
Routing Shunt Trains at NS
with

Constraint Programming

Nevena Gincheva

Routing Shunt Trains at NS with
Constraint Programming

Nevena Gincheva

to obtain the degree of Master of Science
in Computer Science

at the Delft University of Technology

to be defended publicly on
12 July 2024 at 11:30

Student number: 5835542
Thesis committee: Dr. E. Demirović thesis advisor

Dr. C. Lofi committee member
Maarten Flippo daily supervisor
Jord Boeijink external supervisor

Acknowledgment:
This research is conducted at TU Delft with the collaboration of the R&D Department at NS, the leading

railway company in the Nederlands. The thesis is supported by the project ”Towards a Unification of
AI-Based Solving Paradigms for Combinatorial Optimisation” (OCENW.M.21.078) of the research program

”Open Competition Domain Science - M” which is financed by the Dutch Research Council (NWO).

Preface

Welcome to my thesis on "Routing Shunt Trains". This work marks the culmination of my academic
education. After five years, I look back on this wonderful time filled with proud moments and happiness,
but also with moments of challenges and tears. However, as the saying goes, "Nothing worth having comes easy."

I would like to express my gratitude to my TU Delft supervisor, Maarten Flippo, and my thesis advisor
Emir Demirović. Your guidance and support have been invaluable to me and the flow of this thesis. I would
also like to thank my NS supervisor, Jord Boilink, who always found time to discuss with me the project
even during his busiest days. Additionally, I am thankful to Bob for allowing me to conduct my research with NS.

I would like to thank my friends from my bachelor years, Kalina, Annika, Teun, Maartin, and Shanessa, and
to those from my master years, Prakhar, Vyshnavi, and Violeta, I cannot imagine the past five years without
you. It was wonderful to work and study together. I am thankful to everyone from my Dodgeball Association
for the exciting training sessions that provided the much-needed break from my thesis.

Finally, I would like to thank Hristo, for your unwavering help and encouragement. Your willingness
to listen and offer assistance has been a constant source of comfort. My deepest appreciation goes to
my family, my parents, and my sister for their constant support throughout these five years. Especially to
my mom, who never grew tired of listening to me. Your patience and understanding have meant the world to me.

Thank you all for being a part of my journey.

Abstract

The Shunt Routing Problem (SRP) is an important logistic problem at nearly every railway station. It
is a subproblem of an even bigger train scheduling problem, the Train Unit Shunting Problem (TUSP).
The objective of SRP is to schedule conflict-free routes between the platforms and the yards, for currently
non-operational trains that have completed their current journeys and have not yet commenced the next one.
We developed a Constraint Programming (CP) model for the Shunt Routing Problem at NS. The model is
intended to replace the current algorithm for constructing the initial solution for the Local Search, addressing
the TUSP at NS. The model incorporates all essential feasibility requirements and produces conflict-free
solutions, in contrast to its forerunner. Moreover, it can be applied to any instance and station layout.

Initially, the model exhibited an average performance of 7-8 minutes on a real-life instance at Enkhuizen
station. We managed to enhance the model and reduce the computation time to less than a second. The key
improvements were achieved by changing the solver search strategy, imposing additional search guidelines, or
further restricting the domains of influential variables. During experimentation, an optimized second version
of the model was proposed. The evaluation undoubtedly confirmed that it outperforms the first version.

Both versions of the model, without any additional enhancements, perform exceptionally well on a second
real-life instance at Amersfoort station, solving it in milliseconds. Even with a considerable number of addi-
tional routes, the performance of the second version remained reasonable, with a computation time of 18 seconds.

A final experiment revealed the remarkable performance of Gecode, achieving computation time in milliseconds
with the second version of the model implemented for Enkhuizen in MiniZinc. This performance is an order
of magnitude faster compared to the default performance of Google OR-Tools on Enkhuizen with the second
version.

keywords: algorithms, constraint programming, train scheduling, routing

Contents

1 Introduction to TUSP 3
1.1 Train planning processes . 3
1.2 Problem description . 3
1.3 Solution approaches for TUSP . 3
1.4 Terminology . 4
1.5 Literature review . 4
1.6 NS approach for TUSP . 5
1.7 Research questions . 6

2 Shunt Routing Problem 7
2.1 Shunt Routing Problem . 7

2.1.1 A high-level description . 7
2.1.2 Routing concepts . 7
2.1.3 Formal definition of SRP . 8

2.2 Constraint programming . 9
2.3 Model . 9

2.3.1 Scope of the model . 9
2.3.2 Requirements . 10
2.3.3 Assumptions . 10
2.3.4 Parameters . 10
2.3.5 Input . 11
2.3.6 Variables and function definitions . 13
2.3.7 Constraints . 15
2.3.8 The second version of the model . 18
2.3.9 Applied extension . 19
2.3.10 Output . 20

3 Instances 22
3.1 Instances . 22

3.1.1 Real instances . 22
3.1.2 Instance creation . 22
3.1.3 Data preprocessing . 23

3.2 Validations . 23
3.2.1 Validations for model-v2 . 23
3.2.2 Additional checks for model-v1 . 24

4 Experiments & Results 26
4.1 Goal of the experiments . 26
4.2 Experiments’ overview . 26
4.3 Hypotheses . 27

4.3.1 Hypotheses for changes in the model . 27
4.3.2 Hypotheses for the influence of the instance characteristics 27
4.3.3 Hypotheses for the MiniZinc model . 28

4.4 Experimental Setup . 28
4.4.1 Types of experiments . 29
4.4.2 Solutions’ quality . 29

4.5 Experiments with model changes . 30
4.5.1 Adding parking constraints . 30
4.5.2 Variable and value strategies . 31

1

4.5.3 Compare both versions of the model . 37
4.6 Experiments with instance characteristics . 38

4.6.1 Additional routes for Amersfoort . 38
4.6.2 Removing a yard, or reversals . 42
4.6.3 Compare other solvers on model-v2 . 44
4.6.4 Deeper analysis of some results . 45
4.6.5 Main contributions . 47

Conclusion . 49
Future work . 50

A TMP 52
A.1 Train Matching Problem (TMP) . 52

A.1.1 Common notation for both problems . 52
A.1.2 Initial general matching model for NS . 53

A.2 CP model: . 55
A.3 Solve TMP together with SRP . 55
A.4 Additional extension for deciding on where to perform a split or a combine 55

B Model with varying time between submovements 57
B.1 Additional variables . 57
B.2 Constraints . 57

B.2.1 Constraining the start and end times for section occupations 57
B.2.2 Constraints for synchronization between routes and sections occupations and waiting vari-

ables . 58
B.2.3 Constraints for determining section occupations . 59
B.2.4 Constraints for start and end times of “wait” variables . 59

C Other extensions & Objective functions 60
C.1 Other extensions . 60

C.1.1 Additional parameters . 60
C.1.2 Yard extension . 60
C.1.3 Service extension . 60

C.2 Examples of objective functions . 61
C.2.1 Minimize total number of shunt movements . 61
C.2.2 Minimize total routing time . 61
C.2.3 Minimize total distance . 61

D Additional Figures 62

2

Chapter 1

Introduction to TUSP

1.1 Train planning processes

We begin with the various planning processes involved
at a typical railway operator and subsequently focus on
the relevant planning stage for our discussion. Figure
1.1 illustrates all planning processes considered at the
railway provider.

