computational
feasibility of the model, but will always be a number of iterations.

The advantage of using a differential evolution algorithm on a non-convex surface is that
the agents will first cluster together in local minima. Because of the combination of vectors
formed, the agents can jump between these local minima and will eventually cluster together
at the global minimum. An illustration of this phenomena is given in Figure 3, which is taken
from section 2.1.7 of [29].

(a) Iteration 1 (b) Iteration 6

(c) Iteration 12 (d) Iteration 16

Figure 3: Illustration of clustering in differential evolution algorithm

In our implementation we use the standard differential evolution function in python’s
scipy.optimize library.

6.3. Nelder-Mead
The Nelder-Mead method (also known as the downhill simplex method) was first introduced
in [30]. Just as the differential evolution algorithm it does not require a convex objective
function, making it suitable for fitting our model.

The Nelder-Mead method requires a reflection, expansion, contraction and shrink coeffi-
cients as inputs, these are respectively denoted by α, γ, ρ and σ. Standard values would be
α = 1, γ = 2, ρ = 1/2 and σ = 1/2.

For a function f : Rn → R the algorithm works by considering n + 1 agents, sorted by
their performance. We then look at the agents in space and take the middle of all but the
worst performing agent and call this point the centroid. First we try reflecting the worst
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performing agent through the centroid. If this yields a better result than the second-worst
performing we replace our worst performing agent by our reflected point. However if this
yields a better result than our best performing agent then we expand on this reflection by
going further. We then test this expanded point, if it yields a better result we replace the
reflected point by the expanded point.

On the other hand if the reflection did not improve the result on our second-worst per-
forming agent but did improve on the worst preforming agent, we try a contraction with
respect to the reflected point. This is a point between the centroid and the reflected point.
If this yields a better result than the reflection we replace our worst performing agent with
the contracted point.

If however the reflection did not improve on the worst performing agent then we try a
contraction with respect to the worst performing agent. Again, if this yields a better result
than the worst performing agent we replace it with the contracted agent.

Finally, if the contraction did not improve on the worst performing agent we shrink all
agents but the best performing agent towards the best performing agent with a factor σ.

The pseudo-code for minimizing a function f : Rn → R is given by

Pick n+ 1 random agents in the search space according to a uniform distribution
while termination criterion is not met do Reflection

Evaluate and order f(x1) ≤ . . . ≤ f(xn+1)
Calculate xo, the centroid of the best n agents (xo = 1

n

∑n
i=1 xi)

Determine reflection point xr = xo + α(xo − xn+1) and evaluate f(xr)
if f(x1) ≤ f(xr) < f(xn) then

xn+1 ← xr
else if f(xr) < f(x1) then Expansion

Determine expansion point xe = xo + γ(xo − xn+1) and evaluate f(xe)
if f(xe) < f(xr) then

xn+1 ← xe
end if

else if f(xr) ≥ f(xn) then
if f(xr) < f(xn+1) then Contraction w.r.t. xr

Determine contraction point xc = xo + ρ(xr − xo) and evaluate f(xc)
if f(xc) < f(xr) then

xn+1 ← xc
else Shrink

for i = 2, . . . , n+ 1 do
xi ← x1 + σ(xi − x1)

end for
end if

else if f(xr) ≥ f(xn+1) then Contraction w.r.t. xn+1

Determine contraction point x′c = xo + ρ(xn+1 − xo) and evaluate f(x′c)
if f(x′c) < f(xn+1) then

xn+1 ← x′c
else Shrink

for i = 2, . . . , n+ 1 do
xi ← x1 + σ(xi − x1)

end for
end if

end if
end if

end while

A visualization of all the possible points on the surface is given by
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x3

x2

x1

xo, x
′
2

xr

xe

xc

x′c

x′3

Figure 4: An illustration of the points in a Nelder-Mead iteration in two dimensions, with
f(x1) < f(x2) < f(x3). The contour lines of the objective function are given by the solid lines. The dashed

line is the plane for the centroid. Parameters are (α, γ, ρ, σ) = (1, 2, 1/2, 1/2).

The advantages of Nelder-Mead is that it requires relatively few function evaluations per
iteration if we don’t reach the shrink stage (which is rare in practice).

