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Over the past two decades, there has been much development in discontinuous Galerkin
methods for incompressible flows and for compressible flows with a positive Mach number,
but almost no attention has been paid to variable-density flows at low speeds. This
paper presents a pressure-based discontinuous Galerkin method for flow in the low-Mach
number limit. We use a variable-density pressure correction method, which is simplified
by solving for the mass flux instead of the velocity. The fluid properties do not depend
significantly on the pressure, but may vary strongly in space and time as a function of the
temperature.
We pay particular attention to the temporal discretization of the enthalpy equation, and
show that the specific enthalpy needs to be ‘offset’ with a constant in order for the
temporal finite difference method to be stable. We also show how one can solve for the
specific enthalpy from the conservative enthalpy transport equation without needing a
predictor step for the density. These findings do not depend on the spatial discretization.
A series of manufactured solutions with variable fluid properties demonstrate full second-
order temporal accuracy, without iterating the transport equations within a time step. We
also simulate a Von Kármán vortex street in the wake of a heated circular cylinder, and
show good agreement between our numerical results and experimental data.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Several low-speed flows of practical importance are compressible, that is, the velocity is not divergence-free. This can
occur due to mixing, or due to a temperature-dependent density near a heat source. An example is heat transfer in low-
Mach number flows of supercritical fluids, where all fluid properties vary strongly with the temperature, but do not depend 
significantly on the pressure. Most flow solvers use either a pressure-based approach and assume a divergence-free velocity 
field, or a fully compressible (density-based) formulation. Neither of these methods is directly applicable to compressible 
flows in the low-Mach number limit.

Density-based solvers can be used to simulate zero-Mach flows by approximating the flow with a low, non-zero Mach 
number (e.g., [46], [11]). This has often been used for heat transfer in supercritical fluids at low speeds (e.g., [14], [4]). This 
is expensive for several reasons. First, the temporal discretization needs to resolve acoustic effects, and the resulting linear 
systems tend to be very stiff. Second, the system of transport equations is solved in a coupled way, which is more expensive 
than using a time-splitting method, though the performance may be improved with suitable preconditioning [31]. Finally, 
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the fluid properties are evaluated as a function of two thermodynamic variables (usually the density and the volumetric 
enthalpy), so that a spline interpolation costs far more memory, thus complicating massively parallel calculations [14].

There is also substantial experience with discontinuous Galerkin (DG) discretizations for incompressible flows. These are 
either based on the introduction of artificial compressibility (e.g. [12]), or they solve for the pressure (e.g. [41,8,37,35]). 
The artificial compressibility method can be more than second-order accurate in time, though it requires the system of 
transport equations to be solved in a coupled manner (e.g., [6,5]). By choosing entropy variables as the unknowns, the 
DG method can also be formulated in a general way for both compressible and incompressible flows, at the cost of great 
complexity (e.g., [34]). There is, however, almost no literature on solving the low-Mach number equations with a pressure-
based discontinuous Galerkin method.

The only previous work of which we are aware is by Klein et al. [24,25], who used a SIMPLE scheme to march the 
transport equations forward in time, iterating the equations within each time step. This required under-relaxation in order 
for the iteration to converge. They solved for the velocity, so that a predictor for the density is needed in the temporal 
derivative of the momentum equation.

We avoid this by solving for the mass flux rather than the velocity. Another advantage of this approach is that the 
divergence term in the continuity equation does not have to be weighed by the density, so that the divergence matrix does 
not depend on the density. This makes the transport equations less tightly coupled, and it simplifies the pressure correction 
method, because the pressure matrix is constant for each time step.

The temporal discretization of the enthalpy equation requires special care. The convective term in the primitive enthalpy 
equation cannot be upwinded with a finite element method if the velocity is not divergence-free. We therefore discretize 
the enthalpy equation in conservative form, although we solve for the specific enthalpy, which is a primitive variable. This 
causes a complication in the temporal discretization, which features the unknown density at a new time step. A similar 
issue occurs in multispecies transport, and Najm et al. [28] devised a wide-spread two-step iterative method to stabilize the 
temporal scheme. This has subsequently been adapted to handle the strong property variations in supercritical fluids [29].

We present an alternative method that does not use any predictor solves or iterations to handle the unknown density at 
a new time step. We show that the error in our approximation can be made negligible compared to the error in the finite 
difference scheme, and that the method can be made stable by offsetting the specific enthalpy with a constant.

The paper is structured as follows. Section 2 defines the mathematical problem. Section 3 and 4 explain the spatial 
discretization and the time-splitting scheme, paying particular attention to the polynomial solution spaces (Section 3.1) and 
the discretization of the viscous stress (Section 3.2.1), which differ slightly from previous literature. Section 5 and 6 treat the 
density predictor in the enthalpy equation in great detail, and illustrate the results with numerical examples; these sections 
do not depend on the spatial discretization, and they can be read independently. Section 7 verifies the numerical method 
and the implementation for the coupled transport equations with a series of progressively more challenging manufactured 
solutions, and validates our approach by reproducing experimental data for flow past a heated circular cylinder. Finally, we 
draw our conclusions based on the results in Section 8.

2. Governing equations

The transport equations in the low-Mach number limit are

∂ρ

∂t
+ ∂kmk = 0 , (1a)

∂mi

∂t
+ ∂k (ukmi) = ∂kτik − ∂i p + Fi , (1b)

∂ρh

∂t
+ ∂k (mkh) = −∂kqk + Q . (1c)

Here t is the time, ρ is the density, u is the velocity, m := ρu is the mass flux, p is the pressure, h is the specific enthalpy, 
and F and Q are known external sources. Assuming a Newtonian fluid, the stress tensor is

τi j = μ

(
∂iu j + ∂ jui − 2

3
∂kukδi j

)
. (2)

The heat flux is

qi = −k ∂i T = − k

cp
∂ih , (3)

where T is the temperature. k is the thermal conductivity, and cp is the specific heat capacity. The last equality is technically 
an approximation because it neglects the dependence of the temperature on the pressure, but this is highly accurate for 
low-Mach number flows, even for strongly variable fluid properties in supercritical fluids [33]. The fluid properties (ρ , μ, 
cp , and k) are a function of T , but do not depend significantly on the pressure.

We consider two types of boundaries:
2
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• Dirichlet boundaries, denoted by �D, on which the mass flux and the temperature (and, therefore, the enthalpy and the 
fluid properties) are given, that is, mi = mD

i and T = T D;
• outflow boundaries, denoted by �N, where (τik − p δik)nk = f N

i and k nl∂l T = qN are prescribed.

3. Spatial discretization

This section details the spatial discretization of the enthalpy and mass flux transport equations on a domain � with 
outward normal n and space vector r = [x, y] ∈ �. The domain is meshed into a set of elements T . We denote by F i , FD, 
and FN the sets of internal faces, Dirichlet boundary faces, and Neumann boundary faces. The set of faces of an element 
T ∈ T is FT , and TF is the set of neighbors of face F . Each internal face F ∈ F i has a normal vector nF with an arbitrary 
but fixed direction. The jump and average operators are defined as

�x� := x+ − x− and {x} := 1

2

(
x− + x+)

, (4)

where

x±(r ∈ F ) := lim
ε↓0

x(r ∓ ε nF ) (5)

indicate the values at the two sides. On boundary elements, both the jump and the average equal the internal numerical 
value, and nF coincides with the outward normal of �.

The solution space within each element is spanned by all polynomials up to an order P . We denote the order of the 
polynomials for the unknown X by PX . For the numerical examples in this paper, the polynomial order is the same on all 
elements, though this is not a requirement of the numerical method.

3.1. Solutions spaces for enthalpy and pressure

In this paper the basis functions for the enthalpy and the pressure are always of the same order, that is, Ph = Pp . 
Neglecting the source term, the enthalpy equation in its conservative form is

Dh

Dt
= 1

ρ
∂l (k∂l T ) , (6)

where D/Dt is the total derivative. If ∂ρ/∂h < 0 for all h, then this becomes

1

ρ

Dρ

Dt
= ∂ρ

∂h

1

ρ2
∂l (k∂l T ) = − β

ρcp
∂l (k∂l T ) = −αβ

1

k
∂l (k∂l T ) , (7)

where β := −(1/ρ)∂ρ/∂T is the thermal expansibility, and α := k/ρcp is the thermal diffusivity. Compare the continuity 
equation

1

ρ

Dρ

Dt
= −∂kuk . (8)

Regardless of the Péclet number or the compressibility, the right-hand-sides of Eqs. (7) and (8) can be arbitrarily small 
in any part of the domain, in which case the enthalpy equation and the continuity equation are almost equivalent. Since 
the continuity equation in its weak form is weighed by the pressure basis functions, it seems inconsistent to use different 
polynomial orders for the pressure and the enthalpy if ∂ρ/∂h < 0.