The timetabling planning assigns arrival and depar-
ture times at each station for all train services. This
generated schedule provides the input for the next
phase - shunt planning, which is the focus of this thesis.
This planning phase focuses on organizing the
local processes at different stations. Following
the timetabling stage, the rolling stock planning de-
termines the train units that will perform the planned
services.

Prior to the timetabling planning, the network plan-
ning and line planning phases are handled. Network
planning is the strategic process of designing, im-
plementing, and managing the railway infrastructure
based on the estimated future demand [Lentink, 2006].
The line planning problem determines the origins and
the destinations of the lines, as well as the frequencies
of train journeys on them [Lentink, 2006]. The final
planning process is the crew planning.

Figure 1.1: Overview of the planning processes (source
[Lentink, 2006])

1.2 Problem description

Railway transportation demand is increasing rapidly,
in response to this railway operators increase the train
services by introducing more frequent and larger trains
for certain destinations than before. Increasing the
train services would not have been a problem if ex-

tending the infrastructure was not difficult, expensive,
and sometimes even impossible as stations are usually
in city centers. This problem is exacerbated in densely
populated countries such as the Netherlands. Not be-
ing able to enlarge the infrastructure, but at the same
time introducing more train services complicates the
planning process. The Dutch Railways, in Dutch Ned-
erlandse Spoorwegen, abbreviated as NS, is the main
passenger railway operator of the Netherlands. With
more than one million train services scheduled per day
and more than 20,500 employees (NS, 2023), NS serves
one of the busiest railway networks in the world. Only
operators in Switzerland drive more train kilometers
per track kilometer (NS, 2019).

This introduces the need for further precise logistic
operations. New and faster decision support techniques
and models are required to plan the various aspects
of the train scheduling. One of the planning stages
involves creating shunt plans for each station.

A shunt plan describes all movements or actions (any
activities, for instance moving, splitting, combining, or
standing still at the platform) that the train will un-
dertake from its arrival at the platform to its depar-
ture. The station is bounded by entering or also leaving
points of the station (the ends of the station). In gen-
eral, an entering point can also serve as a leaving point
and vice versa. The green line on Figure 1.2 marks
part of the entering/leaving points at Utrecht Central
Station. The movements from an entering point to the
arrival platform and from the departure platform to the
end of the station are not decided in the shunt plan-
ning phase. Those are already predetermined when the
timetable is created.

A shunt plan consists of the following processes:
matching the arriving trains to departing train services,
parking trains on the shunt tracks, routing trains from
the platform to the shunting yard and vice versa, and
maintenance planning. In literature, the problem of
planning a shunt plan is referred to Train Unit Shunt-
ing Problem (TUSP).Creating a shunt plan for a
station is independent of other stations.

1.3 Solution approaches for
TUSP

We identified two main approaches for solving TUSP.
The first one decomposes the problem into, in general,

3

https://www.nsjaarverslag.nl/search/JV2023_000
https://2022.nsjaarverslag.nl/FbContent.ashx/pub_1004/downloads/v221214114711/NS_annualreport_2019.pdf

Figure 1.2: Part of the track plan of Utrecht Central
Station from www.sporenplan.nl

four subproblems that correspond to the tasks of the
shunt planning (introduced in the previous section 1.2)
and solves those sequentially. We repeat them here -
matching arriving train units to scheduled departing
train compositions, choosing a routing through the sta-
tion, parking positions, and scheduling maintenance.
Some authors argue that the decomposition method is
unlikely to be effective for the TUSP due to the com-
plex interactions between the different subproblems
[Broek, 2016]. Furthermore, decomposing the problem
eliminates the ability to prove global optimality. Last,
decomposition itself is challenging, as the subproblems
are intertwined.

The second approach models and considers TUSP
completely integrated. While this approach can
prove optimality, it often results in a large and com-
plex model that becomes computationally intractable,
as demonstrated by [Kamenga et al., 2019]. Conse-
quently, the authors of [Kamenga et al., 2019] with the
sequential approach while also exploring combinations
of some of the subproblems.

The primary reason for favoring the decomposition
approach is its compatibility with the existing algo-
rithms and tools used by NS. A more detailed expla-
nation of these algorithms and their strategy to solve
TUSP is provided in a subsequent section (Section 1.6).

Before introducing the subproblems and providing a
detailed explanation for those focused on in this thesis,
we will define important terminology that will be used
throughout the thesis.

1.4 Terminology

Trains (also called rolling stock) are composed of
train units. This composition is sometimes referred
to as a configuration of the train .

A train unit is a bidirectional self-propelled railway
vehicle. Typically, a train unit consists of multiple car-
riages that are inseparable. Figure 1.3 shows a train
unit of three carriages. Each train unit has a name (a
unique ID number) and a type . In addition, the whole
train composition has also a unique ID. We will refer
to the units of an arriving or departing train as ar-
riving (train) units and departing (train) units,
respectively.

Figure 1.3: An example of an ICM train unit with 3
carriages (ICM-3) (source [Richard Freling, 2005])

The types of trains are organized in families. For
instance, the InterCity family (ICM) consists of two
subtypes - ICM-3 and ICM-4. The number indicates
the number of carriages in the train unit.

Train units belonging to the same family can be com-
bined to form longer trains. For instance, ICM-3 and
ICM-4 can be combined to form a longer train. How-
ever, ICM-3 and VIRM-4 cannotbe combined, as they
belong to different families.

In general, train units of the same subtype can be
used interchangeably. This implies that a planner must
determine a matching of arriving to departing units.
The order of the train units is important. A train
with a composition [VIRM4]-[VIRM6] is different from
a train with composition [VIRM6]-[VIRM4].

Last, from the perspective of a single station, a train
can be either a through train or a shunt train . The
through train is a train that arrives at the station,
stops for passengers on and off-boarding, and then pro-
ceeds towards the next station. In contrast, a shunt
train (also called plannable train) terminates its
journey at this station. This station will also serve
as a starting point for its next journey.

1.5 Literature review
Train Unit Shunting Problem (TUSP) has been
an area of research from the previous century.
[Kroon et al., 1997] investigated the complexity of
routing trains through railway stations, later named
the Shunt Routing Problem (SRP). They demon-
strated that SRP is NP-complete as soon as each train
has three routing possibilities. A conclusion also de-
rived formally in the Ph.D. thesis of [Lentink, 2006].

[Kroon et al., 1997] also observed that only a subset
of the sections and routes of a railway station require
consideration. Specifically, these critical sections in-
clude those:

(i) containing a switch,

(ii) corresponding to the entering and leaving points,

(iii) corresponding to the platforms.

