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Abstract
Identifying novel malware and their behaviour

enables security engineers to prevent and pro-
tect users with devices on the network from at-
tackers. MalPaCA is an algorithm that helps to
understand the behaviours of the network traf-
fic by clustering uni-directional network connec-
tions which can be analyzed further to inter-
pret which label suites the malicious connection.
When clustering connections, features extracted
from the packet information were chosen man-
ually based on the generalizability of informa-
tion and research of common malware charac-
teristics. The feature set can be extracted au-
tomatically with an autoencoder to increase the
representation of each packets in network traf-
fics. A comparison with an autoencoder gener-
ated feature set to the hand-crafted feature set
shows that the hand-crafted feature set repre-
sents the malicious traffics with higher accuracy
and more insightful explainability. A compara-
tive experiment is run on the IoT-23 dataset, a
network traffic capture from Avast’s AIC labo-
ratory.

1 Introduction
In recent years, malware attacks have been increasing, with a
survey showing that 70% of devices connected to the Internet
are vulnerable [1]. It has come to close attention to keep de-
vices connected to the Internet protected from malware. To
do so, new malware need to be identified and the behaviour
of novel malware should be understood to make high-tech so-
lutions to defend against them.

Malware attacks are executed through the network, hence
the history of the malicious network flows are left on the net-
work traffic which can be inspected to identify and under-
stand the malware. Cyber-security engineers manually ana-
lyze the network traffic to make behavioural profiles of mal-
ware families on the network which becomes outdated soon
after [2]. With MalPaCA (Malware Packet-sequence Cluster-
ing and Analysis), a novel unsupervised machine learning-
based method which automates capability assessment by
clustering the temporal behavior in malware’s network traces,

provides meaningful behavioral clusters using packet headers
[3].

Within the pipeline of the MalPaCA algorithm, feature ex-
traction plays a role in the early stages as shown in Figure 1.
The basic features available from the network traffic are the IP

Figure 1: MalPaCA pipeline

and TCP/UDP fields without the payload to avoid deep packet
inspection for minimal computational load. The feature ex-
traction in the current MalPaCA algorithm is hand-crafted,
meaning a feature set to be used for clustering has been se-
lected through literature study. A well representative feature
set that represents the packet, hence a connection, will col-
lect values that will enhance clustering of connections, thus a
search for new feature sets has been questioned.

The integration of an autoencoder (AE) to extract a new
feature set in the form of data encoding representing all the
features available from the packet header is the automated
feature engineering version of MalPaCA. The key benefit of
this approach is that a representative feature set containing
all information from a packet header can be generated auto-
matically in any situation, including where the domain of the
network traffic is unclear. Such compressed knowledge rep-
resentation helps to learn important hidden features. The re-
search of an automated feature engineering MalPaCA tries to
contribute for a better behavioural profile of the network con-
nection clusters. With the automatically extracted feature set,
the existing manually extracted feature set will be compared
to evaluate accuracy and explainability of the clusters.

In this paper, the formulation of an autoencoder to extract
a new feature set will be discussed. A comparison of the
new automatically extracted feature set against the manually
extracted feature set will be run with MalPaCA on network
traffics from the IoT-23 dataset. The result will be evalu-
ated quantitatively to demonstrate accuracy and qualitatively
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to explain how the new feature set differ in resulting cluster
and the explainability of the clusters which are used to help
label the cluster and learn the malware behaviour.

In section 2, the background of MalPaCA will be dis-
cussed, focused on the P2 feature extraction. In section 3, the
integration of the automated feature engineering to MalPaCA
will be described as the AE integrated MalPaCA version. In
section 4, the experimental set up including the dataset, pa-
rameter settings, and evaluation metrics will be explained. In
section 5, the results of the experiment will be interpreted,
with an analysis on section 6. Section 7 discusses the ethics
and reproducibility of the research. Finally, conclusions and
future work in section 7 remarks the end of the research.

2 Background
Malware packet sequence clustering and analysis, namely
MalPaCA, is an analysis tool that performs automated capa-
bility assessment to construct a behavioral profile for each
malware sample that is more descriptive than just its family
label [3]. The unsupervised learning manner of MalPaCA
puts emphasis to the explainability of cluster results. The al-
gorithm’s pipeline is shown in Figure 1 with five main steps
from P1 to P5. Uni-directional connections are generated in
P1 and in P2 a feature set formed of four features are extracted
from each packet in every connections. Each uni-directional
connection are formed of a threshold value number of packets
and each packet consists four features. In P3, dynamic time
warping or n-gram distance measures are used to create a n-
by-n distance matrix where n is the number of uni-directional
connections. With four n-by-n distance matrix, an aggregated
distance matrix is formed by obtaining the average. This ag-
gregated distance matrix is fed into the HDBSCAN to acquire
the final clustering of uni-directional connections in P4. This
is the clustering part of the baseline MalPaCA.

Few of the challenges stated in MalPaCA are feature selec-
tion and feature representation which are composite aspects
of P2 [3]. As for feature selection, deep packet inspection has
been avoided for the reasons such as privacy-intrusive, oper-
ationally expensive, and do not work out-of-the-box for en-
crypted traffic characteristics. Hence, MalPaCA selects high-
level features from packet headers. In feature representation,
MalPaCA employs short raw sequential features instead of
statistical features that are widely used in characterizing mal-
ware network behavior, such as mean packet size of a network
flow [4, 5]. With raw sequential features, behaviours of each
packets are fully detailed without any loss in local behaviours.
Accompanying these two challenges, MalPaCA chose packet
size, time interval, source port and destination port as high-
level raw sequential features from packet headers. These four
features were hand-crafted with the reason of generalizablil-
ity to more than one type of malware and being small and
easy to extract [3]. All four features are available for every
connection and each feature is represented as a sequence of
raw observations for subsequent packets.