Furthermore, our numerical experiments (not shown here) demonstrate that, for low diffusivity, the spatial discretization 
is unstable if Ph > Pp , even if the enthalpy is a passive scalar, the density is constant, and we simulate a laminar steady 
state. The reason for the instability is that the convective velocity in the enthalpy discretization must satisfy the continuity 
equation up to the order Ph , in a weak sense. This observation contrasts with Klein et al. [24], who used a polynomial order 
for the temperature that was higher than for the pressure. This discrepancy seems to be because their tests were done at 
a low Prandtl number of 0.7. We also obtained accurate results with Ph > Pp for the 2D buoyancy-driven cavity at various 
Richardson numbers, but the instability manifests itself when the thermal diffusion vanishes. We will show this in future 
work.

3.2. Momentum discretization

We solve for the mass flux m from the conservative transport equation (1b). Klein et al. [24] have previously solved the 
same conservative equation by taking the velocity u as the unknown, but this presents difficulties. First, one would have 
to handle the strongly fluctuating density in the temporal derivative ∂(ρu)/∂t . Second, solving for u would complicate the 
pressure correction scheme, as we will see in Section 4. Another alternative is to solve for u from the primitive equation
3



A. Hennink, M. Tiberga and D. Lathouwers Journal of Computational Physics 425 (2021) 109877
ρ

(
∂ui

∂t
+ uk∂kui

)
= ∂kτik − ∂i p + Fi , (9)

as in common for incompressible flows. (See [17,1] for examples with a variable density.) Unfortunately we cannot upwind 
the convective term in Eq. (9), because it cannot be rewritten as ∂k (uiuk) when the compressibility (∂kuk) is non-negligible. 
Our approach of taking m as the unknown in the conservative equation slightly complicates the implicit treatment of the 
viscous term, which is linear in ∂iu, not ∂im. Section 3.2.1 details how this can be handled with a DG method.

The semi-discrete weak form of the momentum equation is

Find m ∈ V , such that, for all v ∈ V ,∫
�

vk
∂mk

∂t
+ aconv(u,mk, vk) + avisc(m, v) = lconv(u,mD

k , vk) + lvisc(v) − adiv(v, p) +
∫
�

Fk vk , (10)

where V is the solution space of the mass flux. The divergence operator adiv is (see, e.g., [41], [21, pp. 92], or [36, pp. 
250–252])

adiv(v,q) = −
∑
T ∈T

∫
T

q ∂k vk +
∑

F∈F i∪FD

∫
F

{q} �vk�nF
k , (11)

where q is a scalar that lies in the solution space of the pressure.

3.2.1. Discretization of the viscous stress
To derive a discretization for the viscous term, rewrite the viscous stress in terms of the mass flux as τ = Lvisc(m), where

Lvisc
i j (m) = μ

ρ

(
∂im j + ∂ jmi − 2

3
(∂kmk) δi j − dim j − d jmi + 2

3
(dkmk)δi j

)
, (12)

is a linear operator, and

di := 1

ρ
∂iρ . (13)

We use a generalization of the symmetric interior penalty (SIP) method, given by the discrete bilinear operator

avisc(w, v) =
∑
T ∈T

∫
T

Lvisc
kl (w) ∂l vk +

∑
F∈F i∪FD

∫
F

ηF �wk� �vk�

−
∑

F∈F i∪FD

∫
F

(
�vk�

{
Lvisc

kl (w)
}

+ �wk�
{

Lvisc
kl (v)

})
nF

l

(14)

and

lvisc(v) =
∑

F∈FD

∫
F

(
ηF mD

k vk − mD
k Lvisc

kl (v) nl

)
+

∫
�N

f N
k vk . (15)

This reduces to the regular SIP method for constant-density, constant-viscosity flows when substituting (μ/ρ)∂l wk for 
Lvisc

kl (w). Compared to other interior penalty methods and the local DG method, the advantages of the SIP method are the 
optimal convergence rate for all polynomial orders, its adjoint consistency, and its compact small stencil [18].

This discretization of the viscous term can be compared to what is usually done for compressible flows, where the 
system of equations (1) is solved for a full state vector U := [ρ, m, ρh]T. In that case all elliptic terms in Eqs. (1) can be 
written as ∂k(G(U )∂kU )), where G(U ) is a homogeneity tensor that does not contain any gradients of the unknowns. (See, 
e.g., [18,23].) This tensor is then kept fixed during an iteration step, while ∂i U can be treated implicitly. Eq. (12) shows 
that each term of the viscous stress tensor is bilinear in U : they are products of m and ρ . The last three terms contain a 
gradient of ρ , and therefore the mass flux is evaluated in the homogeneity tensor, and frozen within an iteration step. This 
differs from our implicit diffusion discretization, where ρ is frozen in each term in Eq. (12), and m is treated implicitly.

Our approach also differs from that of Klein et al. [24], in that we treat all terms in the viscous stress (Eq. (2)) in a 
time-implicit manner, whereas they only do this for the first term (μ∂iu j). In our treatment the velocity components are 
coupled. We have no a priori estimate for the difference in magnitude between the effects of the first term (μ∂i u j ) and its 
transpose (μ∂ jui ) on the viscous force ∂iτi j , especially when the viscosity varies strongly in space. Note the gradients in the 
effective viscosity would increase greatly if a large eddy simulation (LES) model were included.

Following Hillewaert [20, pp. 30], we set the penalty parameter to

ηF = max

(
CT card(FT )

‖F‖leb
)

max (K |T ) , (16)

T ∈TF ‖T ‖leb T ∈TF

4
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where K = μ/ρ is the diffusion parameter, card(FT ) is the number of faces of element T , and ‖·‖leb denotes the Lebesgue 
measure (which is the length, area, or volume in 1, 2, or 3 dimensions). The factor CT depends on the type of elements in 
the mesh: for a polynomial order P , CT = (P + 1)2 for quadrilaterals and hexahedra, CT = (P + 1)(P + 2)/2 on triangles, 
and CT = (P + 1)(P + 3)/3 for tetrahedra. We compute the penalty parameter pointwise, rather than averaging over the 
face.

3.2.2. Discretization of convective term
The discretization of the convective term is given by

aconv(b, φ,ψ) = −
∑
T ∈T

∫
T

ψ bk∂k φ +
∑
F∈F i

∫
F

�ψ� H F (b, φ)

+
∫
�N

(nkbk)ψ φ +
∫
�D

max
(
0,nkbD

k

)
ψ φ ,

(17)

lconv(b, φ,ψ) = −
∫
�D

min
(
0,nkbD

k

)
ψ φ . (18)

Here φ and ψ are scalars, b is the convective field, and H F is the numerical flux function on a face F . We use the Lax-
Friedrichs flux, given by

H F (b, φ) = 1

2
�φ�αF (b) + nF

k {φbk} (19)

and

αF (b) = f max
T ∈TF

∣∣∣nF
k bk

∣∣∣
T

. (20)

The constant f is f = 2 when convecting the mass flux, and f = 1 when convecting a scalar, such as the enthalpy [9]. Note 
that we evaluate αF pointwise in the integral in Eq. (17), rather than averaging over the face.

It is well known that imposing a Dirichlet boundary condition for the velocity is not stable at an outlet of a convection-
dominated flow, so that we would normally have nkbD

k < 0 on �D. Here we nevertheless include the Dirichlet boundary term 
in aconv, because we will use it in the Taylor-Green vortex in Section 7.2, as is standard practice for that laminar benchmark 
case (e.g., [13]).

3.3. Enthalpy discretization

We solve for the specific enthalpy h because it fixes the thermodynamic state for a given thermodynamic pressure pth. 
This is not true for the volumetric enthalpy (H := ρh): the pair (pth, H) does not uniquely determine the density or the 
other fluid properties. Choosing h as the unknown also simplifies the time-implicit treatment of the Fourier heat flux.