[Kroon et al., 1997] further proved that it is suffi-
cient to consider only these sections when ensuring that
two different trains do not occupy the same part of the
route simultaneously.

However, the method of route reservation assumed
in this paper differs from the one currently employed
by NS, and hence this valuable insight could not be
utilized.

[Lentink, 2006] dedicates his Ph.D. thesis to solv-
ing TUSP. He introduces TUSP as a decomposition of

4

four subproblems and names them as Train Matching
Problem (TMP), Shunt Routing Problem (SRP), Train
Parking Problem (TPP) and Maintenance scheduling.
Each subproblem is extensively explained, and algo-
rithms or models in Mixed Integer Programming (MIP)
are provided. TMP was modeled and solved with MIP.
The model incorporates components from the shortest
path problem and classical matching. The infrastruc-
ture for the Routing Problem was modeled as a graph
and algorithms based on A∗ and variations of BFS
and Dijkstra were applied.

Besides providing formal proofs regarding the com-
plexity of the subproblems, [Lentink, 2006] also of-
fers insights into conditions that simplify them, re-
ducing their complexity from NP-hard to polyno-
mial time-solvable. In his experiments, he utilizes
instances from two stations - Zwolle and Enschede.
[Richard Freling, 2005] addresses two of the TUSP sub-
problems - TMP and TPP, using a column generation
approach.

[Haahr et al., 2017] explores and compares differ-
ent solution approaches for solving TUSP, although
their definition excludes the routing and maintenance
scheduling components. They have developed a Con-
straint Programming (CP) formulation primarily ad-
dressing the parking problem. Additionally, a Column
Generation approach and a randomized greedy heuris-
tic algorithm are also provided. Their work also in-
cludes a comparison and benchmarking of these ap-
proaches against existing methods based on Mixed In-
teger Linear Programming (MILP) and a two-stage
heuristic. The benchmark incorporates multiple real-
life instances provided by the Danish State Railways
(DSB) and Netherlands Railways (NS).

The experiments revealed that the exact models
based on MILP and CP consumed more than 24 gi-
gabytes of memory due to the large number of con-
straints and/or variables required. These models were
outperformed by the Two-Stage heuristic and greedy
randomized approach. The authors further explored a
variant of the CP where the number of different train
types assigned to the same track is limited. This lim-
itation significantly improved performance by reduc-
ing the number of combinations for parking trains. A
variant of the MIP was also tested where conflict con-
straints are generated on the fly. These two variants
showed a significant improvement.

In his master’s thesis, [Broek, 2016] develops a local
search algorithm for TUSP that iteratively improves
different parts of the solution until no further improve-
ments can be made. His thesis laid the foundation for
the Local Search algorithm currently employed at NS,
as it significantly outperformed the algorithm previ-
ously used by the company.

[Wattel, 2021] develops a CP model for the Shunt
Routing Problem (SRP) subproblem at Eindhoven sta-
tion in his master thesis. He concludes that using CP
to solve the SRP subproblem is beneficial for generat-
ing the initial solution at NS, which is then utilized by
the Local Search algorithm.

A similar problem to TUSP is also found in the tram

dispatching domain. [Winter and Zimmermann, 2000]
models different variations of the tram dispatching
problem using MIP.

[Kamenga et al., 2019] attempts to solve TUSP in-
tegrally with MIP, addressing all subproblems simul-
taneously to obtain an exact solution. However, the
resulting model became extremely complex and large,
suffering from significant computation time issues.

In their next attempt, [Kamenga et al., 2021] they
investigate different possibilities to reduce the compu-
tation time by decomposing TUSP. In their evaluation,
they also attempt to address different subproblems to-
gether and then iteratively proceed with the next ones.
This approach results in better solutions compared to
their initial integrated model.

[Rodriguez, 2007], [Cappart and Schaus, 2017],
[Marlière et al., 2023] focus on real-time train
rescheduling problems. In case of disturbance
such as a delay of a train or infrastructure malfunc-
tion, decisions must be made manually by an operator
in a very limited timeframe to reschedule the traffic
and reduce the consequence of the disturbances.
Operators may modify the departure time of a train
or redirect it through an alternative route. Unfortu-
nately, these disturbances and subsequent decisions
can have unforeseen negative snowball effects on the
delays of subsequent trains, especially in dense railway
networks.

To address this issue, the authors proposed a Con-
straint Programming model to assist the operators in
making more informed decisions in real-time. They
conclude that CP is well-suited for solving routing
problems in real-time railway operations.

In his thesis [Hendrikse, 2021] evaluates the capacity
of the shunting yards at NS by constructing feasible
shunting plans. The model employs a Branch-and-Cut-
and-Price framework to solve a relaxation of the Train
Unit Shunting and Service problem. The foundation
of this model is based on the Multi-Agent Pathfinding
problem, incorporating waypoints and durations.

We conclude this section with a paper by
[Peer et al., 2018] that explores TUSP using Deep Re-
inforcement Learning. The authors argue that the
heuristic solutions employed at NS struggle to account
for uncertainties during plan execution and do not ade-
quately support replanning. Moreover, these solutions
often lack consistency. [Peer et al., 2018] addresses
TUSP by formulating it as a Markov Decision Pro-
cess. To apply Deep Reinforcement Learning (DRL),
the authors needed a visual representation of the state
space, depicted as an image where different regions are
assigned distinct meanings. Their results indicate that
DRL agents solved fewer problems compared to the
local search algorithm.

1.6 NS approach for TUSP

The approach used at NS, is based on the local
search algorithm proposed in [Broek, 2016]. The local
search employed a technique called Simulated Anneal-

5

Figure 1.4: An overview of the solving technologies (orange oval rectangles), required inputs (yellow rectangles),
and output (blue rectangles) used to solve TUSP at NS.

ing. An interested reader is referred to this resource
[Delahaye et al., 2019] for an extensive introduction to
Simulated Annealing.

The local search requires an initial solution which is
obtained by decomposing TUSP and separately solving
3 of the subproblems - Train Matching, Shunt Routing,
and the Parking Problem. All collections of algorithms
are jointly referred to as HIP (Hybrid Integrated Plan-
ning Method).

Figure 1.4 presents an overview of the entire solv-
ing process. Initially, an instance is provided, which
includes all arriving trains with their arrival times,
tracks, and compositions, as well as all scheduled de-
parting trains with their departure times, tracks, and
required compositions. Other essential inputs include
constants and parameters describing the station lay-
out, which are fixed for each instance. On Figure 1.4,
the yellow boxes represent the inputs, while the orange
box is a solving step that could also be divided into
smaller steps, for instance, the steps for solving the
initial solution.

The figure also illustrates the order of solving the
subproblems. We first solve the Train Matching prob-
lem (TMP) using Mixed Integer Programming. TMP
decides which arriving train will serve which departure
service. The output of the TMP is then used as in-
put for the Shunt Routing problem (SRP), which sub-
sequently provides input for the Train Parking problem
(TPP).