3 Methodology
The comparative analysis relies heavily on two different com-
plete versions of the MalPaCA algorithm. One of which is

the baseline MalPaCA [3] and the other is MalPaCA with an
automated feature extraction generated by an autoencoder re-
placing the original feature set with encoded values. To do so,
a novel version of MalPaCA should be made to incorporate
a feature set accurately encoded and continue the algorithm
to flow to P3, namely, distance measure. The new version
of MalPaCA with the automated feature engineering will be
described in this section. Changes within the steps of clus-
tering are modified while keeping the rest of the algorithm
controlled to the original MalPaCA.

3.1 Autoencoder for dimensionality reduction
An essential part of this research devotes to, the artificial neu-
ral network namely, the autoencoder. The autoencoder is used
in the automated feature engineering version of MalPaCA to
perform dimensionality reduction on the feature set to accom-
plish feature extraction before putting into clustering. Au-
toencoders are capable of modeling complex non-linear func-
tions, hence on inputs such as network traffic, it is idealistic.
A dimension reduced encoding of datasets such as network
traffic can increase the representativeness of each data in-
stances by denoising the dataset and reducing overfitting of
the model to better perform clustering [6].

3.2 MalPaCA: autoencoder integrated
In the AE integrated MalPaCA, P2, feature extraction is re-
placed. With the autoencoder designed in subsection 4.2, the
modified MalPaCA pipeline look as in Figure 2.

Figure 2: Automated feature engineering MalPaCA pipeline

A list of pcap files or a pcap file is put in as input to Mal-
PaCA. All packets in the pcap file(s) are combined into a sin-
gle list of 12-tuple. The high-level features from packet head-
ers form the 12-tuple for each packet. This list, representing
the network traffic, is normalized then put into the autoen-
coder, returning a list of encoding. An example of this encod-
ing is [0.3772512, 0.14221649, -0.03652108, 0.31472498,
0.33470532] with latent space of five, further elaborated in
subsection 4.3. With each packets of the network traffic en-
coded, the newly generated list is an encoded representation



of the network traffic input. This list of encoded values are fil-
tered, reducing the size of the input to only keep the packets
used in MalPaCA. The packets that are not used in the al-
gorithm are trimmed out further explained in subsection 4.1.
With the encoded feature set for each packet in connections,
dynamic time warping is used to measure the similarity be-
tween all connections. This creates a n-by-n distance matrix
between all uni-directional connections. Finally, HDBSCAN
and t-SNE visualization are performed on this distance matrix
resulting in a cluster of connections and a visualization of the
clusters, respectively.

4 Experimental setup
The experiment of the two configuration of MalPaCA shown
in this section are dedicated to exhibit the effectiveness of
automated feature engineering and identifying malware be-
haviours from network traffic. In this section, the experimen-
tal setup including the autoencoder design, dataset and met-
rics will be discussed.

4.1 Experimental dataset
All the network traffic scenarios to be used in this research
come from the IoT-23 dataset created by Avast’s AIC labora-
tory. The IoT-23 dataset consists 23 network captures from
Internet of Things devices where 20 captures are malicious
network traffics and 3 are benign captures [7]. For each cap-
ture, a pcap file consists several thousands of packet flows that
go up to 7.8GB in size. The IoT-23 dataset is a real network
traffic dataset consisting 15 different connections of malware
labels created manually in the Stratosphere laboratory consid-
ering the malware captures analysis, and benign connections.

One of the advantages of MalPaCA is that the computa-
tional load can be reduced, due to the threshold value that lim-
its the number of packets to consider per each uni-directional
connections. Uni-directional connections that have packets
less than the threshold number are ignored. This threshold
value is by default set to 20 in MalPaCA. Taking advantage of
this trait of MalPaCA, data preparation can optimize the algo-
rithm by filtering out unnecessary packets from the pcap file.
These packets include packets that are from a uni-directional
connection that has less than the threshold value or packets
that come after the first threshold number of packets from
uni-directional connections that have packets more than the
threshold number of packets.

All 23 captures of the network traffic from the IoT-23
dataset were partially used by filtering out certain packets not
required for MalPaCA. The labels of each connections are
given from the IoT-23 dataset made by Zeek network ana-
lyzer. Table 1 shows the malware labels of the pre-processed
dataset used and the distribution of each labels, after filtering
out unused packets (threshold is set to 20 as default). 69.9%
of the network traffic are benign and the rest of 30.1% are
malicious traffic in the new folder of pcap files.

4.2 Autoencoder model
An autoencoder that will map the feature set from a high fea-
ture space to low feature space was carefully designed for
MalPaCA. The high feature space are the basic features from

Table 1: Dataset composition filtered from IoT-23 dataset

Label Num. of
connections

Percentage

Benign 956 69.9%
Attack 37 2.7%
C&C 26 1.9%
C&C-heartbeat 13 1.0%
C&C-heartbeat-file-
download

4 0.3%

C&C-Torii 40 2.9%
DDoS 62 4.5%
File-download 2 0.1%
Okiru 21 1.5%
Part-of-a-horizontal-port-
scan

207 15.1%

Total 1368 100%

IP and TCP/UDP header fields that are available from the net-
work traffic without inspecting the payload. This is a tuple of
12 values which are in the order of packet size, flags, destina-
tion IP address, fragment offset, protocol, source IP address,
header checksum, type of service, time to live, source port,
destination port and TCP/UDP checksum. Hence the input to
the autoencoder will be an array of 12-tuple where each tuple
is a single packet from a pcap file.

An autoencoder has three main components which are the
encoder, latent variables and decoder. The encoder and de-
coder are symmetrical neural networks of which the decoder
is discarded after learning how to recreate the input as the
output from the latent variables. The latent variable is a layer
which is the bottleneck in the neural network representing the
high feature space into a low feature space.

Figure 3: Autoencoder for MalPaCA structure

The autoencoder for MalPaCA has been structured as
shown in Figure 3. To design this model that learns compact
yet accurate representation of network traffic for MalPaCA,
literature study and grid search have been employed. Below
are the explanations for each choice of the structure in the
autoencoder.



