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Preface

This thesis was written as part of the graduation procedure at Delft University of Technology. The topics of
polarization and scene editing fit within the context of Computer Graphics and Visualization, and combining
the two allowed me to present my capabilities for the Master’s degree in Computer Science.

Various topics are explored and combined throughout the thesis to compose an algorithm which may
bring new interest to the usage of the linear polarization of visible light in the field of computer vision. First,
a simple but intuitive definition of the polarization information that is measured by a camera is introduced.
Second, an information propagation loop estimates two separate light components of the image: the diffuse
light and the specular light. Last, these separate light components are used in existing scene editing opera-
tions to showcase the value of the decomposition of the two components.

Prof. Dr. Elmar Eisemann, who has been my professor for the Bachelor’s course Computer Graphics
and the Master’s courses Computer Graphics and Seminar Computer Graphics, has guided me during the
thesis alongside Prof. Michael Weinmann, who offered to start attending the presentations on the progress
and extensively helped with improving the overall quality of the thesis. These two members are joined on
the thesis committee by Assistant Prof. Xucong Zhang, who has agreed to be included as the third and final
member.

Amir Zaidi
Delft, August 2022
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1
Introduction

In the field of computer vision, the difficulty of processing the illumination in an arbitrary scene creates
complications for a machine’s understanding of the scene. Computer vision algorithms commonly use input
images acquired by a camera, where the only measured quantity is the amount of light the camera’s sensor
receives without any additional information about the shadows, occlusion, highlights, light directionality and
interreflections, to help with scene processing and understanding. This thesis applies polarization state mea-
surements of the camera’s incoming light to implicitly extract information on these illumination phenomena
through a polarization-based intrinsic image decomposition. The decomposition estimates the diffuse and
specular components of the incoming light. These components can be used to improve existing scene post-
processing operations such as material editing and tonemapping.

Shadows and highlights, both found in nearly every scene, are complex phenomena that can confuse a
machine if it is not fine-tuned to handle the input data. For example, dark patches in images could be either
objects with a light-absorbing surface material, or hard shadows created by blocked directional light. These
hard shadows could be classified and removed using local segmentation algorithms. However, the more com-
mon type of shadow is the more difficult to segment soft shadow, fading from light gray to pitch black in
occluded areas due to ambient occlusion, creating fuzzy shadow boundaries. These are harder to remove
due to the challenge in estimating the gradient. Opposite on the luminosity histogram, highlights range from
minuscule bright white points to large circular areas barely brighter than their surroundings. There are view-
dependent appearance differences in the characteristics of the highlights, because both the incoming and
outgoing light, also called irradiance and radiance, are highly directional. This directionality is what creates
the appearance of highlights and causes their visual displacement when the view changes. The directional
behaviour of the light creating the highlights depends on the materials of the objects they bounce off and the
surface texture of those objects on a microscopic level. Without a perfect model of the objects and the scene,
predicting the appearance and position of the highlights in a scene is at least as difficult as the classification
of shadows.

Because the light intensity on the sensor is the only directly available data from a camera, algorithms
usually process the intensity directly without attempting to understand the illumination. There are global
illumination models which can render computer-modelled scenes with accurate lighting. Their implemen-
tations emulate all the real-world phenomena created by illumination separately, and then merge them for
the final output image. However, this is generally a one-way pipeline, and cannot be inverted to separate
the components again from only the output image. Work on an inverse rendering pipeline is ongoing, but
the existing attempts at such a pipeline either require additional material and lighting information, or use a
neural network to guess this information. An approximation of such an inverse model that does not require
additional input information could provide insight into the decomposition of camera samples, which are
similar to the output image of a global illumination pipeline. Calculating which illumination components are
merged into the measured light intensity is a difficult task, due to the lack of constraints on what the values
of the components can be. Still, a good approximation would improve many computer vision algorithms that
process camera samples from real-world scenes, as they would then have direct access to an estimation of
each of the illumination components separately.

The concept of intrinsic images was introduced as a way to decompose an image into separate compo-
nents, which can then either be summed or multiplied to find the input image again. The intrinsic compo-
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2 1. Introduction

nents can take many different forms, but they are always orthogonal characteristics of the input image, with
no data shared between them. The characteristics do not have to be related to the illumination. For instance,
a decomposition into small-scale and large-scale features is a valid intrinsic image decomposition.

One particular decomposition that is useful to find more data on the illumination is the diffuse-specular
intrinsic image decomposition, which separates the diffuse object colors invariant to the viewpoint from the
specular highlights varying with viewpoint. Although this decomposition has been attempted with only one
light intensity input image, there is usually not enough information to complete such a decomposition, and
additional information of the scene is required for good results. For example, the scene could be captured
multiple times with different directional light sources in each sample. This provides a way to approximate the
diffuse component, and subsequent images from that scene can then be directly decomposed by subtracting
the previously measured diffuse component.

Setting up the illumination sources to compute a diffuse image is a time-intensive operation that might
even be impossible when the external illumination cannot be controlled. An alternative that does not require
controlling the illumination would massively speed up the process. The polarization of visible light might
be the key to finding the necessary information for the diffuse-specular decomposition without any specific
illumination requirements. The 1990s saw a surge of research interest in polarization due to its correlation
with illumination angle and material type. Measuring polarization is trivial with a linear polarization filter
in front of the camera, but merely knowing the amplitude and phase of the linear polarization is not enough
to directly find shadow and highlight information. The theories that were developed two decades ago were
either never tested in real systems, or merely tested on a small data set due to a lack of processing power. The
increase in publicly accessible processing power since then has made it possible to now execute the previ-
ously proposed algorithms for the extraction of additional scene information using polarization in seconds
rather than hours.

This thesis builds upon one of the previously developed theories on the separation of the diffuse and
specular intrinsic images using only a set of four linear polarization-state measurements and without fur-
ther knowledge of the scene. The diffuse-specular decomposition is first crudely approximated using the
correlation between two different polarization state parameters. A pyramid-based information propagation
algorithm then iterates towards a locally optimal separation between the diffuse and specular component.
This thesis additionally presents multiple post-processing operations to change the materials and illumina-
tion in the scene, and shows how tonemapping algorithms can retain more lighting cues by using the diffuse
and specular intrinsic images.



2
Theoretical Background

This section introduces the fundamental basics related to the proposed approach and the necessary nota-
tions.

2.1. Pixels and Vectorized Operations
In this thesis, an image I is a collection of data points aligned in a two dimensional lattice grid, where each
data point on this grid is a pixel p. In such a grid, a pixel p can be indexed by its two integer coordinates
(xp , yp ). The first coordinate xp refers to the horizontal location of the pixel on the grid, ranging from 0 to the
width minus one. The second coordinate yp refers to the vertical location of the pixel, ranging from 0 to the
height minus one. The intensity or value of pixel p is historically denoted with the notation Ip , but we use the
notation I (p) where p is a function argument, while the subtext a in Ia is instead used to refer to the image
named a. The intensity I (p) can be single-dimensional or multi-dimensional depending on the type of data
the image I describes. For example, a color image from a camera typically has three dimensions per pixel p,
while a monochrome image only has one dimension. The only constraint on the number of dimensions per
pixel is that it must be fixed for the entire image.

Arithmetic operations can be applied to the intensities I (pi ) of one or more pixels pi and use the multi-
dimensional intensities of these pixels as vectors. I (p)+ I (q) linearly adds the intensities of p and q using
vector addition regardless of the amount of dimensions. Whenever the specific pixel p is irrelevant and such
an operation is applied at once on all pixels of an image I , the pixel identifier argument p is left out of I (p)
and only I is used. For example, if I1 and I2 are two images of the same size, adding I1(p) and I2(p) for every
pixel p can be written with the simplified notation I1+2 = I1 + I2. Such an operation is vectorized, meaning
that there is no interdependence between pixels, and all resulting pixels can be calculated in parallel.

2.2. Color Dimensions
Sensing and processing a bundle of light is difficult for a machine due to the amount of information contained
in any bundle of light. Light is a large sum of waves, where each wave has its own wavelength λ. This sum of
waves can be described through a spectral power distribution, which is a function mapping each wavelength
λ to its respective intensity L(λ) in the final waveform. However, wavelengths are not discretized. Due to
their continuous nature, the spectral power distribution of incoming light is infinitely dense and cannot be
directly processed by a digital computer, requiring a reduction to a finite amount of dimensions. Rather
than attempting to measure the entire spectral power distribution, cameras can integrate the spectral power
distribution into one or more discretized dimensions. Most consumer cameras apply tristimulus integration
to reduce the spectral power distribution to three dimensions, similar to how human eyes perceive color with
a red, a green and a blue component. Such cameras capture exclusively how humans perceive the scene
rather than all the wavelengths in the spectral power distribution creating that perception. Data in this ‘RGB
color space’ can be uniquely displayed to human eyes again without any loss of color information. However,
the dimensionality reduction raises the question of whether theories developed for the complete spectral
power distribution L(λ) would still work on the integrated data I captured by these cameras.

If the spectral power distribution at one pixel p is L(p,λ) and R( f (λ)) is a function integrating f (λ) with
a spectral sensitivity peaking at ‘red’ light wavelengths, then the first component of I (p) is I R (p) = R(L(p,λ)).