This thesis is devoted to the Shunt Routing problem.
The following sections provide a formal description of
SRP and define a model, which is addressed using Con-
straint Programming (CP). During an earlier stage of
the thesis, a separate model for TMP was also devel-
oped. However, as it is not central to the thesis, it is
included in Appendix A. The Train Parking problem
is already addressed by NS using CP. After all sub-
problems are solved, the Initial solution is constructed.
This solution may still contain some conflicts and as ex-
plained in Section 1.3, it is seldom optimal. However,
in the next step, this solution is iteratively refined by
the Local search.

1.7 Research questions
The main research question and goal of this thesis:

How can we design a general, applicable to
any station layout, constraint programming
model that solves the Shunt Routing Problem
at NS?

To evaluate the model, the following additional re-
search questions will be answered:

1. How could performance be further improved?

2. How does the solution approach perform under
changes in the instances’ features, such as the
station layout alternation, and the addition of
routes?

3. What is the quality of solutions the model pro-
duces?

4. How do other solvers compare in terms of perfor-
mance?

6

Chapter 2

Shunt Routing Problem

Figure 2.1: Two tracks connected with a switch.

2.1 Shunt Routing Problem
This section begins with a high-level description of the
problem. Next, important concepts are explained and
problem-specific terminology is introduced in Section
2.1.2. Finally, a formal definition of the problem is
stated in 2.1.3.

2.1.1 A high-level description
When a train arrives at its final destination, typically a
platform at the terminal station of its scheduled route,
it must be routed either to a shunting yard or to the de-
parture platform to commence its next scheduled jour-
ney. The focus of the subsequent sections is on the
routing of trains from the end platform of one jour-
ney to the start (departure) platform of the next one,
ensuring collision-free operations.

Before delving deeper into the problem, we will in-
troduce some specific routing concepts to provide the
necessary background.

2.1.2 Routing concepts
A track is a part of the railway line between two
switches. The switch connects two tracks and allows
the train to switch from one track to another (Figure
2.1).

Depending on their purpose, some tracks have a spe-
cial name, for instance, a platform . A platform is a
track used for the on/off-boarding of passengers. Ad-
ditionally, the track that provides access to a yard is
referred to as a gateway . A yard or (shunt yard) is
the place where trains are routed to remain when not
in use, in order to not interfere with the other sched-
uled trains passing through the station. Figure 2.2 il-
lustrates one of the yards at Utrecht Central Station

Figure 2.2: Part of the layout of Utrecht central
station. The green line indicates the beginning of
the yard. All tracks below it are considered part
of the yard. The small blue line indicates the only
entry point of this yard, the gateway. In general,
a yard can have multiple gateways.(retrieved from
www.sporenplan.nl)

and its corresponding gateway. At the yard, trains un-
dergo internal and external cleaning and any necessary
maintenance, collectively referred to as service tasks.

Next, the railway infrastructure of a station (also
station layout) encompasses all tracks and switches
within the entering and leaving points of the station.
The infrastructure outside these points is irrelevant to
the shunting processes and, therefore not considered in
this thesis.

A route refers to a path between two tracks, for in-
stance, the platform and the gateway of the shunting
yard. A route can consist of one or more subroutes,
each of them - a sequence of tracks and switches. Dur-
ing a subroute, the train is permitted to stand
still only at the starting point and/or the end-
point of the subroute. Furthermore, recall that our
objective is to determine routes between the end plat-
form of one train journey and the start of the next one
for each train that this station is the terminal station.
However, some trains also require routing to the yard,
typically for cleaning purposes. Furthermore, trains
cannotusually remain at the platform, as they will ob-
struct the arrivals of other trains. This requires plan-
ning for multiple movements per train. Recall also,
that the routes from the station entry point to the plat-
form, and from the platform to the station exit, were
predetermined during an earlier planning phase.

Tracks vary in length and are further divided into

7

sections, the smallest unit of an infrastructure that
we consider. Sections are important as they can detect
the presence of a train.

Figure 2.3 displays two different routes R1 and R2,
both terminating at section T7. For instance, route R1
consists of the following sections - [T4, T5, T2, T6, T7].

Figure 2.3: A track and section layout of a fic-
tive station with two routes (R1 and R2). (source
[Cappart and Schaus, 2017]).

Without careful planning, trains will be required to
frequently stop and start, wasting energy and time.
Moreover, without predefined routes, trains may unin-
tentionally move towards each other on the same track
from opposite directions.

Once a train’s route is established, the correspond-
ing infrastructure is reserved to prevent the scheduling
of other trains on it. The reservations consider also
the headway times, defined for safety. During these
reservations, no other trains are permitted to use the
same infrastructure. An exception is when we intend
to park the trains, then multiple trains can occupy a
single shunting track/block/section at the same time.

Consider Figure 2.4. It illustrates the sections tra-
versed by a train over time. The x-axis denotes the sec-
tions along the route, while the y-axis represents time.
Each section remains reserved during the entire dura-
tion marked by the dashed and filled blue rectangles.
The blue-filled rectangle indicates when the head of the
train is moving over the section. We can see when the
reservation of each section starts and ends. To ensure
a safe distance from the previous train (the headway
time), the sections are occupied before the movement,
as indicated by the dashed rectangle appearing before
the filled blue one.

Finally, before proceeding with the formal definition
of the Shunt Routing Problem (SRP), we acquaint the
reader with the concept of a reversal :

Train movements are restrained, particularly con-
cerning turns. They cannot easily perform sharp turns.
Figure 2.5 (first picture) the train can transition from
track B to C, but not to A. There is a switch at the
point where the tracks meet. Nevertheless, it is still
possible for a train to reach track A by first moving to
track C, stopping, changing the direction of movement,
and then proceeding to track A (again see Figure 2.5,
second and third picture). This movement is known as
a reversal . Reversals are generally avoided because
they are time-consuming. To change the direction of

Figure 2.4: The figure is slightly changed, from paper
by [Marlière et al., 2023]). In the figure, “tds” refers to
a track detection section which is simply a section.

movement, the driver must traverse the entire train
length.

2.1.3 Formal definition of SRP
The Shunt Routing Problem (SRP) is the problem of
finding feasible routes between platforms and shunting
yards for all shunt trains at a given station infrastruc-
ture. [Lentink, 2006].

A route is considered feasible if it does not simulta-
neously utilize infrastructure that is already reserved
by another train. Infrastructure may be reserved by
the predetermined routes between the entrance points
of the station and platforms. It could also be reserved
for maintenance activities, or by stationary trains on
platforms.

Besides the primary task of SRP to determine
conflict-free routes for shunt trains, several additional
objectives can further refine the solution. For instance:

• Overall travel distance.

• Number of changes in directions (number of rever-
sals).

• Number of overall scheduled movements.

• Minimize routing time.

• Minimize time on the arrival and departure plat-
forms.