As with the mass flux equation, we solve the enthalpy equation in conservative form (Eq. (1c)), because we cannot deal 
with the convective term (uk∂kh) in the primitive transport equation when ∂kuk �= 0. Given a solution space W for the 
enthalpy, which is also the solution space for the pressure, the semi-discrete weak form of the enthalpy equation is

Find h ∈ W , such that, for all v ∈ W ,∫
�

v
∂(ρh)

∂t
+ aconv(m,h, v) + aSIP(h, v) = lconv(m,hD, v) + lSIP(v) +

∫
�

Q v , (21)

where aSIP and lSIP are standard SIP bilinear and linear forms to discretize the Fourier heat flux. The SIP penalty parameter 
is as in Eq. (16), with a diffusion coefficient K = k/cp . Note that the convective discretization is the same as for the mass 
flux, except that the convective field is m, rather than u = m/ρ . (That is, b = m in Eqs. (17)-(20).) This is another advantage 
of solving for the pair (m, h).

4. Pressure correction method

We discretize the temporal derivatives in both the enthalpy and momentum transport equations with standard backward-
difference formulae (BDF), thereby following previous DG literature (e.g., [41,24,26]). For the mass flux this is straightfor-
ward: for a constant time step size δt ,

∂m

∂t
≈ γ0

δt
mn +

q∑ γi

δt
mn−i , (22)
i=1

5



A. Hennink, M. Tiberga and D. Lathouwers Journal of Computational Physics 425 (2021) 109877
Table 1
Coefficients for the backward difference formula of various orders.

γ0 γ1 γ2 γ3

BDF1 1 −1
BDF2 3/2 −2 1/2
BDF3 11/6 −3 3/2 −1/3

where mn is the mass flux at time step n. The weights {γi}q
i=0 are listed in Table 1. The temporal discretization of the 

enthalpy equation requires more care, as we will explain later in Section 5.
A pressure-correction scheme is used to split the continuity and the momentum equations, so that they can be solved 

in a segregated way. The algorithm to find the solution vectors mn , hn , pn at a new time step n is as follows.

1. Obtain predictors for ρ∗ , (k/cp)∗ , and m∗ with a second-order extrapolation from previous time steps:

(·)∗ = 2(·)n−1 − (·)n−2 . (23)

2. Solve for the enthalpy hn at the new time step, using the above predictors for the diffusion constant ((k/cp)∗) and the 
convective field (m∗).
Linearize the implicit time term with the predictors using either of the methods that are explained in Section 5.

3. Find a predictor for the mass flux from a linear system that corresponds to the semi-discrete weak form (10):(γ0

δt
M + N

)
m̂ = −Dᵀpn−1 + f . (24)

Here M is the mass matrix, N contains the implicit parts of the diffusion and convection discretizations, and f collects 
all explicit terms (i.e., boundary conditions, the external force, and the explicit terms in the temporal finite difference 
scheme). The matrix N contains the viscosity and the density, which are evaluated at the new time step as a function 
of hn . The convective field is estimated as m∗/ρn .

4. Solve the pressure Poisson equation

δt

γ0
A δp = Dm̂ − G

[(
∂ρ

∂t

)n]
, (25)

where A is the pressure matrix, for which we derive an expression below, and G[·] denotes the Galerkin projection onto 
the solution space. The temporal derivative of the density is estimated with a second-order finite difference scheme:(

∂ρ

∂t

)n

≈ 1

δt

(
3

2
ρn − 2ρn−1 + 1

2
ρn−2

)
. (26)

5. Correct the pressure and the mass flux:

mn = m̂ − δt

γ0
M−1 DT δp , (27)

pn = pn−1 + δp . (28)

The test cases in Section 7.3 will show full second-order temporal accuracy in the enthalpy and the mass flux, even if the 
fluid properties are non-trivial functions of the enthalpy.

To find an expression for the pressure matrix A, use Eq. (25) to eliminate δp in Eq. (27), and left-multiply by D , giving

Dmn = Dm̂ − DM−1 Dᵀ A−1
(

Dm̂ − G
[(

∂ρ

∂t

)n])
. (29)

Clearly this satisfies the semi-discrete continuity equation

−Dm + G
[

∂ρ

∂t

]
= 0 (30)

if A = ALDG = DM−1 Dᵀ . As explained by Shahbazi et al. [41], ALDG is effectively a local DG discretization for a diffusion 
operator, so we can replace it by an SIP diffusion operator

ALDG ≈ ASIP , (31)

which has a smaller stencil. A consequence of using this SIP pressure matrix is that Eq. (30) does not hold exactly.
6
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Equal-order discretizations (i.e., Pp = Pm) are known to be unstable for finite element methods. Cockburn et al. [10]
addressed this problem in the context of a constant kinematic viscosity and using the ALDG discretization by adding a term 
of the form∑

F∈F i

γ0 ‖F‖leb

ν

∫
F

�φ� �q� (32)

for basis and test functions φ and q to the pressure matrix. We set γ0 = 1, and adjust the above penalty term to a variable 
viscosity by taking ν inside the integral, and taking the minimal value of ν on both sides of the face.

In the test cases that follow, we have found no noticeable difference between using LDG and SIP pressure discretizations, 
which is in line with previous findings (e.g., [25, pp. 33–45]). Interestingly, Shahbazi [40] has successfully used the SIP 
pressure matrix with an equal-order discretization without extra pressure stabilization [40, pp. 48–65]. Our tests (not shown 
here) also indicate that, for equal-order discretizations without pressure stabilization, the LDG pressure matrix is unstable 
for all reasonable time steps, whereas using the SIP matrix is feasible for a wide range of practical time step sizes, though 
it always becomes unstable in the limit δt → 0.

Note that solving for the mass flux simplifies the pressure-correction scheme. If we had instead solved for the velocity, 
then the density would had to have been incorporated into the divergence operator D in Eq. (25), and into the mass matrix 
M in Eq. (24).

This extension of the pressure-correction method to compressible flows has sometimes proved unstable in finite differ-
ence schemes that were applied to mixing flows with large density ratios (of approximately more than a factor of 3), because 
the continuity equation was not satisfied in the inviscid limit; see Nicoud [30]. It is not certain whether the same instability 
would occur for the discontinuous Galerkin method presented here; our experience so far has not exposed instabilities with 
large density ratios. Nicoud suggested a different generalization of the pressure correction method to variable-density flows, 
where the density is incorporated into the pressure matrix, rather than on the right-hand side of Eq. (25). The large advan-
tage of the approach presented here is that the pressure matrix is the same at all time steps. We can therefore assemble 
it once, and precompute the incomplete Cholesky preconditioner for the linear solver. Furthermore, the condition number 
of the diffusion matrix A worsens if it includes a variable coefficient that depends on the density. For these reasons, the 
pressure solves are much cheaper with a constant pressure matrix.

5. Linearizing the temporal derivative of the enthalpy

Solving for a primitive variable (h) with the enthalpy equation in conservative form slightly complicates the temporal 
derivative, because it is weighed by the temperature-dependent density. To study the stability and convergence of the time 
stepping scheme, we consider the space-independent enthalpy equation:

d (ρh)

dt
= −λh + Q , (33)

where λ is a constant, and Q = Q (t). Using an implicit finite difference scheme, the enthalpy and the corresponding density 
can be estimated at a time step n by

γ0

δt
(ρh)n +

q∑
i=1

γi

δt
(ρh)n−i = −λhn + Q n . (34)

Due to the variable density, this equation is not linear in the unknown hn . We therefore consider two linearizations in hn , 
which we term method #1 and method #2.

Both of these methods use a predictor h∗ and a corresponding ρ∗ that are close to hn and ρn . This predictor can be 
obtained in several ways, such as by extrapolating from previous time steps. When solving the full system (1a)-(1c), a 
predictor for ρn can also be obtained by solving the continuity equation. The analyses in this section are for a general (h∗ , 
ρ∗), though we will make the reasonable assumption that (h∗ − hn) is at least O(δt).

The two linearization methods are as follows.