3



4 2. Theoretical Background

I G (p) and I B (p) are defined similarly for the green and blue components of I (p). Because R is defined to be an
integration, replacing f (λ) with a linear combination of two functions will give the same result as integrating
the two functions separately:

R( f (λ)+ g (λ)) = R( f (λ))+R(g (λ)) (2.1)

This holds regardless of the sensitivity curve of R. I (p) is a three-dimensional vector, with each compo-
nent separately having this linearity:

I (p) = [
R(L(p,λ)) G(L(p,λ)) B(L(p,λ))

]
= RGB(L(p,λ))

(2.2)

If L is a summation of two separate spectral power distributions M +N , then the resulting I will also be a
summation of two three-dimensional components that are the separate tristimulus integrations of M and N :

I (p) = RGB(L(p,λ))

= RGB(M(p,λ)+N (p,λ))

= RGB(M(p,λ))+RGB(N (p,λ))

= IM (p)+ IN (p)

(2.3)

This shows that reasoning about summed values in the three-dimensional measurement IM +IN is analo-
gous to reasoning about summed spectral power distributions M+N . All theories developed for the full range
of light wavelengths will work on three-dimensional color data from a sensor as long as the calculations per-
formed are linear.

2.3. Intrinsic Image Decomposition
The diffuse-specular decomposition is only one existing intrinsic image decomposition out of many. A gen-
eral intrinsic image decomposition is a separation of a sum I1+I2+...+In = I or multiplication I1∗I2∗...∗In = I
of separate components Ii back into components from only input image I , and each component Ii denotes a
unique characteristic of I . Each component Ii is then one intrinsic image of I , revealing exclusively the char-
acteristic that the intrinsic image represents. The diffuse-specular intrinsic image decomposition is such a
separation of two characteristics relevant to our goal of understanding the illumination in the scene. In this
decomposition, image I = Id + Is is decomposed into the two intrinsic images Id and Is , which are the angle-
invariant diffuse image created by diffuse light, and the angle-variant specular image created by specular
light.

The diffuse-specular decomposition is modelled based on the components of radiance, the outgoing light
from objects in the physical world. On a microscopic level, the light L emitted at one point of an object into an
arbitrary direction is, according to the dichromatic reflectance model, the summation of the diffuse emission
from the body of the object Ld and the specular reflection from the surface of the object Ls :

L(λ) = Ld (λ)+Ls (λ) (2.4)

where L, Ld and Ls are the spectral power distributions of the total radiance and the separated diffuse and
specular radiance components.

Since this is a linear operation, the theory of Section 2.2 is applicable. This implies that such a linear
diffuse-specular decomposition is correct after a reduction to any number of color dimensions:

I = Id + Is (2.5)

Assume all objects are ideal diffuse radiators following Lambertian reflectance. At any pixel p, the diffuse
component Id (p) is then only dependent on the angle of the light source to the object but independent of the
angle of the camera to the object, while the specular component Is (p) is highly dependent on this angle of
the camera to the object, shifting from zero to the local maximum when the angle changes. This property can
be used by applying minor shifts to the camera position and comparing the difference to find Is (p). However,
our approach does not use any camera movement, and instead focuses on polarization for this separation.
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2.4. Linear Polarization of Light
The linear polarization of light is a useful property for the diffuse-specular decomposition. Non-conductive
objects, also called dielectric objects, almost exclusively radiate diffuse light without polarization. This then
implies that all polarized light must be part of the object’s specular light, which gives additional constraints
on the specular light when the amount of polarized light is known.

Linear polarization can be understood as a direction of photon oscillation in the 2D plane orthogonal
to the direction the light is travelling towards. Measuring the direction of the polarization of one or more
photons is achieved through a linear filter. A photon polarized in precisely the same orientation as the filter
will always pass the filter, while a photon polarized in the orthogonal orientation will never pass it. Any
photon with an orientation in between follows the rules of quantum superposition, where the measurement
collapses the superposition to either a pass or block state. The chance of passing the filter follows a cosine
function dependent on the orientation of the filter relative to the orientation of the photon. We use ° as the
symbol to denote an angle in degrees, such that 180° = π. This cosine function has a period of 180°, with α

the orientation of the filter and αi the polarization orientation of photon i :

Pi (α) = 1+ cos(2∗ (α−αi ))

2
(2.6)

One photon can only be captured once, so measurements are done on a large bundle of light, where the
result finds how many photons have passed the filter (see Figure 2.1). This is an addition of many different
cosine functions Pi , which either causes constructive interference or destructive interference depending on
their respective αi values:

I (α) = Iunpol

2
+ Ipol

2
∗ (1+ cos(2∗ (α−β))) (2.7)

For illustration, if all photons are randomly polarized in some direction, Ipol will be 0, and the average
intensity of the light passing will be half of the incoming light: I (α) = 1

2 Iunpol = 1
2 I . If half of the photons are

polarized horizontally and the other half randomly, 75% of the light will pass a horizontal filter, and only 25%
will pass a vertical filter.

2.5. Soft Decision Making
Local patches on object parts with similar material characteristics should have similar polarization informa-
tion, and segmenting such patches to use the average of the polarization state of an entire patch would help
in making a polarization-based decomposition algorithm more robust to sensor noise. However, segmenting
object patches with hard boundaries requires making definitive decisions for where to place those bound-
aries. This approach towards segmentation for any purpose has drawbacks due to the difficulty in finding
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a decision threshold that works for a majority of scenarios and with varying noise levels. An alternative to
segmentation is using weighted inclusion of all pixels into local patches, where the weights are determined
by how likely any pair of nearby pixels are to be part of one patch. The bilateral filter is an applicable filter for
such soft decision making. It is a filter that by default selectively blurs an image by using two blurring criteria:
the spatial distance between pixels, quantified by a function f (∆x), and the tonal distance between pixels,
quantified by a function g (∆I ). These two functions are usually normal distributions with a manually chosen
standard deviation:

f (∆x) = e
(∆x)2/σ2

f (2.8)

g (∆I ) = e(∆I )2/σ2
g (2.9)

The two blurring criteria are multiplied to create one blur weight in the bilateral filter, which then com-
pares each pixel q from the input image with each pixel p from the input image, and then sums all p weighted
by the previously defined blur weight:

Jq = 1

k(q)

∑
p∈Ω

f (p −q)∗ g (I (p)− I (q))∗ I (p) (2.10)

k(q) is a normalization term, which is needed because the weights do not sum to 1:

k(q) = ∑
p∈Ω

f (p −q)∗ g (I (p)− I (q)) (2.11)

Ω denotes the set of all pixels in the full input image I . q , one pixel from this set, is identified by the
spatial coordinates (xq , yq ) of the input pixel, and p by the spatial coordinates (xp , yp ) of another pixel being
compared. I (q) is the pixel intensity of the input pixel q , and I (p) is the pixel intensity of the pixel being
compared. Both I (q) and I (p) can contain any number of color dimensions.

The basic bilateral filter has a neighbourhood as large as the entire image for each pixel q , but this is com-
putationally expensive and unnecessary due to the spatial weight f becoming close to zero at large distances.
In a real system,Ω can be replaced by N (q) which denotes a square neighbourhood around a pixel q , usually
with a size of 3-by-3, 5-by-5, or 7-by-7 pixels:

Jq = 1

k(q)

∑
p∈N (q)

f (p −q)∗ g (I (p)− I (q))∗ I (p) (2.12)

k(q) = ∑
p∈N (q)

f (p −q)∗ g (I (p)− I (q)) (2.13)

Algorithm 1 reveals how the bilateral filter can be vectorized, which is a powerful property due to the
widespread adoption of GPUs. Each operation processes an entire image at once. This algorithm can addi-
tionally be adopted into a fully parallelized per-pixel kernel that does not require any synchronization break-
points until the end of the algorithm.

Algorithm 1 Vectorized Bilateral Filter

procedure VECTORIZED-BILATERAL(I, r, f, g)
wei g ht s ← 0∗ I
tot al s ← 0∗ I
for d y ←−r to r do

for d x ←−r to r do
Ishi f t ← shift(I , [d x d y])
w ← f ([d x d y])∗ g (I − Ishi f t )
wei g ht s ← wei g ht s +w
tot al s ← tot al s +w ∗ Ishi f t

end for
end for
return tot al s/wei g ht s

end procedure



3
Related Work

Related work includes developments regarding intrinsic image decompositions, most notably the diffuse-
specular decomposition, and the usage of polarization information to improve this decomposition. Further-
more, work regarding decision-making is relevant for the decomposition algorithm itself. Finally, the work in
three applications of this decomposition is important to evaluate its beneficiality in computer vision. These
different types of works will be discussed in the following sections.

3.1. Diffuse-Specular Decomposition
There are several works that attempted to solve the diffuse-specular intrinsic image decomposition in the
past. Shafer et al. (Shafer, 1985; Klinker et al., 1988) formulated multiple properties of the diffuse and specular
components of images from real-world scenes, and used these properties to extract the highlights. They
derived that tristimulus integration over all wavelengths of light to reduce the infinitely dense color space to
a three-dimensional color space does not change the linear nature of the specular highlights being added to a
diffuse image. They then made various assumptions about the real-world scenes in their samples to find the
diffuse and specular components from only one single image. Most of these assumptions are unnecessary
when the polarization of the light is known. One assumption that is still relevant is that due to this additive
nature of the diffuse and specular light, the colors perceived from a dielectric constant-material object lie in
a parallelogram in 3D space. The parallelogram is defined by the two basis vectors Id and Is (see Figure 3.1).
We do not explicitly calculate a local parallelogram, but use it as a reason for why the diffuse color vector
direction and specular color vector direction are locally constant.

