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Abstract: This paper presents a systematic and comprehensive survey that reviews the latest research
efforts focused on machine learning (ML) based performance improvement of wireless networks,
while considering all layers of the protocol stack: PHY, MAC and network. First, the related work and
paper contributions are discussed, followed by providing the necessary background on data-driven
approaches and machine learning to help non-machine learning experts understand all discussed
techniques. Then, a comprehensive review is presented on works employing ML-based approaches
to optimize the wireless communication parameters settings to achieve improved network quality-of-
service (QoS) and quality-of-experience (QoE). We first categorize these works into: radio analysis,
MAC analysis and network prediction approaches, followed by subcategories within each. Finally,
open challenges and broader perspectives are discussed.

Keywords: machine learning; data science; deep learning; protocol layers; MAC; PHY; AI; perfor-
mance optimization

1. Introduction

Science and the way we undertake research is rapidly changing. The increase of
data generation is present in all scientific disciplines [1], such as computer vision, speech
recognition, finance (risk analytics), marketing and sales (e.g., customer churn analysis),
pharmacy (e.g., drug discovery), personalized health-care (e.g., biomarker identification
in cancer research), precision agriculture (e.g., crop lines detection, weeds detection...),
politics (e.g., election campaigning), etc. Until the recent years, this trend has been less
pronounced in the wireless networking domain, mainly due to the lack of ‘big data’ and
sufficient communication capacity [2]. However, with the era of the Fifth Generation
(5G) cellular systems and the Internet-of-Things (IoT), the big data deluge in the wireless
networking domain is under way. For instance, massive amounts of data are generated
by the omnipresent sensors used in smart cities [3,4] (e.g., to monitor parking spaces
availability in the cities, or monitor the conditions of road traffic to manage and control
traffic flows), smart infrastructures (e.g., to monitor the condition of railways or bridges),
precision farming [5,6] (e.g., monitor yield status, soil temperature and humidity), envi-
ronmental monitoring (e.g., pollution, temperature, precipitation sensing), IoT smart grid
networks [7] (e.g., to monitor distribution grids or track energy consumption for demand
forecasting), etc. It is expected that 28.5 billion devices will be connected to the Internet by
2022 [8], which will create a huge global network of “things” and the demand for wireless
resources will accordingly increase in an unprecedented way. On the other hand, the set of
available communication technologies is expanding (e.g., the release of the new IEEE 802.11
standards such as IEEE 802.11ax and IEEE 802.11ay; and 5G technologies), which compete
for the same finite and limited radio spectrum resources pressuring the need for enhancing
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their coexistence and more effective use the scarce spectrum resources. Similarly, on the
mobile systems landscape, mobile data usage is tremendously increasing; according to the
latest Ericsson’s mobility report there are now 5.9 billion mobile broadband subscriptions
globally, generating more than 25 exabytes per month of wireless data traffic [9], a growth
close to 88% between Q4 2017 and Q4 2018!

So, big data today is a reality!
However, wireless networks and the generated traffic patterns are becoming more and

more complex and challenging to understand. For instance, wireless networks yield many
network performance indicators (e.g., signal-to-noise ratio (SNR), link access success/collision
rate, packet loss rate, bit error rate (BER), latency, link quality indicator, throughput, energy
consumption, etc.) and operating parameters at different layers of the network protocol
stack (e.g., at the PHY layer: frequency channel, modulation scheme, transmitter power;
at the MAC layer: MAC protocol selection, and parameters of specific MAC protocols
such as CSMA: contention window size, maximum number of backoffs, backoff exponent;
TSCH: channel hopping sequence, etc.) having significant impact on the communication
performance.

Tuning of these operating parameters and achieving cross-layer optimization to max-
imize the end-to-end performance is a challenging task. This is especially complex due
to the huge traffic demands and heterogeneity of deployed wireless technologies. To
address these challenges, machine learning (ML) is increasingly used to develop advanced
approaches that can autonomously extract patterns and predict trends (e.g., at the PHY layer:
interference recognition, at the MAC layer: link quality prediction, at the network layer:
traffic demand estimation) based on environmental measurements and performance indi-
cators as input. Such patterns can be used to optimize the parameter settings at different
protocol layers, e.g., PHY, MAC or network layer.

For instance, consider Figure 1, which illustrates an architecture with heterogeneous
wireless access technologies, capable of collecting large amounts of observations from the
wireless devices, processing them and feeding into ML algorithms which generate patterns
that can help making better decisions to optimize the operating parameters and improve
the network quality-of-service (QoS) and quality-of-experience QoE.

Wireless data processing & mining
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Wifi modem

Farming

Smart gridLocalization

Air quality

Traffic

Cellular/WiFi network Wireless sensor network

BSC/RNC

Base station

Gateway
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Figure 1. Architecture for wireless big data analysis.
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Obviously, there is an urgent need for the development of novel intelligent solutions to
improve the wireless networking performance. This has motivated this paper to structure
the emerging interdisciplinary research area spanning: wireless networks and commu-
nications, machine learning, statistics, experimental-driven research and other research
disciplines, to make it more approachable for the wireless networking community and
empower wireless networking researchers to create their own predictive models. Further-
more, it aims to inspire researchers by showcasing the state-of-the-art employing ML to
improve the performance of wireless networks, demonstrate novel ML-based solutions
and discuss current research challenges and future research directives.

Although several survey papers exist, most of them focus on ML in a specific domain
or network layer. To the best of our knowledge, this is the first survey that comprehensively
reviews the latest research efforts focused on ML-based performance improvements of
wireless networks while considering all layers of the protocol stack (PHY, MAC and
network), whilst also providing the necessary tutorial for non-machine learning experts to
understand all discussed techniques.

Paper organization: We structure this paper as shown on Figure 2.
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Figure 2. Paper outline.

We start with discussing the related work and distinguishing our work with the
state-of-the-art, in Section 2. We conclude that section with a list of our contributions.
In Section 3, we present a high-level introduction to data science, data mining, artificial
intelligence, machine learning and deep learning. The main goal here is to define these
interchangeably used terms and how they relate to each other. In Section 4 we provide a
tutorial focused on machine learning, we overview various types of learning paradigms
and introduce a couple of popular machine learning algorithms. Section 5 introduces
four common types of data-driven problems in the context of wireless networks and
provides examples of several case studies. The objective of this section is to help the
reader formulate a wireless networking problem into a data-driven problem suitable for
machine learning. Section 6 discusses the latest state-of-the-art about machine learning
for performance improvements of wireless networks. First, we categorize these works
into: radio analysis, MAC analysis and network prediction approaches; then we discuss
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example works within each category and give an overview in tabular form, looking at
various aspects including: input data, learning approach and algorithm, type of wireless
network, achieved performance improvement, etc. In Section 7, we discuss open challenges
and present future directions for each. Section 8 concludes the paper.

2. Related Work and Our Contributions
2.1. Related Work

With the advances in hardware and computing power and the ability to collect, store
and process massive amounts of data, machine learning (ML) has found its way into many
different scientific fields. The challenges faced by current 5G and future wireless networks
pushed also the wireless networking domain to seek innovative solutions to ensure ex-
pected network performance. To address these challenges, ML is increasingly used in
wireless networks. In parallel, a growing number of surveys and tutorials are emerging on
ML for future wireless networks. Table 1 provides an overview and comparison with the
existing survey papers (note that +− stands for partially available). For instance:

Table 1. Overview of the related work.

Paper Tutorial
on ML

Wireless Network Application Area ML Paradigms Year

[10] X CRN Decision-making and feature
classification in CRN

Supervised, unsupervised and
reinforcement learning

2012

[11] X Localization, security, event
detection, routing, data
aggregation, MAC

WSN Supervised, unsupervised and
reinforcement learning

2014

[12] +− HetNets Self-configuration, self-healing, and
self-optimization

AI-based techniques 2015

[13] +− CRN, WSN, Cellular and
Mobile ad-hoc networks

Security, localization, routing, load
balancing

NN 2016

[14] IoT Big data analytics, event detection,
data aggregation, etc.

Supervised, unsupervised and
reinforcement learning

2016

[15] X Cellular networks Self-configuration, self-healing, and
self-optimization

Supervised, unsupervised and
reinforcement learning

2017

[16] +− CRN Spectrum sensing and access Supervised, unsupervised and
reinforcement learning

2018

[17] +− IoT, Cellular networks,
WSN, CRN

Routing, resource allocation,
security, signal detection,
application identification, etc.

Deep learning 2018

[18] +− IoT Big data and stream analytics Deep learning 2018

[19] X IoT, Mobile networks, CRN,
UAV

Communication, virtual reality and
edge caching

ANN 2019

[20] +− CRN Signal Recognition Deep learning 2019

[21] +− IoT Smart cities Supervised, unsupervised and
deep learning

2019

[22] +− Communications and
networking

Wireless caching, data offloading,
network security, traffic routing,
resource sharing, etc.

Reinforcement learning 2019

This X IoT, WSN, cellular networks,
CRN

Performance improvement of
wireless networks

Supervised, unsupervised and
Deep learning

2020
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• In [10], the authors surveyed existing ML-based methods to address problems in
Cognitive Radio Networks (CRNs).

• The authors of [11] survey ML approaches in WSNs (Wireless Sensor Networks) for
various applications including location, security, routing, data aggregation and MAC.

• The authors of [12] surveyed the state-of-the-art Artificial Intelligence (AI)-based
techniques applied to heterogeneous networks (HetNets) focusing on the research
issues of self-configuration, self-healing, and self-optimization.

• ML algorithms and their applications in self organizing cellular networks also focusing
on self-configuration, self-healing, and self-optimization, are surveyed in [15].

• In [16] ML applications in CRN are surveyed, that enable spectrum and energy efficient
communications in dynamic wireless environments.

• The authors of [19] studied neural networks-based solutions to solve problems in
wireless networks such as communication, virtual reality and edge caching.

• In [13], various applications of neural networks (NN) in wireless networks including
security, localization, routing, load balancing are surveyed.

• The authors of [14] surveyed ML techniques used in IoT networks for big data analyt-
ics, event detection, data aggregation, power control and other applications.

• Paper [17] surveys deep learning applications in wireless networks looking at aspects
such as routing, resource allocation, security, signal detection, application identifica-
tion, etc.

• Paper [18] surveys deep learning applications in IoT networks for big data and stream
analytics.

• Paper [20] studies and surveys deep learning applications in cognitive radios for
signal recognition tasks.

• The authors of [21] survey ML approaches in the context of IoT smart cities.
• Paper [22] surveys reinforcement learning applications for various applications in-

cluding network access and rate control, wireless caching, data offloading, network
security, traffic routing, resource sharing, etc.

Nevertheless, some of the aforementioned works focus on reviewing specific wire-
less networking tasks (for example, wireless signal recognition [20]), some focus on the
application of specific ML techniques (for instance, deep learning [13,19,20]) while some
focus on the aspects of a specific wireless environment looking at broader applications
(e.g., CRN [10,16,20], and IoT [14,21]). Furthermore, we noticed that some works miss out
the necessary fundamentals for the readers who seek to learn the basics of an area outside
their specialty. Finally, no existing work focuses on the literature on how to apply ML
techniques to improve wireless network performance looking at possibilities at different
layers of the network protocol stack.

To fill this gap, this paper provides a comprehensive introduction to ML for wireless
networks and a survey of the latest advances in ML applications for performance improve-
ment to address various challenges future wireless networks are facing. We hope that this
paper can help readers develop perspectives on and identify trends of this field and foster
more subsequent studies on this topic.

2.2. Contributions

The main contributions of this paper are as follows:

• Introduction for non-machine learning experts to the necessary fundamentals on ML,
AI, big data and data science in the context of wireless networks, with numerous
examples. It examines when, why and how to use ML.

• A systematic and comprehensive survey on the state-of-the-art that (i) demonstrates
the diversity of challenges impacting the wireless networks performance that can
be addressed with ML approaches and which (ii) illustrates how ML is applied to
improve the performance of wireless networks from various perspectives: PHY, MAC
and the network layer.



Electronics 2021, 10, 318 6 of 63

• References to the latest research works (up to and including 2020) in the field of
predictive ML approaches for improving the performance of wireless networks.

• Discussion on open challenges and future directions in the field.

3. Data Science Fundamentals

The objective of this section is to introduce disciplines closely related to data-driven
research and machine learning, and how they related to each other. Figure 3 shows a
Venn diagram, which illustrates the relation between data science, data mining, artificial
intelligence (AI), machine learning and deep learning (DL), explained in more detail in
the following subsections. This survey, particularly, focuses on ML/DL approaches in the
context of wireless networks.

Data science

Deep 
learning

Machine 
Learning

Artificial 
Intelligence

Data mining

Figure 3. Data science vs. data mining vs. Artificial Intelligence (AI) vs. Machine learning (ML) vs.
deep learning.

3.1. Data Science

Data science is the scientific discipline that studies everything related to data, from data
acquisition, data storage, data analysis, data cleaning, data visualization, data interpreta-
tion, making decisions based on data, determining how to create value from data and how
to communicate insights relevant to the business. One definition of the term data science,
provided by Dhar [23], is: Data science is the study of the generalizable extraction of knowledge
from data. Data science makes use of data mining, machine learning, AI techniques and
also other approaches such as: heuristics algorithms, operational research, statistics, causal
inference, etc. Practitioners of data science are typically skilled in mathematics, statistics,
programming, machine learning, big data tools and communicating the results.

3.2. Data Mining

Data mining aims to understand and discover new, previously unseen knowledge in
the data. The term mining refers to extracting content by digging. Applying this analogy
to data, it may mean to extract insights by digging into data. A simple definition of data
mining is: Data mining refers to the application of algorithms for extracting patterns from
data. Data mining tends to focus on solving actual problems encountered in practice by
exploiting algorithms developed by the ML community. For this purpose, a data-driven
problem is first translated into a suitable data mining task [24], which will be in detail
discussed in Section 5.
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3.3. Artificial Intelligence

Artificial intelligence (AI) is concerned with making machines smart aiming to create a
system which behaves like a human. This involves fields such as robotics, natural language
processing, information retrieval, computer vision and machine learning. As coined by [25],
AI is: The science and engineering of making intelligent machines, especially computer systems
by reproducing human intelligence through learning, reasoning and self-correction/adaption. AI
uses intelligent agents that perceive their environment and take actions that maximize their
chance of successfully achieving their goals.

3.4. Machine Learning

Machine learning (ML) is a subset of AI. ML aims to develop algorithms that can
learn from historical data and improve the system with experience. In fact, by feeding the
algorithms with data it is capable of changing its own internal programming to become
better at a certain task. As coined by [26]: A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.

ML experts focus on proving mathematical properties of new algorithms, compared
to data mining experts who focus on understanding empirical properties of existing algo-
rithms that they apply. Within the broader picture of data science, ML is the step about
taking the cleaned/transformed data and predicting future outcomes. Although ML is
not a new field, with the significant increase of available data and the developments in
computing and hardware technology ML has become one of the research hotspots in the
recent years, in both academia and industry [27].

Compared to traditional signal processing approaches (e.g., estimation and detection),
machine learning models are data-driven models; they do not necessarily assume a data
model on the underlying physical processes that generated the data. Instead, we may say
they “let the data speak”, as they are able to infer or learn from the data. For instance, when
it is complex to model the underlying physics that generated the wireless data, and given
that there is sufficient amount of data available that may allow to infer the model that
generalizes well beyond what is has seen, ML may outperform traditional signal processing
and expert-based systems. However, a representative amount and quality data is required.
The advantage of ML is that the resulting models are less prone to the modeling errors of
the data generation process.

3.5. Deep Learning

Deep learning is a subset of ML, in which data is passed via multiple number of
non-linear transformations to calculate an output. The term deep refers to many steps in
this case. A definition provided by [28], is: Deep learning allows computational models that
are composed of multiple processing layers to learn representations of data with multiple levels
of abstraction. A key advantage of deep learning over traditional ML approaches is that
it can automatically extract high-level features from complex data. The learning process
does not need to be designed by a human, which tremendously simplifies prior feature
handcrafting [28].

However, the performance of DNNs comes at the cost of the model’s interpretability.
Namely, DNNs are typically seen as black boxes and there is lack of knowledge why they
make certain decisions. Further, DNNs usually suffer from complex hyper-parameters
tuning, and finding their optimal configuration can be challenging and time consuming.
Furthermore, training deep learning networks can be computationally demanding and
require advanced parallel computing such as graphics processing units (GPUs). Hence,
when deploying deep learning models on embedded or mobile devices, considered should
be the energy and computing constraints of the devices.