Autoencoder variant
Amongst the variants of an autoencoder, the undercomplete
autoencoder will be used. Undercomplete autoencoder con-
strains the number of nodes in the hidden layers to be lower,
learning nonlinear relations, to obtain latent representations
of the input which is the objective of for the automated fea-
ture engineering MalPaCA.

Number of hidden layers
There will be an input layer, output layer and seven hidden
layers in total where the encoder and decoder each have three
layers with one latent variable layer in the middle. Two hid-
den layers can represent functions with any kind of shape suf-
ficiently for many practical problems, but with large input
data such as network traffics [8], the use of additional hid-
den layers reduce the total required number of hidden nodes
which help in learning smaller latent variable space [9].

Number of neurons
[12, 65, 35, 20, 5, 20, 35, 65, 12] is the structure of the autoen-
coder where each value represents the number of neurons in
that layer. 12 is the feature space of the input, 65 is the num-
ber of neurons in the first and last hidden layer, and five is
the size of the autoencoder’s bottleneck layer. The five latent
variable unit provide a five-dimensional space to represent the
original feature set of 12 values from a network packet.

The number of neurons are very important in impacting
the outcome, and is unique to each dataset and context. It
has to be considered thoroughly to avoid overfitting and un-
derfitting of the model. To decide the number of neurons,
a cross-validated grid-search was employed after a range for
the number of neurons were found. Negated mean squared
error (MSE) was used as the scoring metric to rank the lowest
error the highest, capturing the difference between the input
and output. The latent variable size was considered first. In

Figure 4: Latent space grid search

Figure 4, the result of grid search done on latent space from
1 to 12 (size of input) is displayed. It is shown that after a
latent space of 5, the improvement of achieving higher score
diminishes, interpreted as additions of unnecessary computa-
tional load to the neural network. For the range of the size of
the number of neurons, existing implementations in the field
of autoencoders for network traffic with similar input features
was reviewed, which scaled from 15 up to 200 [10, 11]. With
these range in mind, a grid search has been employed with
a set [20, 35, 50, 65, 100] for each hidden layer and a set
[1, 2, 3, 4, 5] for the latent variable. The highest average

score among 625 combinations of parameters possible, the
structure [12, 65, 35, 20, 5, 20, 35, 65, 12] achieved the high-
est score of -0.118295 (result table found in Appendix A).
The scores are very close among combinations with the same

Figure 5: GridSearchCV plot

latent space. This is depicted in Figure 5 where the scores
are clearly higher towards latent space 5 while the hidden
layer combinations hugely depend on the latent space shown
by each strip of data points plotted accordingly to the latent
space.

Activation function
Leaky ReLU was used as the activation function for the en-
coding hidden layers and linear (no activation function) in the
decoding hidden layers. Leaky ReLU was used because of its
faster and effective training of neural networks on large and
complex datasets [12].

Loss function
For autoencoder models, the loss should describe how well
the input has been reconstructed as output. Thus, to capture
the difference of the two set, mean square error was used.

Optimizer
The Adam optimizer that combines best properties of sev-
eral adaptive optimizer has been chosen. Adam optimizer
can handle sparse and noisy data with the adaptive learning
nature which suites for the network traffic dataset.

Batch size & epoch
The batch size has been set to 128. The epoch has been set to
25.
A full summary of this model can be found in Appendix B.

4.3 Preprocessing input and setup
For the input as the feature set that goes into the autoencoder,
values such as IP address or prototype were label encoded
into a value between zero and n-classes minus one as an ap-
proach of categorical encoding. This has been done since
machine learning algorithms can only understand numbers,



not texts, and the categorical difference in the values of IP
address or prototype is the primary observation for machine
learning algorithms, not the difference of exact textual val-
ues. To avoid weight bias coming from difference in relative
range of values for input variables, each feature in the feature
set were normalized into a value between zero and one using
the MinMaxScaler. In Equation 1, xmax and xmin are the
maximum and minimum value, respectively, in a column of
feature set such as packet size and xi is each one of the values
in that feature set column.

xi − xmin

xmax − xmin
(1)

The autoencoder designed from subsection 4.2 run on the
dataset from Table 1 on average of 30 runs gave a validation
loss of 0.0181 with 70% and 30% used as the training and
testing set, respectively. An example of an encoding process
with the decoding is demonstrated in Table 2. The decoded
representation shows the reconstruction for large values such
as checksum or port numbers lacks performance, meanwhile
the rest are reconstructed to the near tenths. The MSE with
the normalized and decoded stage packet representation is
0.0142 with the following example.

Table 2: Example of packet encoding and decoding

Stage Packet representation
Label

encoded
[60, 1, 0, 16384, 6, 2, 23823, 0, 64, 35944, 50,

22422]
Nor-

malized
[0, 1, 0, 1, 0, 0.33, 0.3635, 0, 0.1791, 0.7576, 0,

0.3422]
En-

coded
[0.3772512, 0.14221649, -0.03652108,

0.31472498, 0.33470532]
De-

coded
[0.0099, 0.9906, -0.0175, 0.9968, 0.0186,
0.3176, 0.0855, 0.0301, 0.1875, 0.7851,

-0.0014, 0.6424]
Inverse
trans-

formed

[60.2763, 0.9906 -0.1578, 16331.375, 6.2045,
1.9054, 5605.1191, 5.7870, 64.5600,

37247.078, -40.203, 42097.836]

The experiments were conducted on a Lenovo X1 Carbon,
equipped with an Intel Core i7 CPU, 2.60 GHz, with 16 GB
RAM on Linux Ubuntu 20.04 LTS. Python TensorFlow and
Keras were used to create and run the model for the autoen-
coder.