R

G

O

Id

Is

Figure 3.1: Parallelogram in RG color space created by the addition of non-parallel color vectors Id and Is . In RGB color space, Id and
Is have three dimensions, but create a similar parallelogram. The angle of the plane defined by the bounds of the parallelogram in three
dimensions sets limits on the possible values of Id and Is .
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8 3. Related Work

3.2. Polarization-Based Decomposition
Wolff (L. Wolff, 1989; L. Wolff, 1990) experimented on the properties of polarization data, and laid the ground-
work for its incorporation into decomposition and surface estimation algorithms. Light can be both circu-
larly and linearly polarized, but Wolff limited his testing to linearly polarized light. He then devised a way of
measuring linear polarization using four different orientations of a linear polarization filter in 45 degree in-
crements: 0 (vertical), 45, 90 (horizontal) and 135 degrees. Using this data, he could calculate both the phase
and amplitude of the polarization by fitting a cosine wave onto the four measurements using a minimization
of mean squared error approach. Wolff then used these cosines to set a lower bound on the Fresnel ratio for
every pixel in the image, which is an accurate estimation for the Fresnel ratio itself when the diffuse compo-
nent is small. From these lower bounds he could segment objects into material types, as the Fresnel ratio is
much higher for dielectric materials such as plastic than for other materials such as metal. Wolff estimates
the diffuse intrinsic image by plotting the polarization data of pixel patches in polarization coordinate space,
with the two coordinates set as the lowest and highest possible pixel intensity, and searching for a linear
slope across all data points. The parameters of the linear slope give the Fresnel ratio, which can then be used
to estimate the diffuse component. The method employed by Wolff requires a segmentation of the image to
determine which pixels are part of one patch to calculate the linear slope. It also assumes that the diffuse
component is constant across this patch, which is not necessarily true.

Nayar et al. (Nayar et al., 1993) created a reflection model, based on Wolff’s research, that can be used
to decompose an image into the diffuse and specular components using polarization imaging, which they
used for stereo vision in Bhat and Nayar, 1994. They found that the specular light can be decomposed into
the specular constant term Isc , the amount of specular light present on average when the polarization filter
is fully rotated, and the specular varying term Isv , the amount of polarized light that can pass through or
be blocked by the filter depending on the filter orientation. The diffuse-specular decomposition problem
can then be reformulated to finding Isc , as Isv is known from the measurements. Nayar et al. then used the
assumption that the Fresnel ratio is locally similar to propagate an estimation of the ratio from highly specular
points onto neighboring points, while labeling points with a low amount of polarization exclusively diffuse.
Their algorithm has multiple iterations per pixel, but fixes the value of the ratio estimation for a pixel once it
is confident in the estimation. This thesis is inspired by the work in Nayar et al., 1993, and builds upon their
foundation. Wolff and Nayar (L. B. Wolff et al., 1998) later worked on a complete theory on reflection models
for digital simulations, using their previously developed theory.

Schechner et al. (Y. Schechner et al., 2001; Y. Y. Schechner et al., 2003) used the work of Wolff and Nayar
to remove haze from a scene in daylight. By measuring the polarization state of incoming light and assuming
that the degree of polarization is determined by the amount of haze, it becomes possible to isolate this haze.
Our thesis does not assume that the degree of polarization is exclusively determined by haze, and instead
assumes all polarized light is created by specular reflections.

Takatani et al. (Takatani et al., 2018) combine the data from a linearly polarized filter and a circularly
polarized filter to classify materials. They control the illumination by additionally placing a linearly polarized
filter in front of the illumination source to create fully polarized incoming light when taking measurements,
followed by the same experiment with a circularly polarized filter in front of the illumination source. The
polarization phase of light is affected differently by bounces of photons on different types of materials, and
this can be used for material classification and decomposition. While controlling the illumination is ideal
for experimentation, our thesis focuses on a more general approach that does not require controlling the
illumination.

3.3. Bilateral Filter Extensions
A soft decision-making framework can counteract the effect of local optima in a hard decision-making iter-
ative estimation algorithm labeling pixels as having fully converged, which fixes their value at the local op-
timum. If the next iteration then finds a different optimum, the previously found value cannot be modified
anymore. In the case of a soft decision-making algorithm, the pixels in the local optimum would be assigned
a very low modification weight in the next iteration if the local optimum is considered an accurate estima-
tion already. However, given enough iterations these pixels could leave the local optimum and converge to
a different value instead. Such a soft-decision making framework can be based on a simple local filter that
processes a current estimate into a new estimate.

Filters are operators that calculate each pixel of a new image based on one or more input images. One sim-
ple example of a filter is the smoothing filter, which equally blurs each pixel of an input image to reduce noise.
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However, a naive smoothing filter has the drawback of also blurring edges and other details, which might im-
prove the quality of the result when preserved depending on the use-case. An edge-preserving smoothing
filter could accomplish this by selectively blurring the areas with a low amount of details. Tomasi and Man-
duchi (Tomasi and Manduchi, 1998) proposed such an edge-preserving smoothing filter and named it the
bilateral filter, which quickly became popular due to its speed and ease of implementation.

An important later extension of the bilateral filter was the cross bilateral filter formulated in Eisemann and
Durand, 2004, also called the joint bilateral filter in Petschnigg et al., 2004. The cross/joint bilateral filter uses
a different input image K for the weighted values than is used for the weight calculation. Such an extension
is useful when local soft decisions have to be made from one image to filter another image. In Eisemann and
Durand, 2004, the soft decision determines how to weigh a sum of an image taken with a flashlight and an
image taken without flashlight. Extending the cross/joint bilateral filter with one additional change makes it
a perfect candidate for a soft decision-making framework that works for an arbitrary decision criterion.

3.4. Real-World Scene Editing
The previous work on diffuse-specular decomposition was mostly focused on the removal of highlights as
the final goal. However, such a decomposition has multiple applications in the context of real-world scene
editing, with the following relevant works that can be used to test the performance of the decomposition.

Stroia-Williams et al. (Stroia-Williams et al., 2010) presented a material editing technique using an es-
timated albedo of objects. They separated the shading from the albedo using statistical analysis, and then
directly replace the old albedo with the desired new albedo. They call this replacement ‘reflectance trans-
fer’. The replacement is fast enough to be used for real-time video editing. This technique may be combined
with a new albedo estimation based on the diffuse-specular decomposition to improve the quality of the
reflectance transfer.

Phong (Phong, 1975) developed a lighting model for computer rendered images, which summed an ambi-
ent, diffuse and specular component for the output image. Blinn (Blinn, 1977) modified the specular compo-
nent of Phong’s model to remove the hard boundary on the specular component when the observer was close
to the light source. This became known as the Blinn-Phong model, which is still used in rendering pipelines.
Although this model was developed for rendering rather than modelling real life, the Blinn-Phong model is
similar to the decomposition in this thesis, with the difference being a separation between the ambient and
diffuse components Ia and Id , which we sum into only the diffuse component Id . The Blinn-Phong model is
relevant for this thesis due to its definition of material shininess in computer generated scenes.

Durand and Dorsey (Durand and Dorsey, 2002) created a fast tonemapping operator using the bilateral
filter. This tonemapping operator reduces the high dynamic range of a picture from a camera, to be displayed
on a standard dynamic range monitor. Having the specular light separated could improve the performance
of their tonemapping operator.

Meylan et al. (Meylan et al., 2007) developed an inverse algorithm that detects and extends the dynamic
range of already tonemapped specularities for display on high dynamic range monitors. With a diffuse-
specular decomposition, the algorithm could be directly applied without needing any specularity detection.
Their work also gives insight into how highlights can be mapped to change their dynamic range without af-
fecting their perception.





4
Our Method

The main goal of our algorithm is to decompose I into Id and Is by using measurements of the polarization
state. These measurements only provide information on the linear polarization defined in Section 2.4, and do
not directly provide enough information to find Id and Is . The diffuse-specular decomposition in Nayar et al.,
1993 converts the measurements into the parameters of a cosine, which can be used to find the color vector
direction of Is . We use a similar conversion to transform four measurements into a ‘polarization cosine’. The
amplitude parameter Iamp of this polarization cosine, which has one value for each color dimension, can
then be weighted with a weight map k to calculate Is = k ∗ Iamp and Id = I − Is . Initially, the values for the
weight map are estimated using tile-based correlation, which is a fast estimation that is accurate when the
specular light only consists of highlights on objects. Starting from this estimation, our method uses an iter-
ative approach to improve the weight map under two local constraints similar to Nayar et al., 1993: Fresnel
ratio constancy and diffuse color vector direction constancy. We refer to this step as the ‘local optimization’
step, because it optimizes the current estimate by applying these two local constraints. A new functional
bilateral filter is combined with a vectorized line intersection for the local optimization step. These two tech-
niques make the decomposition more robust to sensor noise than previous works. Additionally, a Gaussian
pyramid is applied to the information propagation to accommodate a wide range of input image sizes, and
to introduce a quality-runtime trade-off which can be modified for different use-cases. Figure 4.1 presents a
high-level visual overview of the subroutines of our method.