There is a growing interest in deep learning in the recent years. Figure 4 demonstrates
the growing interest in the field, showing the Google search trend from the past few years.
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Figure 4. Google search trend showing increased attention in deep learning over the recent years.

4. Machine Learning Fundamentals

Due to their unpredictable nature, wireless networks are an interesting application
area for data science because they are influenced by both, natural phenomena and man-
made artifacts. This section sets up the necessary fundamentals for the reader to understand
the concepts of machine learning.

4.1. The Machine Learning Pipeline

Prior to applying machine learning algorithms to a wireless networking problem, the
wireless networking problem needs to be first translated into a data science problem. In fact,
the whole process from problem to solution may be seen as a machine learning pipeline
consisting of several steps.

Figure 5 illustrates those steps, which are briefly explained below:

• Problem definition. In this step the problem is identified and translated into a data
science problem. This is achieved by formulating the problem as a data mining task.
Section 5 further elaborates popular data mining methods such as classification and
regression, and presents case studies of wireless networking problems of each type.
In this way, we hope to help the reader understand how to formulate a wireless
networking problem as a data science problem.

• Data collection. In this step, the needed amount of data to solve the formulated
problem is identified and collected. The result of this step is raw data.

• Data preparation. After the problem is formulated and data is collected, the raw data
is being preprocessed to be cleaned and transformed into a new space where each
data pattern is represented by a vector, x ∈ Rn. This is known as the feature vector,
and its n elements are known as features. Through, the process of feature extraction
each pattern becomes a single point in a n-dimensional space, known as the feature
space or the input space. Typically, one starts with some large value P of features and
eventually selects the n most informative ones during the feature selection process.

• Model training. After defining the feature space in which the data lays, one has to
train a machine learning algorithm to obtain a model. This process starts by forming
the training data or training set. Assuming that M feature vectors and corresponding
known output values (sometimes called labels) are available, the training set S consists
of M input-output pairs ((xi, yi), i = 1, ...M) called training examples, that is,

S = {(x1, y1), (x2, y2), ...(xM, yM)} , (1)
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where xi ∈ Rn, is the feature vector of the ith observation,

xi = [xi1, xi2, ...xin]
T , i = 1, ...M . (2)

The corresponding output values (labels) to which xi, i = 1, ...M, belong, are

y = [y1, y2, ...yM]T . (3)

In fact, various ML algorithms are trained, tuned (by tuning their hyper-parameters)
and the resulting models are evaluated based on standard performance metrics (e.g.,
mean squared error, precision, recall, accuracy, etc.) and the best performing model is
chosen (i.e., model selection).

• Model deployment. The selected ML model is deployed into a practical wireless
system where it is used to make predictions. For instance, given unknown raw data,
first the feature vector x is formed, and then it is fed into the ML model for making
predictions. Furthermore, the deployed model is continuously monitored to observe
how it behaves in real world. To make sure it is accurate, it may be retrained.

Transformation

Model selection

Data collection Data preparation Model training

Normalization

Feature 
engineering

Hyper-parameter 
tuning

Model 
evaluation

Deployment

Model deployment

Performance 
monitoring

Retraining

Raw data

Data storage Data cleaning Prediction

Problem definition

Problem 
statement

Data science 
problem 

formulation

Training

Figure 5. Steps in a machine learning pipeline.

Further below, the ML stage is elaborated in more detail.

Learning the Model

Given a set S , the goal of a machine learning algorithm is to learn the mathematical
model for f . Thus, f is some fixed but unknown function, that defines the relation between
x and y, that is

f : x→ y . (4)

The function f is obtained by applying the selected learning method to the training
set, S , so that f is a good estimator for new unseen data, i.e.

y ≈ ŷ = f̂ (xnew) . (5)

In machine learning, f is called the predictor, because its task is to predict the outcome
yi based on the input value of xi. Two popular predictors are the regressor and classifier,
described by:

f (x) =
{

regressor: if y ∈ R
classi f ier: if y ∈ {0, 1} . (6)

In other words, when the output variable y is continuous or quantitative, the learning
problem is a regression problem. But, if y predicts a discrete or categorical value, it is a
classification problem.

In case, when the predictor f is parameterized by a vector θ ∈ Rn, it describes a para-
metric model. In this setup, the problem of estimating f reduces down to one of estimating
the parameters θ = [θ1, θ2, ...θn]T . In most practical applications, the observed data are
noisy versions of the expected values that would be obtained under ideal circumstances.
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These unavoidable errors, prevent the extraction of true parameters from the observations.
With this in regard, the generic data model may be expressed as

y = f (x) + ε , (7)

where f (x) is the model and ε are additive measurement errors and other discrepancies.
The goal of ML is to find the input-output relation that will “best” match the noisy obser-
vations. Hence, the vector θ may be estimated by solving a (convex) optimization problem.
First, a loss or cost function l(x, y,θ) is set, which is a (point-wise) measure of the error
between the observed data point yi and the model prediction f̂ (xi) for each value of θ.
However, θ is estimated on the whole training set, S , not just one example. For this task,
the average loss over all training examples called training loss, J, is calculated:

J(θ) ≡ J(S,θ) =
1
m ∑

(xi ,yi)∈S
l(xi, yi,θ) , (8)

where S indicates that the error is calculated on the instances from the training set and
i = 1, ...m. The vector θ that minimizes the training loss J(θ), that is

argmin
θ∈Rn

J(θ) , (9)

will give the desired model. Once the model is estimated, for any given input x, the
prediction for y can be made with ŷ = θTx.

The prediction accuracy of ML models heavily depends on the choice of the data
representation or features used for training. For that reason, much effort in designing ML
models goes into the composition of pre-processing and data transformation chains that
result in a representation of the data that can support effective ML predictions. Informally,
this is referred to as feature engineering. Feature engineering is the process of extracting,
combining and manipulating features by taking advantage of human ingenuity and prior
expert knowledge to arrive at more representative ones. The feature extractor φ transforms
the data vector d ∈ Rd into a new form, x ∈ Rn, n <= d, more suitable for making
predictions, that is

φ(d) : d→ x . (10)

For instance, the authors of [29] engineered features from the RSSI (Received Signal
Strength Indication) distribution to identify wireless signals. The importance of feature
engineering highlights the bottleneck of ML algorithms: their inability to automatically
extract the discriminative information from data. Feature learning is a branch of machine
learning that moves the concept of learning from “learning the model” to “learning the
features”. One popular feature learning method is deep learning, in detail discussed in
Section 4.3.9.

4.2. Types of Learning Paradigms

This section discussed various types of learning paradigms in ML, summarized in
Figure 6.
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Figure 6. Summary of types of learning paradigms.

4.2.1. Supervised vs. Unsupervised vs. Semi-Supervised Learning

Learning can be categorized by the amount of knowledge or feedback that is given to
the learner as either supervised or unsupervised.

Supervised Learning

Supervised learning utilizes predefined inputs and known outputs to build a system
model. The set of inputs and outputs forms the labeled training dataset that is used to
teach a learning algorithm how to predict future outputs for new inputs that were not
part of the training set. Supervised learning algorithms are suitable for wireless network
problems where prior knowledge about the environment exists and data can be labeled. For
example, predict the location of a mobile node using an algorithm that is trained on
signal propagation characteristics (inputs) at known locations (outputs). Various challenges
in wireless networks have been addressed using supervised learning such as: medium
access control [30–33], routing [34], link quality estimation [35,36], node clustering in
WSN [37], localization [38–40], adding reasoning capabilities for cognitive radios [41–47],
etc. Supervised learning has also been extensively applied to different types of wireless
networks application such as: human activity recognition [48–53], event detection [54–58],
electricity load monitoring [59,60], security [61–63], etc. Some of these works will be
analyzed in more detail later.

Unsupervised Learning

Unsupervised learning algorithms try to find hidden structures in unlabeled data. The
learner is provided only with inputs without known outputs, while learning is performed
by finding similarities in the input data. As such, these algorithms are suitable for wireless
network problems where no prior knowledge about the outcomes exists, or annotating data
(labelling) is difficult to realize in practice. For instance, automatic grouping of wireless
sensor nodes into clusters based on their current sensed data values and geographical
proximity (without knowing a priori the group membership of each node) can be solved
using unsupervised learning. In the context of wireless networks, unsupervised learning
algorithms are widely used for: data aggregation [64], node clustering for WSNs [64–67],
data clustering [68–70], event detection [71] and several cognitive radio applications [72,73],
dimensionality reduction [74], etc.
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Semi-Supervised Learning

Several mixes between the two learning methods exist and materialize into semi-
supervised learning [75]. Semi-supervised learning is used in situations when a small
amount of labeled data with a large amount of unlabeled data exists. It has great practical
value because it may alleviate the cost of rendering a fully labeled training set, especially in
situations where it is infeasible to label all instances. For instance, in human activity recog-
nition systems where the activities change very fast so that some activities stay unlabeled
or the user is not willing to cooperate in the data collection process, supervised learning
might be the best candidate to train a recognition model [76–78]. Other potential use cases
in wireless networks might be localization systems where it can alleviate the tedious and
time-consuming process of collecting training data (calibration) in fingerprinting-based
solutions [79] or semi-supervised traffic classification [80], etc.

4.2.2. Offline vs. Online vs. Active Learning

Learning can be categorized depending on the way the information is given to the
learner as either offline or online learning. In offline learning the learner is trained on the
entire training data at once, while in online learning the training data becomes available in
a sequential order and is used to update the representation of the learner in each iteration.

Offline Learning

Offline learning is used when the system that is being modeled does not change its
properties dynamically. Offline learned models are easy to implement because the models
do not have to keep on learning constantly, and they can be easily retrained and redeployed
in production. For example, in [81] a learning-based link quality estimator is implemented
by deploying an offline trained model into the network stack of Tmote Sky wireless nodes.
The model is trained based on measurements about the current status of the wireless
channel that are obtained from extensive experiment setups from a wireless testbed.

Another use cases are human activity recognition systems, where an offline trained
classifier is deployed to recognize actions from users. The classifier model can be trained
based on information extracted from raw measurements collected by sensors integrated in
a smartphone, which is at the same time the central processing unit that implements the
offline learned model for online activity recognition [82].

Online Learning

Online learning is useful for problems where training examples arrive one at a time
or when due to limited resources it is computationally infeasible to train over the entire
dataset. For instance, in [83] a decentralized learning approach for anomaly detection
in wireless sensor networks is proposed. The authors concentrate on detection methods
that can be applied online (i.e., without the need of an offline learning phase) and that are
characterized by a limited computational footprint, so as to accommodate the stringent
hardware limitations of WSN nodes. Another example can be found in [84], where the
authors propose an online outlier detection technique that can sequentially update the
model and detect measurements that do not conform to the normal behavioral pattern of
the sensed data, while maintaining the resource consumption of the network to a minimum.

Active Learning

A special form of online learning is active learning where the learner first reasons about
which examples would be most useful for training (taking as few examples as possible) and
then collects those examples. Active learning has proven to be useful in situations when
it is expensive to obtain samples from all variables of interest. For instance, the authors
in [85] proposed a novel active learning approach (for graphical model selection problems),
where the goal is to optimize the total number of scalar samples obtained by allowing the
collection of samples from only subsets of the variables. This technique could for instance
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alleviate the need for synchronizing a large number of sensors to obtain samples from all
the variables involved simultaneously.

Active learning has been a major topic in recent years in ML and an exhaustive
literature survey is beyond the scope of this paper. We refer the reader for more details on
active learning algorithms to [86–88].

4.3. Machine Learning Algorithms

This section reviews popular ML algorithms used in wireless networks research.

4.3.1. Linear Regression

Linear regression is a supervised learning technique used for modeling the relationship
between a set of input (independent) variables (x) and an output (dependent) variable (y),
so that the output is a linear combination of the input variables:

y = f (x) := θ0 + θ1x1 + ... + θnxn + ε = θ0 +
n

∑
j=1

θjxj , (11)

where x = [x1, ...xn]T , and θ = [θ0, θ1, ...θn]T is the estimated parameter vector from a given
training set (yi, xi), i = 1, 2, ...m.

4.3.2. Nonlinear Regression

Nonlinear regression is a supervised learning technique which models the observed
data by a function that is a nonlinear combination of the model parameters and one or
more independent input variables. An example of nonlinear regression is the polynomial
regression model defined by:

y = f (x) := θ0 + θ1x + θ2x2 + ... + θnxn , (12)

4.3.3. Logistic Regression

Logistic regression [89] is a simple supervised learning algorithm widely used for
implementing linear classification models, meaning that the models define smooth linear
decision boundaries between different classes. At the core of the learning algorithm is the
logistic function which is used to learn the model parameters and predict future instances.
The logistic function, f (z), is given by 1 over 1 plus e to the minus z, that is:

f (z) =
1

1 + e−z , (13)

where, z := θ0 + θ1x1 + θ2x2 + ... + θnxn, where x1, x2, ...xn are the independent (input)
variables, that we wish to use to describe or predict the dependent (output) variable
y = f (z).

The range of f (z) is between 0 and 1, regardless of the value of z, which makes it
popular for classification tasks. Namely, the model is designed to describe a probability,
which is always some number between 0 and 1.

4.3.4. Decision Trees

Decision trees (DT) [90] is a supervised learning algorithm that creates a tree-like
graph or model that represents the possible outcomes or consequences of using certain
input values. The tree consists of one root node, internal nodes called decision nodes which
test its input against a learned expression, and leaf nodes which correspond to a final
class or decision. The learning tree can be used to derive simple decision rules that can be
used for decision problems or for classifying future instances by starting at the root node
and moving through the tree until a leaf node is reached where a class label is assigned.
However, decision trees can achieve high accuracy only if the data is linearly separable,
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i.e., if there exists a linear hyperplane between the classes. Hence, constructing an optimal
decision tree is NP-complete [91].

There are many algorithms that can form a learning tree such as the simple Iterative
Dichotomiser 3 (ID3), its improved version C4.5, etc.

4.3.5. Random Forest

Random forests (RF) are bagged decision trees. Bagging is a technique which involves
training many classifiers and considering the average output of the ensemble. In this way,
the variance of the overall ensemble classifier can be greatly reduced. Bagging is often used
with DTs as they are not very robust to errors due to variance in the input data. Random
forest are created by the following Algorithm 1:

Algorithm 1: Random Forest.
Input: Training set D
Output: Predicted value h(x)
Procedure:
• Sample k datasets D1, ...Dk from D with replacement.
• For each Di train a decision tree classifier hi() to the maximum depth and when splitting the tree only consider a

subset of features l. If d is the number of features in each training example, the parameter l <= d is typically set
to l =

√
d.

• The ensemble classifier is then the mean or majority vote output decision out of all decision trees.

Figure 7 illustrates this process.

. . . 

Input dataset

Subset

𝐷

𝐷1 Subset 𝐷2 Subset 𝐷𝑘

Tree 1 Tree 2 Tree k

Output 1

Predicted 
value 

Output 2 Output k

Majority vote/Mean

Figure 7. Graphical formulation for Random Forest.

4.3.6. SVM

Support Vector Machine (SVM) [92] is a learning algorithm that solves classification
problems by first mapping the input data into a higher-dimensional feature space in which
it becomes linearly separable by a hyperplane, which is used for classification. In Support
vector regression, this hyperplane is used to predict the continuous value output. The
mapping from the input space to the high-dimensional feature space is non-linear, which
is achieved using kernel functions. Different kernel functions comply best for different



Electronics 2021, 10, 318 15 of 63

application domains. The most common kernel functions used in SVM are: linear kernel,
polynomial kernel and basis kernel function (RBF), given as:

k(xi, xj) = xT
i xjk(xi, xj) = (xT

i xj + 1)dk(xi, xj) = e−
(xi−xj)

2

σ2 (14)

where σ is a user defined parameter.