4.4 Evaluation metrics
To evaluate the results of the two versions of MalPaCA, quan-
titative evaluation metrics were used to compare the accuracy.
The objective of MalPaCA is to cluster uni-directional con-
nections into groups of similar behaviour on the network in
order to give the cluster a label. Ideally, all the connections in
a single cluster would have one label.

The quantitative metrics to indicate the accuracy of clusters
will be malicious cluster purity, noise percentage and silhou-
ette score. Malicious cluster purity is the percentage repre-
senting total number of 50% or higher of one malware label

(sizemallabel) over the total cluster size excluding purely be-
nign clusters shown in the equation below.

MCP =
sizemal label∑

sizeall −
∑

sizepurely benign
(2)

This metric captures the accuracy for clustering malware by
rewarding highly concentrated cluster of one malware label
through penalizing clusters with mixed labels that do not have
a single malware label that occurs more than 50% by adding a
value of zero instead. Higher MCP grants higher confidence
of labeling clusters. The noise percentage is calculated for
the entire dataset expressed as Equation 3.

Noise percentage =
# of connections in noise cluster

# of total connections
(3)

A lower noise percentage would indicate that more connec-
tions were assigned into clusters which are decided by the
input to the clustering algorithm. As the input are values rep-
resenting connections, if the values for connection that share
very similar behaviour are smaller and connections that op-
posite behaviour are bigger, the noise percentage would be
lower.

The labels listed in Table 1 of each connections were
used in the experiment to deduce quantitative measures to
help the evaluation for unsupervised learning of MalPaCA.
For in depth analysis, qualitative measures such as tempo-
ral heatmaps are used. Temporal heatmaps displays the pat-
tern existing in the sequential nature of the threshold value of
packets.

5 Results
The baseline MalPaCA and AE integrated MalPaCA creates
different sets of clusters, each showing unique characteristics
of clusters of the network traffic. Few of the interesting be-
haviours captured by the two MalPaCA are described in this
section.

5.1 Baseline MalPaCA
1. Port scan identification. Horizontal port scan connec-

tions are clustered into several clusters with 100% pu-
rity. Port scan is a technique used by hackers to find
weak points in the network to proceed to break into a
system. A horizontal port scan (HPS) attempts to make
a connection through the same port with multiple differ-
ent destination IP addresses. Destination port being one
of the four feature, shown in Figure 6, all connections
share the same destination port of 256 through all 20
packets. In addition, it has been detected that these HPS
share the same packet size as well, shown in Figure 7.

Figure 6: Baseline MalPaCA cluster 2 heat map - destination port



Figure 7: Baseline MalPaCA cluster 2 heat map - packet size

2. C&C detection. Infected devices connected to a C&C
server are considered malicious connections labelled as
C&C. With the baseline MalPaCA, C&C labelled con-
nections are clustered purely. C&C labelled activities
are assigned by evidence of connections to the suspi-
cious IP being periodic found by the time interval from
the feature set. The time interval is the time between two
subsequent packets in a connection being sent. Figure 8
shows a pattern from a connection sending a group of
packet very shortly after another followed by a break.

Figure 8: Baseline MalPaCA cluster 0 heat map - packet interval

3. Malware behavioural clustering. Cluster 14 is a group
of DDoS and Okiru connections. MalPaCA captures the
behaviours of these connection to group them together.
As shown in Figure 9, both DDoS and Okiru connec-
tions have packet sizes constant throughout all 20 pack-
ets with minor exceptions. The packet interval of DDoS
and Okiru are periodically equal with a pattern of being
shorter every second packet shown in Figure 10. In ad-
dition, the destination port are identical with minor ex-
ceptions, seen in Figure 11. The similarity in behaviour
gives a hint that the Okiru could be a type of DDoS at-
tack.

Figure 9: Baseline MalPaCA cluster 14 heat map - packet size

Figure 10: Baseline MalPaCA cluster 14 heat map - packet interval

Figure 11: Baseline MalPaCA cluster 14 heat map - destination port

5.2 Autoencoder feature engineering MalPaCA
Before demonstrating the cluster characteristics using tem-
poral heatmaps, it is worth mentioning that 5 heatmaps will
be generated from 5 distance matrices due to the 5D latent
space. The average MSE among the 5 distance matrices after
L1 normalization was 3.97e-8, hence one of 5 heatmaps are
used to the most visually distinguishable. The comparison of
5 heatmaps of a single cluster can be seen in Appendix C.

1. Benign NTP connection detection. Close to half of the
benign connections were clustered in cluster 10. Fig-
ure 12 shows a snippet of the 473 connections tempo-
ral heatmap of which the full heatmap displays similar
patterns. Packet encodings represented values increas-

Figure 12: AE MalPaCA cluster 10 heat map (4D) (partial section)

ing followed by a sudden decrease back to increasing
depicted by the shading of colors on Figure 12. In-
specting these connections by Wireshark, all connec-
tions had packets consisting identical values except for



the IP checksum, while IP addresses, TTL and TOS var-
ied by connections. The increasing value of encoding
were caused by the IP checksum field which gradually
decreased until zero to jump back up to the highest. The
protocol used were UDP with NTP. NTP is a built-on
UDP using port 123 which is a port assigned by the In-
ternet Assigned Numbers Authority [13]. NTP packets
without any optional extensions, that may contain mali-
cious load, are 76 bytes in size [14].

2. DDoS attack detection. DDoS attack were spotted
into three different pure clusters accordingly to the type.
Cluster 0, 2 and 5 contains the SYN flood, XMAS
flood and UDP flood attack type of DDoS, respectively.
These three clusters shared the characteristic of repeat-
edly sending the same packet from a single source IP
shown in Figure 13. In the two clusters, the encoding

Figure 13: AE MalPaCA cluster 0 & 5 heat map (4D)

of the packets in cluster 0 and 5 have intra-difference of
0.00003 and inter-difference of 0.23, implying the exis-
tence of two different set of identical packets. When in-
spected using Wireshark, the difference existed in packet
size, IP destination, flag, and checksum while the rest of
the fields remained identical.