4.1. Polarization Cosine
Polarization measurements fitting on a cosine has been known since the work by Wolff (L. Wolff, 1990) and
was used by Nayar et al. (Nayar et al., 1993) and Schechner et al. (Y. Schechner et al., 2001), but no name

Measure Polarization State

Calculate Polarization Cosine I (α)

Estimate Weight Map k0

Downscale k0 to kimi n

Improve ki with Local Optimization

i = 0? Upscale ki to ki+1

Use k0 to find Id and Is

No
Yes

Figure 4.1: Flowchart of the subroutines used in our method. Each orange block is executed, while each green block is a decision point.
The arrows indicate the flow between the subroutines.
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Figure 4.2: The linear polarization of light plotted as a polarization cosine: I (α) = 3
4 + 1

4 ∗ cos(2∗α), where the linear offset Imean = 3
4 ,

the cosine size Iamp = 1
4 and the cosine starting phase β= 0°. This is an alternative formulation to the plot in Figure 2.1.

has been given to the cosine itself. We refer to it as the ‘polarization cosine’ I (α), which consists of a discrete
offset Imean , an amplitude Iamp , and a polarizing filter phase β where the output is maximal (see Figure 4.2):

I (α) = Imean + Iamp ∗ cos(2∗ (α−β)) (4.1)

Imean will be referred to as the polarization mean, and Iamp as the polarization amplitude. Even though
the polarization cosine has the phase β, the phase information is not necessary for the diffuse-specular de-

composition and can be discarded. Equation 4.1 is a simplification of Equation 2.7 where Imean = Iunpol+Ipol

2 ,

and Iamp = Ipol

2 . Although this formulation was mentioned by Nayar et al., using these two cosine parameters
directly is different from their usage of the parameters to find the cosine’s lower and upper bounds Imi n and
Imax which they then use for their method.

Each pixel has a value for the polarization mean and amplitude in each color dimension. Imean and
Iamp vary between color dimensions, which is crucial to the eventual decomposition, as the vector direction
of the color vectors Imean(p) and Iamp (p) at a pixel p can be compared to find more information about the
illumination at pixel p. With the assumptions that only specular light can be polarized and each color channel
has an equal amount of relative polarization, the vector direction of the specular light Is (p) at a pixel p has to
be equal to the vector direction of the polarization cosine amplitude Iamp , which is the difference in intensity
across polarization angles. These two assumptions are valid for most dielectric objects. Because the vector
direction of Is and Iamp is equal, Is can be written in terms of Iamp by adding a scaling factor k:

Is = k ∗ Iamp (4.2)

with k ≥ 1, because the polarization measured in Iamp has to be part of the specular light Is by our assump-
tions.

The decomposition is then simplified to finding the scalar k for every pixel. We call the resulting values
for k the amplitude weights, and the image of all these values the amplitude weight map. Finding k is similar
to finding p in Nayar’s algorithm, which is used to calculate Id = Imi n −p ∗k = Imi n −p ∗ (Imax − Imi n). k and
p are closely related, as p = (k −1)/2.

We use these amplitude weights rather than Fresnel ratios, the standard in previous works, due to the
non-linear nature of the Fresnel ratios. In extreme circumstances, the Fresnel ratio could be infinite when
the incoming light is fully polarized, while the amplitude weight k will always be a finite number. Diffusion
of amplitude weights will give better results in the cases where the Fresnel ratio of one pixel is close to infinity
while the surrounding pixels have Fresnel ratios that are orders of magnitude smaller, as using amplitude
weights guarantees that the propagation of values does not have to handle this edge case of infinite ratios.
Amplitude weights also have better total value conservation properties than Fresnel ratios because of the
non-linearity of the latter. Even though we do not use the Fresnel ratios, they can be directly calculated from
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Figure 4.3: Measuring the polarization cosine I (α) with four samples. I0(α) and I1(α) show two possible sets of discrete measurements
with 45° intervals for α. Our measurements use the points indicated by I0(α) to find I (α).

Figure 4.4: Imean (left) and Iamp (right) for sample ‘zoom’. The blue tiles on the floor are strongly polarized due to the angle of the sun,
while the foliage only has polarized highlights.

only the amplitude weights:

F = Is + Iamp

Is − Iamp

= k ∗ Iamp + Iamp

k ∗ Iamp − Iamp

= (k +1)∗ Iamp

(k −1)∗ Iamp

= k +1

k −1

(4.3)

4.2. Measuring Polarization
The polarization cosine in a scene is measured using Wolff’s (L. Wolff, 1990) setup with four orientations
of a linear polarizing filter in 45° increments (see Figure 4.3). The four RGB images captured by a cam-
era are merged into 4-dimensional data I (α, x, y,c). The first dimension is the filter orientation, the sec-
ond and third the spatial coordinates, and the fourth the color band. At pixel p = (xp , yp ) and color band c,
I (α, xp , yp ,c) is a polarization cosine. The data captured corresponds to I (0°, x, y,c), I (45°, x, y,c), I (90°, x, y,c)
and I (135°, x, y,c).

Because the signal is a cosine wave, previous experiments in L. Wolff, 1990 and Nayar et al., 1993 took
a number of pixel intensity measurements with a rotating linearly polarized filter and then fit a cosine onto
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the measurements using a mean squared error solver. We instead use a FFT-4 function on the input data,
because it can be parallelized in hardware for a rapid transformation towards frequency space. The FFT-4
gives complex Fourier coefficients X0 to X3. Since our input consists of real numbers, X3 is irrelevant, and X2

can be ignored as any overtone of the cosine wave is noise. X0 and X1 are the two coefficients of interest. X0

contains the discrete offset of the cosine wave Imean , which can also be calculated as the average of the four
measurements for I (α):

Imean = Iunpol + Ipol

2
= |X0| (4.4)

X1 contains the amplitude and phase for the cosine term in the polarization cosine:

Iamp = |X1| (4.5)

Ipol = 2∗ Iamp (4.6)

β=∠(X1) (4.7)

Calculations with Imean and Iamp are simpler than the same calculations with Iunpol and Ipol without
losing any information, thus we use the former. The phase β is discarded, but could be used to estimate the
local surface orientation.

The peak value of the polarization cosine is Imax and the minimum is Imi n . Rarely, if Imax or Imi n is ap-
proximately equal to one of the measured polarization states, it is possible to read them directly and calculate
the amplitude of Ipol . Guaranteeing that this happens requires infinite measurements, rather than four. It is
more reliable to calculate them directly through the previously found Imean and Iamp :

Imax = Imean + Iamp

= Iunpol + Ipol

2
+ Ipol

2

= Iunpol

2
+ Ipol

(4.8)

Imi n = Imean − Iamp

= Iunpol + Ipol

2
− Ipol

2

= Iunpol

2

(4.9)

Only three out of the previously mentioned four measurements at 45° intervals are strictly necessary to re-
construct any arbitrary cosine wave with a constant offset created by polarization. If three measurements are
taken instead of four and, for example, only I (0°), I (45°), I (90°) are known, I (135°) can be directly calculated:

I (135°) = (I (0°)+ I (90°))− I (45°) (4.10)

Afterwards, the four measurements can be processed by the FFT-4.
We found one edge case where sensor noise and discretization of all four measurements gave Iamp >

Imean , and therefore Imi n < 0. An example that can cause this edge case is I (0°) = 1, I (45°) = 1, I (90°) =
0, I (135°) = 0. In a real-world scene this should never be a valid measurement, as this would imply that
I (α) < 0 for 90° < α < 135°, while a measurement of negative pixel intensity cannot occur due to negative
light intensities not existing. However, the algorithm needs to handle this case, thus it reduces Iamp when
Iamp > Imean :

I ′amp = min(Imean , Iamp ) (4.11)

Dynamic Range Extension Well-exposed camera samples might have highlights that are clipped at one or
more of the RGB colour channels. If the camera does not have the dynamic range to retrieve unclipped high-
lights in each of the filter orientations, it is possible to partially restore this data using the other orientations.
At any color band of any pixel it is known that all measurements should lie on the polarization cosine. Imean

could be calculated using only the half of the measurements with the lowest values plus one. If there would
be 64 measurements, only the lowest 33 would be required. In our case with four measurements, only the
three lowest measurements are necessary. Once Imean is known, the higher half of the measurements can be
restored by mirroring the lower half.
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Figure 4.5: When I (α) is measured using the four sampling points of I0(α), the first sample is clipped at 1.0. Using the the other three
samples which are not clipped, the single clipped sample can be restored to 2.0.

Figure 4.6: Both Imean and Iamp are divided in N-by-N tiles with overlap. The black squares, blue squares, dotted squares and red square
are all valid 2-by-2 tiles in this 4-by-4 example image. N = 16 in our implementation.

To illustrate of how this is added to an implementation with four measurements, we take the example of
the peak amplitude being at I (0°) = 2. The ground truth is [2;1;0;1], but the clipped measurements will give
[1;1;0;1] due to the upper bound at 1.0. The clipped sample can be restored by calculating Imean from I (45°)
and I (135°); Imean = (1+1)/2 = 1, and then subtracting I (90°) from twice the mean; I (0°) = 2∗ Imean − I (90°) =
2 ∗ 1 − 0 = 2. Using this technique, the dynamic range can be increased by up to a factor of two in ideal
conditions with maximum polarization (see Figure 4.5).

This process is automated by calculating each measurement I ′(α) as a function of the other three mea-
surements. The final values are then the maximum of the original values and the recalculated values: I ′′(α) =
max(I (α), I ′(α)).