In this work we use the minimize function from the scipy.optimize package, this is an
implementation of the method in [31]. For this function we can input the best n+ 1 results
of the differential evolution algorithm as a starting point for the Nelder-Mead method. This
saves us iterations on searching the space if we already know roughly where the minimum is
through our differential evolution.



7. Model Comparison

The goal is to compare the models and see if one is better than the other. There are many
ways to compare these models, here we choose to compare the models based on three things:
computation time, fitting error and hedging result.

7.1. Computation Time
There are two computation times we compare. One is for a single function evaluation, so for
the computation of a single vol surface. The second is for the whole minimization.

The first gives a good metric on how easy it is to compute a vol surface.
The second computation time is the computation time of the whole minimization. Even-

tually the goal is to minimize the model to the market, so comparing the time it takes to
minimize this is crucial in comparing the models. This however strongly depends on the
parameters chosen in the minimization methods, which can also be optimized, although that
is not part of this research.

7.2. Objective Function
Next we compare the models by their objective function value, so by their weighted RMSE.
This gives an indication of how good the fit is to the market data.

7.3. Hedging
Finally we compare the models by their hedging result. What this means is that we compute
a theoretical value of a call option at time T (V̂ Call(ST )), while knowing the market call
price at T = 0 (V Call(S0)). We do this by hedging against the first order derivative in each
parameter:

V̂ Call(ST ) = V Call(S0) +

n∑
i=1

∂V Call
model(S0)

∂θi0
(θiT − θi0),

where V Call
model(St) is the call price computed by the model at time t. We then compute

the weighted RMSE of V̂ Call(ST ) − V Call(ST ). The weights are the same as those in the
minimization.

Next to this we always use a delta-hedge. Thus we compare the the hedging result for
hedging the delta and all the parameters to only hedging the delta. This should then give an
indication on how well the model describes what is actually happening in the market.
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8. Results

This chapter will only be a presentation of the results, a discussion and conclusion of the
results will be give in the following chapters.

8.1. Introduction
Firstly, the market conditions we are fitting to are introduced. This is followed by the
parameters used for the minimization.

8.1.1. Market Conditions
For fitting vol surfaces we look at the month of November 2021 and fit the models to the vol
surface of 12:00 on trading days. The vol surface is for Eurostroxx 50 options and is supplied
by IMC Trading, which is the largest options trading firm for Eurostoxx. For the vol surface
we considered all monthly expiries up to two years out, thus our vol surface is constructed
using twelve vol curves. The strikes for all these vol curves are based on what is tradable
on the Eurostoxx. The spot values of the Eurostoxx 50 for the considered vol surfaces are
displayed in Figure 5

Figure 5: Spot values of Eurostoxx 50 futures from 1/11/2021 until 30/11/2021.

Interesting to note is that there is a calm period and also a period of sharp decline in this
month. For this chapter we will mostly consider the vol surfaces from 1/11, 15/11 and 30/11.
This should give an accurate representation of what the market behaved like throughout the
month. The three vol surfaces for these dates are plotted here
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(a) Market vol surface on 1/11 (b) Market vol surface on 15/11

(c) Market vol surface on 30/11

Figure 6: Plots of vol surfaces throughout November 2021

As can be seen in figure 6c, the dip in spot leads to an increase in the vol surface, while
for the other two curves the vol is lower towards the short expiries. Also note that we scale
the strike axis to log-moneyness /

√
expiry. The scaling to the expiry is to ensure that we

do not extrapolate the short expiries too far out. The extrapolation is a linear extrapolation
of log-moneyness versus σ2

imp as per the moment formula in [32], this ensures no arbitrage in
the tails.

8.1.2. Parameters
A big influence on the minimization time for all these models are the parameters chosen. For
the Bergomi models we took 20, 000 paths and 100 time steps, in line with [33]. While for
the rough Heston and lifted Heston we took 500 COS method evaluations, in the same order
of magnitude as [12] and 500 and 400 time steps respectively. For the lifted Heston model
we also took a 20 dimensional Riccati equation with rn = 2.5, as suggested in [12].