3. C&C-Torii behaviour detection. C&C-Torii connec-
tions were grouped together in two clusters by the direc-
tion of connection shown by green grids in Figure 14.
C&C-Torii is an IoT botnet that stays stealthy and per-
sistent to accomplish data exfiltration via multiple lay-
ers of encrypted communication. [15]. The heatmap
shows C&C-Torii infected connections send identical
packets over different intervals with one unique packet.
Inspected in Wireshark, the unique packet were pack-
ets with different checksum and increased packet size
to carry payload. The difference in the direction were
captured by the difference in TTL, checksum and port
number.

6 Comparison and discussion
The baseline MalPaCA and AE integrated MalPaCA, run on
the same dataset and setting with the difference only at the
extracted features, produced different characteristics of clus-
ters. To compare the accuracy using the metrics from subsec-
tion 4.4 evaluating the performance, Table 3 has been created
with the results from Appendix D.

Figure 14: AE MalPaCA cluster 13 & 15 heat map (1D)

Table 3: Accuracy metrics from results of the two versions of Mal-
PaCA

MCP Noise
percentage

Silhouette
score

Baseline
MalPaCA

60.0% 9.3% 0.48

AE integrated
MalPaCA

44.0% 20.3% 0.21

It is shown that the baseline MalPaCA outperforms the AE
integrated MalPaCA in all metrics distinctively. A higher
MCP and silhouette score allows the baseline MalPaCA to
label malware clusters with higher confidence over the AE
integrated MalPaCA. In addition, with less noise percentage,
more connections from the dataset are conceivably able to
be labeled. The higher MCP is a reflection of the AE inte-
grated MalPaCA generating clusters with a high portion of
benign connections mixed with malware such as in cluster 11
(poor feature extraction example shown by Figure 15) and
clusters mixed of several malware connections that do not
make the majority of the cluster such as in cluster 15 (poor
clustering example shown by Figure 14). Malware such as
’C&C’ and ’Part of a horizontal port scan’ (HPS) were usu-
ally not clustered as a majority but as a minority in clusters in-
stead of getting in the noise cluster, which is not the case with
the baseline MalPaCA shown by cluster 0 (C&C), 12 (HPS)
and 30 (HPS). Cluster 11 (Figure 15) can be seen as a result

Figure 15: AE MalPaCA cluster 11 heatmap (1D)



of poor feature extraction, clustering ’Attack’, ’C&C’, HPS,
’C&C file download’ and ’Benign’ together. This can be ex-
plained by the initial input feature to the autoencoder. Despite
the autoencoder’s reconstruction error as low as 0.0181 (sub-
section 4.3), fields that help distinguish malware (i.e. C&C)
such as interval (also used in baseline MalPaCA) or bit rate
[11] were not included. Hence, correctly clustered connec-
tions were limited to connections that repeatedly send close
to identical packets such as ’DDoS’, ’Torii’ and ’NTP benign’
described in subsection 5.2.

In terms of explainability of clusters using the visual
help of temporal heatmaps, baseline MalPaCA results con-
tain more comprehensive and meaningful information. From
baseline MalPaCA, the information gained from heatmaps
directly assists the labelling of clusters in addition to accu-
rate knowledge of the malware characteristic. Such examples
are port scan scanning the same port to be characterized as a
horizontal port scan (Figure 6 shows HPS at dst. port 256),
and C&C sending a group of packets periodically (Figure 8).
Contrarily, AE integrated MalPaCA heatmap interpretation
is limited to pattern recognition, due to the values being an
encoded. Although, it can be helpful to further inspect cer-
tain packets through Wireshark. Such as clusters with simi-
lar patterned connections, for example Figure 13 to find out
the different shades represent different packet size, flag and
checksum to spot different DDoS attack types. Or spotlight
out-of-pattern packets for example Figure 14 hinting a packet
with extra packet size.

7 Responsible Research
To reflect on the ethical aspects, privacy intrusion is consid-
ered the most for this research. Capturing the network traf-
fic can become privacy intrusive. Intrusions to privacy is a
paramount concern of research in the field of network mea-
surement. Uninformed network monitoring become a prob-
lem regarding the privacy of the devices on that network.

For this research, privacy policy were adhered to the rules.
The network traffic used in this research is generated by an
antivirus software company, Avast, in a laboratory. The net-
work traffic were captured in the laboratory under controlled
network environment with unrestrained internet connection.
Hence the issue of privacy intrusion of devices on the network
is not violated. Furthermore, for the use of the MalPaCA al-
gorithm with real network traffic, it is possible to follow the
rules of privacy policies. Firstly, getting consent from the
devices on the network will allow safe investigation of the
network traffic. If getting consent of all devices is not trivial,
using simulated data could replace [16]. Lastly, the advan-
tage of MalPaCA is that the data used from the network traf-
fic are limited to only the headers. Therefore, data reduction
of packet information by cutting out the payload minimize
legal exposure. Deep packet inspection is not carried out by
MalPaCA.

The reproducibility of this research is positive due to the
level of detail on the design choices. Throughout this paper,
all descriptions and designs of the experiment is clearly writ-
ten, and in particular, section 4 provides the guideline to set
up the experiment. The dataset used is under the references

to be found.

8 Conclusions and Future Work
An automated feature engineering for the MalPaCA algo-
rithm has been attempted to improve the performance of mal-
ware capability assessment to build network behavioral pro-
files replacing the baseline version’s hand-crafted feature set.
The baseline MalPaCA successfully builds network behav-
ioral profiles by separating different families of malware into
different clusters, while the AE integrated MalPaCA is lim-
ited to building network profiles of certain type of malware
(i.e. malware sending repeated close to identical packets),
resulting in clusters with multiple labels. This is caused by
the the AE generated feature set that has encoded features
from 12 fields of the packet header that lacks the ability to
detect certain malware types. In conclusion, both accuracy
and explainability of the clusters have been outperformed by
the baseline MalPaCA.