• Increase the time in the shunting yard (imple-
mented in experiment 2 [Wattel, 2021]). However,
maintaining a balance is important, as otherwise,
this might complicate the parking problem.

• Balance the use of the shunting yards by shunting
an equal amount of trains (implemented in experi-
ment 3 [Wattel, 2021]). Alternatively, this balance
could also be achieved by ensuring the total dura-
tion that shunt trains spend in the various yards
is approximately equal.

• Combinations of the above.

8

Figure 2.5

An important characteristic of SRP is that while
trains have fixed arrival and departure times at the sta-
tion, the timing for shunting operations between plat-
forms and shunt tracks is flexible. For example, the
departure time of a shunt train from the platform to a
shunt track can be scheduled within a time interval that
starts when the train arrives at the platform and ends
before the next train arrives at the same platform.

2.2 Constraint programming

Constraint Programming is a powerful paradigm for
solving combinatorial problems [Rossi et al., 2008].
Constraint Programming is built as a generalization
of SAT solving. It provides a more expressive language
that extends beyond the boolean variables in SAT and
includes integers. Furthermore, various constraints are
designed, and a generalization of unit propagation, the
core algorithm in SAT solvers, is provided.

A constraint is a relation between usually multiple
variables that limits the values these variables can take
simultaneously. Furthermore, the constraints are not
limited to linear as in Mixed Integer Linear Program-
ming (MILP). As some types of constraints can be
found in various applications, people have decided to
define them and implement efficient algorithms. These
algorithms are applied to narrow down the feasible so-
lution space that otherwise needs to be traversed by the
solver. Those algorithms are called propagators and
the constraints are known as global constraints. The
global constraints are considered the main strength of
CP.

The search strategy of the solver is based on back-
tracking. When propagators are unable to further re-
duce the search space by narrowing the domain of
some variables, the solver selects a variable and as-
signs a value from its current, possibly already re-
duced, domain. Next, based on the solver’s decision,
further propagations (deductions) about the domains
of other variables may occur. When propagators can
no longer reduce the search space, the solver selects
the next unassigned variable and assigns a value from
its domain. This process continues until either a solu-
tion is found (with all variables assigned and no con-
straint violations) or a conflict is detected. Upon en-
countering a conflict, the solver backtracks to previ-
ous assignments and identifies the combination of val-
ues that led to the infeasible solution to avoid repeat-
ing it. This process repeats until either the entire
search space is explored, at which point the instance is
deemed infeasible if no solution is found, or a solution
is found. This is a high-level overview of the solver’s
search process. For a more extensive discussion, refer

to [Edelkamp and Schrödl, 2012].
To solve a problem with CP, one should provide a

declarative description of a problem as a set of decision
variables with their domains, and a set of constraints
restricting the combinations of values. This will be the
goal of the upcoming sections. Before delving into the
model, we explain one recent concept in the CP domain
that will be utilized: optional time-interval variables.

Optional time-interval variables

To model the timing of route execution, we utilize a
specific scheduling concept in CP called conditional
time-interval variables. This type of variable repre-
sents a period (an interval) in which a particular event
occurs, defined by its start, end, and duration. The in-
terval variable can also be optional, meaning it may or
may not be part of the solution. Formally, the domain
of the interval variable is a set of all possible intervals
with the earliest possible start time and latest possible
end time, or ⊥ if not executed: ⊥ ∪[s, e)|s, e ∈ Z, s ≤ e
[Philippe Laborie, 2018].

Handling a non-present variable varies depending on
the constraint. However, in general, a non-present in-
terval variable is not considered by any constraint or
expression that involves it, and the constraint contain-
ing it is considered satisfied. For example, if a non-
executed time-interval variable a is used in a constraint
with a time interval variable b, this constraint would
not impact time-interval variable b.

2.3 Model

This section addresses the main research question 1.7
by proposing a generic model for SRP. The scope of
the model is defined in Section 2.3.1, followed by the
requirements in Section 2.3.2. Assumptions are stated
in Section 2.3.3. Sections 2.3.4 and 2.3.5 specify all
constants and the provided input per instance, respec-
tively. Section 2.3.6 defines all variables for the model,
while Section 2.3.7 presents the constraints. Section
2.3.9 introduces further extensions to the base model.
Finally, Section 2.3.9 introduces further extensions to
the base model, and Section 2.3.10 specifies the output.

2.3.1 Scope of the model

The model considers the station area, which is the re-
gion between the entering and leaving points. Further-
more, the routing of trains will be to the gateways of
the yard. Routing within the shunting yards is not con-
sidered in this model. The next subproblem of TUSP,
namely the Train Parking Problem (TPP), will deter-
mine the specific track where the train will be parked,
and then the route within the yard will be fixed.

The scope of the model is limited to scheduling
routes for the shunt trains, which involves allocating
a route and a time window to execute it. Finding the
routes is outside the scope of the model, but allocating
shunt trains to routes is within. All available routes

9

are part of the input and are predetermined. Further
details will be provided in the subsequent subsections.

2.3.2 Requirements

The main model should satisfy all requirements that we
have summarized below. We have further made some
additional extensions which will be presented later and
implemented if time permits.

R1: The primary requirement of the model is to pro-
duce a correct schedule. That means:

1. No train is moving over infrastructure al-
ready reserved by another train. In particu-
lar, sections are occupied by only one moving
train at a time.

2. Furthermore, all trains are planned, and at
every point in time, we know the precise lo-
cation of each train. Specifically, there should
be no unplanned time gaps between consec-
utive train actions, such as between a move-
ment to a yard and parking.

3. We not only know the positions of the
trains but also ensure that their movements
between locations are planned and routes
are reserved for the appropriate duration.
(Trains do not magically transfer from one
location to another.)
For instance, if the solver chooses to park
the train in one yard and the next movement
is to the departure platform, this movement
should begin from the yard where the train
is parked, and not from any other location.

R2: The routes of all through trains which are prede-
termined and fixed, are respected by the model.

R3: Train units that are combined at the yard, follow
together the same route from the yard to the plat-
form. Similarly, train units that have not been yet
split, are simultaneously steered along the same
route from the platform to the yard. This ensures
that the train operates as a single unit.

R4: The model utilizes the section occupations spec-
ified by HIP and reserves the routes according to
them (more explanation in later sections).

R5: The model routes each train to at most two yards.

R6: A train that arrives at and departs from the same
platform, is required to transition to a yard.

The last requirement is imposed, because, if the train
were not mandated to be routed away from the plat-
form, its schedule would have been already established
in prior planning phases. Additional requirements that
will be fulfilled upon incorporating the extensions and
objectives from Appendix C.1 include:

R7: There is enough time at the yard for the train to
execute the required services.

R8: The capacity of each yard is satisfied at each point
in time.

R9: The number of the scheduled movements for each
train is as least as possible if objective from C.2.1
is specified.