For the minimization, the Bergomi models had 20 differential evolution stages, while
the Heston models had 5. This difference was added because it requires a lot of evaluations,
which was infeasible for the Heston models due to their long computation times. The Nelder-
Mead optimization was terminated after a function evaluation difference of less than 10−4

was achieved.
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8.2. Computation Time
The results for the computation time of a single realization together with the results for the
minimization are given in Table 1.

model
single vol surface
computation time (s)

total minimization
time (h:m)

minimization function
evaluations

rB 3.87± 0.009 2:05± 0:45 946± 96
rB7p 4.89± 0.01 4:25± 1:26 2, 321± 433
rH 177± 0.6 26:48± 12:29 243± 45
LH 34.9± 0.09 14:57± 10:35 1, 959± 1.182

Table 1: For the different models the times of vol surface evaluation and total minimization together with
number of function evaluations needed for the minimization.

Do note that in this implementation we have not parallelized the computation of the vol
curves, thus all twelve smiles are computed in a for-loop. Parallelizing this could theoretically
speed up by time columns by a factor 12. The results for all the individual minimizations are
given in the following figure

Figure 7: Minimization times and function evaluations

8.3. Volatility Surface
The different minimized weighted RMSE values are given in Figure 8

Figure 8: Weighted RMSE between fitted curve and market curve for different dates
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The means in Figure 8 with their errors are given in Table 2

model
weighted RMSE
(vol points)

rB 1.41± 0.11
rB7p 0.55± 0.05
rH 0.51± 0.05
LH 0.57± 0.11

Table 2: For the different models the results for the weighted RMSE between the minimized model surface
and the market surface.

Next we show the results of the minimized objective function by plotting the vol surfaces
and their differences between the market surface for the same dates as in Figure 6. The
difference surface is calculated by subtracting the model surface from the market surface.
We also plot the market and model vol curves for a short, middle and long expiry for these
three dates for all models as this might give a more intuitive insight into how the models
behave.



29

8.3.1. Rough Bergomi

(a) Rough Bergomi vol surface on 1/11 (b) Rough Bergomi difference surface on 1/11

(c) Rough Bergomi vol surface on 15/11 (d) Rough Bergomi difference surface on 15/11

(e) Rough Bergomi vol surface on 30/11 (f) Rough Bergomi difference surface on 30/11

Figure 9: Rough Bergomi vol surfaces and difference between market surfaces
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Figure 10: Market and rough Bergomi vol curves for short, middle and long expiries
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8.3.2. Rough Bergomi 7 parameters

(a) Rough Bergomi 7 parameters vol surface on 1/11
(b) Rough Bergomi 7 parameters difference surface on

1/11

(c) Rough Bergomi 7 parameters vol surface on 15/11
(d) Rough Bergomi 7 parameters difference surface on

15/11

(e) Rough Bergomi 7 parameters vol surface on 30/11
(f) Rough Bergomi 7 parameters difference surface on

30/11

Figure 11: Rough Bergomi 7 parameters vol surfaces and difference between market surfaces
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Figure 12: Market and rough Bergomi 7 parameters vol curves for short, middle and long expiries

Figure 13: Market and model fitted forward volatility curves.
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8.3.3. Rough Heston

(a) Rough Heston vol surface on 1/11

(b) Rough Heston difference surface on 1/11

(c) Rough Heston vol surface on 15/11

(d) Rough Heston difference surface on 15/11

(e) Rough Heston vol surface on 30/11

(f) Rough Heston difference surface on 30/11

Figure 14: Rough Heston vol surfaces and difference between market surfaces
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Figure 15: Market and rough Heston vol curves for short, middle and long expiries
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8.3.4. Lifted Heston

(a) Lifted Heston vol surface on 1/11

(b) Lifted Heston difference surface on 1/11

(c) Lifted Heston vol surface on 15/11

(d) Lifted Heston difference surface on 15/11

(e) Lifted Heston vol surface on 30/11

(f) Lifted Heston difference surface on 30/11

Figure 16: Lifted Heston vol surfaces and difference between market surfaces



36

Figure 17: Market and lifted Heston vol curves for short, middle and long expiries

Figure 18: Market and model fitted forward volatility curves.

8.4. Hedging
In order to give a clear representation of the hedging performance of each model we consider
the following plots

• Firstly we consider the time series of the optimized parameters throughout November
2021. This will give a representation of the fluctuation of a parameter, indicating if
a hedge against it will be useful. A highly fluctuating parameter while the market is
stable would indicate the parameter does not represent anything in the market, thus
making it unnecessary to hedge against.