4.3. Tile-Based Estimate
After finding Imean and Iamp in Section 4.2, k can be estimated using the local correlation between the Imean

and Iamp across a patch of pixels. The underlying assumption is that any correlation between the two is
caused by specularities, and choosing k to maximally reduce the correlation results in a perfect decomposi-
tion between Id and Is . Due to image noise, calculating the local correlation for one pixel p requires a large
window around that pixel for an accurate estimate. This is computationally expensive, and is therefore opti-
mized by only calculating the correlation for a subset of pixels. From this subset of pixels the remaining pixels
are estimated through interpolation.

Rather than defining the subset of pixels for which the correlation is calculated, we define the windows
around the pixels as tiles, and directly use these tiles for our calculations. Imean is divided into N -by-N tiles,
where N is a small constant, chosen to be 16 in our implementation due to the input image sizes in our exper-
iments where this is approximately 1% of the image size in one dimension. For higher precision, additional
overlapping N -by-N tiles are added in between the first set of tiles. For example, if the image is 4-by-4 and
N is 2, every possible 2-by-2 square of the image becomes one tile, for a total of 3∗3 = 9 tiles that are of size
2-by-2 (see Figure 4.6). The process is then repeated for Iamp . A tile with index (a,b) will be addressed as
T (a,b, x, y,c), where (x, y) are the spatial coordinates inside the tile, and c is the color band.
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Each tile T from both the mean and amplitude image is average-compensated to T ′:

Tav g (a,b,c) =
∑N−1

x=0
∑N−1

y=0 T (a,b, x, y,c)

N 2 (4.12)

T ′(a,b, x, y,c) = T (a,b, x, y,c)−Tav g (a,b,c) (4.13)

A cosine window w is then applied to the data in each tile in both the horizontal and vertical dimension.
This reduces the impact of data from the edges of tiles and increases the weight of the center of tiles.

w(x) = 1

2
− 1

2
cos(2π

x + 1
2

N
) (4.14)

T ′′(a,b, x, y,c) = w(x)∗w(y)∗T ′(a,b, x, y,c) (4.15)

The last three arguments (x, y,c) are discarded and the entire tile T ′′(a,b) is used as a large N ∗ N ∗C -
sized vector. The vectors T ′′

mean(a,b) and T ′′
amp (a,b) can be compared using any correlation analysis. For

our implementation, a basic vector-projection was used. One assumption made for this tile-based estimate
by choosing a basic vector-projection is that a mean tile Tmean can be directly decomposed into the corre-
sponding amplitude tile weighted by a constant, which becomes the specular component Ts = k ∗Tamp , and
an orthogonal tile Td that will make up the diffuse component. Due to their orthogonality, this gives Td ·Ts = 0
where A ·B = A0B0 + A1B1 + ...+ AnBn denotes the dot product between two vectors A and B . k can be found
by projecting the mean tile onto the amplitude tile, to find the correlation:

kt i le (a,b) = proj(T ′′
mean(a,b),T ′′

amp (a,b))

=
T ′′

mean(a,b) ·T ′′
amp (a,b)

T ′′
amp (a,b) ·T ′′

amp (a,b)

(4.16)

where proj(A,B) is the scaling factor for vector B that makes up the projection of vector A onto vector B. This
means that (A−B ∗proj(A,B)) ·B = 0.

The coefficients kt i le (a,b) found are the initial estimates for the amplitude weights. These coefficients are
not directly available for each pixel p = (xp , yp ) in the image, so they are interpolated between tile centers.
Due to the downscaling in Section 4.6, linear interpolation should suffice. In our implementation, we use
cosine interpolation to find k(p) for each pixel p.

The assumption that Id and Is are uncorrelated and therefore have orthogonal tile vectors often does not
hold. Predominantly on edges and gradient textures the correlation can be positive, causing the tiles on these
patches of objects to result in a higher amplitude weight k than intended. Nevertheless, the tiles where this
assumption does hold give an amplitude weight estimation that is correct without any further calculations,
which is why it is used as a starting point for the algorithm. An alternative correlation analysis could look
at object patches using the functional bilateral filter for a more accurate first estimate for k. However, this
would also be computationally more expensive, while the basic correlation analysis already provides a good
starting point.

4.4. Functional Bilateral Filter
Nayar et al. (Nayar et al., 1993) iteratively use an information propagation step to improve their weight map
until convergence. For each pixel that has not converged, the best diffuse component estimations of neigh-
bouring pixels are used to improve the diffusion component estimation of the pixel. This has the two draw-
backs that the pixels might find a local optimum that is unequal to the global optimum, and the information
propagation being slow across the image. To replace their information transfer step we introduce a ‘func-
tional bilateral filter’, which does not stop iterating if it converges at a local optimum and does not make any
hard decisions for propagation area boundaries.

The original bilateral filter (Tomasi and Manduchi, 1998) only filters one input image I by comparing
pixels from that input image I (Equation 2.10). The cross/joint bilateral filter (Eisemann and Durand, 2004;
Petschnigg et al., 2004) extends this by having a separate input image K :

Jq = 1

k(q)

∑
p∈Ω

f (p −q)∗ g (Ip − Iq )∗Kp (4.17)
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Figure 4.7: RG color space intersection of two arbitrary non-parallel lines A and B can be solved with a system of two equations, using a
2-by-2 matrix with Adi r and −Bdi r as the column vectors. In RGB color space a 3-by-3 matrix is needed to solve the system with three
equations, because an additional third line C is needed to ensure the lines always intersect.

The ‘functional bilateral filter’ is a generalized variant of the cross/joint bilateral filter, and uses a sepa-
rate input image κ(p, q) for each pixel shift p − q , which may be calculated directly during execution of the
algorithm:

Jq = 1

k(q)

∑
p∈Ω

f (p −q)∗ g (Ip − Iq )∗κ(p, q) (4.18)

The individual weights between pixels f (p−q)∗g (Ip − Iq ) are unchanged from the original bilateral filter.
This results in k(q) being unchanged as well. The difference between the cross/joint bilateral filter and the
proposed filter is the dependency of the input image on the spatial shift vector. The input image κ(p, q) can
be different for each spatial shift p −q , and can be implemented as a function that is ran in parallel for each
pixel being filtered.

Our implementation also has an additional change compared to the original bilateral filter, where the
weight g (Ip − Iq ) is changed to zero when κ(p, q) gives an invalid value. Valid values are characterized by
being inside a certain range, such as being non-infinite or being between 0 and 1. In our algorithm, values
between the lower and upper bound kmi n and kmax of the amplitude weight are valid. The previous definition
can be updated as follows:

Jq = 1

k(q)

∑
p∈Ω

f (p −q)∗ g ′(p, q)∗κ(p, q) (4.19)

g ′(p, q) =
{

g (Ip − Iq ) if valid(κ(p, q))

0 otherwise
(4.20)

The functional bilateral filter can be used to calculate a weighted sum of any local function on pixel pairs
with the edge-preserving feature of the bilateral filter. It is a generalization of the normal and cross/joint
bilateral filter, as defining κ(p, q) = Ip makes it equal to the normal bilateral filter, and defining κ(p, q) = Kp

makes it equal to the cross/joint bilateral filter. Our implementation also uses the optimization where Ω is
replaced by N (s), to prevent calculations on values with near-zero spatial weights.

4.5. Line Intersection
The diffuse and specular components are estimated between two neighbouring pixels using a plane-intersection
function by Nayar et al. (Nayar et al., 1993). However, this operation is not robust to camera sensor noise, and
they introduce an angular threshold to reduce the impact of noisy values. This works when there is only
impulse noise for a small amount of pixels, but cannot compensate for strong sensor noise throughout the
image. Our method replaces their plane-intersection function with a line-intersection function, which is less
susceptible to sensor noise.

The intersection of two lines with two or more dimensions can be defined as a linear vector operation
(see Figure 4.7. For a line A, any point Ap on that line can be described by Ap = A0 +a∗ Adi r with exactly one
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value for a. A0 can be chosen as any point on the line, but changing it also changes the value of a for all Ap .
When two lines Ap = A0 +a ∗ Adi r and Bp = B0 +b ∗Bdi r intersect each other, their coordinates are equal:

A0 +a ∗ Adi r = B0 +b ∗Bdi r (4.21)

This gives an equation that can be solved uniquely for (a,b), where either a or b can be used to calculate
the coordinates of the intersection point. Two non-parallel lines are only guaranteed to intersect if there are
two dimensions. In the case of three dimensions, the two lines are unlikely to intersect due to the extra dimen-
sion of freedom. With four or more dimensions, the likelihood of an intersection point becomes increasingly
lower. Rather than searching for an intersection point, we instead calculate the closest points between the
two lines, which is the pair of points on the lines where there is only an orthogonal component to both lines
between the points. This orthogonal component is the cross product, denoted with the × symbol, of the line
directions of A and B , Adi r and Bdi r respectively:

Cdi r = Adi r ×Bdi r (4.22)

The closest point between A and B can then be described by:

A0 +a ∗ Adi r = B0 +b ∗Bdi r + c ∗Cdi r (4.23)

which can be rewritten in vector-matrix form:

[
Adi r −Bdi r −Cdi r

]a
b
c

= [−A0 +B0] (4.24)

This is a linear system that can be solved for (a,b,c) using an existing solver. Our implementation uses
Cramer’s Rule to find a, b and c in parallel without requiring any conditionals. The point on line A can then
be found at A0 +a ∗ Adi r , and the point on line B is at B0 +b ∗Bdi r . When lines A and B are parallel, there is
no solution. This case is handled by the valid() check in the functional bilateral filter.

