
Does Text Matter?
Extending CLIP with OCR and NLP for Image Classification and Retrieval

Jordan Sassoon1

Supervisor(s): Lydia Y. Chen, Zilong Zhao

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Jordan Sasssoon
Final project course: CSE3000 Research Project
Thesis committee: Lydia Y. Chen, Zilong Zhao, Anna Lukina

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Contrastive Language-Image Pretraining (CLIP)
has gained vast interest due to its impressive perfor-
mance on a variety of computer vision tasks: image
classification, image retrieval, action recognition,
feature extraction, and more. The model learns to
associate images with their descriptions, a powerful
method which allows it to perform well on unseen
domains. Often, the descriptions fail to capture text
which is contained within the image, a source of
information which could prove useful for a handful
of computer vision tasks. This limitation requires
finetuning in domains where contained text is im-
portant. In fact, CLIP has mixed performance on
Optical Character Recognition (OCR). This paper
proposes a novel architecture: OSBC (OCR Sen-
tence BERT CLIP), which combines CLIP and a
custom text extraction pipeline, composed of an
OCR model, and a Natural Language Processing
(NLP) model. OSBC uses the text contained within
images as an additional feature when performing
image classification and retrieval. We tested the
model on multiple datasets for each task, occasion-
ally outperforming CLIP when images contained
text, while maintaining finetunability, and improv-
ing the model’s robustness. In addition, OSBC
was designed to be generalizable, meaning it is ex-
pected to perform well on unseen domains without
finetuning, though this was not achieved in prac-
tice.

1 Introduction
With ever increasing compute power and dataset sizes, zero-
shot learning has become an interesting and viable alterna-
tive to supervised learning. Zero-shot models, such as the
Contrastive Language-Image Pretraining (CLIP) model [1] or
the Generative Pretrained Transformer (GPT) family [2, 3],
train on massive datasets, with millions or billions of data
points [4, 5]. The purpose behind this expensive compute
is to teach the model to recognize many different classes,
so that their feature extraction is applicable in various con-
texts. This allows zero-shot models to perform well on nu-
merous tasks, without needing to be finetuned. This is what
is referred to as ”generalizability”. However, a broader ap-
proach to problem-solving fails to confront problems with
highly specific domains. These fine-grained tasks often re-
quire knowledge which is not available to zero-shot models
at training time.

Amongst the fields that have been challenged by zero-shot
models, computer vision is one of the most popular ones.
Tasks such as image classification, image retrieval, action
recognition, and many more, were explored by Radford et al.
with their deeply interesting model: CLIP [1]. Now well
known, this algorithm was the first to prove that learning the
association between images and their descriptions was a valid
strategy for zero-shot learning. In fact, CLIP was trained on
the Web Image Text dataset, composed of 400 million image-
text pairs. Various versions of the model have been released

through the years with larger training set sizes and architec-
tures [6], and it has proven to be customizable and extendable
to many use-specific cases [7, 8, 9, 10].

While CLIP comes with multiple benefits: generalizabil-
ity, state-of-the-art performance, finetunability, it still suf-
fers from the same issues as other zero-shot, general mod-
els. Fine-grained classification, abstract concepts such as
counting or measuring distances between objects, and Optical
Character Recognition (OCR), prove difficult for the model.
CLIP is also highly susceptible to prompt engineering: the
descriptions of the images have to be formatted to resemble
natural language, though often the images only come with
one or few word descriptors. These bare descriptions need
to be engineered into full sentences, so that CLIP can make
proper use of them [Fig. 1].

“Dibert” “A comic strip of Dilbert”

Figure 1: An image of the Dilbert [11] comic from the Laion5B
dataset [5]. The image has the original caption ”Dilbert” which can
be formatted into ”A comic strip of Dilbert”.

It is therefore unlikely that the image descriptions express
the whole text contained within the images, preventing CLIP
from learning to use this additional feature in training and in-
ference. Therefore, we aimed to create an architecture which
supports CLIP by explicitly extracting inner text with a novel
pipeline and using it for image classification and retrieval
[Fig. 2].

original caption: “aircraft”

Without text extraction

original caption: “aircraft”

extracted text:

“AIRBUS A350-900”

With text extraction

Figure 2: An image of an aircraft from the Laion5B dataset [5]. The
image has the original caption ”aircraft”, and fails to capture the text
of the aircraft model. This text would be useful, for example, for
aircraft classification.

Firstly, the text extraction pipeline needs an OCR model,
and thankfully there are many models which have been de-
signed with this sole purpose in mind. Openly available tools
such as Google’s Tesseract OCR [12], Cloud Vision API [13],
EasyOCR [14], TrOCR [15] specialize in extracting raw nat-
ural language text from images.

Secondly, since OCR models have a limited understand-
ing of language, we leveraged Natural Language Processing

(NLP) models to encode the extracted text. Bidirectional En-
coder Representation from Transformer (BERT) [16] mod-
els compose a family of models that tackle many complex
NLP tasks. BERT models excel at comprehending language
in broader contexts and resolving text ambiguities. They are
also extremely useful when comparing two texts and evaluat-
ing their similarity. In this regard, Sentence BERT (SBERT)
[17] is a model which retains the family’s attributes and spe-
cializes in calculating the similarity between sentences.

With this, we have all the parts needed to build and in-
troduce the new architecture: OSBC (OCR Sentence BERT
CLIP). The model combines the strengths from all the models
with the hope to achieve better accuracy on computer vision
tasks, while maintaining all the desirable properties of the
components. The OCR and SBERT sections form a pipeline
(OCR-SBERT) which focuses on text extraction and compar-
ison, while CLIP focuses on understanding the relationship
between images and their descriptions. The resulting search
space is therefore composed of a triplet of features: image,
description, and inner text.

We focus on image classification and retrieval for this pa-
per, though we emphasize that OSBC is a model intended
to work with any task involving images or videos that contain
text. In order to rigorously evaluate the proposed architecture,
OSBC, the following research questions need to be answered:

• Does OSBC outperform CLIP and the OCR-SBERT
pipeline on image retrieval and classification?

• Does OSBC maintain zero-shot generalizability over
tasks and datasets?

• Does OSBC maintain finetunability?
• Do the results hold with larger, newer CLIP versions?