Performance of the autoencoder integrated MalPaCA has
areas for improvement. One area is in improving the feature
extraction by inclusion of features known to detect malware.
As mentioned in section 6, malwares such as C&C and HPS
were finely clustered in the baseline MalPaCA with clear pat-
terns in the feature time interval. The other area is in improv-
ing the clustering algorithm. There were groups of connec-
tions within single clusters with clear similarities such as in
Figure 14 and Figure 15. These groups of connections would
be ideal to have its own cluster.
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A Cross validated grid search result

Table 4: Grid search score of top 100 hyper parameter combination

Mean test
score

Std. test
score

Parameters

-0.118295 0.166316 {’l1’: 65, ’l2’: 35, ’l3’: 20,
’latent space’: 5}

-0.118438 0.166236 {’l1’: 100, ’l2’: 50, ’l3’: 35,
’latent space’: 5}

-0.118442 0.165742 {’l1’: 65, ’l2’: 50, ’l3’: 35,
’latent space’: 5}

-0.118496 0.166094 {’l1’: 100, ’l2’: 50, ’l3’: 50,
’latent space’: 5}

-0.118503 0.166477 {’l1’: 100, ’l2’: 35, ’l3’: 65,
’latent space’: 5}

-0.118592 0.165745 {’l1’: 50, ’l2’: 20, ’l3’: 100,
’latent space’: 5}

-0.118611 0.166284 {’l1’: 65, ’l2’: 50, ’l3’: 65,
’latent space’: 5}

-0.118638 0.165994 {’l1’: 65, ’l2’: 50, ’l3’: 20,
’latent space’: 5}

-0.118651 0.166248 {’l1’: 65, ’l2’: 20, ’l3’: 65,
’latent space’: 5}

-0.118658 0.166377 {’l1’: 50, ’l2’: 65, ’l3’: 50,
’latent space’: 5}

-0.118668 0.165862 {’l1’: 65, ’l2’: 35, ’l3’: 65,
’latent space’: 5}

-0.118671 0.165804 {’l1’: 100, ’l2’: 20, ’l3’: 50,
’latent space’: 5}

-0.118733 0.166101 {’l1’: 100, ’l2’: 20, ’l3’: 100,
’latent space’: 5}

-0.118749 0.166334 {’l1’: 35, ’l2’: 65, ’l3’: 35,
’latent space’: 5}

-0.118772 0.166404 {’l1’: 35, ’l2’: 35, ’l3’: 35,
’latent space’: 5}

-0.118804 0.166124 {’l1’: 20, ’l2’: 100, ’l3’: 20,
’latent space’: 5}

-0.118809 0.165830 {’l1’: 35, ’l2’: 50, ’l3’: 20,
’latent space’: 5}

-0.118814 0.166135 {’l1’: 50, ’l2’: 100, ’l3’: 35,
’latent space’: 5}

-0.118818 0.165986 {’l1’: 65, ’l2’: 35, ’l3’: 100,
’latent space’: 5}

-0.118820 0.166109 {’l1’: 65, ’l2’: 100, ’l3’: 65,
’latent space’: 5}

-0.118839 0.166008 {’l1’: 50, ’l2’: 65, ’l3’: 20,
’latent space’: 5}

-0.118842 0.166542 {’l1’: 50, ’l2’: 50, ’l3’: 20,
’latent space’: 5}

-0.118881 0.166286 {’l1’: 65, ’l2’: 20, ’l3’: 35,
’latent space’: 5}

-0.118895 0.165867 {’l1’: 35, ’l2’: 20, ’l3’: 50,
’latent space’: 5}

-0.118904 0.166292 {’l1’: 100, ’l2’: 100, ’l3’: 20,
’latent space’: 5}

-0.118915 0.166708 {’l1’: 50, ’l2’: 50, ’l3’: 100,
’latent space’: 5}

-0.118938 0.166645 {’l1’: 50, ’l2’: 20, ’l3’: 65,
’latent space’: 5}

-0.118946 0.166378 {’l1’: 50, ’l2’: 100, ’l3’: 100,
’latent space’: 5}

-0.118953 0.166768 {’l1’: 35, ’l2’: 20, ’l3’: 65,
’latent space’: 5}

-0.118965 0.166383 {’l1’: 100, ’l2’: 50, ’l3’: 100,
’latent space’: 5}

-0.118970 0.166404 {’l1’: 50, ’l2’: 20, ’l3’: 35,
’latent space’: 5}

-0.118972 0.166153 {’l1’: 50, ’l2’: 50, ’l3’: 35,
’latent space’: 5}

-0.118974 0.166082 {’l1’: 35, ’l2’: 65, ’l3’: 100,
’latent space’: 5}

-0.118978 0.166209 {’l1’: 35, ’l2’: 20, ’l3’: 20,
’latent space’: 5}

-0.118984 0.165783 {’l1’: 100, ’l2’: 20, ’l3’: 65,
’latent space’: 5}

-0.118995 0.165897 {’l1’: 50, ’l2’: 100, ’l3’: 65,
’latent space’: 5}

-0.118995 0.166504 {’l1’: 20, ’l2’: 65, ’l3’: 35,
’latent space’: 5}

-0.119001 0.166093 {’l1’: 20, ’l2’: 20, ’l3’: 100,
’latent space’: 5}

-0.119018 0.166081 {’l1’: 20, ’l2’: 35, ’l3’: 50,
’latent space’: 5}