4.3.7. k-NN

k nearest neighbors (k-NN) [93] is a learning algorithm that can solve classification
and regression problems by looking into the distance (closeness) between input instances.
It is called a non-parametric learning algorithm because, unlike other supervised learning
algorithms, it does not learn an explicit model function from the training data. Instead, the
algorithm simply memorizes all previous instances and then predicts the output by first
searching the training set for the k closest instances and then: (1) for classification-predicts
the majority class amongst those k nearest neighbors, while (2) for regression-predicts
the output value as the average of the values of its k nearest neighbors. Because of this
approach, k-NN is considered a form of instance-based or memory-based learning.

k-NN is widely used since it is one of the simplest forms of learning. It is also
considered as lazy learning as the learner is passive until a prediction has to be performed,
hence no computation is required until performing the prediction task. The pseudocode
for k-NN [94] is summarized in Algorithm 2.

Algorithm 2: k-NN.
Input: (yi, xi): Training set, i = 1, 2, ...m; s: unknown sample
Output: Predicted value f (x)
Procedure: for i← 1 to m do

Compute distance d(xi, s)
end
1. Compute set I containing indices f or the k smallest distances d(xi, s)
2. f (x)←majority label/mean value for {yi where i ∈ I}
return f (x)

4.3.8. k-Means

k-Means is an unsupervised learning algorithm used for clustering problems. The
goal is to assign a number of points, x1, ...xm into K groups or clusters, so that the resulting
intra-cluster similarity is high, while the inter-cluster similarity low. The similarity is
measured with respect to the mean value of the data points in a cluster. Figure 8 illustrates
an example of k-means clustering, where K = 3 and the input dataset consisting of two
features with data points plotted along the x and y axis.

On the left side of Figure 8 are data points before k-means is applied, while on the
right side are the identified 3 clusters and their centroids represented with squares.

The pseudocode for k-means [94] is summarized in Algorithm 3.

Cluster 3

Cluster 2

Cluster 1
k-Means

?

Figure 8. Graphical formulation for k-Means.
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Algorithm 3: k-means.
Input: K: The number of desired clusters; X = {x1, x2, ...xm}: Input dataset with

m data points
Output: A set of K clusters
Procedure:
1. Set the cluster centroids µk, k = 1, ...K to arbitrary values;
2. while no change in µk do

(a) (Re)assign each item xi to the cluster with the closest centroid.
(b) Update µk, k = 1, ...K, as the mean value of the data points in each

cluster.
end

return K clusters

4.3.9. Neural Networks

Neural Networks (NN) [95] or artificial neural networks (ANN) is a supervised
learning algorithm inspired on the working of the brain, that is typically used to derive
complex, non-linear decision boundaries for building a classification model, but are also
suitable for training regression models when the goal is to predict real-valued outputs
(regression problems are explained in Section 5.1). Neural networks are known for their
ability to identify complex trends and detect complex non-linear relationships among
the input variables at the cost of higher computational burden. A neural network model
consists of one input, a number of hidden layers and one output layer, as shown on
Figure 9.

Figure 9. Graphical formulation for Neural networks.

The formulation for a single layer is as follow:

y = g(wTx + b) , (15)

where x is a training example input, and y is the layer output, w are the layer weights,
while b is the bias term.

The input layer corresponds to the input data variables. Each hidden layer consists of
a number of processing elements called neurons that process its inputs (the data from the
previous layer) using an activation or transfer function that translates the input signals to
an output signal, g(). Commonly used activation functions are: unit step function, linear
function, sigmoid function and the hyperbolic tangent function. The elements between
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each layer are highly connected by connections that have numeric weights that are learned
by the algorithm. The output layer outputs the prediction (i.e., the class) for the given
inputs and according to the interconnection weights defined through the hidden layer. The
algorithm is again gaining popularity in recent years because of new techniques and more
powerful hardware that enable training complex models for solving complex tasks. In
general, neural networks are said to be able to approximate any function of interest when
tuned well, which is why they are considered as universal approximators [96].

Deep Neural Networks

Deep neural networks are a special type of NNs consisting of multiple layers able to
perform feature transformation and extraction. Opposed to a traditional NN, they have the
potential to alleviate manually extracting features, which is a process that depends much
on prior knowledge and domain expertise [97].

Various deep learning techniques exist, including: deep neural networks (DNN),
convolutional neural networks (CNN), recurrent neural networks (RNN) and deep belief
networks (DBN), which have shown success in various fields of science including computer
vision, automatic speech recognition, natural language processing, bioinformatics, etc., and
increasingly also in wireless networks.

Convolutional Neural Networks

Convolutional neural networks (CNN) perform feature learning via non-linear trans-
formations implemented as a series of nested layers. The input data is a multidimensional
data array, called tensor, that is presented at the visible layer. This is typically a grid-like
topological structure, e.g., time-series data, which can be seen as a 1D grid taking samples
at regular time intervals, pixels in images with a 2D layout, a 3D structure of videos, etc.
Then a series of hidden layers extract several abstract features. Hidden layers consist of a
series of convolution, pooling and fully-connected layers, as shown on Figure 10.

Those layers are “hidden” because their values are not given. Instead, the deep
learning model must determine which data representations are useful for explaining the
relationships in the observed data. Each convolution layer consists of several kernels (i.e.,
filters) that perform a convolution over the input; therefore, they are also referred to as
convolutional layers. Kernels are feature detectors, that convolve over the input and produce
a transformed version of the data at the output. Those are banks of finite impulse response
filters as seen in signal processing, just learned on a hierarchy of layers. The filters are
usually multidimensional arrays of parameters that are learnt by the learning algorithm [98]
through a training process called backpropagation.

Input data

Feature maps

…

Pooled
Feature maps

Convolution Pooling Fully connected Fully connected

OutputFlatten

…

so
ftm

ax

Figure 10. Graphical formulation of Convolutional Neural Networks.
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For instance, given a two-dimensional input x, a two-dimensional kernel h computes
the 2D convolution by

(x ∗ h)i,j = x[i, j] ∗ h[i, j] = ∑
n

∑
m

x[n, m] · h[i− n][j−m] (16)

i.e., the dot product between their weights and a small region they are connected to in the
input.

After the convolution, a bias term is added and a point-wise nonlinearity g is applied,
forming a feature map at the filter output. If we denote the l-th feature map at a given
convolutional layer as hl , whose filters are determined by the coefficients or weights W l , the
input x and the bias bl , then the feature map hl is obtained as follows

hl
i,j = g((W l ∗ x)ij + bl) , (17)

where ∗ is the 2D convolution defined by Equation (16), while g(·) is the activation function.
Common activation functions encountered in deep neural networks are the rectifier

that is defined as
g(x) = x+ = max(0, x) , (18)

the hyperbolic tangent function, tanh, g(x) = tanh(x), that is defined as

tanh(x) =
2

1 + e−2x − 1 , (19)

and the sigmoid activation, g(x) = σ(x), defined as

σ(x) =
1

1 + e−x . (20)

The sigmoid activation is rarely used because its activations saturate at either tail
of 0 or 1 and they are not centered at 0 as is the tanh. The tanh normalizes the input
to the range [−1, 1], but compared to the rectifier its activations saturate which causes
unstable gradients. Therefore, the rectifier activation function is typically used for CNNs.
Kernels using the rectifier are called ReLU (Rectified Linear Unit) and have shown to
greatly accelerate the convergence during the training process compared to other activation
functions. They also do not cause vanishing or exploding of gradients in the optimization
phase when minimizing the cost function. In addition, the ReLU simply thresholds the
input, x, at zero, while other activation functions involve expensive operations.

In order to form a richer representation of the input signal, commonly, multiple filters
are stacked so that each hidden layer consists of multiple feature maps, {h(l), l = 0, ...L}
(e.g., L = 64, 128, ..., etc.). The number of filters per layer is a tunable parameter or hyper-
parameter. Other tunable parameters are the filter size, the number of layers, etc. The
selection of values for hyper-parameters may be quite difficult, and finding it commonly
is much an art as it is science. An optimal choice may only be feasible by trial and error.
The filter sizes are selected according to the input data size so as to have the right level of
“granularity” that can create abstractions at the proper scale. For instance, for a 2D square
matrix input, such as spectrograms, common choices are 3× 3, 5× 5, 9× 9, etc. For a wide
matrix, such as a real-valued representation of the complex I and Q samples of the wireless
signal in R2×N , suitable filter sizes may be 1× 3, 2× 3, 2× 5, etc.

After a convolutional layer, a pooling layer may be used to merge semantically similar
features into one. In this way, the spatial size of the representation is reduced which reduces
the amount of parameters and computation in the network. Examples of pooling units are
max pooling (computes the maximum value of a local patch of units in one feature map),
neighbouring pooling (takes the input from patches that are shifted by more than one row or
column, thereby reducing the dimension of the representation and creating an invariance
to small shifts and distortions, etc.
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The penultimate layer in a CNN consists of neurons that are fully-connected with
all feature maps in the preceding layer. Therefore, these layers are called fully-connected
or dense layers. The very last layer is a softmax classifier, which computes the posterior
probability of each class label over K classes as

ŷi =
ezi

∑K
j=1 ezj

, i = 1, ...K (21)

That is, the scores zi computed at the output layer, also called logits, are translated
into probabilities. A loss function, l, is calculated on the last fully-connected layer that
measures the difference between the estimated probabilities, ŷi, and the one-hot encoding
of the true class labels, yi. The CNN parameters, θ, are obtained by minimizing the loss
function on the training set {xi, yi}i∈S of size m,

min
θ

∑
i∈S

l(ŷi, yi) , (22)

where l(.) is typically the mean squared error l(y, ŷ) = ‖y− ŷ‖2
2 or the categorical cross-

entropy l(y, ŷ) = ∑m
i=1 yilog(ŷi) for which a minus sign is often added in front to get the

negative log-likelihood. Then the softmax classifier is trained by solving an optimization
problem that minimizes the loss function. The optimal solution are the network parameters
that fully describe the CNN model. That is θ̂ = argmin

θ

J(S,θ).

Currently, there is no consensus about the choice of the optimization algorithm. The
most successful optimization algorithms seem to be: stochastic gradient descent (SGD),
RMSProp, Adam, AdaDelta, etc. For a comparison on these, we refer the reader to [99].

To control over-fitting, typically regularization is used in combination with dropout,
which is a new extremely effective technique that “drops out” a random set of activations
in a layer. Each unit is retained with a fixed probability p, typically chosen using a
validation set, or set to 0.5 which has shown to be close to optimal for a wide range of
applications [100].

Recurrent Neural Networks

Recurrent neural networks (RNN) [101] are a type of neural networks where con-
nections between nodes form a directed graph along a temporal sequence. They are
called recurrent because of the recurrent connections between the hidden units. This is
mathematically denoted as:

h(t) = f (h(t−1), x(t); θ) (23)

where function f is the activation output of a single unit, h(i) are the state of the hidden
units at time i, x(i) is the input from the sequence at time index i, y(i) is the output at time i,
while θ are the network weight parameters used to compute the activation at all indices.
Figure 11 shows a graphical representation of RNNs.

𝑦(𝑡)

h(𝑡)

x(𝑡)

𝑦(1) 𝑦(2) 𝑦(𝑇)

h(1) h(2) h(𝑇)

x(1) x(2) x(𝑇)

…

Figure 11. Graphical formulation of Recurrent Neural Networks.
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The left part of Figure 11 presents the “folded” network, while the right part the
“unfolded” network with its recurrent connections propagating information forward in
time. An activation functional is applied in the hidden units and the so f tmax may be used
to calculate the prediction.

There are various extensions of RNNs. A popular extension are LSTMs, which aug-
ment the traditional RNN model by adding a self-loop on the state of the network to better
“remember” relevant information over longer periods in time.

5. Data Science Problems in Wireless Networks

The ultimate goal of data science is to extract knowledge from data, i.e., turn data
into real value [102]. At the heart of this process are severe algorithms that can learn
from and make predictions on data, i.e., machine learning algorithms. In the context of
wireless networks, learning is a mechanism that enables context awareness and intelli-
gence capabilities in different aspects of wireless communication. Over the last years, it
has gained popularity due to its success in enhancing network-wide performance (i.e.,
QoS) [103], facilitating intelligent behavior by adapting to complex and dynamically chang-
ing (wireless) environments [104] and its ability to add automation for realizing concepts
of self-healing and self-optimization [105]. During the past years, different data-driven
approaches have been studied in the context of: mobile ad hoc networks [106], wireless
sensor networks [107], wireless body area networks [50], cognitive radio networks [108,109]
and cellular networks [110]. These approaches are focused on addressing various topics
including: medium access control [30,111], routing [81,112], data aggregation and clus-
tering [64,113], localization [114,115], energy harvesting communication [116], spectrum
sensing [44,47], etc.

As explained in Section 4.1, prior to applying ML to a wireless networking problem,
the problem needs to be first formulated as an adequate data mining task.

This section explains the following types of problems:

• Regression
• Classification
• Clustering
• Anomaly Detection

For each problem type, several wireless networking case studies are discussed together
with the ML algorithms that are applied to solve the problem.

5.1. Regression

Regression is suitable for problems that aim to predict a real-valued output variable,
y, as illustrated on Figure 12. Given a training set, S , the goal is to estimate a function, f ,
whose graph fits the data. Once the function f is found, when an unknown point arrives,
it is able to predict the output value. This function f is known as the regressor, and is
defined as:

y = f (x) = θ0 + θ1x1 + ... + θnxn (24)

where θ0, ...θn are the function parameters.
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Figure 12. Illustration of regression.

Depending on the function representation, regression techniques are typically cate-
gorized into linear and non-linear regression algorithms, as explained in Section 4.3. For
example, linear channel equalization in wireless communication can be seen as a regression
problem.

5.1.1. Regression Example 1: Indoor Localization

In the context of wireless networks, linear regression is frequently used to derive an
empirical log-distance model for the radio propagation characteristics as a linear mathe-
matical relationship between the RSSI, usually in dBm, and the distance. This model can
be used in RSSI-based indoor localization algorithms to estimate the distance towards each
fixed node (i.e., anchor node) in the ranging phase of the algorithm [114].

5.1.2. Regression Example 2: Link Quality Estimation

Non-linear regression techniques are extensively used for modeling the relation be-
tween the PRR (Packet Reception Rate) and the RSSI, as well as between PRR and the
Link Quality Indicator (LQI), to build a mechanism to estimate the link quality based on
observations (RSSI, LQI) [117].

5.1.3. Regression Example 3: Mobile Traffic Demand Prediction

The authors in [118] use ML to optimize network resource allocation in mobile net-
works. Namely, each base station observes the traffic of a particular network slice in a
mobile network. Then, a CNN model uses this information to predict the capacity required
to accommodate the future traffic demands for services associated to each network slice. In
this way, each slice gets optimal resources allocated.

5.2. Classification

A classification problem tries to understand and predict discrete values or categories.
The term classification comes from the fact that it predicts the class membership of a
particular input instance, as shown on Figure 13. Hence, the goal in classification is to
assign an unknown pattern to one out of a number of classes that are considered to be
known. For example, in digital communications, the process of demodulation can be
viewed as a classification problem. Upon receiving the modulated transmitted signal,
which has been impaired by propagation effects (i.e., the channel) and noise, the receiver
has to decide which data symbol (out of a finite set) was originally transmitted. To evaluate
the quality of the classification results, an intuitive way is to count the number of test
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examples that are assigned to the right groups, which is also referred to as the accuracy
rate (AR) defined by

AR =
Nc

Nt
, (25)

where Nc denotes the number of test examples correctly assigned to the groups to which
they belong; Nt the number of test patterns. To measure the details of the classification
results, the so-called precision, P = TP/(TP + FP), and recall, R = TP/(TP + FN), are
commonly used.

Figure 13. Illustration of classification.

Classification problems can be solved by supervised learning approaches, that aim
to model boundaries between sets (i.e., classes) of similar behaving instances, based on
known and labeled (i.e., with defined class membership) input values. There are many
learning algorithms that can be used to classify data including decision trees, k-nearest
neighbours, logistic regression, support vector machines, neural networks, convolutional
neural networks, etc.

5.2.1. Classification Example 1: Cognitive MAC Layer

We consider the problem of designing an adaptive MAC layer as an application
example of decision trees in wireless networks. In [30] a self-adapting MAC layer is
proposed. It is composed of two parts: (i) a reconfigurable MAC architecture that can
switch between different MAC protocols at run time, and (ii) a trained MAC engine that
selects the most suitable MAC protocol for the current network condition and application
requirements. The MAC engine is solved as a classification problem using a decision tree
classifier which is learned based on: (i) two types of input variables which are (1) network
conditions reflected through the RSSI statistics (i.e., mean and variance), and (2) the current
traffic pattern monitored through the Inter-Packet Interval (IPI) statistics (i.e., mean and
variance) and application requirements (i.e., reliability, energy consumption and latency),
and (ii) the output which is the MAC protocol that is to be predicted and selected.