Method #1 is perhaps the most obvious approach: let ρn ≈ ρ∗ , resulting in an approximation h[1] ≈ hn that is given by

γ0

δt

(
ρ∗h[1]) +

q∑
i=1

γi

δt
(ρh)n−i = −λh[1] + Q n . (35)

Method #2 is based on a Taylor expansion of (ρh)n about the predictor:

(ρh)n ≈ (ρh)∗ +
(

∂(ρh)
)∗ (

hn − h∗) =
(

∂(ρh)
)∗

hn −
(

h2 ∂ρ
)∗

. (36)

∂h ∂h ∂h

7
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Substituting this into Eq. (34) yields an approximation h[2] ≈ hn , given by

γ0

δt

(
∂(ρh)

∂h

)∗
h[2] +

q∑
i=1

γi

δt
(ρh)n−i = γ0

δt

(
h2 ∂ρ

∂h

)∗
− λh[2] + Q n . (37)

Note that method #1 is effectively a single step in a fixed-point iteration, whereas method #2 is a single step in a Newton 
iteration.

5.1. Error estimates and stability

The errors and the stability of methods #1 and #2 can be analyzed by using a Taylor series for ρn about the predictor, 
that is,

ρn =
∞∑

k=0

1

k!

(
∂kρ

∂hk

)∗ (
hn − h∗)k . (38)

Define the following deviations from the non-linear finite difference equation (34):

error in the predictor: ε∗ := h∗ − hn ,

linearization error in method #1: ε[1] := h[1] − hn ,

linearization error in method #2: ε[2] := h[2] − hn .

(39)

The derivations are tedious, and deferred to the Appendix. Here we summarize the main theoretical results.
The first result is an a priori error estimate. Appendix A shows that both Eq. (35) and Eq. (37) can be rewritten as

γ0

δt
(ρh)n +

q∑
i=1

γi

δt
(ρh)n−i = −λeff hn + Q n

eff , (40)

where

λeff = λ +O
(
ε∗2

/δt
)

and Q n
eff = Q n +O

(
ε∗2

/δt
)

for method #1, (41a)

and

λeff = λ +O
(
ε∗3

/δt
)

and Q n
eff = Q n +O

(
ε∗3

/δt
)

for method #2. (41b)

That is, the approximations in method #1 and #2 are equivalent to the original Eq. (34), except that λ and Q n are replaced 
by their effective values, which are related to the error in the predictor.

A second important result regards the stability of the linearization methods. In Appendix A.1 we show that the error for 
method #1 is related to the error in the predictor as(

ρ∗ + δt

γ0
λ

)
ε[1] =

(
−

(
∂ρ

∂h

)∗
hn

)
ε∗ +O

(
ε∗2

)
. (42)

Note that ε[1] vanishes up to first order in ε∗ as hn → 0. Eq. (42) also shows that method #1 cannot always be made stable 
by iterating within a time step, that is, by calculating a new predictor ρ∗ from the estimate h[1] , and repeating Eq. (35). For 
the stability of the iteration, the error in the new approximation needs to be smaller than the error in the predictor, that is, 
|ε[1]| < |ε∗|. Taking the limit δt → 0 in Eq. (42), this condition is only met if

∣∣hn
∣∣ <

∣∣∣∣ ρ

∂ρ/∂h

∣∣∣∣
∗
=

(
cp

β

)∗
, (43)

where we have made the reasonable assumptions that ε∗ is at least O (δt), and that ∂ρ/∂h < 0. Note that Eq. (43) cannot 
be checked during a calculation, because it depends on the unknown hn .

Similarly, iterating method #2 within a time step is stable if |ε[2]| < |ε∗|. Appendix A.2 shows that((
∂(ρh)

∂h

)∗
+ δt

γ0
λ

)
ε[2] =

((
∂ρ

∂h

)∗
+ 1

2

(
∂2ρ

∂h2

)∗
hn

)
ε∗2 +O

(
ε∗3

)
. (44)

Since we can reasonably expect that the error in the predictor (ε∗) is at least O(δt), we always have |ε[2]| < |ε∗| (i.e., the 
iteration is stable) in the limit δt → 0, provided that
8



A. Hennink, M. Tiberga and D. Lathouwers Journal of Computational Physics 425 (2021) 109877
(
∂(ρh)

∂h

)∗
�= 0 . (45)

In other words, the volumetric enthalpy (ρh) must be a strictly monotonic function of the specific enthalpy h.
This restriction for method #2 also follows more directly from Eq. (37) in the limit of small time steps, because the 

coefficient of h[2] cannot vanish. In practice one will want to satisfy the stronger relation

∂(ρh)

∂h
> 0 (46)

to ensure that the enthalpy discretization is positive definite.
We conjecture that the stability requirements (Eq. (43) for method #1; Eq. (45) for method #2) must always be satisfied 

in the limit of small time steps, even when the linearization is not iterated within a time step. It seems reasonable to expect 
that a stable numerical method can be iterated without diverging. This is supported by the numerical tests in Section 6

5.2. Proper scaling of the enthalpy equation

Curiously, the analyses in the previous subsection have led to stability requirements (Eqs. (43), (45)) that depend on the 
fluid properties, and they are not satisfied for all fluids. For example, the volumetric enthalpy in supercritical fluids can 
either increase or decrease with the temperature due to the strong thermal expansion, thereby violating Eq. (45).

This problem can be addressed by solving for a different variable

h̃ := h − h0 . (47)

Eq. (1c) then becomes

h0 R + ∂(ρh̃)

∂t
+ ∂l

(
mlh̃

)
= ∂l

(
k

cp
∂lh̃

)
+ Q , (48)

where R := ∂ρ/∂t + ∂kmk = 0 is the residual of the continuity equation (1a). Thus h̃ satisfies the same transport equation 
as h, and it can therefore be discretized in the same way. This does not affect the convective or diffusive terms (since 
∂i h̃ = ∂ih), but it does make a difference for the temporal derivative.

In particular, the stability requirement (Eq. (43)) for method #1 becomes

∣∣∣h̃n
∣∣∣ = ∣∣hn − h0

∣∣ <

(
cp

β

)∗
. (49)

There is no a priori value for h0 that guarantees stability, though it seems that h0 is best chosen such that h ≈ h0 at the 
average temperature.

Conversely, we can find an a priori lower bound for h0 when using method #2. The stability requirement (Eq. (46)) 
becomes

∂(ρh̃)

∂h̃
= ∂(ρ(h − h0))

∂h
= ρ + (h − h0)

1

cp

∂ρ

∂T
> 0 ⇔ h0 > h − cp

β
, (50)

and so method #2 can be made unconditionally stable and SPD by choosing h0 sufficiently large. In particular, if the 
temperature is known to lie in a range [T min, T max], then the theoretical minimum value is

hmin
0 = max

T min≤T ≤T max

(
h − cp

β

)
, (51)

which can of course be negative. Fig. 1 shows an example of the rescaled volumetric enthalpy (ρ(h − h0)) for various 
choices of h0 for a real fluid. There is a practical limit on the magnitude of h0, because we are solving a transport equation 
for ρ(h − h0), which becomes equivalent to the density ρ for very large values of |h0|.

Of course a rescaling of the unknowns, such as in Eq. (47), is common in CFD literature, but it is usually presented as a 
mere numerical convenience (e.g., [33]). The above analyses show that the accuracy and stability of the numerical scheme 
depend critically on a proper choice of h0. In practice this may require some trial and error, though these analyses offer 
useful guidelines.
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Fig. 1. Rescaled volumetric enthalpy (ρ(h − h0)) of carbon dioxide at the supercritical pressure of 8 MPa, as a function of the temperature for various 
choices of h0. The function is monotonic for h0 ≥ hmin

0 . The thermodynamic reference point is placed at (1 bar, 0 ◦C). The data are based on [45], accessed 
through the CoolProp software library [7]. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

6. Test case for the space-independent Enthalpy Equation1

Before solving the full system of transport equations, we clarify the theoretical results for the space-independent en-
thalpy equation in Section 5 with a numerical example that is based on a manufactured solution. Omitting the units of 
measurement, the exact temperature is

T ex(t) = 0.5 + 0.1 sin(2πt) (52)

with 0 ≤ t ≤ 1. The equation of state is

ρ = ρ0T + ρ1(1 − T ) , (53)

and the specific heat capacity is kept constant, so that

h = cp T − h0 . (54)

The required source term Q (t) follows from Eq. (33). For the numerical tests we let ρ0 = 0.5, ρ1 = 2, cp = 1, and λ = 0.1. 
The results presented here were all obtained at δt = 2−11 to investigate the limit of small time steps. We have checked 
that lowering the time step size to δt = 2−14 does not affect whether the numerical method is stable. To make sure that 
rounding errors do not play a significant role with these tiny time steps, all calculations in this section were performed 
with 128-bit floating point precision.