• Secondly we consider a sample of the hedging results. In order to do this we consider
the hedging results for three different dates (2/11, 16/11 and 30/11) and again for
a short, middle and long expiry. Since we are already considering a delta hedge, the
plots will include a delta hedged price difference as well as the magnitude of the delta
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hedge. We also consider a hedge against the FVC. The derivative of this is calculated by
shifting the FVC up by ε = 10−3 and dividing the difference in call prices by ε = 10−3.
The hedging factor is then calculated by multiplying this derivative by the area change
in forward variance curves.
A note on this plot is that if one were to calculate the price difference for the hedge
against a parameter, the plot should be inverted and added to the delta hedged price
difference. Thus a positive parameter hedge curve results in a downward shift in the
delta hedged price difference.

• Finally, putting all these results together will lead to the last plot. Here we plot the
difference in weighted MSE of the delta hedge vs the delta+parameter hedge as a
time series. The weights are the same as those used in the minimization. Since the
underlying dropped from the 26th to the 27th, this will lead to an outlier. Thus we will
also plot the time series up until the 26th. The title of these plots will have the mean
of its time series. If these time series are negative, it means that hedging against the
parameter decreased the MSE of the price difference, indicating a hedge against the
parameter would be an improvement over just a delta hedge. A plot with only the delta
hedged MSE is provided at the top, this indicates how well the model delta does and
gives an indication on the ratio of improvement for the parameter hedges.
Next to this we also plot how well the model would do if we were to hedge against the
delta and all the parameters. The MSE of this is then again compared to the MSE of
the delta hedge, as before.
Finally we again consider the hedge against the FVC and plot its weighted MSE time
series.

8.4.1. Rough Bergomi

Figure 19: Parameter evolution for rough Bergomi
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Figure 20: Hedging results of hedging against the parameters of the rough Bergomi model
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Figure 21: Time series of delta hedged weighted MSE and the difference between the hedged result MSE
and the delta hedged MSE.

8.4.2. Rough Bergomi 7 parameters

Figure 22: Parameter evolution for rough Bergomi 7 parameter
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Figure 22: Hedging results of hedging against the parameters of the rough Bergomi 7 parameter model
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Figure 23: Time series of delta hedged weighted MSE and the difference between the hedged result MSE
and the delta hedged MSE.
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8.4.3. Rough Heston

Figure 24: Parameter evolution for rough Heston
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Figure 25: Hedging results of hedging against the parameters of the rough Heston model
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Figure 26: Time series of delta hedged weighted MSE and the difference between the hedged result MSE
and the delta hedged MSE.

8.4.4. Lifted Heston

Figure 27: Parameter evolution for lifted Heston
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Figure 27: Hedging results of hedging against the parameters of the lifted Heston model



51



52

Figure 28: Time series of delta hedged weighted MSE and the difference between the hedged result MSE
and the delta hedged MSE.



9. Discussion

9.1. Computation Time
As can be seen from Table 1 and Figure 7, the computation times for a single evaluation
differ drastically. The rough Bergomi model seems to do the best, followed closely by the
rough Bergomi 7 parameter model. Both have a computation time of a few seconds for the
full vol surface. We do indeed see that the rough Heston has a very large computation time,
which is to be expected and that the lifted Heston Markovian approximation cuts down the
computation time of a single surface by a factor of five compared to rough Heston.

We observe that the three parameter models have an easier time converging, which is
also to be expected. In the rough Bergomi case this leads to a reasonably short time for
convergence, while the rough Heston model still takes a long time due to the nature of
the computation. We also see that the lifted Heston model has a wide range of function
evaluations needed and that it might take a long time to converge. This convergence mainly
comes from the fact that we need to optimize six parameters instead of three, which is more
difficult and thus requires more function evaluations.

9.2. Volatility Surface
Firstly note that Figure 8 and Table 2 tell us that the rough Bergomi 7 parameter, rough
Heston and lifted Heston model perform roughly equal in how well they fit the market curve.
Meanwhile the rough Bergomi model has trouble with the fit and has an error of roughly
three times the size.

From Figures 9 and 10 we note that the rough Bergomi gives a good approximation of
the middle expiry, but fails on the earlier and later expiries. We also note that since this is a
path simulation, it is often difficult to correctly encompass the heavy tail of the distribution
on the lower strikes, this becomes even more clear for the long expiry where this is much
more prevalent.