OSBC is expected to prove better performance than the two
pipelines it is composed of. In theory, the model combines the
useful parts of the text extraction pipeline and CLIP, meaning
that it should perform at least as well as the best model in
the architecture. OSBC was created with the aim to maintain
the properties of generalizability and finetunability, both of
which have to be tested. Furthermore, it is possible that as
CLIP evolves and trains on larger datasets, it could learn to
perform OCR at a high level. This could remove the need
for explicitly extracting the contained text using the proposed
pipeline.

The following sections aim to explain in further detail all
the models we chose to create OSBC, and how they work to-
gether. OSBC is thoroughly evaluated, and the results are dis-
cussed in hopes of answering the above stated research ques-
tions. There is also a section regarding the reproducibility and
ethical aspects of our research, followed by a conclusion.

2 Related Work
CLIP and Zero-Shot Learning
This research relies on a combination of multiple machine
learning models and ideas. A lot of inspiration was drawn
upon reading the CLIP paper from Radford et al. [1]. Con-
trastive Language-Image Pretraining (CLIP) stands in the
idea of learning the similarity between images and their cap-
tions. This allows the model to leverage natural language as

a descriptor for computer vision tasks, and understand broad
concepts. The original paper trains two encoders (one for
the image, one for the description) and minimizes the cosine
distance between the linear projection of the returned embed-
dings. The proposed image encoder is either a ResNet [18]
model or a Vision Transformers (ViT) [19] model. As ViTs
proved much more effective and efficient, we will focus on
these models in this paper. The text encoder is a standard
transformer [20] based model.

The concept of zero-shot learning was already developed a
decade prior, under the name of dataless classification [21].
In the following years the term zero-shot learning was coined
[22], and gained traction thanks to Lampert et al. [23]. Most
notably, the GPT family [2, 3] is an example of zero-shot
learning applied to text prediction. Various works laid the
basis for CLIP to be developed, stating zero-shot learning to
be a viable method for transfer learning in computer vision
[24, 25, 26, 27, 28]. Radford et al. brought zero-shot learn-
ing into the state-of-the-art bracket of computer vision and
proved this is a highly interesting alternative to supervised
learning. Moreover, CLIP has been extended into audio tasks
[7], multilingual tasks [8], and other use-specific scenarios
[9, 10]. This helped us understand how malleable the model
is. Though we will not follow this, Wortsman et al. [29] show
that CLIP can be finetuned without losing out-of-domain per-
formance, and Song et al. [30] state that CLIP is a strong
few-shot learner.

OCR, TrOCR and PyTesseract
With regards to text extraction, or OCR, Google is one of
the leaders in the industry OCR, releasing Tesseract [12]
and Cloud Vision [13] as their most popular engines. Other
tools were developed based on different underlying architec-
ture and languages. EasyOCR [14] was developed by Jaded
AI with the popular machine learning python library Py-
Torch [31]. Ocropus [32] uses the Long-Short Term Memory
(LSTM) [33] network as its neural basis. Attention-ocr [34]
implements attention [20] mechanisms in its architecture. Fit-
ting in with the huggingface [35] environment, TrOCR [15]
offers a simple yet powerful implementation based on a trans-
formers architecture. Often, OCR models excel at extrac-
tion, but require NLP post-processing to improve their out-
put, since NLP models can adjust the OCR text based on their
understanding of language. TrOCR was developed with the
aim of removing the post-processing step. To achieve this,
Li et al. use a pretrained image transformer encoder (such as
a DeiT [36]) and a pretrained text decoder (RoBERTa [37]).
This allows TrOCR to train the interaction between an image-
tailored transformer mechanism, and a text-tailored trans-
former mechanism, so that the output is already optimized
for natural language correctness. Just as TrOCR, PyTesser-
act also post-processes the extracted text to refine the results.
PyTesseract [38] is a python wrapper for Google’s Tesseract
OCR, and is one of the most commonly used OCR models.
This model uses complex text detection techniques such as
component analysis or stroke width transform to identify text
regions. A large pretrained LSTM [33] network then classi-
fies the recognized characters, and another component post-
processes the output.

NLP and SBERT
The BERT [16] family has become a staple amongst NLP
models. As opposed to previous, unidirectional works, bidi-
rectional encoding makes use of all the context surrounding a
word. In this way, each token is not restricted to only having
information about what precedes it. Though it achieved
many state-of-the-art performances, BERT proved to be un-
dertrained, which RoBERTa [37] aimed to tackle by robustly
improving the model. Longer training times, larger batch
sizes, removing objectives, and more adjustments elevated
BERT to match the models published after it. However, both
BERT and RoBERTa come with significant computational
overhead on the task of semantic text similarity. To establish
sentence similarity, both sentences have to be fed to the
model, an inference limitation which scales quadratically.
Instead, Sentence BERT (SBERT) [17] adds a pooling
layer to the BERT or RoBERTa output, which enables it to
generate fixed-size embeddings. These can be then compared
with a trained classifier or with cosine similarity. Inference is
therefore run on each sentence, not each sentence pair, which
drastically reduces the compute.

In conclusion, many previous works laid the foundation
for OSBC to be developed. However, we believe there is no
previous work that uses inner text as an additional, explicit
feature in zero-shot computer vision tasks.

3 Methodology
The proposed model, OSBC (OCR Sentence BERT CLIP),
combines CLIP’s pipeline with a novel OCR-SBERT pipeline
for text extraction. The goal is to create an embedding space
able to represent three features: images, descriptions, and the
text contained within the image. This section explains in de-
tail the OSBC model, with different sections based on the task
at hand. Again, there are two tasks this model has been ex-
tended to for now: image classification and image retrieval,
although the model could be extended to any other task in-
volving text within images, or videos.