The numerical schemes were tested with various orders of the BDF time stepping scheme. The predictor h∗ is obtained 
with an sth-order extrapolation from previous time steps (denoted by EXs), and the corresponding ρ∗ is determined from 
the equation of state. Specifically,

h∗ =
s∑

i=1

αih
n−i = hn +O

(
δts) . (55)

The weights are in Table 2.
There are two numerical errors in each time step: (i) the BDF error, which is inherent in the finite difference scheme, 

and (ii) the linearization error in going from Eq. (34) to either Eq. (35) or Eq. (37) when using method #1 or method #2. If 
the EXs coefficients are used to obtain a predictor, then the error in the predictor is ε∗ := h∗ − hn =O

(
δts

)
. For method #1, 

Eq. (41a) then implies a linearization error of O
(
ε∗2/δt

)
= O

(
δt2s−1

)
. A BDFq scheme makes an O

(
δtq+1

)
error per time 

step, so that the overall order of accuracy is min(2s − 1, q + 1). Similarly, Eq. (41b) implies that the overall error per time 
step for method #2 is of order min(3s − 1, q + 1). The order of extrapolation should therefore satisfy

s ≥
{

(q + 2)/2 for method #1,

(q + 2)/3 for method #2,
(56)

1 We have published the code for the finite difference method for the space-independent enthalpy equation on GitHub [19]. It can be used to reproduce 
the results in this section.
10
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Table 2
Coefficients for extrapolation from previous time steps. 
(See Eq. (55)).

α1 α2 α3 α4

EX1 1
EX2 2 −1
EX3 3 −3 1
EX4 4 −6 4 −1

Table 3
Order of extrapolation for the enthalpy predictor (Eq. (55)) for the 
linearization methods described in Section 5. The minimum values 
satisfy Eq. (56); from the maximum value onward, Eq. (56) holds 
with strict inequality.

Finite difference 
coefficients

Method #1 Method #2

min max min max

BDF1 EX2 EX2 EX1 EX2
BDF2 EX2 EX3 EX2 EX2
BDF3 EX3 EX3 EX2 EX2

or else the linearization error dominates, and the usual order of convergence of the BDF scheme cannot be achieved. If 
strict inequality in Eq. (56) is satisfied, then the linearization error is negligible, and increasing the order of extrapolation is 
pointless. Table 3 lists the range of reasonable extrapolation orders.

Fig. 2 shows the error in the numerical temperature as a function of h0, by using method #1 (Eq. (35)). The stability 
requirement in Eq. (43) cannot be verified during the calculation, because it depends on the unknown hn (i.e., the solution 
to the finite difference scheme without linearization error; see Eq. (34)). But hn can be approximated by the numerical 
solution h[1] , so that the stability requirement is approximately∣∣∣h[1]

∣∣∣ <

(
cp

β

)∗
. (57)

According to Table 3, the linearization error is negligible for extrapolation orders of at least 2, 3, and 3 for the BDF1, BDF2, 
and BDF3 schemes. For these cases the error |h[1] − hn| is negligible, and the numerical scheme converges if and only if Eq. 
(57) is satisfied at all time steps. Note that the range of stable values for h0 decreases with higher-order extrapolations, but 
all simulations converge with h0 = 0.5, which is the value for which h is closest to zero.

Fig. 3 shows the equivalent error plots for method #2 (Eq. (37)). For the current equation of state, we have an explicit, a 
priori expression for the stability criterion in Eq. (45):

∂(ρh)

∂T
�= 0 ⇔ h0/cp �= 2T − ρ1/(ρ1 − ρ0) . (58)

The tests show that the numerical scheme is stable if and only if this criterion is satisfied everywhere in the domain, 
regardless of the order of the time-stepping scheme, or the order of extrapolation for the predictor. Furthermore, the results 
show that the minimal extrapolation orders in Table 3 need to be reached in order to achieve the lowest errors, but higher 
orders of extrapolation have no effect.

7. Test cases for the coupled transport equations

The numerical method for the coupled transport equations and our computer implementation are verified and validated 
with the following test cases. We first investigate a series of manufactured solutions for the system of transport equations, 
ranging from constant properties (Section 7.2), to variable transport properties (Section 7.3.1), and a variable density (Sec-
tion 7.3.2). As in Section 6, we leave out the units of the variables for these manufactured solutions. Section 7.4 then shows 
numerical results for both constant-density and variable-density flows that can be compared to experiments.

7.1. Implementation

The simulations are performed with an in-house solver DGFlows. We use a hierarchical set of modal basis functions, so 
that there are 

( P
P+d

)
degrees of freedom in a d-dimensional element with a polynomial order P .

All integrals are evaluated with a quadrature set that is sufficiently accurate to negate the polynomial aliasing effect that 
has plagued other DG solvers. (See, e.g., [27].) The abscissa and the weights are taken from Solin et al. [44]. We store the 
values and derivatives of the basis functions on the quadrature set for a fast evaluation of integrals and numerical solutions. 
We verified that none of the results in this paper changed when the accuracy of the quadrature was increased.
11
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Fig. 2. Error (
∣∣T − T ex

∣∣/T ex) at t = 1 for the test case in Section 6 as a function of the enthalpy offset h0, using method #1. The vertical dotted lines bound 
the values for which Eq. (57) held at all time steps.

All meshes were generated with the open-source software tool Gmsh [16]. The mesh is partitioned with METIS [22].
We use the MPI-based software library PETSc to solve the linear equations [3,2]. The pressure equation is solved with 

a conjugate gradient method, which is parallelized with an additive Schwarz preconditioner. The submatrix within each 
process is preconditioned with an incomplete Cholesky decomposition. The linear systems for the enthalpy and momentum 
equations are solved with a GMRES method, which is parallelized with an additive Schwarz preconditioner, and precondi-
tioned with an incomplete LU decomposition within each process.

7.2. Taylor-Green Vortex

The first manufactured solution for the transport equations is the Taylor-Green Vortex, which is incompressible and has 
constant fluid properties. We generalize this well-known analytical solution to include a passive scalar temperature field. 
The enthalpy is h = cp T . The exact solution is

uex = exp
(−2t̃

)[− cos
(
x̃
)

sin
(

ỹ
)

+ sin
(
x̃
)

cos
(

ỹ
)]

,

pex = −ρ

4
exp

(−4t̃
) (

cos
(
2x̃

) + cos
(
2 ỹ

))
,

T ex = exp
(−2t̃/Pr

)
cos

(
x̃
)

cos
(

ỹ
)

,

(59)

on the domain x, y ∈ [−L, L] with Dirichlet boundary conditions and 0 < t ≤ 1, where

t̃ := νt

(L/(nπ))2
, x̃ := x

L/(nπ)
, ỹ := y

L/(nπ)
, (60)

and n must be a positive integer in order for 
∫

p = 0. This solves the transport equations with F = [0, 0] and Q = 0.

�

12
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Fig. 3. Error (
∣∣T − T ex

∣∣/T ex) at t = 1 for the test case in Section 6 as a function of the enthalpy offset h0, using method #2. The vertical dotted lines bound 
the values for which the stability criterion in Eq. (58) is violated at some time t .

For the manufactured solutions in this section and the next, the reported errors are relative in the L2-norm, that is,

∥∥φ − φex
∥∥

2

‖φex‖2
=

√√√√∑
T ∈T

∫
T (φ − φex)2∫

� (φex)2
(61)

for a quantity φ. Each integral in the numerator is evaluated with a numerical quadrature, resulting in a large sum over the 
squares of small numbers. We found that a naive implementation gives very large rounding errors that distort the obtained 
orders of convergence. We therefore perform the double summation over the elements and the quadrature points with the 
Kahan summation algorithm [48] and a 128-bit floating point number.

Fig. 4 shows the temporal convergence for L = 1, n = 1, μ = 0.01, ρ = 1, Pr = 100, and a fourth-order polynomial 
space for the mass flux (i.e., Pm = 4). We performed the same numerical experiments by independently varying the Prandtl 
number (to Pr = 1), and the polynomial order (to Pm = 2), all of which yielded similar results. All errors saturate at small 
time steps, where the spatial discretization error dominates.