5.2.2. Classification Example 2: Intelligent Routing in WSN

Liu et al. [81] improved multi-hop wireless routing by creating a data-driven learning-
based radio link quality estimator. They investigated whether machine learning algorithms
(e.g., logistic regression, neural networks) can perform better than traditional, manually-
constructed, pre-defined estimators such as STLE (Short-Term Link Estimator) [119] and
4 Bit (Four-Bit) [120]. Finally, they selected logistic regression as the most promising model
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for solving the following classification problem: predict whether the next packet will be
successfully received, i.e., output class is 1, or lost, i.e., output class is 0, based on the
current wireless channel conditions reflected by statistics of the PRR, RSSI, SNR and LQI.

While in [81] the authors used offline learning to do prediction, in their follow-up
work [112], they went a step further and both training and prediction were performed
online by the nodes themselves using logistic regression with online learning (more specif-
ically the stochastic gradient descent online learning algorithm). The advantage of this
approach is that the learning and thus the model, adapt to changes in the wireless channel,
that could otherwise be captured only by re-training the model offline and updating the
implementation on the node.

5.2.3. Classification Example 3: Wireless Signal Classification

ML has been extensively used in cognitive radio applications to perform signal clas-
sification. For this purpose, typically flexible and reconfigurable SDR (software defined
radio) platforms are used to sense the environment to obtain information about the wire-
less channel conditions and users’ requirements, while intelligent algorithms build the
cognitive learning engine that can make decisions on those reconfigurable parameters on
SDR (e.g., carrier frequency, transmission power, modulation scheme).

In [44,47,121] SVMs are used as the machine learning algorithm to classify signals
among a given set of possible modulation schemes. For instance, Huang et al. [47] iden-
tified four spectral correlation features that can be extracted from signals for distinction
of different modulation types. Their trained SVM classifier was able to distinguish six
modulation types with high accuracy: AM, ASK, FSK, PSK, MSK and QPSK.

5.3. Clustering

Clustering can be used for problems where the goal is to group sets of similar instances
into clusters, as shown on Figure 14.

Figure 14. Illustration of clustering.

Opposed to classification, it uses unsupervised learning, which means that the input
dataset instances used for training are not labeled, i.e., it is unknown to which group they
belong. Given a set of unlabeled patterns X = {x1, x2, ...xn} in a d-dimensional space, the
output of a clustering algorithm is a partitioning of X into k clusters P = {p1, p2...pk}. The
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output of a clustering problem also consists of a set of means or centroids C = {c1, c2, ...ck}.
A simple method for computing the means is as follows:

ci =
1
|pi| ∑

∀x∈pi

x , (26)

Clustering algorithms are widely adopted in wireless sensor networks, where they
have found use for grouping sensor nodes into clusters to satisfy scalability and energy
efficiency objectives, and finally elect the head of each cluster. A significant number of node
clustering algorithms tends to be proposed for WSNs [122]. However, these node clustering
algorithms typically do not use the data science clustering techniques directly. Instead,
they exploit data clustering techniques to find data correlations or similarities between data
of neighboring nodes, that can be used to partition sensor nodes into clusters.

Clustering can be used to solve other types of problems in wireless networks like
anomaly detection, i.e., outliers detection, such as intrusion detection or event detection, for
different data pre-processing tasks, cognitive radio application (e.g., identifying wireless
systems [73]), etc. There are many learning algorithms that can be used for clustering,
but the most commonly used is k-Means. Other popular clustering algorithms include
hierarchical clustering methods such as single-linkage, complete-linkage, centroid-linkage;
graph theory-based clustering such as highly connected subgraphs (HCS), cluster affinity
search technique (CAST); kernel-based clustering as is support vector clustering (SVC),
etc. A novel two-level clustering algorithm, namely TW-k-means, has been introduced by
Chen et al. [113]. For a more exhaustive list of clustering algorithms and their explanation
we refer the reader to [123]. Several clustering approaches have shown promise for design-
ing efficient data aggregation for more efficient communication strategies in low power
wireless sensor networks constrained. Given the fact that the most of the energy on the
sensor nodes is consumed while the radio is turned on, i.e., while sending and receiving
data [124], clustering may help to aggregate data in order to reduce transmissions and
hence energy consumption.

5.3.1. Clustering Example 1: Summarizing Sensor Data

In [68] a distributed version of the k-Means clustering algorithm was proposed for
clustering data sensed by sensor nodes. The clustered data is summarized and sent towards
a sink node. Summarizing the data ensures to reduce the communication transmission,
processing time and power consumption of the sensor nodes.

5.3.2. Clustering Example 2: Data Aggregation in WSN

In [64] a data aggregation scheme is proposed for in-network data summarization to
save energy and reduce computation in wireless sensor nodes. The proposed algorithm
uses clustering to form clusters of nodes sensing similar values within a given threshold.
Then, only one sensor reading per cluster is transmitted which lowered extremely the
number of transmissions in the wireless sensor network.

5.3.3. Clustering Example 3: Radio Signal Identification

The authors of [74] use clustering to separate and identify radio signal classes without
to alleviate the need of using explicit class labels on examples of radio signals. First,
dimensionality reduction is performed on signal examples to transform the signals into a
space suitable for signal clustering. Namely, given an appropriate dimensionality reduction,
signals are turned into a space where signals of the same or similar type have a low
distance separating them while signals of differing types are separated by larger distances.
Classification of radio signal types in such a space then becomes a problem of identifying
clusters and associating a label with each cluster. The authors used the DBSCAN clustering
algorithm [125].



Electronics 2021, 10, 318 25 of 63

5.4. Anomaly Detection

Anomaly detection (changes and deviation detection) is used when the goal is to
identify unusual, unexpected or abnormal system behavior. This type of problem can be
solved by supervised or unsupervised learning depending on the amount of knowledge
present in the data (i.e., whether it is labeled or unlabeled, respectively).

Accordingly, classification and clustering algorithms can be used to solve anomaly
detection problems. Figure 15 illustrates anomaly detection. A wireless example is the detec-
tion of suddenly occurring phenomena, such as the identification of suddenly disconnected
networks due to interference or incorrect transmission power settings. It is also widely used
for outliers detection in the pre-processing phase [126]. Other use-case examples include
intrusion detection, fraud detection, event detection in sensor networks, etc.

anomalies

Figure 15. Illustration of anomaly detection.

5.4.1. Anomaly Detection Example 1: WSN Attack Detection

WSNs have been target of many types of DoS attacks. The goal of DoS attacks in WSNs
is to transmit as many packets as possible whenever the medium is detected to be idle. This
prevents a legitimate sensor node from transmitting their own packets. To combat a DoS
attack, a secure MAC protocol based on neural networks has been proposed in [31]. The
NN model is trained to detect an attack by monitoring variations of following parameters:
collision rate Rc, average waiting time of a packet in MAC buffer Tw, arrival rate of RTS
packets RRTS. An anomaly, i.e., attack, is identified when the monitored traffic variations
exceeds a preset threshold, after which the WSN node is switched off temporarily. The
results is that flooding the network with untrustworthy data is prevented by blocking only
affected sensor nodes.

5.4.2. Anomaly Detection Example 2: System Failure and Intrusion Detection

In [83] online learning techniques have been used to incrementally train a neural
network for in-node anomaly detection in wireless sensor network. More specifically, the
Extreme Learning Machine algorithm [127] has been used to implement classifiers that
are trained online on resource-constrained sensor nodes for detecting anomalies such as:
system failures, intrusion, or unanticipated behavior of the environment.

5.4.3. Anomaly Detection Example 3: Detecting Wireless Spectrum Anomalies

In [128] wireless spectrum anomaly detection has been studied. The authors use
Power Spectral Density (PSD) data to detect and localize anomalies (e.g., unwanted signals
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in the licensed band or the absence of an expected signal) in the wireless spectrum using a
combination of Adversarial autoencoders (AAEs), CNN and LSTM.

6. Machine Learning for Performance Improvements in Wireless Networks

Obviously, machine learning is increasingly used in wireless networks [27]. After
carefully looking at the literature, we identified two distinct categories or objectives where
machine learning empowers wireless networks with the ability to learn and infer from data
and extract patterns:

• Performance improvements of the wireless networks based on performance indica-
tors and environmental insights (e.g., about the radio medium) as input, acquired from
the devices. These approaches exploit ML to generate patterns or make predictions,
which are used to modify operating parameters at the PHY, MAC and network layer.

• Information processing of data generated by wireless devices at the application layer.
This category covers various applications such as: IoT environmental monitoring
applications, activity recognition, localization, precision agriculture, etc.

This section presents tasks related to each of the aforementioned objectives achieved
via ML and discusses existing work in the domain. First, the works are broadly summarized
in tabular form in Table 2, followed by a detailed discussion of the most important works
in each domain.

The focus of this paper is on the first category related to ML for performance im-
provement of wireless networks, therefore, a comprehensive overview of the existing work
addressing problems pertaining to communication performance by making use of ML
techniques is presented in the forthcoming subsection. These works provide a promising di-
rection towards solving problems caused by the proliferation of wireless devices, networks
and technologies in the near future, including: problems with interference (co-channel
interference, inter-cell interference, cross technology interference, multi user interference,
etc.), non-adaptive modulation scheme, static non-application cognizant MAC, etc.

Table 2. An overview of the applications of machine learning in wireless networks.

Goal Scope/Area Example of Problem References

Performance Improvement

Radio spectrum analysis • AMR [74,129–176]

•Wireless interference identification [128,169,177–193]

MAC analysis
•MAC identification [194–199]
•Wireless interference detection at packet level [200–203]
• Spectrum prediction [204–209]

Network prediction • Network performance prediction [30,81,112,210–216]
• Network traffic prediction [30,81,112,210–217]

Information processing

IoT Infrastructure monitoring

• Smart farming
• Smart mobility [4–7]
• Smart city [218–221]
• Smart grid

Wireless security Device fingerprinting [222–228]

Wireless localization • Indoor [229–234]• Outdoor

Activity recognition Via wireless signals [235–239]

6.1. Machine Learning Research for Performance Improvement

Data generated during monitoring of wireless networking infrastructure (e.g., through-
put, end-to-end delay, jitter, packet loss, etc.) and by the wireless sensor devices (e.g.,
spectrum monitoring) and analyzed by ML techniques has the potential to optimize wire-
less networks configurations, thereby improving end-users’ QoE. Various works have
applied ML techniques for gaining insights that can help improve the network perfor-
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mance. Depending on the type of data used as input for ML algorithms, we first categorize
the researched literature into three types, summarized in Table 2:

• Radio spectrum analysis
• Medium access control (MAC) analysis
• Network prediction

Furthermore, within each of the above categories, we identified several classes of
research approaches illustrated in Figure 16. In what follows, the work in these directions
is reviewed and each class is presented in tabular form throughout Tables 3–7. Below is a
definition of the columns used in these tables:

[Research Problem] The problem addressed in the work.
[Performance improvement] Performance improvement achieved via ML in the work.
[Type of wireless network] The type of wireless networks considered in the work for which

the problem is solved (e.g., Cognitive radio, Wi-FI, etc.).
[Data Type] Type of data used in the work, e.g., synthetic or real.
[Input Data] The data used as input for the developed machine learning algorithms.
[Learning Approach] Type of learning approach, e.g., traditional machine learning (ML) or

deep learning (DL).
[Learning Algorithm] List of learning algorithms used (e.g., CNN, SVM etc.).
[Year] The year when the work was published.
[Reference] The reference to the analyzed work.

Types of research approaches for wireless performance enhancement

Radio MAC Network

Automatic 
modulation 
recognition

Wireless 
interference 
identification

Technology 
recognition

Performance 
prediction

Emitter 
identification

Wireless 
interference 
detection at 
packet level

MAC 
identification

Traffic 
prediction

Spectrum 
prediction

Signal 
identification

Figure 16. Types of research approaches for performance improvement of wireless networks.

6.1.1. Radio Spectrum Analysis

Radio spectrum analysis refers to investigating wireless data sensed by the wireless
devices to infer the radio spectrum usage. Typically, the goal is to detect unused spectrum
portions in order to share it with other coexisting users within the network without
exorbitant interference with each other. Namely, as wireless devices become more pervasive
throughout society the available radio spectrum, which is a scarce resource, will contain
more non-cooperative signals than seen before. Therefore, collecting information about
the signals within the spectrum of interest is becoming ever more important and complex.
This has motivated the use of ML for analyzing the signals occupying the radio spectrum.

Automatic modulation recognition. AMR plays a key role in various civilian and
military applications, where friendly signals shall be securely transmitted and received,
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whereas hostile signals must be located, identified and jammed. In short, the goal of this
task is to recognize the type of modulation scheme an emitter is using to modulate its
transmitting signal based on raw samples of the detected signal at the receiver side. This
information can provide insight about the type of communication systems and emitters
present in the radio environment.

Traditional AMR algorithms were classified into likelihood-based (LB)
approaches [240–242] and feature-based (FB) approaches [243,244]. LB approaches are
based on detection theory (i.e., hypothesis testing) [245]. They can offer good perfor-
mance and are considered optimal classifiers, however they suffer high computation
complexity. Therefore, FB approaches were developed as suboptimal classifiers suitable
for practical use. Conventional FB approaches heavily rely on expert knowledge, which
may perform well for specialized solutions, however they are poor in generality and are
time-consuming. Namely, in the preprocessing phase of designing the AMR algorithm,
traditional FB approaches extracted complex hand engineered features (e.g., some signal
parameters) computed from the raw signal and then employed an algorithm to determine
the modulation schemes [246].

To remedy these problems, ML-based classifiers that aim to learn on preprocessed
received data have been adopted and shown great advantages. ML algorithms usually
provide better generalization to new unseen datasets, making their application preferable
over solely FB approaches. For instance, the authors of [130,131,140] used the support
vector machine (SVM) machine learning algorithm to classify modulation schemes. While
strictly FB approaches may become obsolete with the advent of the employment of ML
classifiers for AMR, hand engineered features can provide useful input to ML techniques.
For instance in the following works [137,153], the authors engineered features using expert
experience applied on the raw received signal and feeding the designed features as input
for a neural network ML classifier.

Although ML methods have the advantage of better generality, classification efficiency
and performance, the feature engineering step to some extent still depends on expert
knowledge. As a consequence, the overall classification accuracy may suffer and depend
on the expert input. On the other hand, current communication systems tend to become
more complex and diverse, posing new challenges to the coexistence of homogeneous and
heterogeneous signals and a heavy burden on the detection and recognition of signals
in the complex radio environment. Therefore, the ability of self-learning is becoming a
necessity when confronted with such complex environment.

Recently, the wireless communication community experienced a breakthrough by
adopting deep learning techniques to the wireless domain. In [139], deep convolution
neural networks (CNNs) are applied directly on complex time domain signal data to
classify modulation formats. The authors demonstrated that CNNs outperform expert-
engineered features in combination with traditional ML classifiers, such as SVMs, k-Nearest
Neighbors (k-NN), Decision Trees (DT), Neural Networks (NN) and Naive Bayes (NB).
An alternative method, is to learn the modulation format of the received signal from
different representations of the raw signal. In our work in [247], CNNs are employed
to learn the modulation of various signals using the in-phase and quadrature (IQ) data
representation of the raw received signal and two additional data representations without
affecting the simplicity of the input. We showed that the amplitude/phase representation
outperformed the other two, demonstrating the importance of the choice of the wireless
data representation used as input to the deep learning technique so as to determine the
most optimal mapping from the raw signal to the modulation scheme. Other, follow-up
works include [154–158,162,163,165–169], etc.

Recently, the authors of [172] proposed a novel accumulated polar feature based deep
learning algorithm with a channel compensation mechanism for AMR that is capable
to learn from A/Ph domain with historical information to reduce the offline training
overhead. In addition, two mechanisms for online retraining are proposed to deal with the
time-varying fading channel.
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In [171] the authors were able to outperform state-of-the-art work on AMR based on
the well-known RadioML2016.10a dataset, by proposing a novel data preprocessing on the
signal samples to improve CNN-based AMR.