4.6. Multi-Scale Optimization Iterations
The values k calculated by the tile-based estimate are a starting point, and are downscaled to a low resolu-
tion amplitude weight map. A scaling level i has amplitude weights ki . Level 0 and map k0 are the highest
level with highest resolution map k, counting down into negative integers to lower resolution maps. ki is
downscaled to ki−1 by applying bilinear downscaling. k0 is downscaled to k−1, which is downscaled to k−2,
etc., until the lowest level is calculated. The total amount of levels depends on image size and runtime con-
straints. Starting from the lowest level, the weight map ki is improved by applying local optimization criteria,
explained in this section. Edge-stopping is implemented through the functional bilateral, explained in Sec-
tion 4.4. After multiple iterations of applying the optimization criteria, the weight map ki is upscaled to ki+1.
This process is repeated for each subsequent level, improving the weight map at level i and then upscaling
to level i +1. Once k0 has been improved following the local optimization criteria, the process stops, and the
final weight map k can be read from k0.

Amplitude Weight Bounds Before iterating to the locally optimal amplitude weights, it is useful to set an
upper and lower bound on the amplitude weights to ensure that one noisy pixel cannot drastically influence
the results. The most conservative lower bound on an amplitude weight k is kmi n = 1, which means that the
specularity must be least equal to the polarized amplitude: Is ≥ Iamp , Is = k ∗ Iamp , therefore k ≥ 1. The
lower bound value 1 can be increased by calculating local correlation and taking the maximum of the local
correlation and 1. This local correlation is calculated using the functional bilateral filter, using the following
function κcor r :

κcor r (p, q) = proj(Imean(p)− Imean(q), Iamp (p)− Iamp (q)) (4.25)

using the same proj(A,B) function as Section 4.3.
k = κcor r (p, q) minimizes the Euclidean distance between Imean −k ∗ Iamp for pixels p and q . This would

be a direct solution to the intrinsic image decomposition, but usually gives a lower k than the ground truth
due to noise in both Imean and Iamp . Therefore the value found is only used as an input to find the minimum
amplitude weight kmi n .
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Figure 4.8: RG color space intersection between OR and Is = k ∗ Iamp . The value for Is is somewhere on the dotted line segment. The
final value for kmax is determined by projecting separately on all three color planes in RGB color space, and taking the lowest kmax
value of the three.

The function corr is then defined as the functional bilateral using κ= κcor r , with the weights being deter-
mined by Imean . The new lower bound is the maximum of the previous lower bound, which was 1, and the
local correlation:

kmi n(x, y) = max(1,corr(x, y)) (4.26)

This only holds if corr(x, y) is defined such that the local correlation of Iamp with Imean is only calculated
on one region with the same material characteristics on an object, and not across objects or across surfaces
of different materials. The edge-stopping performance of the functional bilateral filter used is crucial for the
accuracy of Equation 4.26. If the correlation becomes higher than ground truth due to the inclusion of edge
gradient steps, the lower bound becomes too high, resulting in artifacts around edges. These artifacts cannot
be removed by the local optimization step because it respects the lower bound, which is itself causing the
artifacts.

For the maximum amplitude weight, the theory from Nayar et al., 1993 is used, which states that the
maximum limit is set by the point where one or more color bands of the diffuse image would become negative
(see Figure 4.8). This is equal to a projection onto either the RG , RB or GB color plane. The maximum
amplitude weight mc for color band c is the scale between Imean and Iamp in that color band:

mc = I c
mean/I c

amp

with c ∈ {R,G ,B}
(4.27)

kmax = mi n(mR ,mG ,mB ) (4.28)

Both bounds kmi n and kmax are pre-calculated for the local optimization step.

Local Optimization At a level i with weight map ki , the local optimization has a wide information propaga-
tion step based on the Fresnel ratio assumption and a local diffuse estimation step based on the diffuse color
vector direction constancy assumption.

The wide information propagation step runs a cross bilateral filter with the current estimate k as the input
image and Id as the weight image, to blur towards edges. This is based on the assumption that the Fresnel
ratio Is,per p /Is,par , and therefore the amplitude weight k is locally similar. Wolff (L. Wolff, 1989) has shown
that this gives good results for dielectric and metallic materials.

The local diffuse estimation step brings Id = I − Is = I −k∗ Iamp of nearby pixels together. This is based on
the assumption that one object has one diffuse color D , which is scaled by a varying multiplier m based on the
amount of irradiance from white light sources and the local surface direction changes across the object. Some
objects are inhomogeneous, breaking this assumption. However, these objects can be processed as if the ho-
mogeneous object patches are objects themselves. D = Id /m is diffused using the line intersection algorithm

from Section 4.5 as the κ function for the functional bilateral filter. Define
[
a b c

]T = li(A0, Adi r ,B0,Bdi r )
with li a line intersection function implementing the theory from Section 4.5, (a,b) the coefficients to find
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Id (p) Id (q) = a ∗ Id (p)

Imean(q)

−Iamp (q)

Is (q) =−b ∗ Iamp (q)

Figure 4.9: RG color space estimation of Id (q) given Id (p), by using the matrix-based line intersection from Section 4.5 to find the two
coefficients (a,b). The important coefficient is b, which becomes the new amplitude weight estimate k(q) for pixel q .

points P and Q on lines A and B (see Figure 4.9) and c the length of the cross product between the two lines
if they do not intersect. Then κ is implemented as:

κl i (p, q) = [
0 1 0

] · li(O, Id (p), Imean(q), Iamp (q)) (4.29)

The three-column matrix is inserted before the function because only b is necessary to find the next value
for k, as the other two coefficients provide information about the length of the diffuse vector and the size of
the cross product between the two lines, which are both not required.

For each neighbouring pixel p, an RGB line from the origin O to p’s current Id estimate is intersected with
the RGB line that q ’s Id has to lie on, which is the line extending from Imean(q) extending in the direction of
the polarization amplitude Iamp (q). It has to lie on this line because of the assumption that Is = k ∗ Iamp ,
and therefore Id = Imean − k ∗ Iamp which is precisely this line. In a noise-free environment the two lines
should always intersect, but noise can cause a slight offset, which is why the line intersection function l i is
implemented according to Section 4.5 with an additional cross product to account for the offset.

These two steps are repeatedly intertwined as an edge preserving low-pass filter in two separate dimen-
sions. The amount of iterations is chosen to be 2∗(1−i ) where i is the level in the downscaling pyramid. Both
steps respect the bounds kmi n and kmax , and will discard values in the functional and cross bilateral that fall
outside the bounds. The points with a high absolute polarization Ipol will serve as a local upper bound on k,
as kmax at those points will be close to 1, causing the diffusion of k to bring all local values closer to 1. The
points with a low absolute polarization Ipol will be an anchor for the diffuse component, as even with a high
k the estimate for Id will remain stable.

There is one additional cross bilateral filter applied as a post-processing step after the repeated execution
of the wide information propagation step and the diffuse intersection step on a pyramid level. k is once again
used as the input image, but Imean instead of Id is used as the weight image, to propagate information across
regions with a similar total radiance. k on any local patch that visually looks like one object is blurred into
one object by this step. It also ignores the bound kmi n , to reduce the minor artifacts around edges where the
bilateral filter for kmi n assigned a higher weight across an edge than intended, causing a higher kmi n than the
ground truth. This step is ran twice on each pyramid level.



5
Implementation Details

The algorithm was implemented in MATLAB® 2022, with the source code publicly available at https://github.
com/amirzaidi/Polarization.

5.1. Image Scaling
In Sections 4.3 and 4.6, the input image is assumed to be divisible by a large power of two. When this is not
the case, the input image is first extended until it is divisible by this factor:

Mi r r (x) =
{

x if x ≥ 0

−x otherwise
(5.1)

I ′(x, y) = I (Mi r r (x), Mi r r (y)) (5.2)

If I (x, y) denotes the image intensity at pixel coordinates (x, y), I ′(x, y) is calculated for an extended range
of coordinates compared to the input image. The padding is chosen to be a symmetric edge-mirror padding
due to it looking more natural than image repetition or edge repetition, and it having a value distribution that
resembles the region along the edge rather than only the edge itself. However, if the image would be cropped
after the execution of the algorithm, an edge repetition padding should not significantly influence the result.
If the input image is 14-by-14, I (0,0) and I (13,13) would be the original corners. The extended corners are
I ′(−1,−1), I ′(14,14). This extended image is generated for both Imean and Iamp , which are subsequently
updated to a zero-indexed shift of the 16-by-16 I ′mean and I ′amp , ranging from I ′(0,0) to I ′(15,15).

The downscaling operation is preceded with a Gaussian blur G(σ) to prevent the formation of moiré pat-
terns, while the upscaling operation is succeeded by the same Gaussian blur to reduce the blockiness of the
result:

G(σ) =G([−N to N ],σ)T ⊛G([−N to N ],σ)⊛ I (5.3)

G(x,σ) = 1

2πσ2 ∗e−x2/(2σ2) (5.4)

with N chosen to be approximately 3∗σ. The Gaussian blur suppresses the high-frequency components,
which reduces aliasing from the bilinear scaling.

The blur is applied in two steps using Equation 5.3 with σ = 1.36 in first the horizontal, and then the
vertical direction. This value for σ was chosen as a trade-off between the retention of frequencies lower than
a quarter of the sampling rate, while attenuating the frequencies higher than a quarter of the sampling rate
(see Figure 5.1). Sampling is performed by averaging tiles of 2-by-2 when downscaling, and duplicating each
pixel into a 2-by-2 tile when upscaling.