The Taylor-Green vortex is of course a strange test case, in that it does not feature any scale separation: its frequency 
spectrum is comprised of delta Dirac functions. The solution is an eigenfunction of the diffusive terms, so there is no 
interaction between the transport terms. Furthermore, it has Dirichlet boundary conditions where there is outflow, so that 
the continuity equation is over-constrained. This manifests itself in a stiff linear system for the pressure, though its ubiquity 
in the literature suggests that the Taylor-Green vortex is very easy to simulate. The next section features more challenging 
manufactured solutions.

7.3. Variable-property manufactured solutions

We present two more manufactured solutions with variable fluid properties for the system of equations (1a)-(1c): one 
with a constant density (in Section 7.3.1), and one with a variable density (in Section 7.3.2). The relation between T and h
is the same as in Section 6, Eq. (54). The heat capacity is cp = 1.
13
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Fig. 4. Convergence toward the 2D Taylor vortex (Eq. (59)) at time t̃ = 1 with temporal refinement for meshes with N2 square elements. The black dashed 
lines indicate ideal second-order convergence in δt .

The manufactured solution is constructed by working backward from the exact mass flux and pressure, which can be 
chosen arbitrarily. The choice of the pressure is of little consequence, though we make sure that both m and p vary non-
linearly in time, and that they do not lie in the numerical solution space. The density then follows by integrating the 
continuity equation over time. The temperature and the enthalpy are a function of the density. The external force and heat 
source can now be calculated from Eqs. (1b) and (1c), which we do symbolically with the Python SymPy library. We use 
polynomials for the manufactured solutions to keep these symbolic calculations feasible.

This approach differs slightly from previous literature (e.g., [43]), in that we make no attempt to find clever analytical 
solutions to the system (1) with a variable density, instead simply integrating the continuity equation to obtain a density 
that conforms to the mass flux. Some previous work (e.g., [39]) has included a source term in the continuity equation, but 
this appears less suitable for a time-splitting method, where the continuity plays a central role in the discretization (as in 
Section 5.2), and we do not want to adapt the numerical scheme to conform with the manufactured solution. Our approach 
permits arbitrary functions for μ = μ(T ) and k = k(T ). We are not aware of previous work with a manufactured solution 
that is (i) compressible, (ii) satisfies the unmodified continuity equation, and (iii) use temperature-dependent transport 
properties.

The domain is (0, L) × (−1, 1); see Fig. 5. We let L = 10 in all calculations, and use square elements. The inflow boundary 
at x = 0 has Dirichlet boundary conditions. The goal of the manufactured solutions is obviously not to model a particular 
physical phenomenon, but our configuration is reminiscent of a pipe flow with walls at y = ±1 that is heated asymmetri-
cally, resulting in skewed density and velocity profiles.

All integrals are evaluated with a quadrature set with the usual polynomial accuracy of (3Pm − 1), and we verified 
that this is sufficient to integrate up to machine precision by comparing the results with a higher-order quadrature set of 
polynomial accuracy (3Pm + 10).
14
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Fig. 5. Domain of the manufactured solutions in Section 7.3.

Fig. 6. Constant-density manufactured solution in Eq. (62) at t = 1.

We use a Neumann boundary condition for the temperature at the outlet, because this is the most common choice in 
practical applications. The imposed heat flux (qN) follows from the known exact solution. We also tried imposing a Dirichlet 
boundary condition for the temperature, and found that it makes a negligible difference in the numerical errors.

7.3.1. Constant-density, variable-property manufactured solution
We first investigate the temporal convergence for a case where the transport properties (μ, k) depend on the tempera-

ture, but the density is constant. We choose the polynomial manufactured solution

mex = (1 + t3)
1

L3

[
y
(
2x3/3 − Lx2

)
(y − 1)(y + 1)x(L − x)

]
+

[
2
0

]
,

pex = (1 + t3) (L − x)3 ,

T ex = (1 + t3) (2 − y)((x − L)/L)2/6

(62)

with 0 < t ≤ 1, which satisfies m2 = 0 on y = ±1, and ∂kmk = 0. The addition of the constant [2, 0] to mex ensures that 
m1 > 0 everywhere, so that there is no backflow at the outlet, and no outflow at any of the Dirichlet boundary conditions. 
The density is ρ = 1, but the transport properties are non-trivial: μ = 0.1 + T (1 − T ) and k = μcp/Pr, with Pr = 1. The 
solution is depicted in Fig. 6.
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Fig. 7. Convergence of the numerical solution toward the constant-density manufactured solution (Eq. (62)) with temporal refinement. The characteristic 
element length is inversely proportional to N y . The black dashed lines indicate ideal second-order convergence in δt .

Table 4
Convergence toward the constant-density manufactured solution in Eq. (62) (Fig. 6) with spa-
tial refinement for the mixed-order case (Pm = 2 and Ph = Pp = 1) with δt = 2−12.

N y Error T Conv. T Error u Conv. u Error p Conv. p

21 1.08e-2 - 1.11e-1 - 3.62e-3 -
22 2.65e-3 2.03 1.83e-2 2.61 8.75e-4 2.05
23 6.63e-4 2.00 2.62e-3 2.80 2.15e-4 2.02
24 1.66e-4 2.00 3.52e-4 2.90 5.35e-5 2.01
25 4.15e-5 2.00 4.57e-5 2.94 1.34e-5 2.00
26 1.04e-5 2.00 6.43e-6 2.83 3.34e-6 2.00

Fig. 7 displays the temporal convergence. We consider various meshes, varying the number of elements in the y-direction 
(N y), and the spatial polynomial orders. The equal-order case does not appear to suffer from the inf-sup instability for 
small δt . The velocity and the temperature converge with second-order accuracy in δt until the error saturates when the 
spatial error starts to dominate the temporal error. The order of convergence for the pressure is slightly lower, in the range 
[1.5,2.0]. These orders of convergence for the velocity and pressure agree with what is found in previous literature on 
constant-property incompressible flows (e.g., [41], [15]).

The spatial rates of convergence are in Table 4. As the mesh is refined, all quantities with polynomial order P converge 
with O

(
�P+1

)
, where � ∝ 1/N y is the characteristic mesh length. The convergence rate of the velocity saturates at high 

spatial refinement, as the temporal error starts to become significant.
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Fig. 8. Variable-density manufactured solution in Eqs. (63)-(64) at t = 1.

7.3.2. Variable-density manufactured solution
The next manufactured solution features a transient density. The exact solution is

mex = 1

4

(
1 + t3

)[
(x/L − 1)3

(x/L − 1)2 (y − 1)(y + 1)

]
+

[
3/2

0

]
,

pex =
(

1 + t3
)

(L − x)3
(63)

with 0 < t ≤ 1. The density is determined by integrating (−∂kmk) over t , to find

ρex = −1

4

(
1

4
t4 + t

)
(x/L − 1)2(2y + 3/L) + 3 , (64)

where the addition of the constant 3 ensures that ρ > 0 everywhere. We use a non-affine equation of state: T = ((ρ1 −
ρ)/(ρ1 −ρ0))

2, where ρ0 = 2 and ρ1 = 4 are lower and upper bounds for ρ , so that the temperature is between 0 and 1. As 
in Section 7.3.1, the viscosity and conductivity are μ = 0.1 + T (1 − T ) and k = μcp/Pr with Pr = 1. The solution is depicted 
in Fig. 8.

We base the enthalpy time-stepping scheme on a linearization of (ρh)n about a predictor for hn , that is, method #2 in 
Section 5. We let h0 = 0.2, so that Eq. (46) is satisfied everywhere. Increasing h0 had no noticeable effect. The predictor h∗
is obtained with a second-order extrapolation from previous time steps (using the EX2 weights in Table 2). We found that 
17
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Fig. 9. Convergence of the numerical solution toward the variable-density manufactured solution (Eq. (63)) with temporal refinement, using method #2 
with h0 = 0.2. The characteristic element length is inversely proportional to N y . The black dashed lines indicate ideal second-order convergence in δt .

increasing the extrapolation order for h∗ had no noticeable effect on the stability or the errors, which is in line with the 
tests for the BDF2 scheme in Fig. 3.

Fig. 9 shows the convergence with temporal refinement. The velocity and the temperature converge with second order, 
just like for the constant-density results in Fig. 7, though in this case the pressure also shows O

(
δt2

)
behavior. Note that the 

mixed-order cases remain fully stable, even for very small δt , despite the possible small-δt instability for variable-density 
flows that is discussed in Section 5.