In [173] were able to increase the AMR classification accuracy by 11.5% at 10 dB SNR
by adding two expert features in the data processing stage. Namely, the algorithm first
detects whether the modulation is WBFM or not by means of the maximum of zero-center
normalization amplitude spectrum density. Additionally, Haar-wavelet transform rest
searching is used to classify QAM16 and QAM64.

The authors of [174] propose an effective LightAMC method using CNN and com-
pressive sensing under varying noise regimes. The proposed LightAMC method uses
L1 regularization-based neuron pruning technology is applied to cut down redundant
neurons in the CNN for the M-AMC method. Hence, the proposed LightAMC method
requires fewer device memories and has faster computational speed under the limited
performance loss.

In [175] an AMR using a feature clustering based two-lane capsule network (AMC2N)
is proposed. The authors were able to improve the classification accuracy by designing a
new two-layer capsule network (TL-CapsNet), and the classification time is reduced by
introducing a new feature clustering approach in the TL-CapsNet.

The authors of [176] introduce an improved CNN-based automatic modulation classi-
fication network (IC-AMCNet) by applying dropout and Gaussian noise layer, and instead
of using many filters, they apply small number of filters to reduce the computing time, so
that the algorithm can be applied in real-world network systems that require low-latency
communications (such as Beyond 5G communications).

For a more comprehensive overview of the state-of-the art work on AMR we refer the
reader to Tables 4 and 5.

Table 3. Description of the structure for Tables 4–7.

Column Name Description

Research Problem The problem addressed in the work

Performance improvement Performance improvement achieved in the work

Type of wireless network The type of wireless networks considered in the work and/or
for which the problem is solved

Data Type Type of data used in the work, e.g., synthetic or real

Input Data The data used as input for the developed machine learning
algorithms

Learning Approach Type of learning approach, e.g., traditional machine learning
(ML) or deep learning (DL)

Learning Algorithm List of learning algorithms used

Year The year when the work was published

Reference The reference to the analyzed work

Wireless interference identification. WII essentially refers to identifying the type of
wireless emitters (signal or technology) existing in the local radio environment, which can
be immensely helpful information to investigate an effective interference avoidance and
coexistence mechanisms. For instance, for technologies operating in the ISM bands in order
to efficiently coexist it is crucial to know what type of other emitters are present in the
environment (e.g., Wi-Fi, Zigbee, Bluetooth, etc.). Similar to AMR, FB and ML approaches
(e.g., using time or frequency features) may be employed for technology recognition and
signal identification approaches. Due to the development of deep learning applications for
wireless signals classification, there has been significant success in applying it also for WII
approaches.
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For instance, the authors of [248] exploit the amplitude/phase difference representa-
tion to train a CNN model network to discriminate several radar signals from Wi-Fi and
LTE transmissions. Their method was able to successfully recognize radar signals even
under the presence of several interfering signals (i.e., LTE and Wi-Fi) at the same time,
which is a key step for reliable spectrum monitoring.

In [157], the authors make use of the average magnitude spectrum representation
of the raw observed signal on a distributed architecture with low-cost spectrum sensors
together with an LSTM deep learning classifier to discriminate between different wireless
emitters, such as TETRA, DVB, RADAR, LTE, GSM and WFM. Results showed that their
method is able to outperform conventional ML approaches and a CNN based architecture
for the given task.

In [179] the authors use the time domain quadrature (i.e., IQ) representation of the
received signal and amplitude/phase vectors as input for CNN classifiers to learn the type
of interfering technology present in the ISM spectrum. The results demonstrate that the
proposed scheme is well suited for discriminating between Wi-Fi, ZigBee and Bluetooth
signals. In [247], we introduce a methodology for end-to-end learning from various signal
representations and investigate also the frequency domain (FFT) representation of the ISM
signals and demonstrate that the CNN classifier that used FFT data as input outperforms
the CNN models used by the authors in [179]. Similarly, the authors of [178] developed a
CNN model to facilitate the detection and identification of frequency domain signatures
for 802.x standard compliant technologies. Compared to [179] the authors in [178] make
use of spectrum scans across the entire ISM region (80-MHz) and feed as input to a CNN
model.

In [184] the authors used a CNN model to perform recognition of LTE and Wi-Fi trans-
missions based on two wireless signal representations, namely, the IQ and the frequency
domain representation. The motivation behind this approach was to obtain accurate in-
formation about the technologies present in the local wireless environment so as to select
an appropriate mLTE-U configuration that will allow fair coexistence with Wi-Fi in the
unlicensed spectrum band.

Other examples include [128,177,182,183], etc.
In some applications like cognitive radio (CR) and spectrum sensing, the goal is how-

ever to identify the presence or absence of a signal. Namely, spectrum sensing is a process
by which unlicensed users, also known as secondary users (SUs), acquire information
about the status of the radio spectrum allocated to a licensed user, also known as primary
user (PU), for the purpose of accessing unused licensed bands in an opportunistic manner
without causing intolerable interference to the transmissions of the licensed user [249].

For instance, in [185] four ML techniques are examined k-NN, SVM, DT and logistic
regression (LR) in order to predict the presence or absence of a PU in CR applications.
The authors in [188] go a step further and design a spectrum sensing framework based on
CNNs to facilitate a SU to achieve higher sensing accuracy compared with conventional
approaches. For more examples, we refer the reader to [180,186,187].

Recently, the authors of [190] study the Wi-Fi/LTE coexistence problem by assuming
a legacy operation of the interfering technology (LTE), which degrades the throughput
of the incumbent technology (Wi-Fi) due to the interference. They propose a distributed
spectrum management framework based on ML techniques that provides a global view of
the spectral resources in wireless environments and helps Wi-Fi identify which wireless
technology is transmitting. Based on that, different strategies for spectrum access can
be enforced. The authors use a CNN-based architecture trained in a semi-supervised
way using Autoencoders (AEs) to identify the wireless technology emitting and report
the spectrum occupancy per channel. Results showed that using our approach, Wi-Fi
maintains its throughput even when LTE uses all the spectral resources of a given channel.
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Table 4. An overview of work on machine learning for radio level analysis for performance optimization—2010–2018.

Research
Problem Performance Improvement Type of Wireless

Network Data Type Input Data Learning
Approach

Learning
Algorithm Year Reference

AMR More efficient spectrum
utilization Cognitive radio Synthetic FR, ZCR, RE ML SVM 2010 [131]

AMR
More accurate signal modulation
recognition for cognitive radio
applications

Cognitive radio Synthetic CWT, HOM ML ANN 2010 [132]

Emitter
identification

More accurate Radar Specific
Emitter Identification Radar Real Cumulants ML k-NN 2011 [133]

AMR
More accurate signal modulation
recognition for cognitive radio
and DSA applications

Cognitive radio Synthetic Max(PSD), NORM(A),
AVG(x) ML ANN 2011 [134]

AMR
More accurate signal modulation
recognition for cognitive radio
applications

Cognitive radio Synthetic Cumulants ML k-NN 2012 [135]

AMR More efficient spectrum
utilization Cognitive radio Synthetic

Max(PSD), STD(ap),
STD(dp), STD(aa), STD(df),
Fc, cumulants, CWT

ML SVM 2012 [136]

AMR More efficient spectrum
utilization Cognitive radio Synthetic v20, AVG(A), β, Max(PSD),

STD(ap), STD(dp), STD(aa) ML FC-FFNN,
FC-RNN 2013 [137]

AMR
More accurate signal modulation
recognition for cognitive radio
and DSA applications

Cognitive radio Synthetic ST, WT ML NN, SVM, LDA,
NB, k-NN 2015 [138]

AMR More efficient spectrum
utilization Cognitive radio Synthetic STD(dp), CWT,

AVG(NORM()) ML SVM 2016 [140]

AMR More efficient spectrum
utilization Cognitive radio Real IQ samples DL & ML

CNN, DNN,
k-NN, DT, SVM,

NB
2016 [141]

AMR
More accurate signal modulation
recognition for cognitive radio
applications

Cognitive radio Synthetic IQ samples ML DNN 2016 [142]

AMR
More accurate signal modulation
recognition for cognitive radio
applications

Cognitive radio Synthetic IA signal samples,
cumulants DL & ML CNN, SVM 2017 [143]



Electronics 2021, 10, 318 32 of 63

Table 4. Cont.

Research
Problem Performance Improvement Type of Wireless

Network Data Type Input Data Learning
Approach

Learning
Algorithm Year Reference

AMR
More accurate signal modulation
recognition for cognitive radio
applications

Cognitive radio Synthetic Cumulants DL DNN, ANC, SAE 2017 [144]

AMR
More accurate signal modulation
recognition for cognitive radio
applications

Cognitive radio Synthetic IQ samples DL CLDNN, ResNet,
DenseNet 2017 [145]

AMR More accurate signal modulation
recognition for cognitive radio Cognitive radio Synthetic IQ samples DL CNN, AE 2017 [146]

Emitter
identification

More efficient spectrum
utilization Cognitive radio Synthetic IQ samples DL AE, CNN 2017 [74]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ samples DL CLDNN, CNN,

ResNet 2017 [147]

TR More efficient management of the
wireless spectrum

Cellular, WLAN,
WPAN, WMAN Real Spectrograms DL CNN 2017 [177]

SI More efficient spectrum
utilization Cognitive radio Synthetic CFD, (non)standardized

IQ samples DL CNN 2017 [180]

AMR More accurate and simple
spectral events detection ISM Real Spectograms DL YOLO 2017 [139]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ samples DL CNN 2017 [148]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ samples DL CNN 2017 [149]

SI More efficient spectrum
monitoring Radar Real Spectrograms, A/Ph DL CNN 2017 [248]

WII Improved spectrum utilization Bluetooth, Zigbee,
Wi-Fi Real Power-frequency DL CNN 2017 [178]

SI More efficient spectrum
monitoring Cognitive radio Real FFT DL CNN 2017 [150]

WII
More efficient spectrum
management via wireless
interference identification

Bluetooth, Zigbee,
Wi-Fi Synthetic FFT DL CNN, NFSC 2017 [179]

Emitter
identification

More accurate Radar Specific
Emitter Identification Radar Real & Synthetic FD-curves ML SVM 2018 [151]

AMR More efficient spectrum
utilization Cognitive radio Real

In-band spectral variation,
deviation from unit circle,
cumulants

ML ANN, HH-AMC 2018 [153]
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Table 4. Cont.

Research
Problem Performance Improvement Type of Wireless

Network Data Type Input Data Learning
Approach

Learning
Algorithm Year Reference

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ samples, HOMs DL CNN, RN 2018 [154]

AMR
More accurate signal modulation
recognition for cognitive radio
and DSA applications

Cognitive radio Synthetic WT, CFD, HOMs, HOCs,
ST SVM 2018 [250]

AMR
Modulation and Coding Scheme
recognition for cognitive radio
and DSA applications

Wi-Fi Synthetic IQ samples DL CNN 2018 [155]

AMR
More accurate signal modulation
recognition for cognitive radio
and DSA applications

Cognitive radio Synthetic IQ samples, FFT DL CNN, CLDNN,
MTL-CNN 2018 [156]

AMR More efficient spectrum
utilization Cognitive radio Synthetic A/Ph, AVGmagFFT DL & ML CNN, LSTM, RF,

SVM, k-NN 2018 [157]

Table 5. An overview of work on machine learning for radio level analysis for performance optimization—2018–2020.

Research
Problem Performance Improvement Type of Wireless

Network Data Type Input Data Learning
Approach

Learning
Algorithm Year Reference

TR
More efficient spectrum

management via wireless
interference identification

Bluetooth, Zigbee,
Wi-Fi Synthetic IQ samples DL CNN 2018 [181]

WII
More efficient spectrum
utilization by detecting

interference

Bluetooth, Zigbee,
Wi-Fi Real RSSI samples DL CNN 2018 [183]

AMR More efficient spectrum
utilization Cognitive radio Synthetic Contour Stellar Image DL CNN, AlexNet,

ACGAN 2018 [158]

AMR More efficient spectrum
utilization Cognitive radio Synthetic Constellation diagram DL CNN, AlexNet,

GoogLeNet 2018 [160]

AMR More efficient spectrum
utilization UAV Synthetic IQ samples DL CNN, LSTM 2018 [159]

SI More efficient spectrum
utilization Cognitive radio Synthetic

Activity, non-activity,
“amplitude node” and
permanence probability

ML k-NN, SVM, LR,
DT 2018 [185]
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Table 5. Cont.

Research
Problem Performance Improvement Type of Wireless

Network Data Type Input Data Learning
Approach

Learning
Algorithm Year Reference

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ samples DL CNN 2018 [162]

AMR
More efficient spectrum
utilization by detecting

interference
RF signals Synthetic IQ samples DL & ML SVM, DNN, CNN,

MST 2018 [152]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ samples DL & ML CNN, LSTM, SVM 2018 [163]

AMR More efficient spectrum
utilization VHF Synthetic IQ samples DL CNN 2018 [164]

Emitter
identification

More efficient spectrum
utilization Cognitive radio Synthetic IQ signal samples, FOC DL CNN, LSTM 2018 [165]

SI More efficient spectrum
utilization Cellular Synthetic IQ and Amplitude data DL CNN 2018 [161]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ samples DL & ML ACGAN, SCGAN,

SVM, CNN, SSTM 2018 [166]

SI Improved spectrum sensing Cognitive radio Synthetic Beamformed IQ samples ML SVM 2018 [187]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ samples DL & ML DCGAN, NB,

SVM, CNN 2018 [167]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ DL RNN 2018 [251]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ samples with corrected

frequency and phase DL CNN, CLDNN 2019 [168]

TR More efficient management of the
wireless spectrum LTE and Wi-Fi Real IQ samples, FFT DL CNN 2019 [184]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ samples DL CNN 2019 [169]

SI Improved spectrum sensing Cognitive radio Synthetic RSSI DL CNN 2019 [188]

WII More efficient management of the
wireless spectrum

Bluetooth, Zigbee,
Wi-Fi Real FFT, A/Ph DL CNN, LSTM,

ResNet, CLDNN 2019 [252]

WII More efficient management of the
wireless spectrum

Sigfox, LoRA and
IEEE 802.15. 4g Real IQ, FFT DL CNN 2019 [253]

WII More accurate and simple
spectral events detection Cognitive radio Synthetic & Real PSD data DL AAE 2019 [128]
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Table 5. Cont.

Research
Problem Performance Improvement Type of Wireless

Network Data Type Input Data Learning
Approach

Learning
Algorithm Year Reference

TR More efficient management of the
wireless spectrum

GSM, WCDMA
and LTE Synthetic SCF, FFT, ACF, PSD DL SVM 2019 [254]

TR More efficient management of the
wireless spectrum

LTE, Wi-Fi and
DVB-T Real RSSI, IQ and Spectogram DL CNN 2019 [189]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ, A/Ph DL CLDNN, ResNet,

LSTM 2019 [169]

AMR More efficient spectrum
utilization with online retraining Cognitive radio Synthetic IQ, A/Ph DL ResNet, LSTM,

CNN 2020 [172]

TR
More efficient spectrum access
strategies to improve spectrum

utilization
LTE and Wi-Fi Real IQ samples DL CNN, AEs 2020 [190]

TR
More efficient spectrum access
strategies to improve spectrum

utilization

Sigfox, LoRA,
IEEE 802.15.4g

and IEEE 802.11ah
Real IQ samples, FFT DL CNN 2020 [191]

TR
More efficient spectrum access
strategies to improve spectrum

utilization

Incumbent and
interference Real FFT DL CNN 2020 [192]

AMR More efficient spectrum
utilization Cognitive radio Synthetic Novel data preprocessing

method DL CNN 2020 [171]

AMR More efficient spectrum
utilization Cognitive radio Synthetic

IQ, Zero-center
normalization amplitude

spectrum density,
Haar-wavelet transform

DL CNN, LSTM 2020 [173]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ, Compressive sensing DL CNN 2020 [174]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ with feature extraction

and clustering DL AMC2N 2020 [175]

AMR More efficient spectrum
utilization Cognitive radio Synthetic IQ DL ICAMCNet 2020 [176]

WII
More efficient spectrum
management via STAs

identification
Wi-Fi Synthetic IQ DL CNN 2020 [193]
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The authors of [191] propose a CNN based low complexity near-real time multi-band
sub-GHz technology recognition approach which supports a wide variety of technologies
(Sigfox, LoRA, IEEE 802.15.4g and IEEE 802.11ah) using multiple settings. Results showed
accuracies comparable with state-of-the-art solutions (around 99%), while the classification
time remained small offering real-time execution, without the need of expensive and high
power consuming hardware.