OSBC Architecture
OSBC is composed of three models: an OCR model (ei-
ther TrOCR or PyTesseract), SBERT, and CLIP. The OCR
and SBERT models form the OCR-SBERT pipeline, and are
responsible for text extraction and embedding. TrOCR or
PyTesseract extract the text within the image in raw natural
language, which is then encoded by the SBERT model. With
this, inner text can be rapidly compared with a query, based
on the task OSBC is applied to. CLIP instead focuses on
encoding images and descriptions. Depending on the query,
CLIP can either act as an image-to-text classifier, or a text-to-
image retriever. Regardless of the task, both the OCR-SBERT
pipeline and the CLIP pipeline output a similarity vector be-
tween the query, and the pre-populated search space [Fig 3].
For example, in image classification OSBC pre-computes the
embeddings of the possible classes. Once the two pipelines
return their similarity vectors, they are L1 normalized and
added together. The following is the formula for L1 normal-

L1 normL1 norm

vu

OCR model

SBERT similarity

SBERT embeddingsCLIP embeddings

SBERT encoder

thresholds

CLIP similarity

CLIP encoder

query

argmax

combined similarity

ŷ

+

raw or processed
extracted text

Figure 3: A representation of OSBC during inference. In blue the
OCR-SBERT pipeline, in orange the CLIP pipeline. After encoding
the query, similarity scores with previous embedding are normal-
ized, post-processed in OCR-SBERT, and added together.

ization, given a vector v of length n.

vnormalized =
v∑n

i=1 |vi|
In the case the OCR-SBERT pipeline does not extract any
text, its predictions are ignored. Furthermore, if the simi-
larity between the query and the embeddings computed by
SBERT is lower than 70%, then those scores also do not affect
OSBC’s output. We set this arbitrary threshold with the aim
to ignore misleading predictions, only taking the pipeline in
consideration if its confidence is high. In practice, some mis-
direction is still present, a limitation which can be explored
deeper in future works. The threshold value could be a train-
able parameter, though we kept it fixed at 70% as this value
performed well in our experiments.

The CLIP pipeline of OSBC does not modify the original
architecture proposed by Radford et al. [1]. We used three
pre-trained models offered by OpenAI’s huggingface reposi-
tory, namely ”openai/clip-vit-base-patch16” (ViT-B/16 image
encoder architecture), ”openai/clip-vit-base-patch32” (ViT-
B/32 image encoder architecture), and ”openai/clip-vit-large-
patch14” (ViT-L/14 image encoder architecture). The dif-
ferent versions come with increasing complexity and model
sizes.

The OCR-SBERT pipeline [Fig. 4] is the innovative sec-
tion of the architecture, as it is responsible for text extraction
and embedding. We opted to use the TrOCR and PyTesseract
models for OCR as they both have desirable advantages, and
complement each other’s performance in practice.

The TrOCR model is useful for extracting raw text since
it already post-processes the output, which reduces the
complexity of the pipeline. In addition, the model has
been implemented in the huggingface environment, which
greatly improved the speed of inference (about twice as

v

O
C

R
 m

od
el

N
LP

 post-processing

S
B

ER
T

 encod
er

You’re ruining
everything, Dave.

ruining
everything dave

(1, 768)

Figure 4: An example embedding for the OCR-SBERT pipeline on
a Dilbert panel. The text ”You’re runing everything, Dave.” is ex-
tracted by either TrOCR or PyTesseract. It is then post-processed in
”runining everything dave”, and encoded in a (1,768) sized vector
by SBERT.

fast as PyTesseract), as it can be run with parallel batches
and optimized data structures. We evaluate two ver-
sions of the TrOCR model: ”microsoft/trocr-base-printed”
and ”microsoft/trocr-base-handwritten”. The former is pre-
trained on printed text, the latter on handwritten text.

The PyTesseract model is a standard for OCR. Though it
comes with a significantly lower compute time, we found it
occasionally outperformed TrOCR in text extraction. This
model was configured with the ‘–oem 3 psm 6’ flags for
sentence extraction, and the ‘–oem 3 psm 10’ flags for sin-
gle character extraction. PyTesseract advises using rigorous
image preprocessing techniques to improve accuracy, though
these are beyond the scope of this research, therefore we did
not implement them.

Although both TrOCR and PyTesseract post-process their
output for refined prediction, in image retrieval we imple-
mented a secondary post-processing step based on common
NLP techniques. Using the SpaCy [39] and NLTK [40] li-
braries, we ensured three actions would happen: the text
would be converted to lowercase, stopwords would be re-
moved, and numbers would be removed. Punctuation re-
moval was a byproduct of the previous steps. This was
done to maximize the extraction of significant information,
so that text comparison could already ignore irrelevant words
or numbers. This step does not apply to image classifica-
tion, as the extracted text and the labels should be equivalent,
therefore post-processing both is redundant or disruptive.

The extracted text is then fed into a Sentence BERT model,
with the aim to calculate pair similarity. Also implemented
in the huggingface environment, it comes with multiple ver-
sions. We use the ”all-mpnet-base-v2” model which is cur-
rently the best performing SBERT version.

CLIP Image
Encoder

...

...

...

...

CLIP Text
EncoderA backpacker in the mountains using

his hiking stick to point at a glacier .

T0T0

I 0
I 1 I 2 I N

...

...

T1

T2

T

......

N

...

T0I 0
.

T1I 1
. T1I 2

. TNI 1
.

TNI 1
.

T1I 0
.

T2I 0
.

TNI 0
. TNI 2

.TNI 1
.

T2I 1
.

T0I 1
. T0I 2

. T0I N
.T0I 1

. T0I 2
. T0I N

.

...

TNI N
.

T2I 2
.

Illustration inspired by CLIP

Figure 5: CLIP Contrastive Language-Image training pipeline,
where the image and the text are encoded in the same space. Im-
age and caption belong to the Filckr8k [41] dataset.

Regarding finetuning, we additionally trained the selected
CLIP models [Fig 5]. As they were all integrated in the
huggingface environment, we adapted the VisionTextDua-
lEncoder class documentation [42] to train our pipelines. We
leveraged the huggingface Trainer to carry out the finetuning,
which resulted in quick computes. To interactively track the
learning process, we used Weights and Biases [43], which
logged all the relevant information (loss, model configura-
tion, runtime, system information). This step was useful for
reproducibility. As both the TrOCR and SBERT model are
also trainable in a similar fashion, we imagine OSBC’s per-
formance could be improved even further. Refer to Table 10
for more information regarding the training configurations.

Image Retrieval
Image retrieval was the task that sparked the idea for the
model. Initially, we thought that a search-engine-like prob-
lem could benefit from comparing inner text and queries.
OSBC ended up being applicable to many other scenarios.
Retrieval is the task of selecting the most similar image given
a query text.