-0.119029 0.166986 {’l1’: 50, ’l2’: 35, ’l3’: 100,
’latent space’: 5}

-0.119030 0.166490 {’l1’: 100, ’l2’: 100, ’l3’: 100,
’latent space’: 5}

-0.119031 0.166126 {’l1’: 50, ’l2’: 50, ’l3’: 65,
’latent space’: 5}

-0.119048 0.166292 {’l1’: 65, ’l2’: 65, ’l3’: 50,
’latent space’: 5}

-0.119110 0.166192 {’l1’: 35, ’l2’: 100, ’l3’: 50,
’latent space’: 5}

-0.119151 0.165886 {’l1’: 65, ’l2’: 20, ’l3’: 100,
’latent space’: 5}

-0.119212 0.165871 {’l1’: 50, ’l2’: 65, ’l3’: 35,
’latent space’: 5}

-0.119225 0.165761 {’l1’: 100, ’l2’: 35, ’l3’: 100,
’latent space’: 5}

-0.119237 0.166184 {’l1’: 100, ’l2’: 20, ’l3’: 35,
’latent space’: 5}

-0.119262 0.166297 {’l1’: 35, ’l2’: 50, ’l3’: 65,
’latent space’: 5}

-0.119336 0.165473 {’l1’: 100, ’l2’: 65, ’l3’: 100,
’latent space’: 5}

-0.119337 0.165768 {’l1’: 35, ’l2’: 100, ’l3’: 20,
’latent space’: 5}

-0.119382 0.166676 {’l1’: 35, ’l2’: 35, ’l3’: 50,
’latent space’: 5}

-0.119398 0.167847 {’l1’: 50, ’l2’: 65, ’l3’: 65,
’latent space’: 5}

-0.119438 0.166904 {’l1’: 65, ’l2’: 65, ’l3’: 35,
’latent space’: 5}

-0.119441 0.165923 {’l1’: 100, ’l2’: 20, ’l3’: 20,
’latent space’: 5}

-0.119457 0.165794 {’l1’: 20, ’l2’: 35, ’l3’: 20,
’latent space’: 5}

-0.119519 0.166590 {’l1’: 20, ’l2’: 35, ’l3’: 35,
’latent space’: 5}

-0.119530 0.166065 {’l1’: 100, ’l2’: 65, ’l3’: 50,
’latent space’: 5}

-0.119530 0.165730 {’l1’: 50, ’l2’: 50, ’l3’: 50,
’latent space’: 5}



-0.119538 0.166362 {’l1’: 20, ’l2’: 35, ’l3’: 100,
’latent space’: 5}

-0.119552 0.165689 {’l1’: 50, ’l2’: 100, ’l3’: 50,
’latent space’: 5}

-0.119555 0.166722 {’l1’: 65, ’l2’: 20, ’l3’: 50,
’latent space’: 5}

-0.119592 0.165918 {’l1’: 50, ’l2’: 100, ’l3’: 20,
’latent space’: 5}

-0.119665 0.166151 {’l1’: 100, ’l2’: 65, ’l3’: 20,
’latent space’: 5}

-0.119698 0.165737 {’l1’: 65, ’l2’: 65, ’l3’: 65,
’latent space’: 5}

-0.119759 0.166951 {’l1’: 65, ’l2’: 65, ’l3’: 100,
’latent space’: 5}

-0.119766 0.165471 {’l1’: 65, ’l2’: 35, ’l3’: 35,
’latent space’: 5}

-0.119779 0.165797 {’l1’: 20, ’l2’: 65, ’l3’: 65,
’latent space’: 5}

-0.119807 0.167608 {’l1’: 20, ’l2’: 100, ’l3’: 65,
’latent space’: 5}

-0.119828 0.165536 {’l1’: 20, ’l2’: 50, ’l3’: 20,
’latent space’: 5}

-0.119830 0.167227 {’l1’: 50, ’l2’: 35, ’l3’: 65,
’latent space’: 5}

-0.119853 0.165483 {’l1’: 100, ’l2’: 35, ’l3’: 50,
’latent space’: 5}

-0.119917 0.165650 {’l1’: 65, ’l2’: 35, ’l3’: 50,
’latent space’: 5}

-0.119917 0.168588 {’l1’: 20, ’l2’: 50, ’l3’: 100,
’latent space’: 5}

-0.119939 0.165614 {’l1’: 65, ’l2’: 50, ’l3’: 100,
’latent space’: 5}

-0.120026 0.165565 {’l1’: 50, ’l2’: 35, ’l3’: 35,
’latent space’: 5}

-0.120036 0.165497 {’l1’: 35, ’l2’: 50, ’l3’: 35,
’latent space’: 5}

-0.120049 0.165622 {’l1’: 20, ’l2’: 65, ’l3’: 20,
’latent space’: 5}

-0.120061 0.165510 {’l1’: 65, ’l2’: 65, ’l3’: 20,
’latent space’: 5}

-0.120090 0.165560 {’l1’: 50, ’l2’: 65, ’l3’: 100,
’latent space’: 5}

-0.120162 0.165920 {’l1’: 100, ’l2’: 100, ’l3’: 35,
’latent space’: 5}

-0.120171 0.165910 {’l1’: 20, ’l2’: 50, ’l3’: 65,
’latent space’: 5}

-0.120186 0.166324 {’l1’: 20, ’l2’: 50, ’l3’: 35,
’latent space’: 5}

-0.120222 0.167728 {’l1’: 100, ’l2’: 50, ’l3’: 65,
’latent space’: 5}

-0.120278 0.166278 {’l1’: 35, ’l2’: 35, ’l3’: 65,
’latent space’: 5}

-0.120279 0.166675 {’l1’: 20, ’l2’: 100, ’l3’: 100,
’latent space’: 5}

-0.120336 0.167012 {’l1’: 65, ’l2’: 50, ’l3’: 50,
’latent space’: 5}

-0.120441 0.165803 {’l1’: 35, ’l2’: 100, ’l3’: 65,
’latent space’: 5}

-0.120474 0.165605 {’l1’: 50, ’l2’: 35, ’l3’: 50,