In [192], the authors proposed a two-step CNN-based algorithm that uses spectrum
data and information provided by the incumbent to recognize, learn, and proactively
predict the incumbent transmission pattern with an accuracy above 95% in near-real-
time. The CNN outputs if a given technology is present in some spectrum voxel, where
a spectrum voxel is a geometrical realization of the spectrum in terms of time, frequency,
location, and power.

An interesting approach is available in [193], where the authors propose a MAC
protocol based on intelligent spectrum learning for future WLAN networks. An access
point (AP) is installed with a pre-trained CNN model able to identify the number of stations
(STAs) involved in the collisions based on RF traces.

6.1.2. Medium Access Control (MAC) Analysis

Sharing the limited spectrum resources is the main concern in wireless networks [255].
One of the key functionalities of the MAC layer in wireless networks is to negotiate the
access to the wireless medium to share the limited resources in an ad hoc manner. Opposed
to centralized designs where entities like base stations control and distribute resources,
nodes in Wireless Ad hoc Networks (WANETs) have to coordinate resources.

For this purpose, several MAC protocols have been proposed in the literature. Tra-
ditional MAC protocols designed for WANETs include Time Division Multiple Access
(TDMA) [256,257], Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) [258,259],
Code Division Multiple Access (CDMA) [260,261] and hybrid approaches [262,263]. How-
ever, given the changing network and environment conditions, designing a MAC proto-
col that fits all possible conditions and various application requirements is a challenge
especially when these conditions are not available or known a priori. This subsection
investigates the advances made related to the MAC layer to tackle the problem of effi-
cient spectrum sharing with the help of machine learning. We identify two categories of
MAC analysis (1) MAC identification and (2) Interference recognition. The reviewed MAC
analysis tasks are listed in Table 6.

MAC identification. These approaches are typically employed in cognitive radio (CR)
applications to foster communication and coexistence between protocol-distinct technolo-
gies. CRs rely on information gathered during spectral sensing to infer the environment
conditions, presence of other technologies and spectrum holes. Spectrum holes are fre-
quency bands that have been allocated to licensed network users but are not used at a
particular time, which can be utilized by a CR user. Usually, spectrum sensing can deter-
mine the frequency range of a spectrum hole, while the timing information, which is also a
channel access parameter, is unknown.

MAC protocol identification approaches may help CR users determine the timing
information of a spectrum hole and accordingly tailor its packet transmission duration,
which provides the potential benefits for network performance improvement. For this
purpose, several MAC layer characteristics can be exploited.

For example, in [194] the TDMA and slotted ALOHA MAC protocols are identified
based on two features, the power mean and the power variance of the received signal
combined with a SVM classifier. The authors in [196] utilized power and time features
to distinguish between four MAC protocols, namely TDMA, CSMA/CA, pure ALOHA,
and slotted ALOHA using a SVM classifier. Similar, in [197] the authors captured MAC
layer temporal features of 802.11 b/g/n homogeneous and heterogeneous networks and
employed a k-NN and a NB ML classifier to distinguish between all three. In [198] the
authors prove that a CNN model outperforms classical ML techniques such a SVM for
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detecting MAC protocols especially when more types of MAC protocols are added in the
dataset.

The authors of [199] introduce further improvements, by converting the sampled data
into the form of a spectrogram and propose a CNN-based identification approach which
combines the spectrogram and the CNN to identify TDMA, CSMA/CA, ALOHA and Pure
ALOHA MAC protocols.

Wireless interference detection at packet level. Similar to the approaches of recogniz-
ing interference based on radio spectrum analysis, the goal here is to identify the type of
radio interference which degrades the network performance. However, compared to the
previously introduced work, the works in the MAC analysis level category focus on identi-
fying distinct features of interfered channel and packets to detect and quantify interference
in order to pinpoint the viability of opportunistic transmissions in interfered channels and
select an appropriate strategy to co-exist with the present interference. This is realized
based on information available on low-cost off-the-shelf devices, such as 802.15.4 and Wi-Fi
radios, which is used as input for ML classifiers.

For instance, in [203] the authors investigated two possibilities for detecting interfer-
ence: (1) the energy variations during packet reception captured by sampling the radio’s
RSSI register and (2) monitoring the Link Quality Indicator (LQI) of received corrupted
packets. This information is combined with a DT classifier, considered as a computationally
and memory efficient candidate for the implementation on 802.15.4 devices. Another work
on interference identification in WSNs is [201]. The authors were able to accurately distin-
guish Wi-Fi, Bluetooth and microwave oven interference based on features of corrupted
packets (i.e., mean normalized RSSI, LQI, RSSI range, error burst spanning and mean error
burst spacing) used as input to a SVM and DT classifier.

In [200] the authors were able to detect non-Wi-Fi interference on Wi-Fi commodity
hardware. They collected energy samples across the spectrum from the Wi-Fi card to
extract a diverse set of features that capture the spectral and temporal properties of wireless
signals (e.g., central frequency, bandwidth, spectral signature, duty cycle, pulse signature,
inter-pulse timing signature, etc.). They used these features and investigated performance
of two classifiers, SVM and DT. The idea is to embed these functionalities in Wi-Fi APs and
clients, which can then implement an appropriate mitigation mechanism that can quickly
react to the presence of significant non Wi-Fi interference.
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Table 6. An overview of work on machine learning for medium access control (MAC) level analysis for performance optimization.

Research Problem Performance
Improvement

Type of Wireless
Network Data Type Input Data Learning

Approach
Learning
Algorithm Year Reference

MAC identification More efficient spectrum
utilization Cognitive radio Synthetic Mean and variance of power samples ML SVM 2010 [194]

Wireless interference
detection at packet
level

Enhanced spectral
efficiency by interference
mitigation

Wi-Fi Real

Duty cycle, Spectral signatures,
Frequency and bandwidth, Pulse
signatures, Pulse spread, Inter-pulse
timing signatures, Frequency sweep

ML DT 2011 [200]

MAC identification More efficient spectrum
utilization Cognitive radio Synthetic

Power mean, Power variance,
Maximum power, Channel busy
duration, Channel idle duration

ML SVM, NN, DT 2012 [195]

Wireless interference
detection at packet
level

Enhanced spectral
efficiency by interference
mitigation

Wi-Fi, Bluetooth,
Microwave for
WSN

Real

LQI, range(RSSI), Mean error burst
spacing, Error burst spanning,
AVG(NORM(RSSI)), 1 -
mode(RSSInormed)

ML SVM, DT 2013 [201]

MAC identification More efficient spectrum
utilization Cognitive radio Synthetic

Received power mean, Power
variance, Channel busy state
duration, Channel idle state duration

ML SVM 2014 [196]

Wireless interference
detection at packet
level

Reduced power
consumption by
interference identification

Wireless sensor
network Real

On-air time, Minimum Packet
Interval, Peak to Average Power
Ratio, Under Noise Floor

ML DT 2014 [202]

MAC identification More efficient spectrum
utilization WLAN Real

Number of activity fragments at
111 µs, between 150 µs and 200 µs,
between 200 µs and 300 µs, between
300 µs and 500 µs, and number of
fragments between 1100 µs and
1300 µs

ML k-NN, NB 2015 [197]
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Table 6. Cont.

Research Problem Performance
Improvement

Type of Wireless
Network Data Type Input Data Learning

Approach
Learning
Algorithm Year Reference

Wireless interference
detection at packet
level

Enhanced spectral
efficiency by interference
mitigation

Wireless sensor
network Real

Packet corruption rate, Packet loss
rate, Packet length, Error rate, Error
burstiness, Energy perception per
packet, Energy perception level per
packet, Backoffs, Occupancy level,
Duty cycle, Energy span during
packet reception, Energy level during
packet reception, RSSI regularity
during packet reception

ML DT 2015 [203]

Spectrum prediction

Enhanced performance
via more efficient
spectrum usage achieved
with medium availability
prediction

ISM technologies Synthetic State matrix of the network, X f ,n for
each node n in frame f

ML NN 2018 [204]

Spectrum prediction

Enhanced performance
via more efficient
spectrum usage achieved
with select a predicted
free channel

WSN Synthetic and
Real

DNN with network states as input
and Q values as output DL DQN 2018 [205]

Spectrum prediction

More efficient radio
resource utilization and
enhanced link scheduling
and power control

Cellular Synthetic

The channel matrix H containing
|hi,j|2 between all pairs of
transmitter and receivers and the
weight matrix W

DL DQN and DNN 2018 [206]

Spectrum prediction
More efficient spectrum
utilization and increased
network performance

CRN Synthetic Environmental states s. DL ResNet, DNN,
DQN 2019 [207]

Spectrum prediction

More efficient spectrum
utilization and increased
network performance via
predicting PUs future
activity

CRN Synthetic
Vector x with n channel sensing
results, where each result has value
“−1” (idle) or “1” (busy).

ML NN 2019 [208]
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Table 6. Cont.

Research Problem Performance
Improvement

Type of Wireless
Network Data Type Input Data Learning

Approach
Learning
Algorithm Year Reference

Spectrum prediction

Enhanced performance
via more efficient
spectrum usage achieved
with medium availability
prediction

ISM technologies Synthetic and
Real

Channel observations O f ,n
s,c on

channel c made by node n at time
( f , s), where s is a timeslot in
superframe f

DL CNN 2019 [209]

MAC identification More efficient spectrum
utilization Cognitive radio Synthetic Spectrograms of TDMA, Slotted

ALOHA and FH signals DL CNN 2020 [198]

MAC identification More efficient spectrum
utilization Cognitive radio Synthetic Spectrograms of TDMA, CSMA/CA,

Slotted ALOHA and Pure ALOHA DL CNN 2020 [199]
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The authors of [202] propose an energy efficient rendezvous mechanism resilient to
interference for WSNs based on ML. Namely, due to the energy constraints on sensor
nodes, it is of great importance to save energy and extend the network lifetime in WSNs.
Traditional rendezvous mechanism such as Low Power Listening (LPL) and Low Power
Probe (LPP) rely on low duty cycling (scheduling the radio of a sensor node between ON
and OFF compared to always-ON methods) depending on the presence of a signal (e.g.,
signal strength). However, both suffer performance degradation in noisy environments
with signal interference incorrectly regarding a non-ZigBee interfering signal as an inter-
ested signal and improperly keeping the radio ON, which increases the probability of
false wake-ups. To remedy this, the proposed approach in [202] is capable of detecting
potential ZigBee transmissions and accordingly decide whether to turn the radio ON. For
this purpose, they extracted signal features from time domain RSSI samples (i.e., On-air
time, Minimum Packet Interval, Peak to Average Power Ratio and Under Noise Floor)
and used it as input to a DT classifier to effectively distinguish ZigBee signals from other
interfering ones.

Spectrum prediction. In order to share the available spectrum in a more efficient way,
there are various attempts in predicting the wireless medium availability to minimize
transmission collisions and, therefore, increase the overall performance of the network.

For instance, an intelligent wireless device may monitor the medium and based on
MAC-level measurements predict if the medium is likely to be busy or idle. In another
variation of this approach, a device may predict the quality of the channels in terms of
properties such as idle probabilities or idle durations and then select the channel with the
highest quality for transmission.

For instance, the authors in [204] use NNs to predict if a slot will be free based on
some history to minimize collisions and optimize the usage of the scarce spectrum. In
their follow up work [209], they exploit CNNs to predict the spectrum usage of the other
neighboring networks. Their approach is aimed for devices with limited capabilities for
retraining.

In [205], a Deep Q-Network (DQN) is proposed to predict and select a free channel for
WSNs. In [208], the authors design a NN predictor to predict PUs future activity based on
past channel occupancy sensing results, with the goal of improving secondary users (SUs)
throughput while alleviating collision to primary user (PU) in full-duplex (FD) cognitive
networks.

The authors of [207] consider the problem of sharing time slots among a multiple of
time-slotted networks so as to maximize the sum throughput of all the networks. The
authors utilize the ResNet and compare performance to a plain DNN.

MAC analysis approaches are listed in Table 6.

6.1.3. Network Prediction

Network prediction refers to tasks related to inferring the wireless network perfor-
mance or network traffic, given historical measurements or related data. Table 7 gives
an overview of the works on machine learning for network level prediction tasks, i.e.,
(1) Network performance prediction and (2) Network traffic prediction.

Network performance prediction. ML approaches are used, extensively, to create
prediction models for many wireless networking applications. Typically, the goal is to
forecast the performance or optimal device parameters/settings and use this knowledge
to adapt the communication parameters to the changing environment conditions and
application QoS requirements so as to optimize the overall network performance.

For instance, in [216] the authors aim to select the optimal MAC parameter settings
in 6LoWPAN networks to reduce excessive collisions, packet losses and latency. First, the
MAC layer parameters are used as input to a NN to predict the throughput and latency,
followed by an optimization algorithm to achieve high throughput with minimum delay.
The authors of [212] employ NNs to predict the users’ QoE in cellular networks, based on
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average user throughput, number of active users in a cell, average data volume per user
and channel quality indicators, demonstrating high prediction accuracy.

Given the dynamic nature of wireless communications, a traditional one-MAC-fit-all
approach cannot meet the challenges under significant dynamics in operating conditions,
network traffic and application requirements. The MAC protocol may deteriorate sig-
nificantly in performance as the network load becomes heavier, while the protocol may
waste network resources when the network load turns lighter. To remedy this, [30,213]
study an adaptive MAC layer with multiple MACs available that is able to select the MAC
protocol most suitable for the current conditions and application requirements. In [30]
a MAC selection engine for WSNs based on a DT model decides which is the best MAC
protocol for the given application QoS requirements, current traffic pattern and ambient
interference levels as input. The candidate protocols are TDMA, BoX-MAC and RI-MAC.
The authors of [213] compare the accuracy of NB, Random Forest (RF), decision trees and
SMO [264] to decide between the DCF and TDMA protocol to best respond to the dynamic
network circumstances.

As an integral part of reliable communication in WSNs, accurate link estimation is
essential for routing protocols, which is a challenging task due to the dynamic nature of
wireless channels. To address this problem, the authors in [81] use ML (i.e., LR, NB and
NN) to predict the link quality based on physical layer parameters of last received packets
and the PRR, demonstrating high accuracy and improved routing. The same authors go
a step further in [112] and employ online machine learning to adapt their link quality
prediction mechanism real-time to the notoriously dynamic wireless environment.

The authors in [214] develop a ML engine that predicts the packet loss rate in a WSN
using machine learning techniques network performance as an integral part for an adaptive
MAC layer.
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Table 7. An overview of work on machine learning for network level analysis for performance optimization.

Research Problem Performance
Improvement

Type of Wireless
Network Data Type Input Data Learning

Approach
Learning
Algorithm Year Reference

Network performance
prediction

Enhanced performance by
accurate link quality
prediction

Wireless sensor
network Real PRR, RSSI, SNR and LQI ML LR, NB and NN 2011 [81]

Network performance
prediction

Enhanced performance by
accurate link quality
prediction

Wireless sensor
network Real PRR, RSSI, SNR and LQI ML LR 2012 [210]

Network performance
prediction

Enhanced performance by
selecting the optimal
MAC scheme

Wireless sensor
network Real

RSSI statistics (mean and variance),
IPI statistics (mean and variance),
reliability, energy consumption and
latency

ML DT 2013 [30]

Network performance
prediction

Enhanced performance by
accurate link quality
prediction

Wireless sensor
network Real PRR, RSSI, SNR and LQI ML LR, SGD 2014 [112]

Network performance
prediction

Enhanced network
performance via
performance
characterization and
optimal radio parameters
prediction

Cellular Synthetic
SINR (Signal to Interference plus
Noise Ratio), ICI, MCS, Transmit
power

ML Random NN 2015 [211]

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real Traffic (Bytes)per 10 min ML Hierarchical
clustering 2015 [265]

Network traffic
prediction

Enhanced base station
sleeping mechanism
which reduced power
consumption by
predicting mobile traffic
demand

Cellular Synthetic Machine learning 2015 [266]

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real User traffic ML MWNN 2015 [267]
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Table 7. Cont.