Let us clarify the difference between a movement and
a route. A movement (or reposition) denotes the
action of transferring a train from point A to point B.
While a route refers to an option for executing such
a movement from point A to point B. There may exist
multiple routes that accomplish the repositioning of the
train between A and B.

2.3.3 Assumptions
A1: We assume that it is known for each train whether

it will undergo splitting or combining with another
train. Additionally, it is assumed that splitting oc-
curs at the first yard upon arrival, while combining
occurs at the last yard just before departure.

A2: We assume that the last section of the route serves
as the parking location for the train upon com-
pleting that route. Similarly, when a train begins
a new route, it starts from the section where it was
parked. Furthermore, we also assume that parking
is performed only on one section, namely the last
and first section of the previous and next route.

A3: We assume that the matching is chosen in such a
way that the service time is abundantly respected.
This guarantees that the input data is not infeasi-
ble when including the extensions.

A4: We assume that each yard at the station has infi-
nite capacity for now.

A5: Assume that all types of services can be executed
at each yard.

A6: We assume that through trains are not occupying
the platform when a plannable train is scheduled
to arrive or depart.

The assumptions A4 and A5 can be relaxed by con-
sidering the Extensions in Appendix C.1. Assumption
A6 was introduced to simplify the model. In practice,
is allowed a train to approach a platform if another
train is standing still there.

2.3.4 Parameters
We define the following constant for each instance of
the SRP problem:

• Types - all available subtypes of train units.

• dw - a time for off-boarding and on-boarding of
passengers.

• maxMovements - the maximum number of move-
ments for all trains equal to min(3,numYards+1)
Adhering to requirement R5, we limit ourselves

10

to at most three movements. In practice, three
repositions correspond to scenarios where the train
moves from the arrival platform to one yard, then
to another yard, and finally to the departure plat-
form. A third-yard transition is considered highly
undesirable. One could consider allowing for a
fourth movement option only if it involves return-
ing to the first yard before proceeding to the de-
parture platform. We proceed with at most three
routes.
If there is only one yard at the station, maxM will
be at most two since at most two routes (one to
the yard and one from the yard to the departing
track) are meaningful.

We also define two more parameters:

• maxM t = maxMovements− (t is part of split)−
(t is part of combine) If the train is part of a split,
the initial movement from the platform to a yard is
executed by the arrival train. However, we must
still comply with the requirement (R5) (Section
2.3.2), which states that a train can go to a maxi-
mum of two yards. Therefore, the maximum num-
ber of movements is reduced by one in case of split
or combine.

• Et - all possible endpoints for train t, including
arrival and departing platform, all yards, and a
dummy place (denoted with 0).

2.3.5 Input
A train that arrives at the station may undergo a split
and\or a combine. Usually, when a train is split, the
new resulting parts have different departure platforms,
hence we cannotdefine a unique departure platform of
a such train. For this and similar reasons, we differen-
tiate the trains as follows:

• Arrival trains - these are the trains that arrive
at the station and finish their scheduled journey
there, meaning this is their last station. An ar-
rival train ceases to exist after splitting or if no
split occurs, then after it arrives at the station, it
becomes a shunt train, a type explained below.

• Shunt trains - These trains are part of the
arrival trains (they could also represent the
whole train if no split has occurred). They
constituted also a part of (or the whole) the de-
parting composition. The exact part is decided by
the matching, solved before the SRP. We further
differentiate between those trains as follows:

– base shunt trains - all shunt trains that are
neither part of split nor combined, we will
denote them as BT . In particular, they cor-
respond to the whole arrival and departure
compositions.

– split shunt trains - all trains that will re-
sult from a split of an arrival train, but are
not going to be combined with any other, (de-
noted as ST).

– combined shunt trains - all trains that will
be combined, but have not been part of a split
(denoted as CT).

– split-combined shunt train - a train that
is both a part of a split and a combine (de-
noted as SCT).

• Departure composition - a composition of the
types of train parts/units, needed for this depar-
ture. These train parts/units are unknown be-
fore the matching, however, in the SRP we know
each shunt train that can be base, split, combined,
or split-combined, in which departure composition
will depart.

We now proceed with the input:

• T - all shunt trains (BT ∪ ST ∪ CT ∪ SCT)
and all arrival trains (AT) and departure compo-
sitions (DT) that do not have already fixed plan
for movements on the station.

• Rt
i - all possible routes that a train t can undertake

for one reposition, where i represents the specific
movement number.

• r - a route that can consist of one or more sub-
routes.

• start(r) - start of route r, start(r) ∈ Et .

• end(r) - end of route r, end(r) ∈ Et .

• d t
r ′ - duration for subroute r′ that is part of r and

the route is taken by train t (r′ also be the whole
route r).

• numSubr - One route can consist of a few separate
subroutes. This parameter shows the number of
subroutes for a route r.

• disr - the length of route r.

• durStop(r ′1 , r
′
2) - the minimum duration required

between two subroutes r ′1 and r ′2 , where r ′1 , r ′2 ∈ r,
for some route r.

• R - all considered/available routes for trains in T ,
R =

⋃
t∈T Rt , where Rt =

⋃
1≤i≤maxM t

Rt
i .

• S r
k - all sections of a given subroute of r. A

route is split into subroutes when the train needs
to perform a reversal halfway through the route.
1 ≤ k ≤ numSubr .

• S r - all sections of a given route, S r =⋃
1≤k≤numSubr

S r
k .

• S - all sections used by trains in T , S =
⋃

r∈R S r .

• Y - Set of all yards at the station. Furthermore,
for each yard y ∈ Y we know:

– Gy - a set with the gateways of y.

• G - all gateway tracks for the station.

11

The minimum duration - durStop(r ′1 , r
′
2), could be

substituted with a variable whose domain starts from
durStop(r ′1 , r

′
2) and extends further. The rationale for

this addition is that in busier and larger stations, where
the through traffic is high and trains frequently need
to perform reversals between platforms and yards, it
may be unfeasible to plan a compound route with a
fixed duration in between. We adapt the model to in-
clude such a variable and the necessary constraints, as
detailed in Appendix B. This extension introduces an
additional layer of complexity. Therefore, we proceed
further with the model without these additional vari-
ables.

2.3.5.1 Input for section occupations

Each route consists of a sequence of sections with
predefined start and end times in seconds relative
to the time at which train t begins the route. For
example, the following information will be included as
part of the input for a specific route r:
[(s1, starts1 , ends1),
(s2, starts2 , ends2)...
(sn, startsn , endsn)]

Hence, we can define the following parameters for
each section si ∈ S r and r ∈ Rt and train t:

• start tsi ,r - the start of the section occupation rela-
tive to the commencement of route r by train t.

• end t
si ,r - the end of the section occupation again

relative to the start time of route route r by t.

2.3.5.2 Input for each train t

For each arrival train at ∈ T , we know:

• initat - the initial point of train at, considered in
the planning. That could be a platform, another
track, or a gateway, represented by a trackID.

• asideat - arrival side of train at, can be {0, 1}.