As the prompt is already formatted in a natural language
sentence, the prompt engineering step is unnecessary, and we
can immediately feed the query in the CLIP model. All im-
ages must be embedded before retrieving, since the similarity
vector will be calculated between each embedded image and
the embedded query. For CLIP, the similarity vector is the dot
product of the embedded query and the embedded images.

Not only the images must be processed before, but the text
contained within them must also be extracted and encoded.
This way, SBERT can compute the cosine similarity between
the embedded query and the extracted text belonging to each
image. To note that before we calculate pair similarity, the
text and query are turned into lower case, and numbers and
stopwords are removed.

After treating text-less images, normalizing, and applying
the threshold, the two similarity vectors are added together.
The image with the highest aggregate score is the final pre-
diction from OSBC.

As an example use case, in the Dilbert [11] dataset extract-
ing dialogue could be valuable information when querying
[Fig. 6]. We envisioned that with this additional informa-
tion, the user can retrieve specific images based on quotes or
contained sentences with higher accuracy.

Image Classification
In image classification, the aim is to select the correct class
between a selection of choices, given the image [Fig. 7]. The
datasets we worked with offered labels in natural language,
so with some prompt engineering, the label was extended
in a sentence. For example, the Modified National Institute
of Standards and Technology (MNIST [44]) dataset contains
images of handwritten digits. The numbers 0 through 9 are
the labels, which are turned into the sentences “an image of
the digit: 0”. This was necessary since we needed to cre-
ate prompts for the CLIP model to work correctly. Both the
prompt and the image are embedded in the same space, en-
abling the model to calculate the dot product similarity be-
tween them.

OCR NLP Post-
Processing

Sentence BERT
Text Encoder

CLIP Text
Encoder

Image 0

CLIP Image
Encoder

Sentence BERT
Text Encoder

And what can I get for
you little fellow?

CT0

ST0

CI 0

CT0 CI 0
.CT0 CI 0

.CT0 CI 1
.CT0 CI 2

.CT0 CI n...

CI 1 CI 2 ... CI N

OT0 OT1 OT2 ...

...

OTN

Im
ag

e
D

at
ab

as
e

Query

ST0 OTN...ST0 OT2ST0 OT1ST0 OT0

A comic panel of Dilbert and Dogbert at the checkout,
and the cashier asks what he can get for Dogbert.

...

NLP Post-
Processing

Figure 6: An example overview of the model for image retrieval on Dilbert. The images and the text contained within them are pre-encoded
and ready for inference. The query is then encoded by CLIP and SBERT, and the similarity scores are aggregated.

OCR Model Sentence BERT
Text Encoder

CLIP Image
Encoder

5

CLIP Text Encoder

Sentence BERT
Text Encoder

CI 0

OT0

CT0

CT0 CI 0
.CT0 CI 0

.CT0 CI 1
.CT0 CI 2

.CT0 CI 9...

CT1 CT2 ...

...

CT9

ST0 ST1 ST2 ...

...

ST9

ST0 OT9...ST0 OT2ST0 OT1ST0 OT0

M
N

IS
T

 C
la

ss
es

0

1

2

...

9

An image of the digit: 0

5

MNIST Test Image

Figure 7: An example overview of the model for image classification on MNIST. The classes are formatted and pre-encoded ready for
inference. The image of a 5 is encoded by CLIP, and the text ”5” is extracted and embedded by SBERT. The similarity scores are aggregated.

In the case of the MNIST digits, the contained text is the
label itself. The extracted inner text is embedded by SBERT
and cosine similarity establishes the correlation between the
text and each class. For the OCR-SBERT pipeline the classes
are not formatted into sentences, as this adds unnecessary nat-
ural language information.

Once the similarity is calculated from both CLIP and
SBERT for each class, and after post-processing, the class
with the highest combined score is the selected one.

We recognize that the classification datasets we evaluate
our model on are quite simple. They serve as a proof of
concept for OSBC, as we believe the model can be applied
to more complicated domains, specifically image classifica-
tion tasks that require visual and textual context. An example
could be classification of vehicles, as both the image of the
vehicle (visual context) and the car brand or model (textual
context) give essential clues.

4 Experimental Setup and Results
The experiments were designed to compare the OSBC ar-
chitecture with two baselines: CLIP and the OCR-SBERT
pipeline. The aim is to show that combining the two com-
ponents is beneficial, instead of using them individually. For
this reason, if either component generates disruptive informa-
tion, their predictions will be disregarded. In theory, OSBC
performs at least as well as its best component. In practice,
we implemented a threshold which removes similarity scores
if they are too low, meaning that the model could still have
disruptive artefacts when predicting.

We tested the model on image classification datasets
(MNIST [44], Characters from the standard OCR dataset
[45], CIFAR-10 [46]) and image retrieval datasets (Flickr8k
[41], Dilbert) [Fig 8]. The evaluation setup compared the
CLIP and OCR-SBERT pipelines individually and OSBC
(the two pipelines combined), and ran for multiple combina-

Image of a 0 from the Modified
National Institiute of Tecnhology

(MNIST) dataset

“A dog stands on his hind feet
and catches a stream of water”

from the Flickr8k dataset

“A picture of Dogbert wearing
glasses, as Dilbert asks what he
thinks” from the Dilbert dataset

Image of a car from the CIFAR-10
dataset

Image of an A from the
Characters dataset

Figure 8: Example images for each dataset

tions given the various versions of them. To answer the first
research question positively, we compare OSBC to CLIP’s
performance on CIFAR-10 and Flickr8k, as they are datasets
without inner text in the images, and expect to outperform
both baselines on the rest. Notably, we only ran evaluations
on a test subset of the data, as we will compare the models
to their respective finetuned versions. Refer to Table 8 and
Table 9 to see how the datasets were split.

Datasets
The three chosen image classification datasets are MNIST
[44], Characters, and CIFAR-10 [46]. MNIST is a Modi-
fied version of the NIST (National Institute of Standards of
Technology [47]) datasets, which is a collection of images
of handwritten digits. Characters is a subset of the standard
OCR dataset [45], consisting of a collection of letters from
the English alphabet. CIFAR-10, as opposed to the other two
datasets, is a collection of text-less images. The classes are
the following 10: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. For all experiments, the eval-
uation pipeline compares the models on their classification
accuracy, calculated as shown below.

accuracy =
number of correct predictions
total number of predictions

∗ 100

Flickr8k [41] is a small scale image dataset, which offers
captions for each image. This dataset does not contain text
within the images, therefore we use it as a benchmark against
traditional CLIP. We used this dataset for image retrieval.