One possible issue with this approach is that checkerboard pattern textures with high frequency lose their
pixel variance entirely, becoming one constant color. We did not notice this during our testing, as such a
pattern is not common in real-world scenes, but could exist due to aliasing of highly detailed textures.
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Figure 5.1: Gaussian blur frequency response for σ = 1.00 (left) and σ = 1.36 (right). X-axis is the relative frequency, with 1.0 being half
the sampling frequency of the image. Y-axis is the relative amplitude after applying the gaussian blur. A higher σ value more strongly
suppresses high frequencies at the cost of losing the middle frequencies.

5.2. Parameters
There are multiple parameters that were empirically chosen. First, there is the number of pyramid levels
in Section 4.6. We chose a total of 4 levels for input images of size approximately 3000-by-2000, because
choosing a higher number of level did not improve results. Second, we use N = 16 for our tile-based estimate
in Section 4.3 due to the input images being of the aforementioned size. If the size of the images would be
doubled in both dimensions, N should also be doubled to encapsulate the same relative object patch size.
Third, four separate calls to the functional bilateral filter are made, which all have their own spatial sigma σ f

and tonal sigma σg values:

1. The minimum bound in Section 4.6 is calculated once in each pyramid level with the same σ values
on each level. σ f = 0.33 and σg = 0.10 were chosen to keep the calculation very localized. This pre-
vents random correlations between pixels far apart from setting a high kmi n and pushing k higher than
intended.

2. The line intersection in Section 4.6 is also calculated once in each pyramid level with the sameσ values.
σ f = 0.66 and σg = 0.02 were chosen to set a strong tonal boundary on which pixels are allowed to re-
calculate k between them. If σg is significantly increased, edge boundaries are not respected creating
extreme outliers of k along edges. σ f might be increased, but is kept low for performance reasons.

3. For the cross bilateral filter intertwined with the line intersection in Section 4.6 we used σ f = 2.00 and
σg = 0.05 to allow for rapid wide-area diffusion of k without significantly crossing edge boundaries.

4. For the final cross bilateral filter using Imean rather than the estimate for Id as its weight input image,
we used σ f = 2.00 and σ f = 0.01, because this is intended as a blur on color patches in Imean which
is a ground truth measurement of what the human eye would see, unlike color patches in Id which
is only an estimate of the diffuse component. If there is even a small tonal difference in Imean , this
bilateral filter should not apply any diffusion. This step is ran twice at the end of each pyramid level in
our implementation.

These parameters are input image size independent, because the same algorithmic steps are applied on
each level of the Gaussian pyramid. If the image resolution is doubled, the optimization step at previously
the highest level map k0 is shifted once to map k−1, while k0 becomes a new optimization step at the doubled
image resolution, to improve the highest frequencies of the result.



6
Evaluation

Before providing experimental results, we provide an overview of the analysis criteria used in the works by
Nayar et al. (Nayar et al., 1993). We then apply these criteria to samples collected in both an outdoors and
indoors environment.

6.1. Metrics
Nayar et al. analysed the performance of their algorithm through its effectiveness in removing specular high-
lights and retaining textures. They note there can be artifacts due to multiple factors, such as the polarization
of diffuse light at edges of objects and the clipping of highlight values. Our analysis will first focus on the
quality of the specular highlight removal and how well the algorithm handles the artifacts, followed by a
quantitative analysis of the runtime performance for various image sizes.

6.2. Sample Collection
The two sample sets ‘zoom’ and ‘inside’ were captured with a Canon EOS 4D Mark II in CR2 RAW mode.
The sample set ‘potdng’ was captured by a OnePlus 7 Pro in DNG RAW mode. Each sample set consists of
four images, each captured with a 45° difference in polarization filter angle. CR2 images were converted to
uncompressed 16-bit sRGB TIFF files using Darktable with all post-processing disabled. DNG images were
converted to sRGB JPEG files using DNG Processor.

6.3. Qualitative Analysis
Both outdoor and indoor images were tested to analyse the overall quality of the decomposition in challeng-
ing circumstances.

Outdoor Images Outside, the direct reflection of the sun on reflective dielectric materials creates the ideal
testing conditions for highlight removal. In the first outdoor sample ‘zoom’ (see Figure 6.1), there are small
highlights on the rocks and leaves. There are two lamp posts with a curved top, creating small regions that
show that correlation-based decomposition can result in a smooth diffuse image.

In the second outdoor sample ‘potdng’ (see Figure 6.2), there is a large rectangular highlight on the side of
the raised tile in the middle of the image. This highlight is perfectly decomposed into its diffuse and specular
components, revealing the blue diffuse color of the tile. One apparent problem is the movement of the leaves
between measurements due to wind, causing edges of leaves on the palm tree in the back on the right and
the withered plant on the left to be falsely detected as areas with high polarization. Solutions to this problem
are discussed in Section 8.2. Another problem is the lack of diffusion through the sky, creating a bright halo
around the branches in the specular image. This could be solved by having multiple iterations of the entire
pyramid, or by running more iterations of the individual steps inside the pyramid. However, this increases
the runtime significantly, and is therefore only an option when quality is preferred over speed.

Indoor Images Indoors during daytime, the amount of specular light is lower due to the lighting being
mostly scattered bounces of outside light sources, which prevents objects from having a significant incoming
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Figure 6.1: Diffuse-specular decomposition of sample set ‘zoom’. The top two images show Imean (left) and Iamp (right). The next three
rows have the tile-based estimate on the left, and the final decomposition on the right. Those rows show Id , Is and k in order from top
to bottom. k is rescaled from [0,4] into the range [0,1] for visibility.
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Figure 6.2: Diffuse-specular decomposition of sample set ‘potdng’. The top two images show Imean (left) and Iamp (right). The next
three rows have the tile-based estimate on the left, and the final decomposition on the right. Those rows show Id , Is and k in order from
top to bottom. k is rescaled from [0,4] into the range [0,1] for visibility. Sample set taken with a mobile phone rather than a professional
camera.



26 6. Evaluation

Sample Size Run 1 Run 2 Run 3
Potdng 1976x1476 22.470s 21.748s 22.022s
Zoom 1861x2801 36.347s 35.940s 36.156s
Inside 1861x2801 35.867s 35.909s 35.980s

Table 6.1: Runtime of our implementation.

light direction. However, in our indoor sample ‘inside’ (see Figure 6.3), we found that mirror-like reflections
are a special case of specularities, and are therefore separated by correlation-based decomposition. The spec-
ular image reveals the entirety of the reflection, while the diffuse image has the reflection removed except for
some remaining noise.

The pot in the middle still has one highlight in the top right of the diffuse image, caused by the curving
geometry breaking the assumption of a constant Fresnel ratio across an object’s surface. The tile-based esti-
mate does properly remove the entire highlight, but the blurring of k across the highlight reduces the quality
of the decomposition of the highlight.

On the left of the pot, there is also a blue remnant on the diffuse image after the removal of the highlight.
This is caused by the quality of the polarized filter used to take the samples. The filter itself has an imperfect
response curve for polarized light, most noticeably letting through more blue light than other wavelengths,
creating a color imbalance on the polarization cosine. One possible solution to this problem is to assume all
specular light is entirely white, and projecting Is onto the white color vector. However, that would require all
light sources to be white balanced, and would prevent color reflections from being decomposed, reducing
the quality of the overall decomposition.

Finally, there is one brown square on the wall on the top left of the diffuse image. This is caused by clipping
of some of the input images, resulting in an impossible to solve local balance between the diffuse color and
the weight map. This could be solved by HDR bracketing to increase the dynamic range, or using a lower
exposure on a high bit depth camera.

6.4. Quantitative Analysis
On an Intel Core i5-6600K and NVIDIA GeForce GTX 970, our implementation of the algorithm takes ap-
proximately 30 seconds for the full decomposition including all IO operations and UI handling (Table 6.1).
The implementation vectorizes each calculation step such that there are no iterations over individual pixels.
Additionally, Cramer’s Rule is optimized to only calculate the necessary determinants once. Nevertheless,
kernel-based parallelization over pixels should be significantly faster as there are less synchronization points
and the pipeline can be optimized for the hardware. A native implementation in OpenGL, OpenCL or Vulkan
could improve the runtime by multiple orders of magnitude. For example, one cross/joint bilateral filter on
a 3000-by-2000 RGB image takes approximately 1 second in our implementation, while the same filter in
OpenGL takes only 100 milliseconds. If all operations gain a similar speedup, the runtime could be reduced
by a factor of 10.
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Figure 6.3: Diffuse-specular decomposition of sample set ‘inside’. The top two images show Imean (left) and Iamp (right). The next three
rows have the tile-based estimate on the left, and the final decomposition on the right. Those rows show Id , Is and k in order from top
to bottom. k is rescaled from [0,4] into the range [0,1] for visibility.





7
Applications

The decomposed diffuse and specular images can be used for direct scene editing without prerequisite knowl-
edge of the scene. Textures and highlights can be adjusted, and tonemapping algorithms have more informa-
tion for HDR-to-SDR image compression.