• arrat - arrival time of at at initat in seconds.

• at → {t1, t2} - the arrival train is going to be split
to t1 and t2, where t1 and t2 are either split shunt
trains (ST) or split-combined shunt trains (SCT),
depending on whether they will combine as well.
If no split is to be performed, then at is matched
to one shunt train (at → {t1}). In this case, this
shunt train is either a base shunt train or a com-
bined train.

For each departing composition dt ∈ T , we
know:

• desdt - departure (destination) point (platform,
side track).

• dsidedt - departure side, the side of the track at
which the departure will happen.

• depdt - scheduled time for departure from destina-
tion desdt.

• dt → {t3, t4}, - each departing composition con-
sists of shunt trains (t3 and t4). These trains are
either ∈ CT or split-combined trains (∈ SCT)
depending on whether they have also undergone
a split from an arrival train. t3 and t4 will be
combined and depart as a single train - dt to the
departure platform. Alternatively, the departure
composition could consist of a single shunt train
(dt → {t3}), in this case, t3 is ∈ ST (split shunt
train) or ∈ BT (base shunt train).

For each base shunt train t ∈ T we know the cor-
responding arrival train and to which departing train
it is matched, hence we also know:

• typetu - the type of each tu ∈ t, typetu ∈ Types

• init t - the initial point of train t (the initial point
of the arrival train that this shunt train was part
of)

• asidet - arrival side of train t, can be {0, 1}

• arr t - arrival time of t at initt in seconds

• dest - destination point (platform, side track) of
the scheduled departure - dept , deduced from the
departure composition that this train will be part
of

• dsidet - departure side

• dept - scheduled time for departure from destina-
tion dest

• t → dt - the matching telling us which train of
which departure composition is part of

To avoid repetition, we will specify which informa-
tion compared to the information above for the base
shunt trains is irrelevant and missing.

For each split shunt train t ∈ T All arrival infor-
mation such as initt, arrt, asidet is not present, as the
train only starts to exist after the split occurs in the
yard.

For each combined shunt train t ∈ T All de-
parture information such as dest, dept , dsidet is not
present, as the train does not exist after the combine
at the yard is performed.

For each split-combined shunt train t ∈ T For
this type of train, both arrival and departure informa-
tion is not present.

12

2.3.5.3 Input for through trains

Each through train has a schedule with predetermined
routes for its station activities. These trains enter the
station through the designated entry/exit points, fol-
low a predetermined route to reach the platform for
passenger boarding and alighting, and then depart the
station via another fixed route. In addition, arrival
trains and departure compositions have also a single
already scheduled route to and from a platform, re-
spectively.

For each of those already predetermined routes and
parking times at the station, the corresponding section
occupations must be identified and incorporated into
the model. Based on the start of the route and the rel-
ative start and end times, we define a constant interval
- occpesj for each section sj involved in any predeter-
mined event - pe that requires infrastructure reserva-
tions, such as movements, parking, etc.

2.3.6 Variables and function definitions
In the following text, t can be an arrival train, shunt
train, or departure composition. Recall that an arrival
train can at most have one movement, namely from
the arrival platform to the first yard since afterward
will be split. However, if the arrival train does not
require a split at the yard, it will not be considered
and no variables will be introduced for it. In such cases,
we will plan the first movement for the corresponding
shunt train instead.

Similarly, if the departure composition is created by
combining two shunt trains, we plan one movement
from the yard to the departure platform. However, if
the departure composition consists of a single shunt
train, then we do not plan for the departure composi-
tion, but for the shunt train itself.

We begin with introducing a variable representing
the number of movements that train t will perform at
the station. For each reposition, the train will choose
one route from a set of available routes - Rt

i .

• numr t - the number of taken repositions/move-
ments for train t during the whole stay of the train
at the station. The domain of this variable is [0,
maxM t].
The number of movements can be 0 (numr t = 0)
if the shunt train is split and combined in the same
yard, or if it arrives at the yard and is combined
there. Similarly, if it departs from a yard where
it was previously split. The last situation is if it
arrives and departs from the same yard.
We do not allow the train to remain at the plat-
form if it arrives and departs from the same plat-
form. If that was possible, the train would have
already been managed in prior planning stages.

We revisit now Rt
i and clarify the types of routes

that can belong to this set. Recall that Rt
i denotes

the set of available routes for the i-th repositioning of
train t. Depending on the type of the train, some set
of routes could be excluded.

• Rt
1 - contains all possible routes from the arrival

point initt to each gateway for each yard at the
station and from the arrival point to the depar-
ture platform dept , t ∈ T\{ST, SCT,DT}. We
exclude those types of trains as they do not exe-
cute a movement from the arrival platform.

• Rt
2 - contains all routes from each gateway to the

departure platform, as well as from each gate-
way to all gateways of the other yards, where
t ∈ T\{AT,DT}.

• Rt
3 - all routes between each gateway of a yard

and departure platforms, t ∈ T\{AT,CT, SCT}.

We define for each train t ∈ T and r ∈ Rt
i , 1 ≤ i ≤

maxM the following interval variables and functions:

• at,r
i - an optional time-interval variable for the pe-

riod when the train will execute route r for move-
ment i.

• s(), e(), d() - functions that return the start, the
end, and the duration of interval variables, respec-
tively.

• pres() - a boolean function that returns the pres-
ence status for an optional time-interval variable
a. If a certain route r is not chosen for train t,
then the optional variable at,ri is not present.

• The domains of the start (s(at,r
i)) will be

[arrt, dept − dtr], meaning the start of the interval
will occur between [arrt, dept − dtr]. Analogously
for the end (e(at,r

i)). The duration is fixed to the
duration of the route d(at,r

i) = dtr). The domain
can be further tightened in case the train needs to
be shunted to the yard and certain service tasks
are required.
The duration of route r (dtr) is minimum the sum
of all durations of all subroutes in route r - dtr =
d(at,r

i) ≥
∑

r′∈r d
t
r′ . Hence, the end time of the

period is fixed once the start time s(at,r
i) is chosen

since e(at,r
i) = s(at,r

i) + d(at,r
i).

Additionally, for each train t and each possible move-
ment i:

• At
i - high-level optional interval variable for all

variables at,r
i with r ∈ Rt

i, so essentially all op-
tional variables for one reposition of the train.

Figure 2.6 represents how the first high-level group
variable At

1 and the route variables for all possible
routes are organized. For this first reposition of the
train, the train can choose out of three different routes
- {at,r11 , at,r21 , at,r31 }. The alternative constraint en-
sures that the train will follow only one of the routes,
by selecting only one route variable to be present. We
will refer back to this constraint in Section 2.3.7.4.

Last, we define:

occt,rsj - an interval variable for the occupation of sec-
tion sj by t for route r.

13

Figure 2.6: Breakdown structure of the route variables
- the high-level variable At

1 and the variables for each
route - at,rj1 and together with the section occupations
and the stop time. An alternative constraint 2.9 models
the relationship between At

1 and a
t,rj
1 .