The most interesting dataset is the Dilbert comics set. This
was a custom image retrieval dataset we created with the help
of another research project by Jordi van Setten et al. The
images are drawn by comic illustrations, and split up in the
panels contained within them. The description of the image
was then manually labeled, with the intent of not only cap-
turing a general explanation, but also the dialogue between
characters [Fig. 9]. This is the dataset which the model was
thought for.

All image retrieval tasks were evaluated using the Top-1
accuracy metric, meaning that when searching for an image
with its related query, the correct image should be returned.
This is because the query and the image are expected to have
the highest similarity score. This metric is equivalent to the
classification accuracy metric.

Caption 1: “I panicked”

Caption 2: “dogbert tells dilbert he panicked,
while holding grocery bags”

Figure 9: Example image and corresponding captions for the Dilbert
dataset

Results
The results were gathered by running three zero-shot clas-
sification experiments, two zero-shot image retrieval exper-
iments, and one image classification finetuning experiment.
One PyTesseract (configuration dependent on the task) and
two TrOCR models were tested, along with three CLIP mod-
els with varying image encoders. Tables 1 through 6 elicit the
results, where cells intersecting both an OCR and ViT model
indicate an OSBC aggregation model. The results are color
coded: OSBC models that underperfom their contained CLIP
pipeline are in red, OSBC models that outperform CLIP but
underperform their contained OCR-SBERT are in blue, and
OSBC models that outperform both are in green.

Zero-Shot Image Classification

ViT-B/16 ViT-B/32 ViT-L/14 -
TrOCR Printed 77.55 75.84 79.92 78.86

TrOCR Handwritten 54.89 54.45 70.16 49.97
PyTesseract ‘psm 10’ 36.45 31.87 66.06 27.92

- 29.51 24.37 71.02 -

Table 1: Zero-shot image classification accuracy on MNIST

ViT-B/16 ViT-B/32 ViT-L/14 -
TrOCR Printed 94.642 94.642 94.505 90.521

TrOCR Handwritten 82.554 82.417 82.829 70.604
PyTesseract ‘psm 10’ 58.379 58.379 60.164 32.829

- 91.620 93.269 94.780 -

Table 2: Zero-shot image classification accuracy on Characters

ViT-B/16 ViT-B/32 ViT-L/14 -
TrOCR Printed 90.44 89.11 95.43 9.18

TrOCR Handwritten 87.29 86.00 92.05 9.44
PyTesseract ‘psm 6’ 90.13 88.82 95.11 8.71

- 90.45 89.12 95.44 -

Table 3: Zero-shot image classification accuracy on CIFAR-10

Tables 1, 2, and 3 display the accuracy of the pipelines on
image classification for the MNIST, Characters, and CIFAR-
10 datasets.

For MNIST, the most drastic discrepancy is between the
ViT-B/16 and ViT-B/32 based CLIP models, and the TrOCR
Printed based OCR-SBERT pipeline. Combining the two re-
sults in an OSBC configuration that boosts these CLIP models
from 29.51% and 24.37% accuracy to 77.55% and 75.84%
accuracy respectively. Two OSBC configurations damage
CLIP, while the remaining five outperform both composing
pipelines, one of them achieving the highest accuracy of
79.92%.

The Characters dataset also shows improvement for the
two simpler CLIP versions when combined with the more ac-
curate OCR-SBERT pipeline. However, both the PyTesseract
and the TrOCR Handwritten models highly affect OSBC’s
performance and disrupt CLIP’s high accuracy. The highest
score is achieved by the ViT-L/14 image encoder based CLIP
model.

As a textless dataset, we did not expect OSBC to out-
perform CLIP on CIFAR-10. Scores of 9.18%, 9.44%, and
8.71% show that the OCR-SBERT pipelines underperform
random guessing (accuracy of 10%, as there are 10 classes
equally represented). The TrOCR Printed and PyTesseract
based OSBC models perform slightly worse than their CLIP
counterpart, while the Handwritten model is quite impactful
(drops of 3% in accuracy).

Zero-Shot Image Retrieval

ViT-B/16 ViT-B/32 ViT-L/14 -
TrOCR Printed 42.306 37.658 48.833 0.002

TrOCR Handwritten 40.704 36.412 48.229 0.007
PyTesseract ‘psm 6’ 42.365 37.717 48.793 1.087

- 42.494 37.865 48.872 -

Table 4: Zero-shot image retrieval accuracy on Flickr8k

ViT-B/16 ViT-B/32 ViT-L/14 -
TrOCR Printed 55.940 47.029 78.217 4.950

TrOCR Handwritten 56.930 47.524 78.217 0.0
PyTesseract ‘psm 6’ 66.831 62.871 75.247 65.346

- 57.425 48.019 78.217 -

Table 5: Zero-shot image retrieval accuracy on Dilbert

Tables 4 and 5 show the results for image retrieval on the
Flickr8k and Dilbert datasets.

On the Flickr8k dataset, OSBC consistently underperforms
CLIP. Due to the dataset being textless, both TrOCR-SBERT
pipelines have an accuracy close to 0%, and PyTesseract-
SBERT performs slightly better, a little above 1%. While

both the PyTesseract and the TrOCR Printed based OSBC
models are very close to the compared CLIP model, the
Handwritten based OSBC model has more disruptive arte-
facts.

The Dilbert dataset instead provides text in its images.
Though both the TrOCR based OCR-SBERT pipelines strug-
gle on this data (scores of 4.95% and 0%), the PyTesseract
based models are more effective. In fact, PyTesseract based
OSBC outperforms the two simpler CLIP models it is com-
posed of. Still, the largest CLIP model achieves the highest
accuracy of 78.217%, which is matched by the TrOCR based
OSBC models as the OCR-SBERT pipelines do not provide
valuable information, and are therefore ignored.