The extra parameters for the instantaneous forward variance curve in the rough Bergomi
7 parameter model give more room to fit to the vol surface, as can be seen in Figures 11 and
12. This ensures a good fit around the skew. We again have the heavy tail problem for the
lower strikes, however it does seem to be less than in the rough Bergomi model. Although
the skew gives a good fit, there do seem to be some inconsistencies with the smile. One
could possibly fix this by giving more weight to the smile. When looking at Figure 13, it
can be seen that the FVC roughly follows the shape of the market FVC, but is always above
it. We do note that in some scenarios it differs by more than 5 vol points and it is strongly
driven by the first maturity, as can be seen in the final figure.

Looking at Figures 14 and 15, the rough Heston model seems to do a very good job at
modeling the whole surface. Although the fit for 15/11 would have probably been better had
the surface been shifted upwards, this is not possible because of the fixed FVC. The model
seems to do a good job in the low vol and the high vol regime and throughout all expiries,
especially considering it only has three parameters.

Finally, considering Figures 16 and 17 we note that the fit for the lifted Heston model
is good. Although for the short expiries, the skew does not follow the same trajectory as
the market but instead is more concave. We also see that the model does well in lower and
higher vol regimes and does particularly well around the ATM skew for all expiries, which
is the most liquid region. Considering Figure 18 we note that the lifted Heston model does
well at approximating the forward variance curve, although the predicted FVC is consistently
lower than the market FVC. Despite the outlier of the last expiry in the FVC, the predicted
FVC seems to have a lot of flexibility and seems to always have roughly the same shape as
the one from the market. We observe that for 30/11 the curve does seem strange, where the
model predicts a constant curve which looks like a linear regression of the market curve.
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9.3. Hedging
9.3.1. Rough Bergomi
The first thing that should be noted from Figure 19 is that ρ ≈ −1 for every minimization.
This seems strange and indicates an under-parameterized model. This also explains why the
hedging for ρ in Figure 20 is either zero or very small.

Looking further at the contribution of the vol-of-vol parameter η, we can try to make
sense of the curve. An increase in the vol-of-vol parameter will widen the distribution of the
vol, thus decreasing the ATM vol and increasing the tails, as explained in section 2.3 of [34].
If we multiply this by a vega curve (shaped like a normal distribution) we obtain something
similar; note the change in sign here. On all these dates there are positive differences in the
η parameter, which leads to a positive contribution to the expected price around the ATM.
Now taking the realized price and subtracting the expected price will lead to a negative curve,
which is in line with Figure 20. Thus the sign of these curves also makes sense. Moving on
to the Hurst parameter H we note that E[WH(t)2] = t2H , thus an increase in the Hurst
parameter will decrease the variance of the short term vol (if expiry < 1Y ), while increasing
the variance of the long term vol (if expiry > 1Y ). Since we apply this to the exponential
martingale we obtain a correction to this change in variance by expiry. Thus the effect of an
increase in H is the same as an increase in η. This seems to be the case when looking at
Figure 20, except for on 30/11, which might be because the model is under-parameterized.
Finally looking at the FVC hedge, an increase in the FVC means and increase in vol and thus
also in price. It also has the shape of a vega curve, which is to be expected.

Finally we discuss Figure 21. The hedge against H seems to do consistently worse than
delta only hedging. The ρ hedge often does not give an improvement, this is when ρ = −1 for
those days. Even on the other days the improvement is not substantial. The η parameter does
give an improvement over the only delta hedge, this is especially notable during a big decrease
in spot price, while it gives a roughly equal result on the other days. The hedge improvement
can go up to half of the delta hedge. Finally the FVC hedge seems to consistently outperform
the delta-only hedge and can improve this hedge up to roughly 20%.

9.3.2. Rough Bergomi 7 parameters
Note that we do not have ρ = −1 consistently as in the rough Bergomi model. However,
from Figure 22 it is apparent that the parameters H,β0, β1, β2 and τ are not stable over
time, indicating that our chosen model for the FVC is not representative of the market.

Moving on to Figure 22 we see comparable results for hedging against η. H also follows
a similar reasoning as above and follows the same shape and sign as η, which is in line with
almost all dates. In the first date we see a flip in sign, however the contribution for the
H hedge is small here. We also observe that indeed trying to hedge against any of the
parameters of the FVC does not yield and improved hedge, it seems like the Nelson-Siegel
function for the FVC is over-parameterized. Finally hedging against the FVC also does not
do a good job as the difference between the FVC’s can be quite large, as can be seen in
Figure 13.