Research Problem Performance
Improvement

Type of Wireless
Network Data Type Input Data Learning

Approach
Learning
Algorithm Year Reference

Network performance
prediction

Enhanced QoE by
predicting KPI parameters Cellular Real Mobile network KPIs ML NN 2016 [212]

Network performance
prediction

Enhancing performance
by selecting the optimal
MAC

Cognitive radio Synthetic

Protocol Type, Packet Length, Data
Rate , Inter-arrival Time , Transmit
Power, Node Number, Average load,
Average throughput, Transmitting
delay, Minimum throughput,
Maximum throughput, Throughput
standard deviation and classification
result

ML NB, DT, RF, SMO 2016 [213]

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real Mobile traffic volume ML Regression
analysis 2016 [268]

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real Mobile traffic ML SVM, MLPWD,
MLP 2016 [269]

Network performance
prediction

Enhanced performance by
predicting packet loss rate WSN Real

Number of detected nodes, IPI,
Number of received packets,
Number of erroneous packets LR, RT,
NN

ML 2017 [214]

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real Average traffic load per hour DL LSTM, GSAE,
LSAE 2017 [270]

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real
Number of CDRs generated during
each time interval in a square of the
Milan Grid

DL RNN, 3D CNN 2017 [271]

Network performance
prediction

Maximized reliability and
minimized end-to-end
delay by selecting optimal
MAC parameters

6LoWPAN Synthetic
Maximum CSMA backoff, Backoff
exponent, Maximum frame retries
limit

ML ANN 2017 [216]
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Table 7. Cont.

Research Problem Performance
Improvement

Type of Wireless
Network Data Type Input Data Learning

Approach
Learning
Algorithm Year Reference

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real Traffic volume snapshots every 10
min DL STN, LSTM, 3D

CNN 2018 [272]

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real Cellular traffic load per half-hour DL LSTM,GNN 2018 [273]

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real CDRs with an interval of 10 min DL DNN, LSTM 2018 [274]

Network performance
prediction

Enhanced network
resource allocation by
predicting network
parameters

Wireless sensor
network Synthetic Network lifetime, Power level,

Internode distance ML NN 2018 [215]

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real SMS and Call volume per 10 min
interval DL CNN 2018 [275]

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real Traffic load per 10 min DL LSTM 2018 [276]

Network traffic
prediction

Enhanced resource
allocation by more
efficiently predicting
mobile traffic load

Cellular Real Traffic logs recorded at 10 min
intervals ML RF 2018 [277]

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real Traffic logs recorded at 15 min
intervals DL LSTM 2019 [278]
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Table 7. Cont.

Research Problem Performance
Improvement

Type of Wireless
Network Data Type Input Data Learning

Approach
Learning
Algorithm Year Reference

Network traffic
prediction

Enhanced resource
allocation by predicting
mobile traffic demand

Cellular Real Traffic load per 5 min intervals DL 3D CNN 2019 [118]

Network traffic
prediction

Enhanced resource
allocation by predicting
idle time windows

Cellular Real

Number of unique subscribers
observed and Number of
communication events occurring in a
counting time window for a specific
cell

DL
TGCN, TCN,
LSTM, and
GCLSTM

2019 [279]

Network performance
prediction

Enhanced end user QoE
for video streaming
applications via accurate
performance prediction

Cellular Real PHY and application data DL & ML RF, SVM, LSTM 2020 [217]
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Network traffic prediction. Accurate prediction of user traffic in cellular networks is
crucial to evaluate and improve the system performance. For instance, the functional base
station sleeping mechanism may be adapted by utilizing knowledge about future traffic
demands, which are in [266] predicted based on a NN model. This knowledge helped
reduce the overall power consumption, which is becoming an important topic with the
growth of the cellular industry.

In another example, consider the need for efficient management of expensive mobile
network resources, such as spectrum, where finding a way to predict future network use
can help for network resource management and planning. A new paradigm for future 5G
networks is network slicing enabling the network infrastructure to be divided into slices
devoted to different services and tailored to their needs [280]. With this paradigm, it is
essential to allocate the needed resources to each slice, which requires the ability to forecast
their respective demands. The authors in [118] employed a CNN model that, based on
traffic observed at base stations of a particular network slice, predicts the capacity required
to accommodate the future traffic demands for services associated to it.

In [270] LSTMs are used to model the temporal correlations of the mobile traffic distri-
bution and perform forecasting together with stacked Auto Encoders for spatial feature
extraction. Experiments with a real-world dataset demonstrate superior performance over
SVM and the Autoregressive Integrated Moving Average (ARIMA) model.

Deep learning was also employed in [271,274,276] where the authors utilize CNNs
and LSTMs to perform mobile traffic forecasting. By effectively extracting spatio-temporal
features, their proposals gain significantly higher accuracy than traditional approaches,
such as ARIMA.

Forecasting with high accuracy the volume of data traffic that mobile users will con-
sume is becoming increasingly important for demand-aware network resource allocation.
More example approaches can be found in [118,269,270,272,273,275,277–279].

6.2. Machine Learning Applications for Information Processing

Wireless sensor nodes and mobile applications installed on various mobile devices
record application level data frequently, making them act as sensor hubs responsible for
data acquisition and preprocessing and subsequently storing the data in the “cloud” for
further “offline” data storage and real-time computing using big data technologies (e.g.,
Storm [281], Spark [282], Kafka [283], Hadoop [284], etc). Example applications are (1)
IoT infrastructure monitoring such as smart farming [5,6], smart mobility [4,218], smart
city [7,219,220] and smart grid [221], (2) device fingerprinting, (3) localization and (4)
activity recognition.

For instance, the works [222–228] exploit various time and radio patterns of the data
with machine learning classifiers to distinguish legitimate wireless devices from adversarial
ones, so as to increase the wireless network security.

In the works of [229–234] ML or deep learning is employed to localize users in indoor
or outdoor environments, based on different signals received from wireless devices or
about the wireless channels such as amplitude and phase channel state information (CSI),
RSSI, etc.

The goal in the works [235–239] is to identify the activity of a person based on various
wireless signal properties in combination with a machine learning technique. For instance,
in [236] the authors demonstrate accurate human pose estimation through walls and
occlusions based on properties of Wi-Fi wireless signals and how they reflect off the human
body, used as input to a CNN classifier. In [237] the authors detect intruders based on
how their movement patterns affect Wi-Fi signals in combination with a Gaussian Mixture
Model (GMM).

For a more throughout overview of the applications and works on wireless information
processing the reader is referred to [285].



Electronics 2021, 10, 318 48 of 63

7. Open Challenges and Future Directions

Previous sections presented the significant amount of research work focused on
exploiting ML to address the spectrum scarcity problem in future wireless networks.
However, despite the growing state-of-the-art with more and more different ML algorithms
being explored and applied at various layers of the network protocol stack, there are still
open challenges that need to be addressed in order to employ these paradigms in real radio
environments to enable a fully intelligent wireless network in the near future.

This section discusses a set of open challenges and explores future research direc-
tions which are expected to accelerate the adoption of ML in future wireless network
deployments.

7.1. Standard Datasets, Problems, Data Representation and Evaluation Metrics
7.1.1. Standard Datasets

To allow the comparison between different ML approaches, it is essential to have
common benchmarks and standard datasets available, similar to the open dataset MNIST
that is often used in computer vision. In order to effectively learn, ML algorithms will
require a considerable amount of data. Furthermore, preferably standardized data gener-
ation/collection procedures should be created to allow reproducing the data. Research
attempts in this direction include [286,287], showing that synthetic generation of RF signals
is possible, however some wireless problems may require to inhibit specifics of a real
system in the data (e.g., RF device fingerprinting).

Therefore, standardizing these datasets and benchmarks remains an open challenge.
Significant research efforts need to be put in building large-scale datasets and sharing them
with the wireless research community.

7.1.2. Standard Problems

Future research initiatives should identify a set of common problems in wireless networks
to facilitate researchers in benchmarking and comparing their supervised/unsupervised learn-
ing algorithms. These problems should be supported with standard datasets. For instance,
in computer vision for benchmarking computer vision algorithms for image recognition
tasks, the MNIST and ImageNet datasets are typically used. Examples of standard prob-
lems in wireless networks may be: wireless signal identification, beamforming, spectrum
management, wireless network traffic demand prediction, etc. Special research attention
must be focused on designing these problems.

7.1.3. Standard Data Representation

DL is increasingly used in wireless networks, however it is still unclear what the
optimal data representation is. For instance, an I/Q sample may be represented as a
single complex number, a tuple of real numbers or via the amplitude and phase values of
their polar coordinates. It is a debate that there is no one-size-fits-all data representation
solution for every learning problem [247]. The optimal data representation might depend
among other factors on the DL architecture, the learning objective and choice of the loss
function [146].

7.1.4. Standard Evaluation Metrics

After identifying standard datasets and problems, future research initiatives should
identify a set of standard metrics for evaluating and comparing different ML models. For
instance, a set of standard metrics may be determined per standardized problem. Examples
of standardized metrics might be: confusion matrix, F-score, precision, recall, accuracy,
mean squared error, etc. In addition, the evaluation part may take into account other
evaluation metrics such as: model complexity, memory overhead, training time, prediction
time, required data size, etc.
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7.2. Implementation of Machine Learning Models in Practical Wireless Platforms/Systems

There is no doubt that ML will play a prominent role in the evolution of future
wireless networks. However, although ML is powerful, it may be a burden when running
on a single device. Furthermore, DL which has shown great success, requires significant
amount of data to perform well, which poses extra challenges on the wireless network. It
is therefore of paramount importance to advance our understanding of how to simply and
efficiently integrate ML/DL breakthroughs within constrained computing platforms. A
second question that requires particular attention is which requirements does the network
need to meet to support collection and transfer of large volumes of data?

7.2.1. Constraint Wireless Devices

Wireless nodes, such as for instance seen in the IoT (e.g., phones, watches and em-
bedded sensors), are typically inexpensive devices with scarce resources: limited storage
resource, energy, computational capability and communication bandwidth. These device
constraints bring several challenges when it comes to implement and run complex ML
models. Certainly, ML models with a large number of neurons, layers and parameters will
necessarily require additional hardware and energy consumption not just for performing
training but also for inference.

Reducing Complexity of Machine Learning Models

ML/DL is well on its way to becoming mainstream on constraint devices [288]. Promis-
ing early results are appearing across many domains, including hardware [289], systems
and learning algorithms. For example, in [290] binary deep architectures are proposed, that
are composed solely of 1-bit weights instead of 32-bit or 16-bit parameters, allowing for
smaller models and less expensive computations. However, their ability to generalize and
perform well in real-world problems is still an open question.

Distributed Machine Learning Implementation

Another approach to address this challenge, may be to distribute the ML computation
load across multiple nodes. Some questions that need to be addressed here are: “Which
part of the learning algorithms can be decomposed and distributed?”, “How are the input
data and output calculation results communicated among the devices?”, “Which device is
responsible for the assembly for the final prediction results?”, etc.

7.2.2. Infrastructure for Data Collection and Transfer

The tremendously increasing number of wireless devices and their traffic demands,
require a scalable networking architecture to support large scale wireless transmissions.
The transmission of large volumes of data is a challenging task due to the following reasons:
(1) there are no standards/protocols that can efficiently deliver > 100T bits of data per
second, (2) it is extremely difficult to monitor the network in real-time, due to the huge
traffic density in short time.

A promising direction in addressing this challenge is the concept of fog comput-
ing/analytics [18]. The idea of fog computing is to bring computing and analytics closer
to the end-devices, which may improve the overall network performance by reducing
or completely avoiding the transmission of large amounts of raw data to the cloud. Still,
special efforts need to be devoted to employ these concepts in practical systems. Finally,
cloud computing technologies (using virtualized resources, parallel processing and scalable
data storage) may help reduce the computational cost when it comes to processing and
analysis of data.

7.2.3. Software Defined Networking for Network Control

Recently, software-defined networking (SDN) has attracted great interest as a new
paradigm in networking [291]. Due to the inherently distributed nature of traditional
networks, machine learning techniques are challenging to be applied and deployed to
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control and operate networks. To facilitate this, SDN appeared as a promising enabler to
provide intelligence inside the networks. The main idea of SDN is to detach the control
plane from th forwarding plane, to break vertical integration, and to introduce the ability
to program the network. Namely, SDN allows logical centralization of feedback control,
and decisions are made by the logically centralized network controller which has a global
network view. The global view of the network enables the controller to obtain data from
different layers of the network protocol stack with arbitrary granularity, such as channel
state information at the physical layer, packet information at the data link/network layers,
and also application information at the application layer. On the other hand, such global
network view, makes the network easy to control and manage.

The capabilities of SDN (e.g., logically centralized control, global view of the network,
software-based traffic analysis, and dynamic updating of forwarding rules) make it easier
to apply machine learning techniques to make optimal decisions to adapt to the network
environments which can significantly improve network control and management processes.
For instance, the SDN controller may feed a ML model with all the cross-layer informa-
tion from all the different layers, which uses this data to make predictions that provide
insights about the network that can be used by the SDN controller to implement network
control strategies (e.g., physical layer parameters adaptation, resource allocation, topology
construction, routing mechanisms, congestion control, etc.) [292].

7.3. Machine Learning Model Accuracy in Practical Wireless Systems

Machine learning has been commonly used in static contexts, when the model speed
is usually not a concern. For example, consider recognizing images in computer vision.
Whilst, images are considered as stationary data, wireless data (e.g., signals) are inherently
time-varying and stochastic. Training a robust ML model on wireless data that generalizes
well is a challenging task due to the fact that wireless networks are inherently dynamic
environments with changing channel conditions, user traffic demands and changing oper-
ating parameters (e.g., due to changes in standardization bodies). Considering that stability
is one of the main requirements of wireless communication systems, rigorous theoretical
studies are essential to ensure ML based approaches always work well in practical systems.
The open question here is “How to efficiently train a ML model that generalizes well to
unseen data in such dynamically changing system?”. The following paragraphs discuss
promising directions in addressing this challenge.

7.3.1. Transfer Learning

With typical supervised learning a learned model is applicable for a specific scenario
and likely biased to the training dataset. For instance, a learned model for recognizing a
set of wireless technologies is trained to recognize only those technologies and also tight to
the specific wireless environment characteristic where the data is collected. What if new
technologies need to be identified? What if the conditions in the wireless environment
change? Obviously, the ability of generalization of the trained learning models are still
open questions. How can we efficiently adapt our model to these new circumstances?

Traditional approaches may require to retrain the model based on new data (i.e.,
incorporating new technologies or specifics of a new environment together with new
labels). Fortunately, with the advances in ML it turns out that it is not necessary to fully
retrain a ML model. A new popular method called transfer learning may solve this. Transfer
learning is a method that allows to transfer the knowledge gained from one task to another
similar task, and hereby alleviate the need to train ML models from scratch [293]. The
advantage of this approach is that the learning process in new environments can be speeded
up, with a smaller amount of data needed to train a good performing model. In this way,
wireless networking researchers may solve new but similar problems in a more efficient
manner. For instance, if the new task requires to recognize new modulation formats, the
model parameters for an already trained CNN model may be reused as the initialization
for training the new CNN.
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7.3.2. Active Learning

Active learning is a subfield of ML that allows to update a learning model on-the-fly
in a short period of time. For instance, in wireless networks, the benefit is that updating
the model depending on the wireless networking conditions allows the model to be more
accurate with respect to the current state [294].

The learning model adjusts its parameters whenever it receives new labeled data. The
learning process stops when the system achieves the desired prediction accuracy.

7.3.3. Unsupervised/Semi-Supervised Deep Learning

Typical supervised learning approaches, especially the recently popular deep learning
techniques, require a large amount of training data with a set of corresponding labels. The
disadvantage here is that so much data might either not always be available or comes at a
great expense to prepare. This is especially a time consuming task in wireless networks,
where one has to wait for the occurrence of certain types of events (e.g., appearance of
emission from a specific wireless technology or on a specific frequency band) for creating
training instances to build robust models. At the same time, this process requires significant
expert knowledge to construct labels, which is not a sufficiently automated process and
generic for practical implementations.

To reduce the need for much domain knowledge and labeling data, deep unsupervised
learning [128] and semi-supervised learning [74] is recently used. For instance, the AE
(autoencoders) have become a powerful deep unsupervised learning tool [295], which
have also shown the ability to compress the input information by possibly learning a lower
dimensional encoding of the input. However, these new tools, require further research to
fulfill their full potentials in (practical) wireless networks.