Finetuning CLIP on Characters
To test finetuning, we trained the three CLIP versions on the
Characters training data. Table 6 illustrates the results. The
finetuned models achieve staggering accuracies of 99.175%
(ViT-B/16 CLIP model), 99.862% (ViT-B/32 CLIP model),
and 100% (ViT-L/14 CLIP model). The TrOCR Printed based
OCR-SBERT pipeline was not finetuned, and proved disrup-
tive when combined through OSBC. However, the overall ac-
curacy of OSBC still improved by a significant margin (on
average a 2.61% increase). Though 100% accuracy is some-
what strange, we believe that a human could easily achieve a
perfect score due to the simplicity of the task.

5 Discussion
This section attempts to satisfyingly answer the previously
posed research questions, in light of the results obtained.

On Zero-Shot Performance
It is clear that in any scenario involving textless data, OSBC
is only bound to match CLIP at best. In the majority of exper-
iments, the OCR-SBERT pipeline seems to be combined in a
way that is disruptive to the whole architecture. We assume
that highly misguided text extraction could generate very con-
fident similarity scores that are not removed by the threshold,
and skew CLIP’s predictions.

The three datasets containing text within images instead
have varied performances. The OCR-SBERT pipeline com-
bined with CLIP through OSBC is beneficial in 11 cases,
disruptive in 14, and inconsequential in 2. OSBC seems
to be a viable choice when both CLIP and the text extrac-
tion pipeline have similar accuracies, or if the text extrac-
tion pipeline vastly outperforms CLIP. However, we cannot
generally conclude that OSBC outperforms CLIP on images
containing text. OSBC does often outperform OCR-SBERT
as, unfortunately, this often is the bottleneck of the model.
However, the results indicate that with a more accurate OCR-
SBERT pipeline, or a less naive aggregation method, OSBC
could consistently outperform CLIP.

On Generalizability
The OSBC model does show some resilience to domain
shifts, although the correct OCR model has to be chosen in
advance, which is not a trivial task. The model was ap-
plied to two tasks, and five datasets, proving beneficial in
three of them. Although OSBC is theoretically applicable

ViT-B/16 ViT-B/16 - Finetuned ViT-B/32 ViT-B/32 - Finetuned ViT-L/14 ViT-L/14 - Finetuned -
TrOCR Printed 94.642 96.565 94.642 97.527 94.505 97.527 90.521

- 91.620 99.175 93.269 99.862 94.780 100.00 -

Table 6: Image classification accuracy on Characters, comparing zero-shot and finetuned versions of CLIP and derived OSBC models.

to many computer vision problems, we cannot conclude that
this model is general as the performance highly depends on
the choice of OCR model.

On Finetunability
Through a proof-of-concept finetuning test, OSBC shows that
it can be finetuned in parts. The CLIP component of the ar-
chitecture is successfully tuned, and the overall accuracy of
the model increases. We believe the OCR-SBERT pipeline
to be finetunable as well, further improving OSBC’s scores,
and carrying this step out could help bridge the gap to CLIP’s
finetuned accuracy.

On Large Architectures
The larger CLIP version clearly outperforms its simpler coun-
terparts. The difference in performance between them is oc-
casionally quite drastic (for example on the MNIST or Dil-
bert datasets). There is only one combination where OSBC
outperforms the ViT-L/14 image encoder based CLIP model,
which could indicate that larger CLIP architectures inherently
improve in OCR. The OCR-SBERT pipeline is often less ac-
curate than the best CLIP model, meaning that our implemen-
tation of the OSBC model is far from ideal. Again, it would
be interesting to trial other OCR techniques, though they are
out of the scope of this paper.

On Prompt Robustness
This is an added discussion point, which does not answer
a research question, though we believe is still interesting.
Throughout our implementation, we found that CLIP heavily
relies on correct prompt engineering. The results published
here are the best scores we could push CLIP to. However,
there were often times where a slight change in the prompt
caused CLIP to heavily underperform, which on datasets such
as Characters re-establish the usefulness of OSBC [Fig. 7].
Here, the OCR-SBERT pipeline makes the overall architec-
ture more robust to prompt engineering changes.

CLIP (ViT-L/14) OSBC (ViT-L/14, TrOCR Printed)
”an image of the letter ” 94.780 94.505
”an image of the letter: ” 66.346 87.912

Table 7: CLIP and OSBC’s performance on Characters if the prompt
engineering step formatted the classes with an extra ”:”. CLIP drops
by 28% in accuracy, while OSBC drops by 7%. The OCR-SBERT
pipeline is not affected by this change.

6 Responsible Research
This research project was carried out with reproducibility as a
priority. To evaluate the transparency of this work, we firstly

interpret the project data through the FAIR (Findable, Acces-
sible, Interoperable, and Reusable) principles. Subsequently,
the code, documentation and long-term reproducibility are
evaluated. To conclude, we interpret OSBC in a larger eth-
ical context.

Is This FAIR?
The FAIR principles are guidelines to assure the data is find-
able, accessible, interoperable, and reusable, so that external
users can more easily reproduce the paper.

The MNIST, Characters, CIFAR-10, and Flickr8k datasets
are all publicly available, ensuring their findability and ac-
cessibility. The Dilbert dataset, on the other hand, is not yet
easily findable, as this was a custom dataset we built during
this research. To aid this, we will provide this dataset upon
request.

The integration of the data within the workflow has been
explained in the sections above. In addition, we provide in-
depth descriptions on how to gather and store the datasets in
our repository [48]. Here, we also render available our code,
which also explains the preprocessing steps applied before
each training and testing pipeline.

Code, Documentation, and Long-Term
Reproducibility
All the code behind the experiments is available online [48].
In this repository not only do we describe how to gather the
data, but we also document all the steps in the architecture.
Information on the training pipelines is also available online
[49], where we provide code screenshots, model configura-
tions, evaluation metrics, and information on the system that
ran the experiment (operating system, GPU, CPU, and other
hardware descriptions). Though we are occasionally running
computationally large models, we focused on optimizing the
code to keep the required compute low. This should also
help make the experiments reproducible on less powerful ma-
chines. Still, we believe this implementation of OSBC is far
from perfect, both in accuracy, and in efficiency. Further work
needs to be invested to optimize the architecture, for example
starting with a more efficient OCR method.