Fig. 10 shows two other examples of temporal convergence with a mixed-order scheme, but with less effective enthalpy 
treatments. We found that method #1 was stable for all h0 ≥ 0, and that the precise value of h0 is of little consequence to 
the L2 errors in the final answer. It is clear that the temperature does not converge with second order when method #1 is 
used for the enthalpy treatment. The right column in Fig. 10 shows that method #2 can also be unstable when the enthalpy 
offset is not sufficiently large (here it is 0.0 instead of 0.2): all quantities still converge with second-order accuracy, but the 
error diverges at small time steps. Some calculations failed due to numerical backflow at the outlet, which our simple outlet 
boundary condition cannot handle.

Table 5 collects the spatial convergence rates for mixed-order case with method #2 and h0 = 0.2. As the mesh is refined, 
all quantities with polynomial order P converge with O

(
�P+1

)
.

7.4. Flow past a circular cylinder

As a final test case, we computed laminar flow past a circular cylinder to validate our numerical method. This features a 
Von Kármán vortex street in the wake of the obstacle. The results of this well-known benchmark case can be compared to 
experiments and to other direct numerical simulations.
18
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Fig. 10. Equivalent of the mixed-order case (Pm = 2, Pp = Ph = 1) in Fig. 9, but with a different value of h0, and comparing method #1 to method #2. The 
missing values in the figures in the right column indicate failed calculations.

Table 5
Convergence toward the variable-density manufactured solution in Eqs. (63)–(64) (Fig. 8) with 
spatial refinement for the mixed-order case (Pm = 2 and Ph = Pp = 1) with δt = 2−12.

N y Error T Conv. T Error u Conv. u Error p Conv. p

21 1.56e-2 - 6.11e-1 - 3.57e-3 -
22 3.92e-3 2.00 1.11e-1 2.47 8.86e-4 2.01
23 9.80e-4 2.00 1.69e-2 2.71 2.18e-4 2.02
24 2.46e-4 2.00 2.32e-3 2.87 5.43e-5 2.01
25 6.17e-5 1.99 3.05e-4 2.92 1.36e-5 2.00
26 1.55e-5 1.99 4.03e-5 2.92 3.39e-6 2.00

Fig. 11 shows the computational domain. Denoting far-field values by a subscript ∞, the Dirichlet boundary values for 
the velocity and temperature are [u∞, 0] and T∞ on the left, top, and bottom parts of the domain. The right side (at 
x = L) is an outlet with homogeneous Neumann boundary conditions (i.e., qN = 0 and f N

i = 0). The cylinder has a no-
slip boundary condition for the velocity, and a constant temperature Tw. We use the far-field values to define a Reynolds 
number Re := D (ρu/μ)∞ and Prandtl number Pr := (

μcp/k
)
∞ .

The initial condition requires special care. First, it is not easy to find an initial velocity field that satisfies n · u = n · uD at 
the walls, inlet, and cylinder. We therefore initialize the velocity to [u∞, 0], and leave out the convective term in the first 10 
time steps, thus essentially simulating Stokes flow, which does not have the same requirement for the initial condition at 
the boundaries. Due to the instant smoothing property of the viscous operator, the velocity satisfies the Dirichlet boundary 
conditions when the convective term is ‘activated’ after the first 10 time steps. Second, we found that the combination of 
19
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Fig. 11. Geometry of flow past a circular cylinder (not to scale). The cylindrical obstacle is centered at the origin.

a symmetrical mesh and a symmetrical initial condition does not induce vortex shedding. This is addressed by letting the 
cylinder rotate counter-clockwise for the first 100 time steps.

We are interested in the force on the cylinder S , which is given by

F (cyl)
i =

∫
∂ S

(p δik − τik)nk , (65)

where n is the outward normal of the fluid, pointing into the cylinder. The drag and the lift coefficients are

CD = 2 F (cyl)
1

D
(
ρu2

)
∞

and CL = 2 F (cyl)
2

D
(
ρu2

)
∞

(66)

respectively. At our Reynolds number, the flow is laminar, and the force oscillates in time in a smooth, deterministic manner. 
This makes it easy to determine the frequency f of the lift coefficient, and the corresponding Strouhal number St :=
f D/u∞ .

Our experiments indicate that a small domain results in an overestimation of the Strouhal number. This likely explains 
the large discrepancy in the numerical predictions of the Strouhal number in previous literature; see Niroobakhsh et al.
[32] for an overview. Collis [11] showed that a domain of (H, L0, L) = (30D, 15D, 30D) was sufficient for isothermal flow at 
Re = 100 and a Mach number of 0.2. The results presented here were obtained on a domain of (H, L0, L) = (40D, 20D, 40D).

7.4.1. Isothermal vortex shedding
We first simulate isothermal flow (i.e., Tw = T∞). Fig. 12 shows the mesh. It has approximately 27k elements with 

Pm = 2 and Pp = Ph = 1, resulting in approximately 160k degrees of freedom per direction of the mass flux, and 64k 
degrees of freedom for p and h. There are 120 boundary elements at the cylinder, each with a width of 0.005D . The time 
step is given by D/(δt u∞) = 82. We find St = 0.166. This number remained unchanged when we decreased the number of 
elements to 19k, or when we doubled δt . It compares well with the experimental values of St = 0.165 in [47], St = 0.165 in 
[49], and St = 0.167 in [38, p. 71].

7.4.2. Heated vortex shedding
To validate our numerical method with a variable-density flow, we replicate a numerical test case by Shi et al. [42], who 

used a specialized cylindrical finite volume scheme to handle the circular geometry. The temperatures are T∞ = 20 ◦C =
293.15 K and Tw = 1.5T∞ = 166.575 ◦C, resulting in Pr = 0.7146. They solved for the temperature, approximating the 
material properties as

φ = a0 + a1(T − T F ) + a2(T − T F )2 , (67)

where φ is one of (ρ, μ, k, cp), T F = 0 ◦C, and the coefficients ai are in Table 6. Since cp := ∂h/∂T is a second-order 
polynomial in T , we need to find the root of the third-order polynomial h = h(T ) to map from h to a fluid property. This 
minor inconvenience permits a better comparison with the results in [42].

We obtain our results on the same mesh as for the isothermal case (Fig. 12). Fig. 13 shows an example of instantaneous 
flow fields. Fig. 14 shows the lift and drag coefficients and the Nusselt number, which is defined as

Nu = D

Tw − T∞
1

‖∂ S‖leb

∫
∂ S

nk∂k T , (68)

where ‖∂ S‖leb = π D is the circumference of the circular obstacle. We find St = 0.1536, which differs by 1% from the value 
of St = 0.152 in Shi et al. [42] and the experimental value of St = 0.152 in [47].
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Fig. 12. Mesh for flow past an obstacle. It is structured near the cylinder and most of its wake. The rest of the mesh is unstructured to allow for large 
differences in the element size. It is symmetrical about the axis y = 0.

Table 6
Coefficients for the material properties in Eq. (67). Reproduced from [42].

ρ (kg m−3) μ (kg m−1 s−1) k (W m−1 K−1) cp (m2 s−2 K−1)

a0 1.268672727 1.7254e-05 2.4195e-02 1.00620979e03
a1 (K−1) −4.08741e-03 4.95611e-08 7.5234e-05 1.4522145e-02
a2 (K−2) 7.23864e-06 −2.7214e-11 −3.2588e-08 4.13753e-04

This result was obtained by linearizing (ρh)n with method #2 for the temporal derivative of the enthalpy. We subtracted 
an offset h0 from the enthalpy (as explained in Section 5.2), such that the maximum value of h was zero. Interestingly, 
there is no noticeable change in the results when we use an equal-order scheme, even when δt is decreased by a factor of 
10 or 100. For the mixed-order calculations, we found no difference between using an SIP or an LDG pressure matrix. We 
repeated the calculation using method #1, setting the enthalpy offset to a value h∗

0, such that h = 0 at T = (Tw + T∞)/2. 
This resulted in almost exactly the same shedding frequency (St = 0.1537).
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Fig. 13. Instantaneous fields for flow past a heated circular cylinder.

For all test cases, we found that some values for the enthalpy offset result in unstable schemes, yielding oscillatory 
pressure fields. For method #1 this happens when h0 is far from h∗

0; for method #2 this happens when h0 is too small. 
When operating in the range of stable h0 values, the exact enthalpy offset has no noticeable impact on the shedding 
frequency.