’latent space’: 5}

-0.120506 0.165934 {’l1’: 50, ’l2’: 20, ’l3’: 20,
’latent space’: 5}

-0.120613 0.165730 {’l1’: 100, ’l2’: 100, ’l3’: 65,
’latent space’: 5}

-0.120636 0.166345 {’l1’: 35, ’l2’: 65, ’l3’: 50,
’latent space’: 5}

-0.120637 0.165554 {’l1’: 20, ’l2’: 20, ’l3’: 50,
’latent space’: 5}

-0.120672 0.165346 {’l1’: 20, ’l2’: 65, ’l3’: 50,
’latent space’: 5}

-0.120678 0.165310 {’l1’: 100, ’l2’: 35, ’l3’: 35,
’latent space’: 5}

-0.120729 0.165080 {’l1’: 100, ’l2’: 35, ’l3’: 20,
’latent space’: 5}

-0.120780 0.169519 {’l1’: 35, ’l2’: 65, ’l3’: 65,
’latent space’: 5}

-0.120817 0.165660 {’l1’: 35, ’l2’: 35, ’l3’: 100,
’latent space’: 5}

-0.120818 0.165404 {’l1’: 20, ’l2’: 100, ’l3’: 35,
’latent space’: 5}

-0.120826 0.166346 {’l1’: 20, ’l2’: 35, ’l3’: 65,
’latent space’: 5}

B Model summary

Figure 16: Autoencoder model summary from TensorFlow



C 5 heatmaps of same cluster

Figure 17: Heatmap of all 5 encoding spaces of cluster 12 showing
same patterns

D MalPaCA cluster results
D.1 Baseline MalPaCA cluster results

Table 5: Baseline MalPaCA cluster results

Cluster Num.
of conn

Labels with distribution

0 20 ’C&C’:100%
1 18 ’C&C’:11.1%, ’C&C-heartbeat-file-

download’:11.1%,
’C&C-file-download’:5.5%,
’Benign’:72.3%

2 12 ’Part-of-a-horizontal-port-
scan’:100%

3 12 ’DDoS’:100%
4 46 ’Attack’:30.4%, ’Part-of-a-

horizontal-port-scan’:10.9%,
’Benign’:50.7%

5 10 ’C&C-Torii’:100%
6 10 ’C&C-Torii’:100%
7 10 ’C&C-Torii’:100%
8 10 ’C&C-Torii’:100%
9 83 ’Attack’:27.7%, ’Part-of-a-

horizontal-port-scan’:14.5%,
’Benign’:57.8%

10 13 ’Part-of-a-horizontal-port-
scan’:7,7%,
’Benign’:92.3%

11 20 ’Benign:100%
12 23 ’DDoS’:8.7%,

’File-download’:4.3%, ’Benign’:87%
13 11 ’Okiru’9.1%, ’Benign’:90.9%
14 22 ’DDoS’:18.2%, ’Okiru’:81.2%
15 18 ’File-download’:5.6%,

’Benign’:94.4%
16 19 ’Benign’:100%
17 26 ’Benign’:100%
18 41 ’Benign’:100%

19 55 ’Benign’:100%
20 75 ’Benign’:100%
21 14 ’Benign’:100%
22 84 ’Benign’:100%
23 50 ’Benign’:100%
24 19 ’Benign’:100%
25 57 ’Benign’:100%
26 74 ’Benign’:100%
27 37 ’Benign’:100%
28 12 ’Benign’:100%
29 12 ’Benign’:100%
30 12 ’Part-of-a-horizontal-port-

scan’:100%
31 12 ’DDoS’:100%
32 12 ’DDoS’:100%
-1 111 ’DDoS’:17.1%, ’C&C’:1.8%, ’C&C-

heartbeat-File-download’:1.8%,
’C&C-heartbeat’:9.9%,
’C&C-File-download’:0.1%, ’Part-
of-a-horizontal-port-scan’:2.7%,
’Okiru’:1.8%, ’Benign’:64.8%

D.2 Autoencoder integrated MalPaCA cluster
results

Cluster Num.
of conn

Labels with distribution

0 10 ’DDoS’:100%
1 10 ’Benign’:100%
2 10 ”DDoS’:100%
3 45 ’DDoS’:17.8%, ’Part-of-a-

horizontal-port-scan’:22.2%,
’Okiru’:33.3%, ’Benign’:26.7%

4 52 ’DDoS’:7.7%, ’Benign’:92.3%
5 10 ’DDoS’:100%
6 10 ’Part-of-a-horizontal-port-

scan’:100%
7 33 ’Part-of-a-horizontal-port-scan’:1.5%

, ’Benign’:98.5%
8 17 ’DDoS’:11.8%, ’Benign’:88.2%
9 32 ’Benign’:100%
10 473 ’Benign’:100%
11 16 ’Attack’:6.3%, ’Part-of-a-horizontal-

port-scan’:6.3%, ’C&C’:3.2%,
’C&C-file-download’:3.2%,
’C&C-Torii’:6.3%, ’Benign’:74.7%

12 10 ’C&C-Torii’:90% , ’Benign’:10%
13 11 ’C&C-Torii’:81.8%, ’Benign’:18.2%
14 21 ’Part-of-a-horizontal-port-

scan’:23.8%, ’Attack’:9.5%,
’C&C’:5.3%,
’C&C-heartBeat’:5.3%,
’Benign’:56.1%

15 19 ’Attack’:21.1%, ’C&C-Torii’:42.1%,
’C&C’:5.3%, ’Benign’:31.5%



-1 235 ’DDoS’:4.7%, ’C&C-Torii’:5.5%,
’C&C’:9.4%, ’Attack’:12.8 ’C&C-
heartbeat-file-download’:1.7%,
’Part-of-a-horizontal-port-
scan’:6.0%, ’C&C-heartbeat’:4.3%,
’File-download’:0.1%,
’C&C-file-download’:0.1%,
’Okiru’:2.6%, ’Benign’:52.8%
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