Moving on to Figure 23, we see that none of the hedges outperform the delta hedge
consistently. This indicates that the model does not describe reality, which is what we would
expect since the FVC is probably not realistic. What is interesting to note is that the delta-
hedge seems to be roughly a factor two better in this model than in any of the other models.

9.3.3. Rough Heston
Looking at Figure 24 we see lower values of H than expected. Where we would expect
H ≈ 0.1, all values of H are all under 0.08 and some even zero.

The H hedge contribution seems to have a different shape than the rough Bergomi
models. This is because in the Heston models we do not get a correction for the change in
vol-of-vol over the expiry. Hence we clearly see in Figure 25 that an increase in the Hurst
parameter will decrease the variance of the short term vol (if expiry < 1Y ), while increasing
the variance of the long term vol (if expiry > 1Y ). Thus we get a flip in sign depending on
the expiry, while the shape is the same as the vol-of-vol (ν) hedge. Also, the ν parameter
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seems in line with what was discussed earlier, however, FVC hedge is not smooth in this
model, which is strange. Finally, increasing the ρ parameter tilts the vol curve around the
ATM, as can be seen in Figure 2.14 of [34]. However the tilt has a higher effect on the smile
part of the curve, hence multiplying this by vega we get a curve which has the shape of the
one in Figure 25. Finally considering Figure 26, we observe that hedging against η leads to
improvements, although not consistently, and hedging against the FVC seems to do a good
job and can again correct up to one-third of the delta hedge during the high vol days.

9.3.4. Lifted Heston
The first thing to note is that Figure 27 shows a large variance in the H, θ, λ and ν parame-
ters. This indicates that it is going to be less meaningful to hedge against these parameters.
This is then also supported by the very high peaks for these parameters in Figure 28. Not
only do they have a very large variance, they also seem to be correlated. The correlation
seems to be positive for H, λ and ν and negative for θ. This is can also be seen when plotting
the time series of the parameters for the minimization

Figure 29: Time series of the evaluations in the differential evolution minimization for lifted Heston.

For all but the last date we see that indeed the parameters seem correlated. This means
they are probably stuck in a valley in the optimization surface. This can then take a long
time to minimize, as seen on 01/11 in Figure 29. It also means they lose an economic
interpretation. Another interesting thing to note from this figure is that the minimization
terminates relatively quickly on 30/11, when λ seems to go to zero. This supports the claims
in [10] and [9] that λ → 0 is a reasonable assumption and that with this assumption the
parameters are not correlated, since the minimization does not seem to be stuck in a valley.
Therefore we can indeed include the FVC as an input to the model.

Moving on to 27 we can explain the shape of the θ, λ and V0 curves. θ is the long term
vol, which mainly has a big contribution on the far expiries and is shaped like vega. λ is
the speed of mean reversion, when this increases we get less vol-of-vol (ν), this is in line
with expectations for the two later dates, however is not the case for the 1/11-2/11 hedge,
although the values for the ν hedge are very small here. Finally an increase in the base vol
V0 leads to a vega-shaped curve, which is in line with the figure.

When looking at the H, θ, λ and ν hedges we see that they are poor, this is in line with
what we expected from Figure 28. Even V0 suffers from this phenomenon from the 25th to
the 26th. We can however note that hedging against the generated FVC seems to do well
throughout the month, especially when the underlying drops. This makes sense considering
the delta hedge peaks around this time. Hedging against the FVC can improve the delta
hedge by roughly 40%.



10. Conclusion

In conclusion we find that the rough Bergomi is an under-parameterized model, however does
a reasonable job at fitting the vol surface. In an attempt to give more degrees of freedom
to the model we introduced the Nelson-Siegel function for the forward variance curve, this
improves the fit. Interesting to note is that the delta hedges from the Bergomi models
outperform the delta hedges from the Heston models.

On the other hand, the rough Heston model seems to do a good job at approximating
the vol surface with only three parameters. It does come with the drawback that it takes a
long time to compute the surface through the characteristic function with the COS method.
One could try to run a Monte Carlo simulation similar to that of the rough Bergomi model
on the rough Heston model in an attempt at speeding up pricing.