7.1. Texture Modification
In RGB color space an object with a constant texture color can be represented as:

∀p : (p ∈ ob j ect ) ↔ T (p) = [
R G B

]′
(7.1)

where T denotes the texture color at a given pixel. The diffuse color is:

Id (p) = m ∗T (p) (7.2)

where m is a multiplier determined by one or more white light sources’ angle of incidence relative to the
object. Modifying the diffuse color directly would remove m from the diffuse image. To prevent this loss of
lighting information, the color vectors are normalized by their Euclidean length to separate m:

Id ,nor m(p) = Id (p)

|Id (p)| (7.3)

|Id ,nor m(p)| = |k ∗T (p)| = k ∗|T (p)| (7.4)

Id ,nor m(p) = k ∗T (p)

k ∗|T (p)| =
T (p)

|T (p)| (7.5)

Equation 7.5 shows that if an entire object has the same texture color T (p), it also has the same normalized
diffuse color Id ,nor m(p). The normalized diffuse color can first be used for object classification using a L2
norm in RGB color space. Second, the normalized diffuse colors can be modified to another color I ′d ,nor m(p).
The shading information is contained in the denominator of the first formula: |Id (p)|. Multiplying this value
back in to restore the shading information gives a new diffuse color with accurate lighting:

I ′d (p) = I ′d ,nor m(p)∗|Id (p)| (7.6)

where I ′d ,nor m(p) is a forged texture to map onto the object. Finally, the new image can be constructed by
adding the original specular component:

I ′(p) = I ′d (p)+ Is (p) (7.7)

This was tested on one flower pot in ‘potdng’ (see Figure 7.1). The classification based on the normalized
diffuse color is imperfect, leaving a trail of pink pixels alongside the bottom left edge of the flower pot. Even
so, the texture replacement looks realistic, and the specular component being added makes the right side of
the edited pot look as shiny as the original. One apparent shortcoming is the lack of adjustment of the red
glow on the green pot, caused by the pink diffuse light of the pink pot being emitted to and reflected by the
green pot. The model used is too simple to account for such reflections between objects.
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Figure 7.1: Replacing the normalized diffuse color of the centered pot in sample ‘potdng’. Top left shows Id ,nor m , top middle I ′d ,nor m ,

and top right the binary map to segment the centered pot using a color classifier. Bottom left shows Id , bottom middle I ′d which is

calculated through the color adjustment in normalized diffuse color space, and bottom right the final image I ′.
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7.2. Highlight Gloss Remapping
Highlights are by definition specular, and can therefore be edited by modifying only the specular image. The
Blinn-Phong model for 3D rendering can be applied to the specular image to realistically adjust the shininess.
To calculate an object’s radiance, the Blinn-Phong model sums three separate components Ia , Id and Is ,
each of which estimates a specific real-world lighting phenomenon. The first component is the ambient
illumination, which is caused by the scattering of all light from the environment excluding light sources onto
an object. This results in one constant color across the entire object independent of the orientation of that
object. The second component is the diffuse component, which is caused by the object’s body reflectance
of one or more incoming light sources. The third component is the specular component, which is caused by
the object’s surface reflection of the same light sources as the diffuse component. In the Blinn-Phong model’s
specular component, the shininess is determined by the power n:

Is = ks ∗L (7.8)

ks = (N̂ · Ĥ)n (7.9)

where L is the color and intensity of the irradiant light. To change the shininess from n to n′, the specular
image should be raised to the power n′/n:

(ks )n′/n = ((N̂ · Ĥ)n)n′/n (7.10)

(ks )n′/n = (N̂ · Ĥ)n∗n′/n (7.11)

(ks )n′/n = (N̂ · Ĥ)n′
(7.12)

Because L is approximately a constant vector, modifying Is has the same effect as modifying ks directly, except
for a scaling factor Ln′/n . The remaining problem is then estimating L to compensate for it. In our implemen-
tation we estimate L at any pixel as the average of the specular component across a large patch around that
pixel. Then the specular image can be adjusted:

I ′s = (
Is

|L| )n′/n ∗|L| (7.13)

giving the same result as Equation 7.12. This was tested on ‘potdng’ (see Figure 7.2), making all objects appear
shinier.

7.3. Intelligent Tonemapping
Tonemapping is the process of changing the luminosity and chromaticity of an image with the intent of
maintaining its original look while changing the way it is displayed. Images from digital cameras are of-
ten tonemapped due to the small dynamic range of monitors compared to the dynamic range of real world
scenes. When a daylight scene is displayed on a monitor without tonemapping, there is low contrast in small
scale features. Tonemapping can bring out the small scale features by compressing the large scale features.
This commonly has the effect of making the lighting look washed out.

One way to overcome this problem would be to know what areas are shadows and have no direct illumi-
nation, and which areas are directly lit and should be kept bright. Using the diffuse-specular decomposition,
Id can be separately tonemapped such that specularities are not adjusted. This still brings out the small-
scale details without creating a washed out look due to compressed specularities. To showcase this effect,
we implemented a simplified version of Durand and Dorsey’s tonemapping algorithm (see Figure 7.3). The
specular reflection of the sun is kept bright, resulting in an image with more local contrast.
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Figure 7.2: Comparing two highlight adjustments in sample ‘potdng’. Normal highlights on the left, highlights adjusted with n′/n = 1.5
in the middle, and highlights adjusted with n′/n = 2.0 on the right.
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Figure 7.3: Comparing a normal tonemapping algorithm operating on I (left) and a modified tonemapping algorithm operating exclu-
sively on the diffuse component Id (right). The diffuse tonemapping algorithm appears less washed out due to maintaining the original
uncompressed highlights and ignoring a small amount of polarized ambient light in the shadows.





8
Discussion

Despite the improvements regarding robustness and runtime, the results show that our approach is still im-
perfect. This section discusses both the contributions of this work, and the remaining challenges that could
be resolved in future iterations.

8.1. Contributions
The proposed algorithm offers four key improvements over the work by Nayar et al (Nayar et al., 1993). First,
the entire algorithm is massively parallelizable, without the requirement for an iteration over individual pixel
coordinates in the implementation. Every operation is vectorized over the entire image, making an imple-
mentation on manycore processors or GPUs very performant. Second, the soft decision making from the
functional bilateral filter is a strict improvement over hard decision making, as the filter itself can be replaced
by a binary decision to revert to the hard decision version. Third, the line-intersection algorithm provides a
more robust alternative to the plane-intersection algorithm due to the removal of any angular thresholds. Fi-
nally, the performance of the algorithm is similar for any resolution image, as the multi-scale representation
using a Gaussian pyramid ensures that data diffusion happens at the same speed as long as the pyramid scale
count is chosen to match with the image size. If the image size is twice as large in both dimensions, adding
one pyramid level is enough to retain the information diffusion speed.

8.2. Future Work
One of the major problems induced by the sequential acquisition of sample sets was the temporal change
in the scene between measurements due to the motion of the camera and objects and the changes in ap-
pearance from varying illumination intensity and direction. The motion can be compensated for using align-
ment. However, if the alignment is imperfect, edges are seen as highly polarized areas regardless of the actual
amount of polarization on the edges, reducing the quality of the decomposition (see Figure 8.1). Recently,
there have been developments towards a full-Stokes polarization camera (Rubin et al., 2019), that can di-
rectly provide the polarization cosine from one image, using special sensor patterns to measure different
polarization orientations across the image. This would greatly increase the quality of the diffuse-specular
decomposition, and allow for the post-processing of videos.

Another aspect that can be improved is the runtime. We used an interpreted programming language due
to its ease of experimentation, but a native implementation would result in a much lower runtime. If the
decomposition could run on video data, the diffuse component could be shown as a version of the video
data with better visibility. This is useful when the visibility of the scene is poor due to highly directional
light sources in dark areas. Furthermore, a diffuse video stream can be compressed better due to having less
variance, giving smaller file sizes when the trade-off of losing the specular highlights is acceptable.

If the performance can be improved to real-time processing, the decomposition could be applied on a
video stream as the video is being recorded. This would provide a viewfinder showing only the diffuse com-
ponent of the video stream, which would be helpful for situations where the only source of light creates many
strong specularities, such as in underground construction work with flashlights as the light sources. Further
research towards optimization techniques and implementation in a native programming language is required
to test the viability of such a real-time application.
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Figure 8.1: Imean (left) and Iamp (right) of sample set ‘window’, showing the result of the movement of clouds on the polarization
cosine. The second row shows a close-up of the sky. The pattern in the sky seen in Iamp is not created by the polarization state, but only
by the movement of the clouds, which creates temporal intensity differences. This is incorrectly interpreted by the polarization cosine
calculation as polarization state differences.



9
Conclusion

The diffuse-specular decomposition is still a relevant operation for modern image processing pipelines. By
taking four measurements of a scene through a linearly polarized filter, the polarization state can be calcu-
lated in the form of polarization cosines which can then be used as the basis for a decomposition algorithm.
Our method uses two key assumptions about real world scenes, local diffuse color vector direction constancy
and local Fresnel ratio constancy, to provide a robust decomposition for both indoor and outdoor scenes. The
results show that the decorrelation approach used can accurately distinguish between diffuse and specular
light in simple cases, and still provides a good estimation in the more difficult cases where there is camera
sensor clipping or there are large reflections in the scene.

The decomposition can be applied to provide additional illumination information to multiple post-processing
operations to improve their performance. Such post-processing operations include but are not limited to
texture modification, glossiness remapping and tonemapping. While modifying a texture and remapping
the glossiness of an object is much simpler with the additional information from the decomposition, the
tonemapping algorithm we tested only marginally shows a difference between the basic version and the
modified version using the decomposition result. Nevertheless, the results of the experiments on the three
post-processing operations indicate that these operations can be either simplified or can have their quality
improved with the additional information supplied by the diffuse and specular intrinsic images.
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