8. Discussion and conclusions

We have presented a discontinuous Galerkin method for solving the system of transport equations in their conserva-
tive form for low-Mach number flows, while taking the mass flux m, the pressure p, and the specific enthalpy h as the 
unknowns.

Since the density is a function of the specific enthalpy, the temporal finite difference scheme requires that the volumetric 
enthalpy (ρh) be linearized in h, and we have analyzed two methods for doing this, both of which need a predictor for the 
enthalpy at the new time step. This led to theoretical stability requirements in case the enthalpy equation is iterated within 
a time step, or, equivalently, in the limit of small time steps. The specific enthalpy is shifted with an offset h0, so that 
solving for the new unknown h − h0 satisfies these stability requirements. These results were verified with simple space-
independent tests in Section 6.

Method #1 is basically what has been done in all previous literature we have seen (e.g., [29], [33], [24]), but for this 
approach we cannot determine the range of stable h0 values a priori. Another disadvantage is that full accuracy with a 
second-order time-stepping scheme (BDF2) can only be achieved if the predictor is third-order accurate. This necessitates 
storing three instead of two previous time steps for the enthalpy, and the third-order extrapolation negatively affects the 
stability (see Fig. 2).

The other linearization of (ρh) (method #2) does provide full accuracy when the predictor is extrapolated from two 
previous time steps, in which case the error in the linearization is negligible in the limit of small time steps. Furthermore, 
the stability requirement is simply that the volumetric enthalpy be a monotonic function of the temperature (or, equiva-
lently, the specific enthalpy), and this leads to a range of stable h0 values that can be determined a priori. This results in 
a stable scheme, in which the error of the linearization of (ρh) becomes negligible in the limit of small time steps. The 
manufactured solutions demonstrate full second-order temporal accuracy, without any predictor steps.

In a real flow simulation the exact range of stable values for h0 cannot be determined a priori due the coupling of 
the transport equations. Note that a discontinuous Galerkin discretizations does not guarantee that the extreme values of 
the numerical solution lie within physically acceptable bounds, so that the numerical temperature range is not known 
beforehand. Nevertheless, there are useful guidelines: for method #1, h − h0 should be close to zero; for method #2, h0
should be sufficiently large. Once a stable h0 value is found, our numerical experiments in Section 7.3 and 7.4 suggest that 
the exact value of h0 has little bearing on the overall accuracy.

The numerical method presented here can form the basis for simulations of non-laminar, three-dimensional flow with 
strongly varying properties. In future work the first author will explore this in combination with a large eddy simulation 
(LES) model.
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Fig. 14. Temporal behavior of the lift and drag coefficients (Eqs. (66)), and Nusselt number (Eq. (68)) for flow past a heated circular cylinder. The crosses 
and circles mark local minima and maxima. The dashed horizontal lines indicate the averages over the last five periods.
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Appendix A. Derivation of error estimates in Section 5.1

Here we derive the error estimates that were presented in Section 5.1. To ease the notation, let

K :=
(

∂ρ

∂h

)∗
and B := 1

2

(
∂2ρ

∂h2

)∗
, (69)

so that the Taylor expansion in Eq. (38) becomes

ρn = ρ∗ − Kε∗ + Bε∗2 +O
(
ε∗3

)
. (70)

A.1. Derivations for Method #1

To derive Eq. (42), subtract Eq. (34) from Eq. (35) to get

ρ∗h[1] − ρnhn = − δt

γ0
λ ε[1] . (71)

Substituting Eq. (70) gives

ρ∗ε[1] + hn
(

Kε∗ +O
(
ε∗2

))
= − δt

γ0
λ ε[1] , (72)

which is indeed equivalent to Eq. (42).
This result can now be used to derive the error estimates in Eq. (41a). Using the fact that h[1] = hn + ε[1] , we can write

ρ∗h[1] = ρnhn − (
ρn − ρ∗)hn + ρ∗ε[1] , (73)

which, upon substitution into Eq. (35), gives

γ0

δt
(ρh)n +

q∑
i=1

γi

δt
(ρh)n−i = −

(
λ − γ0

δt

(
ρn − ρ∗))hn + Q n − γ0

δt

(
ρ∗ + δt

γ0
λ

)
ε[1] . (74)

Using the error estimate in Eq. (42),

γ0

δt
(ρh)n +

q∑
i=1

γi

δt
(ρh)n−i = −

(
λ − γ0

δt

(
ρn − ρ∗ +

(
∂ρ

∂h

)∗
ε∗

))
hn + Q n +O

(
ε∗2

/δt
)

= −
(
λ +O

(
ε∗2

/δt
))

hn + Q n +O
(
ε∗2

/δt
)

,

(75)

where the second equality follows from the Taylor expansion in Eq. (38).

A.2. Derivations for Method #2

In analogy with the previous subsection, Eq. (44) is derived by subtracting Eq. (34) from Eq. (37) to get(
∂(ρh)

∂h

)∗
h[2] − ρnhn =

(
h2 ∂ρ

∂h

)∗
− δt

γ0
λ ε[2] . (76)

Upon substituting Eq. (70), this becomes(
∂(ρh)

)∗
h[2] − hnρ∗ + Khnε∗ − Bhnε∗2 +O

(
ε∗3

)
=

(
h2 ∂ρ

)∗
− δt

λ ε[2] . (77)

∂h ∂h γ0
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Substituting ∂(ρh)/∂h = ρ + Kh on the left-hand side, and (h2(∂ρ/∂h))∗ = Kh∗2 = Kh∗ (
hn + ε∗) on the right-hand side, 

gives

(ρ + Kh)∗ h[2] − hnρ∗ + Khnε∗ − Bhnε∗2 +O
(
ε∗3

)
= Kh∗ (

hn + ε∗) − δt

γ0
λ ε[2] . (78)

This can be rearranged to

ρ∗(h[2] − hn) + Kh∗(h[2] − hn) − K (h∗ − hn)ε∗ − Bhnε∗2 + δt

γ0
λ ε[2] = O

(
ε∗3

)
. (79)

Using the definitions for ε[2] and ε∗ , this becomes(
ρ + Kh + δt

γ0
λ

)∗
ε[2] − (

K + Bhn)ε∗2 = O
(
ε∗3

)
, (80)

which is indeed equivalent to Eq. (44).
This result can now be used to derive the error estimates in Eq. (41b). Upon substituting(

∂(ρh)

∂h

)∗
h[2] = ρ∗h[2] + Kh∗h[2] = ρnhn − (

ρn − ρ∗)hn + ρ∗ε[2] + Kh∗h[2] , (81)

Eq. (37) becomes

γ0

δt

(
ρnhn − (

ρn − ρ∗)hn + ρ∗ε[2] + Kh∗h[2]) +
q∑

i=1

γi

δt
(ρh)n−i

= γ0

δt
Kh∗2 − λh[2] + Q n

= γ0

δt
Kh∗ (

h[2] −
(
ε[2] − ε∗))

− λ
(

hn + ε[2]) + Q n ,

(82)

which can be rearranged to

γ0

δt
(ρh)n +

q∑
i=1

γi

δt
(ρh)n−i = γ0

δt

((
ρn − ρ∗)hn − ρ∗ε[2] + Kh∗ (

ε∗ − ε[2]) − δt

γ0
λε[2]

)
− λhn + Q n . (83)

Eq. (80) can now be used to eliminate ε[2]:

γ0

δt
(ρh)n +

q∑
i=1

γi

δt
(ρh)n−i

= γ0

δt

((
ρn − ρ∗)hn + Kh∗ε∗ − (

K + Bhn)ε∗2 +O
(
ε∗3

))
− λhn + Q n

= γ0

δt

((
ρn − ρ∗ − Bε∗2

)
hn + Kε∗ (

h∗ − ε∗) +O
(
ε∗3

))
− λhn + Q n

= γ0

δt

((
ρn − ρ∗ − Bε∗2 + Kε∗)hn +O

(
ε∗3

))
− λhn + Q n .

(84)

Finally, using the Taylor series in Eq. (70),

γ0

δt
(ρh)n +

q∑
i=1

γi

δt
(ρh)n−i = γ0

δt

(
O

(
ε∗3

)
hn +O

(
ε∗3

))
− λhn + Q n , (85)

which implies Eq. (40) with Eq. (41b).
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