Though we can attest to how our code will change in the
future, we do not have control over the models we used for
our implementation. Huggingface versions of CLIP, TrOCR,
and SBERT may be modified in the coming years, and require
changes in the OSBC model. We also provide a snapshot of
all the used libraries, so that any user can recreate our en-
vironment. We expect these libraries to develop over time,
possibly rendering our model’s requirements obsolete.

Ethical Implications
This paper relies on using a combination of models offered
online. Though we assume their integrity, they are still black-
box components, which renders them vulnerable to ethical

misguidance. It is hard to tell to what extent we can trust these
systems when dealing with sensitive topics such as social bi-
ases and fairness. Radford et al. offer a detailed analysis of
their model by evaluating it on the FairFaces [50] dataset,
which deals with race, gender, and age classification.

Open-source models are also targetable by malicious users,
which could pose a cyber security threat, by means of direct
manipulation or by calculated modification of the data they
process.

Machine learning hold great power in today’s society, and
we realize that without transparent models it is complicated
to guide their development correctly. As such, we see OSBC
as a black-box, vulnerable model, which must be used with
care and only in specific settings.

7 Conclusion and Future Works
This paper introduced a new machine learning model: OSBC,
which aims to extract text within images as an added fea-
ture in computer vision tasks. The model aggregates the
similarity vectors returned by CLIP and by a novel pipeline:
OCR-SBERT. This pipeline is composed of either a TrOCR
or PyTesseract model for text extraction, and an SBERT
model for text embedding. We compare the model to var-
ious versions of CLIP on image classification and retrieval
datasets. OSBC occasionally vastly outperformed CLIP, es-
pecially smaller CLIP architectures, but more often slightly
underperformed it. The tests showed that OSBC is highly
dependent on the OCR model selection, resulting in a loss
of generalizability. On the other hand, OSBC was success-
fully partly finetuned, and showed far more resilience than
CLIP on prompt engineering. We believe that given a more
general OCR method, and a more stable overall architecture,
OSBC could consistently outperform CLIP on images con-
taining text, and match CLIP when the data is textless.

Future work includes evaluating an OSBC model based on
a different OCR method (which could also reduce its run-
time overhead), evaluating OSBC on a more complex dataset
which better fits the intricacies of the architecture, replac-
ing the SBERT model with another text encoder (for exam-
ple, CLIP’s text encoder), or exploring another aggregation
technique to ensemble the two similarity vectors. We be-
lieve zero-shot models can be supported in context specific
domains, if the model supporting them is sufficiently infor-
mative.

References
[1] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748–8763. PMLR, 2021.

[2] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

[3] OpenAI. Gpt-4 technical report. ArXiv,
abs/2303.08774, 2023.

[4] Christoph Schuhmann, Richard Vencu, Romain Beau-
mont, Robert Kaczmarczyk, Clayton Mullis, Aarush
Katta, Theo Coombes, Jenia Jitsev, and Aran Ko-
matsuzaki. Laion-400m: Open dataset of clip-
filtered 400 million image-text pairs. arXiv preprint
arXiv:2111.02114, 2021.

[5] Christoph Schuhmann, Romain Beaumont, Richard
Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell
Wortsman, et al. Laion-5b: An open large-scale dataset
for training next generation image-text models. arXiv
preprint arXiv:2210.08402, 2022.

[6] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman,
Cade Gordon, Nicholas Carlini, Rohan Taori, Achal
Dave, Vaishaal Shankar, Hongseok Namkoong, John
Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig
Schmidt. Openclip, July 2021. URL https://doi.org/10.
5281/zenodo.5143773. If you use this software, please
cite it as below.

[7] Andrey Guzhov, Federico Raue, Jörn Hees, and An-
dreas Dengel. Audioclip: Extending clip to image, text
and audio. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 976–980. IEEE, 2022.

[8] An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang
Zhang, Jingren Zhou, and Chang Zhou. Chinese
clip: Contrastive vision-language pretraining in chinese.
arXiv preprint arXiv:2211.01335, 2022.

[9] Xiang An, Jiankang Deng, Kaicheng Yang, Jaiwei Li,
Ziyong Feng, Jia Guo, Jing Yang, and Tongliang Liu.
Unicom: Universal and compact representation learning
for image retrieval. arXiv preprint arXiv:2304.05884,
2023.

[10] Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and
Alberto Del Bimbo. Conditioned and composed im-
age retrieval combining and partially fine-tuning clip-
based features. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 4959–4968, 2022.

[11] Wikipedia. Dilbert — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Dilbert&
oldid=1159915438, 2023. [Online; accessed 25-June-
2023].

[12] Ray Smith. An overview of the tesseract ocr engine.
In Ninth international conference on document analysis
and recognition (ICDAR 2007), volume 2, pages 629–
633. IEEE, 2007.

[13] Google. Vision ai. https://cloud.google.com/vision,
2023.

[14] Jaded AI. Easyocr. https://github.com/JaidedAI/
EasyOCR, 2023.

[15] Minghao Li, Tengchao Lv, Jingye Chen, Lei Cui, Yi-
juan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, and
Furu Wei. Trocr: Transformer-based optical charac-
ter recognition with pre-trained models. arXiv preprint
arXiv:2109.10282, 2021.

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
http://en.wikipedia.org/w/index.php?title=Dilbert&oldid=1159915438
http://en.wikipedia.org/w/index.php?title=Dilbert&oldid=1159915438
https://cloud.google.com/vision
https://github.com/JaidedAI/EasyOCR
https://github.com/JaidedAI/EasyOCR

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[17] Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[19] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Ad-
vances in neural information processing systems, 30,
2017.

[21] Ming-Wei Chang, Lev-Arie Ratinov, Dan Roth, and
Vivek Srikumar. Importance of semantic representation:
Dataless classification. In Aaai, volume 2, pages 830–
835, 2008.

[22] Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton,
and Tom M Mitchell. Zero-shot learning with semantic
output codes. Advances in neural information process-
ing systems, 22, 2009.

[23] Christoph H Lampert, Hannes Nickisch, and Stefan
Harmeling. Learning to detect unseen object classes by
between-class attribute transfer. In 2009 IEEE confer-
ence on computer vision and pattern recognition, pages
951–958. IEEE, 2009.