8. Conclusions

With the advances in hardware and computing power and the ability to collect, store
and process massive amounts of data, machine learning (ML) has found its way into many
different scientific fields, including wireless networks. The challenges wireless networks
are faced with, pushed the wireless networking domain to seek more innovative solutions
to ensure expected network performance. To address these challenges, ML is increasingly
used in wireless networks.

In parallel, a growing number of surveys and tutorials emerged on ML applied in
wireless networks. We noticed that some of the existing works focus on addressing specific
wireless networking tasks (e.g., wireless signal recognition), some on the usage of specific
ML techniques (e.g., deep learning techniques), while others on the aspects of a specific
wireless environment (e.g., IoT, WSN, CRN, etc.) looking at broad application scenarios
(e.g., localization, security, environmental monitoring, etc.). Therefore, we realized that
none of the works elaborate ML for optimizing the performance of wireless networks,
which is critically affected by the proliferation of wireless devices, networks, technologies
and increased user traffic demands. We further noticed that some works are missing out
the fundamentals, necessary for the reader to understand ML and data-driven research
in general. To fill this gap, this paper presented (i) a well-structured starting point for
non-machine learning experts, providing fundamentals on ML in an accessible manner,
and (ii) a systematic and comprehensive survey on ML for performance improvements of
wireless networks looking at various perspectives of the network protocol stack. To the best
of our knowledge, this is the first survey that comprehensively reviews the latest research
efforts (up until and including 2019) in applying prediction-based ML techniques focused
on improving the performance of wireless networks, while looking at all protocol layers:
PHY, MAC and network layer. The surveyed research works are categorized into: radio
analysis, MAC analysis and network prediction approaches. We reviewed works in various
wireless networks including IoT, WSN, cellular networks and CRNs. Within radio analysis
approaches we identified the following: Automatic modulation recognition, and wireless
interference identification (i.e., technology recognition, signal identification and emitter
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identification). MAC analysis approaches are divided into: MAC identification, wireless
interference identification and spectrum prediction tasks. Network prediction approaches
are classified into: performance prediction, and traffic prediction approaches.

Finally, open challenges and exciting research directions in this field are elaborated.
We discussed where standardization efforts are required, including standard: datasets,
problems, data representations and evaluations metrics. Further, we discussed the open
challenges when implementing machine learning models in practical wireless systems.
Herewith, we discussed future directions at two levels: (i) implementing ML on constraint
wireless devices (via reducing complexity of ML models or distributed implementation of
ML models) and (ii) adapting the infrastructure for massive data collection and transfer
(via edge analytics and cloud computing). Finally, we discussed open challenges and future
directions on the generalization of ML models in practical wireless environments.

We hope that this article will become a source of inspiration and guide for researchers
and practitioners interested in applying machine learning for complex problems related to
improving the performance of wireless networks.
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6. Sa, I.; Chen, Z.; Popović, M.; Khanna, R.; Liebisch, F.; Nieto, J.; Siegwart, R. weednet: Dense semantic weed classification using
multispectral images and mav for smart farming. IEEE Robot. Autom. Lett. 2018, 3, 588–595. [CrossRef]

7. Strohbach, M.; Ziekow, H.; Gazis, V.; Akiva, N. Towards a big data analytics framework for iot and smart city applications. In
Modeling and Processing for Next-Generation Big-Data Technologies; Springer: Berlin/Heidelberg, Germany, 2015; pp. 257–282.

8. Cisco. Cisco Visual Networking Index: Forecast and Trends. 2019. Available online: https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html (accessed on 1 January 2021).

9. Cisco Systems White Paper. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white-paper-c11-738429.html (accessed on 9 May 2019).

10. Bkassiny, M.; Li, Y.; Jayaweera, S.K. A survey on machine-learning techniques in cognitive radios. IEEE Commun. Surv. Tutor.
2012, 15, 1136–1159. [CrossRef]

11. Alsheikh, M.A.; Lin, S.; Niyato, D.; Tan, H.-P. Machine learning in wireless sensor networks: Algorithms, strategies, and
applications. IEEE Commun. Surv. Tutor. 2014, 16, 1996–2018. [CrossRef]

12. Wang, X.; Li, X.; Leung, V.C. Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts,
opportunities, and challenges. IEEE Access 2015, 3, 1379–1391. [CrossRef]

13. Ahad, N.; Qadir, J.; Ahsan, N. Neural networks in wireless networks: Techniques, applications and guidelines. J. Netw. Comput.
Appl. 2016, 68, 1–27. [CrossRef]

14. Park, T.; Abuzainab, N.; Saad, W. Learning how to communicate in the internet of things: Finite resources and heterogeneity.
IEEE Access 2016, 4, 7063–7073. [CrossRef]

15. Klaine, P.V.; Imran, M.A.; Onireti, O.; Souza, R.D. A survey of machine learning techniques applied to self-organizing cellular
networks. IEEE Commun. Surv. Tutor. 2017, 19, 2392–2431. [CrossRef]

16. Zhou, X.; Sun, M.; Li, G.Y.; Juang, B.-H.F. Intelligent wireless communications enabled by cognitive radio and machine learning.
China Commun. 2018, 15, 16–48.

http://doi.org/10.17705/1jais.00423
http://dx.doi.org/10.1007/s41650-017-0001-2
http://dx.doi.org/10.1109/LRA.2017.2774979
 https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
 https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
http://dx.doi.org/10.1109/SURV.2012.100412.00017
http://dx.doi.org/10.1109/COMST.2014.2320099
http://dx.doi.org/10.1109/ACCESS.2015.2467174
http://dx.doi.org/10.1016/j.jnca.2016.04.006
http://dx.doi.org/10.1109/ACCESS.2016.2615643
http://dx.doi.org/10.1109/COMST.2017.2727878


Electronics 2021, 10, 318 53 of 63

17. Mao, Q.; Hu, F.; Hao, Q. Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor.
2018, 20, 2595–2621. [CrossRef]

18. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for iot big data and streaming analytics: A survey. IEEE
Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]

19. Chen, M.; Challita, U.; Saad, W.; Yin, C.; Debbah, M. Artificial neural networks-based machine learning for wireless networks: A
tutorial. IEEE Commun. Surv. Tutor. 2019, 21, 3039–3071. [CrossRef]

20. Li, X.; Dong, F.; Zhang, S.; Guo, W. A survey on deep learning techniques in wireless signal recognition. Wirel. Commun. Mob.
Comput. 2019. [CrossRef]

21. Din, I.U.; Guizani, M.; Rodrigues, J.J.; Hassan, S.; Korotaev, V.V. Machine learning in the internet of things: Designed techniques
for smart cities. Future Gener. Comput. Syst. 2019, 100, 826–843. [CrossRef]

22. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.-C.; Kim, D.I. Applications of deep reinforcement learning in
communications and networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [CrossRef]

23. Dhar, V. Data science and prediction. Commun. ACM 2013, 56, 64–73. [CrossRef]
24. Kulin, M.; Fortuna, C.; Poorter, E.D.; Deschrijver, D.; Moerman, I. Data-driven design of intelligent wireless networks: An

overview and tutorial. Sensors 2016, 16, 790. [CrossRef]
25. McCarthy, J. Artificial intelligence, logic and formalizing common sense. In Philosophical Logic and Artificial Intelligence; Springer:

Berlin/Heidelberg, Germany, 1989; pp. 161–190.
26. Mitchell, T.; Buchanan, B.; DeJong, G.; Dietterich, T.; Rosenbloom, P.; Waibel, A. Machine learning. Annu. Rev. Comput. Sci. 1990,

4, 417–433. [CrossRef]
27. Jiang, C.; Zhang, H.; Ren, Y.; Han, Z.; Chen, K.-C.; Hanzo, L. Machine learning paradigms for next-generation wireless networks.

IEEE Wirel. Commun. 2017, 24, 98–105. [CrossRef]
28. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
29. Liu, W.; Kulin, M.; Kazaz, T.; Shahid, A.; Moerman, I.; Poorter, E.D. Wireless technology recognition based on rssi distribution at

sub-nyquist sampling rate for constrained devices. Sensors 2017, 17, 2081. [CrossRef] [PubMed]
30. Sha, M.; Dor, R.; Hackmann, G.; Lu, C.; Kim, T.-S.; Park, T. Self-adapting mac layer for wireless sensor networks. In Proceedings

of the 2013 IEEE 34th Real-Time Systems Symposium, Vancouver, BC, Canada, 3–6 December 2013; pp. 192–201.
31. Kulkarni, R.V.; Venayagamoorthy, G.K. Neural network based secure media access control protocol for wireless sensor networks.

In Proceedings of the Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 1680–1687.
32. Kim, M.H.; Park, M.-G. Bayesian statistical modeling of system energy saving effectiveness for mac protocols of wireless sensor

networks. In Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 233–245.

33. Shen, Y.-J.; Wang, M.-S. Broadcast scheduling in wireless sensor networks using fuzzy hopfield neural network. Expert Syst. Appl.
2008, 34 900–907. [CrossRef]

34. Barbancho, J.; León, C.; Molina, J.; Barbancho, A. Giving neurons to sensors. qos management in wireless sensors networks. In
Proceedings of the Emerging Technologies and Factory Automation, Diplomat Hotel Prague, Czech Republic, 20–22 September
2006; pp. 594–597.

35. Liu, T.; Cerpa, A.E. Data-driven link quality prediction using link features. ACM Trans. Sens. Netw. 2014, 10, 37. [CrossRef]
36. Wang, Y.; Martonosi, M.; Peh, L.-S. Predicting link quality using supervised learning in wireless sensor networks. ACM Sigmobile

Mob. Comput. Commun. Rev. 2007, 11, 71–83. [CrossRef]
37. Ahmed, G.; Khan, N.M.; Khalid, Z.; Ramer, R. Cluster head selection using decision trees for wireless sensor networks. In

Proceedings of the Intelligent Sensors, Sensor Networks and Information Processing, Sydney, Australia, 15–18 December 2008;
pp. 173–178.

38. Shareef, A.; Zhu, Y.; Musavi, M. Localization using neural networks in wireless sensor networks. In Proceedings of the 1st
international Conference on MOBILe Wireless MiddleWARE, Operating Systems, and Applications, London, UK, 22–24 June
2008; p. 4.

39. Chagas, S.H.; Martins, J.B.; Oliveira, L.L.D. An approach to localization scheme of wireless sensor networks based on artificial
neural networks and genetic algorithms. In Proceedings of the New Circuits and systems Conference (NEWCAS), Montreal, QC,
Canada, 17–20 June 2012; pp. 137–140.

40. Tran, D.A.; Nguyen, T. Localization in wireless sensor networks based on support vector machines. IEEE Trans. Parallel Distrib.
Syst. 2008, 19, 981–994. [CrossRef]

41. Tumuluru, V.K.; Wang, P.; Niyato, D. A neural network based spectrum prediction scheme for cognitive radio. In Proceedings of
the 2010 IEEE International Conference on Communications (ICC), Cape Town, South Africa, 23–27 May 2010; pp. 1–5.

42. Baldo, N.; Zorzi, M. Learning and adaptation in cognitive radios using neural networks. In Proceedings of the 5th 2008 Consumer
Communications and Networking Conference, Las Vegas, NV, USA, 10–12 January 2008; pp. 998–1003.

43. Tang, Y.-J.; Zhang, Q.-Y.; Lin, W. Artificial neural network based spectrum sensing method for cognitive radio. In Proceedings of
the 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), Chengdu,
China, 23–25 September 2010; pp. 1–4.

http://dx.doi.org/10.1109/COMST.2018.2846401
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1109/COMST.2019.2926625
http://dx.doi.org/10.1155/2019/5629572
http://dx.doi.org/10.1016/j.future.2019.04.017
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1145/2500499
http://dx.doi.org/10.3390/s16060790
http://dx.doi.org/10.1146/annurev.cs.04.060190.002221
http://dx.doi.org/10.1109/MWC.2016.1500356WC
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.3390/s17092081
http://www.ncbi.nlm.nih.gov/pubmed/28895879
http://dx.doi.org/10.1016/j.eswa.2006.10.024
http://dx.doi.org/10.1145/2530535
http://dx.doi.org/10.1145/1317425.1317434
http://dx.doi.org/10.1109/TPDS.2007.70800


Electronics 2021, 10, 318 54 of 63

44. Hu, H.; Song, J.; Wang, Y. Signal classification based on spectral correlation analysis and svm in cognitive radio. In Proceedings of
the AINA 2008, 22nd International Conference onAdvanced Information Networking and Applications, Okinawa, Japan, 25–28
March 2008; pp. 883–887.

45. Xu, G.; Lu, Y. Channel and modulation selection based on support vector machines for cognitive radio. In Proceedings of the
WiCOM 2006, International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 22–24
September 2006; pp. 1–4.

46. Petrova, M.; Mähönen, P.; Osuna, A. Multi-class classification of analog and digital signals in cognitive radios using support
vector machines. In Proceedings of the 2010 7th International Symposium on Wireless Communication Systems (ISWCS), York,
UK, 19–22 September 2010; pp. 986–990.

47. Huang, Y.; Jiang, H.; Hu, H.; Yao, Y. Design of learning engine based on support vector machine in cognitive radio. In Proceedings
of the CiSE 2009, International Conference onComputational Intelligence and Software Engineering, Wuhan, China, 11–13
December 2009; pp. 1–4.

48. Mannini, A.; Sabatini, A.M. Machine learning methods for classifying human physical activity from on-body accelerometers.
Sensors 2010, 10, 1154–1175. [CrossRef]

49. Hong, J.H.; Kim, N.J.; Cha, E.J.; Lee, T.S. Classification technique of human motion context based on wireless sensor network. In
Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society, Shanghai, China,
31 August 2005; pp. 5201–5202.

50. Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors. Commun. Surv. Tutor. 2013, 15,
1192–1209. [CrossRef]

51. Bulling, A.; Blanke, U.; Schiele, B. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv.
2014, 46, 33.

52. Bao, L.; Intille, S.S. Activity recognition from user-annotated acceleration data. In Pervasive Computing; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 1–17.

53. Bulling, A.; Ward, J.A.; Gellersen, H. Multimodal recognition of reading activity in transit using body-worn sensors. ACM Trans.
Appl. Percept. 2012, 9, 2. [CrossRef]

54. Yu, L.; Wang, N.; Meng, X. Real-time forest fire detection with wireless sensor networks. In Proceedings of the 2005 International
Conference on Wireless Communications, Networking and Mobile Computing, Zhangjiajie, China, 2–4 August 2005; Volume 2,
pp. 1214–1217.

55. Bahrepour, M.; Meratnia, N.; Havinga, P.J. Use of ai techniques for residential fire detection in wireless sensor networks. In
Proceedings of the AIAI Workshops, Thessaloniki, Greece, 23–25 April 2009.

56. Bahrepour, M.; Meratnia, N.; Poel, M.; Taghikhaki, Z.; Havinga, P.J. Distributed event detection in wireless sensor networks for
disaster management. In Proceedings of the 2nd International Conference on Intelligent Networking and Collaborative Systems
(INCOS), Thessaloniki, Greece, 24–26 November 2010; pp. 507–512.

57. Zoha, A.; Imran, A.; Abu-Dayya, A.; Saeed, A. A machine learning framework for detection of sleeping cells in lte network. In
Proceedings of the Machine Learning and Data Analysis Symposium, Doha, Qatar, 3–6 April 2014.

58. Khanafer, R.M.; Solana, B.; Triola, J.; Barco, R.; Moltsen, L.; Altman, Z.; Lazaro, P. Automated diagnosis for umts networks using
bayesian network approach. IEEE Trans. Veh. Technol. 2008, 57, 2451–2461.

59. Ridi, A.; Gisler, C.; Hennebert, J. A survey on intrusive load monitoring for appliance recognition. In Proceedings of the 2014
22nd International Conference on Pattern Recognition (ICPR), Stockholm, Sweden, 24–28 August 2014; pp. 3702–3707.

60. Chang, H.-H.; Yang, H.-T.; Lin, C.-L. Load identification in neural networks for a non-intrusive monitoring of industrial electrical
loads. In Computer Supported Cooperative Work in Design IV; Springer: Berlin/Heidelberg, Germany, 2007; pp. 664–674.

61. Branch, J.W.; Giannella, C.; Szymanski, B.; Wolff, R.; Kargupta, H. In-network outlier detection in daa wireless sensor networks.
Knowl. Inf. Syst. 2013, 34, 23–54. [CrossRef]
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