Finally the lifted Heston model does improve computation time considerably from the
rough Heston model, however is still a lot slower than the rough Bergomi models. Also, the
parameters for the forward variance curve seem to be correlated, which can lead to a lot of
function evaluations in the minimization and also means a loss in economic interpretation.

In general the process could be sped up by improving the parameters of the minimization, but
this was beyond the scope of the project. Besides that a major improvement can be made
by parallelizing the computation of the vol curves, since our implementation depends on a
for-loop. This could speed up the process, however since the later expiries have the hardest
time converging this speed up will be less than a factor of 12.

If one were to apply these methods in practice, one would have to choose a model de-
pending on the goal. For an accurate representation of the vol smile one could stick with the
rough Bergomi 7 parameter model, possibly choose a different forward variance approxima-
tion. One could also consider this model if the goal is to obtain an accurate delta hedge. On
the other hand if the goal is to hedge against the forward variance curve one you consider the
rough Heston model or even consider using the Markovian approximation together with the
market forward variance curve in order to improve fitting time. Finally if the goal is to have
a model which simulates the vol surface as well as the forward variance curve accurately, the
lifted Heston model should be considered.

In further research one could try to run the Heston models using a path simulation. Since
the difference in computation time of a single vol surface is at least a factor of seven be-
tween the path simulated models and the characteristic function model. This might improve
computation time.

One could also try to find a consistent parameterization of the forward variance curve in
the rough Bergomi model. As seen, this model is under-parameterized, however does a good
job at fitting the market smile when given additional degrees of freedom for the instantaneous
forward variance curve in the rough Bergomi 7 parameter model.

Finally one would of course expand on this work by fitting the vol surface on more dates
and considering more models. Another expansion one could do is take into account the
trading costs or compare the delta hedge of the rough volatility models to other models.
Lastly, could also implement possible improvements to the models such as those mentioned
in [6], [7] and [8].
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A. COS Method Derivations

In order to approximate (4.2) on an arbitrary interval [a, b] we use the change of variables

θ :=
x− a
b− a

π, x :=
b− a
π

θ + a.

We can then determine the coefficients Ak through

Ak =
2

b− a

∫ b

a

f(x) cos

(
kπ
x− a
b− a

)
dx

=
2

b− a

∫ b

a

ℜ
{
f(x)eikπ

x−a
b−a

}
dx

=
2

b− a
ℜ

{∫ b

a

f(x)eikπ
x

b−a dxeikπ
−a
b−a

}

≈ 2

b− a
ℜ
{
ϕ

(
kπ

b− a

)
exp

(
−ikπ a

b− a

)}
,

where the approximation sign is because of the truncation of the integral.
For pricing a product with pay-off V (ST , T ) at time t < T , where T is the maturity and

ST the price of the underlying at time T , we define

Ak(x) :=
2

b− a

∫ b

a

f(y|St) cos

(
kπ
y − a
b− a

)
dy,

where f(y|St) is the conditional probability density function from (4.1) given the price of the
underlying St at time t. Computing the pay-off from (4.5) is done in the following way

er(T−t)V (St, t) =

∫
R
V (y, T )f(y|St)dy

≈
∫ b

a

V (y, T )f(y|St)dy

=

∫ b

a

V (y, T )
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k=0

′
Ak(x) cos

(
kπ
y − a
b− a

)
dy

≈
∫ b

a

V (y, T )

N−1∑
k=0

′
Ak(x) cos

(
kπ
y − a
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)
dy

=
b− a
2
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k=0
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Ak(x)Vk

≈ b− a
2
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k=0

′
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(
kπ

b− a

)
exp

(
−ikπ a

b− a

)}
Vk,

where

Vk :=
2

b− a

∫ b

a

V (y, T ) cos

(
kπ
y − a
b− a

)
dy.

Finally computing the coefficients V Put
k in (4.6) is done by

V Put
k =

2

b− a

∫ b

a

F

∣∣∣∣KF − ey
∣∣∣∣+ cos

(
kπ
y − a
b− a

)
dy

=
2F

b− a

∫ z

a

(ez − ey) cos
(
kπ
y − a
b− a

)
dy

=
2F

b− a
(−χk(a, z) + ezψk(a, z))

=
2

b− a
(−Fχk(a, z) +Kψk(a, z)) ,
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where z = log K
F , y = log ST

F and χ and ψ are given in (4.7).
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