[24] Yasuhide Mori, Hironobu Takahashi, and Ryuichi Oka.
Image-to-word transformation based on dividing and
vector quantizing images with words. In First interna-
tional workshop on multimedia intelligent storage and
retrieval management, pages 1–9. Citeseer, 1999.

[25] Ariadna Quattoni, Michael Collins, and Trevor Darrell.
Learning visual representations using images with cap-
tions. In 2007 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8. IEEE, 2007.

[26] Ang Li, Allan Jabri, Armand Joulin, and Laurens Van
Der Maaten. Learning visual n-grams from web data.
In Proceedings of the IEEE International Conference on
Computer Vision, pages 4183–4192, 2017.

[27] Karan Desai and Justin Johnson. Virtex: Learning vi-
sual representations from textual annotations. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11162–11173,
2021.

[28] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christo-
pher D Manning, and Curtis P Langlotz. Contrastive

learning of medical visual representations from paired
images and text. In Machine Learning for Healthcare
Conference, pages 2–25. PMLR, 2022.

[29] Mitchell Wortsman, Gabriel Ilharco, Jong Wook
Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali
Farhadi, Hongseok Namkoong, et al. Robust fine-tuning
of zero-shot models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 7959–7971, 2022.

[30] Haoyu Song, Li Dong, Wei-Nan Zhang, Ting Liu, and
Furu Wei. Clip models are few-shot learners: Empirical
studies on vqa and visual entailment. arXiv preprint
arXiv:2203.07190, 2022.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

[32] Thomas M Breuel. The ocropus open source ocr sys-
tem. In Document recognition and retrieval XV, volume
6815, pages 120–134. SPIE, 2008.

[33] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[34] Zbigniew Wojna, Alexander N Gorban, Dar-Shyang
Lee, Kevin Murphy, Qian Yu, Yeqing Li, and Julian
Ibarz. Attention-based extraction of structured informa-
tion from street view imagery. In 2017 14th IAPR inter-
national conference on document analysis and recogni-
tion (ICDAR), volume 1, pages 844–850. IEEE, 2017.

[35] Hugging Face. Hugging face. https://huggingface.co/,
2023.

[36] Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation
through attention. In International conference on ma-
chine learning, pages 10347–10357. PMLR, 2021.

[37] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[38] Matthias Lee Lars Kistner Ryan Mitchell Emilio Cec-
chini John Hagen Darius Morawiec Eddie Bedada
Uğurcan Akyüz Samuel Hoffstaetter, Juarez Bochi.
Pytesseract. https://github.com/madmaze/pytesseract,
2023.

[39] Matthew Honnibal and Ines Montani. spaCy 2: Natural
language understanding with Bloom embeddings, con-
volutional neural networks and incremental parsing. To
appear, 2017.

[40] Steven Bird, Ewan Klein, and Edward Loper. Natural
language processing with Python: analyzing text with

https://huggingface.co/
https://github.com/madmaze/pytesseract

the natural language toolkit. ” O’Reilly Media, Inc.”,
2009.

[41] Micah Hodosh, Peter Young, and Julia Hockenmaier.
Flickr8k dataset.

[42] huggingface. Visiontextdualencoder. https:
//github.com/huggingface/transformers/tree/main/
examples/pytorch/contrastive-image-text, 2023.

[43] Experiment tracking with weights and biases, 2020.
URL https://www.wandb.com/,. Software available
from wandb.com.

[44] Li Deng. The mnist database of handwritten digit im-
ages for machine learning research. IEEE Signal Pro-
cessing Magazine, 29(6):141–142, 2012.

[45] Abhishek Jaiswal. standard ocr dataset. https://www.
kaggle.com/datasets/preatcher/standard-ocr-dataset,
2021.

[46] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
Cifar-10 (canadian institute for advanced research).
URL http://www.cs.toronto.edu/∼kriz/cifar.html.

[47] National Institute of Standards and Technology. Secu-
rity requirements for cryptographic modules. Technical
Report Federal Information Processing Standards Pub-
lications (FIPS PUBS) 140-2, Change Notice 2 Decem-
ber 03, 2002, U.S. Department of Commerce, Washing-
ton, D.C., 2001.

[48] Jordan Sassoon. Osbc github repository. https://github.
com/jordisassoon/OSBC, 2023.

[49] Jordan Sassoon. Osbc weights and biases logs.
https://wandb.ai/jordisassoon/huggingface?workspace=
user-jordisassoon, 2023.

[50] Kimmo Kärkkäinen and Jungseock Joo. Fairface: Face
attribute dataset for balanced race, gender, and age.
arXiv preprint arXiv:1908.04913, 2019.

https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text
https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text
https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text
https://www.wandb.com/,
https://www.kaggle.com/datasets/preatcher/standard-ocr-dataset
https://www.kaggle.com/datasets/preatcher/standard-ocr-dataset
http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/jordisassoon/OSBC
https://github.com/jordisassoon/OSBC
https://wandb.ai/jordisassoon/huggingface?workspace=user-jordisassoon
https://wandb.ai/jordisassoon/huggingface?workspace=user-jordisassoon

Appendix
Datasets

Trainset Size Testset Size Number of Classes
MNIST 50’000 10’000 10

Characters 14’898 728 26
CIFAR-10 50’000 10’000 10

Table 8: Image classification dataset sizes.

Trainset Queries Trainset Images Testset Queries Testset Images
Dilbert - - 202 101

Flickr8k 30’336 6066 10’112 2022

Table 9: Image retrieval dataset sizes.

Finetuning

Number of Trainable Parameters Learning Rate Batch Size Epochs
CLIP(openai/clip-vit-base-patch16) 149,620,737 3e-5 32 3
CLIP(openai/clip-vit-base-patch32) 151,277,313 5e-5 64 3
CLIP(openai/clip-vit-large-patch14) 427,616,513 5e-6 4 3

Table 10: Finetuning parameters and model information on Characters. For a full training suite overview, see [43].

Figure 10: CLIP ViT-B/16 learning curve on
Characters

Figure 11: CLIP ViT-B/32 learning curve on
Characters

Figure 12: CLIP ViT-L/14 learning curve on
Characters

	Introduction
	Related Work
	Methodology
	Experimental Setup and Results
	Discussion
	Responsible Research
	Conclusion and Future Works