Figure 2.7: A typical shunt plan for a train t. The blue
rectangles represent the time intervals when the train
will be at the arrival or departure platforms. The green
ones show the periods when routing will happen. The
red one indicates the time when the train is located in
a specific yard. arrt and dept denote the arrival and
departure times, respectively.

2.3.6.1 Variable for parking between move-
ments

Generally, after each reposition, the train may re-
main on the track for an unspecified duration. As
these durations are not predefined, we will use an op-
tional interval variable to represent the period dur-
ing which the train is parked on a specific track af-
ter each route. We introduce an optional variable for
∀t ∈ T, i ∈ {1,maxMt + 1}:

• stay t
i - an optional interval variable for the parking

after movement i.

• stay t
0 - a mandatory variable for the first parking.

Each train is parked at least once.

For arrival and departure trains, only one parking
variable is required for the parking at the platform
after arrival or before departure. According to as-
sumption A1 in Section 2.3.3, the train will be split
immediately after its first move, thus no parking is
needed at the yard. Similarly, it will be combined just
before it begins the move to the departure platform,
so no additional parking is required.

Domains for the start, end, and duration of stay t
i :

• d(stay t
i) ∈ [0, dept − arrt]

• s(stay t
0), e(stay

t
0) ∈ [arrt, dept].

Figure 2.7 and 2.8 illustrate two types of shunt
plans. Both figures have abstract details such as
the concrete route paths that the train will traverse.
Figure 2.7 depicts the scenario when the train will be
parked at the yard as opposed to Figure 2.8 where

Figure 2.8: A shunt plan for trains that will not re-
quire shunting to the yard but will be immediately re-
allocated from the arrival platform to the departure
platform.

going to the yard is not required.

The distinct routes have different numbers of sub-
routes. For instance, as shown in Figure 2.6 at,r11 and
at,r31 consists of two subroutes, while at,r21 have one
subroute. The interval variable at,r31 with section oc-
cupations can be seen in Figure 2.9. The light orange
boxes represent the section occupation intervals. The
red represents the time interval for the stop between
the subroutes. In this model, we take for the stop the
minimum time required between two submovements.

Figure 2.9: Visualization of the time-span of the dif-
ferent time-interval variables - route variables, section
occupations, and duration between the subroutes.

2.3.6.2 Introduce variables for endpoints of
each reposition:

If the train is planned to perform only one movement,
in particular from the arrival to the departure platform,
there are no intermediary stops. However, once more
than one movement is demanded, then we need to know
where the train is positioned. If the train performs 2
movements, an intermediary position between the two
routes is required.

Therefore, for each reposition 1 ≤ i ≤ maxM we also
define a variable that represents the end place of the
reposition. Since the end of one reposition corresponds
to the beginning of the next one, only one variable is
necessary.

• eti - an integer variable with domain [0, |E t
i |]. Re-

call E t
i are all places where train t can be located

after movement i - all endpoints of all routes in Rt
i

and dummy position. The dummy position is uti-
lized when the number of movements for a train
is less than maxM . For instance, if the train is
routed directly from the arrival to the departing
platform, only two endpoints to denote the arrival
and departure platform are utilized. Any addi-

14

tional endpoints remain unused and are assigned
a value of 0.

2.3.6.3 Channeling variable

To facilitate expressing constraints between group vari-
ables At

i , route variables (at,r
i) and section occupa-

tion variables (occt,rsj), we introduce a variable for each
movement i and train t:

• chosenRouteti - an integer variable for the index
of the chosen route from Rt

i . The domain is
{−1, (#of routes− 1)}, where -1 is assigned if the
movement is not performed (no route is taken).

2.3.7 Constraints
The following constraints are ∀t ∈ T, 1 ≤ i ≤ maxM t

and r ∈ Rt
i or simply Rt (all routes for all movements

for train t) if i is not in the equation.

2.3.7.1 Constraining the start and end times
for section occupations

To simplify the constraints for the start and end times
for the section occupations, we introduce an integer
channeling variable - startOfSubm for the start of each
subroute (submovement) of each route r ∈ R for the
routes of all trains. Code snippet 1 introduces the re-
quired constraints for this variable:

Algorithm 1 Constraints for the start of each
submovement variables startOfSubmr ,t

k , where k ∈
{1,numSubr}
1: if (k == 1) then ▷ The start of the first

submovement coincides with the start of the route
2: startOfSubmr ,t

k = s(at,r
i)

3: else ▷ The start of each other submovement
is the start of the previous + the duration of the
previous + the min duration required

4: startOfSubmr ,t
k = startOfSubmr ,t

k−1 + dtrk−1
+

durStop(rk−1, rk)
5: end if

The start times of the section occupations:

Sections within each subroute are categorized based
on their position to determine the start times of their
occupations. These sections are classified into "first
sections" S r

first,k and middle and last sections - S r
last,k .

• S r
first,k - This set comprises sections that the train

occupies at the beginning of subroute k of route r.

• S r
last,k - These sections are the sections on which

the train will remain after completing subroute k
and until the next subroute begins.

All other sections are considered "middle sections".
The pseudocode 2 presents the logic of how sections’

occupation start times will be inferred. We explain
the code briefly. Sections in S r

first,1 are the initial sec-
tions of the route where the train is positioned prior

to routing. They must be reserved for parking, pro-
vided the route commences outside of a yard (such as
at an arrival platform). Hence, to calculate their start
times, we must subtract the parking duration from the
start of the movement. In all other cases, the section
occupations’ start times are equal to:

• If sj ∈ S r
first,k , the section is in the first sections

of the subroute, and their occupation start times
are aligned with the start of the subroute.

• Otherwise, the start times are determined relative
to the route start, adjusted by start tsj ,r .

The duration for the intermediate stops is accom-
modated by the end time of the section occupation, a
topic covered in the next paragraph.

Algorithm 2 Code snippet for the different con-
straints introduced in different situations for the
start times of section occupations for sj ∈ S r

k , i ∈
{1,maxM}
1: if k == 1 then ▷ the first subroute
2: if et0 /∈ Y then ▷ at a platform (not yard)
3: if sj ∈ S r

first,k then ▷ the first sections
4: s(occt,rsj) = startOfSubmr ,t

k − d(stayr ,t
i)

5: else▷ all other sections of the first subroute
6: s(occt,rsj) = startOfSubmr ,t

k + start tsj ,r
7: end if
8: else ▷ first subroute, but not at arrival

platform
9: code snippet 3

10: end if
11: else ▷ other subroutes of any route
12: code snippet 3
13: end if

Algorithm 3
if sj ∈ S r

first,k then ▷ the first sections
s(occt,rsj) = startOfSubmr ,t

k

else ▷ all other sections of the first subroute
s(occt,rsj) = startOfSubmr ,t

k + start tsj ,r
end if

The end times of the section occupations:

The constraints for the end occupations times of the
last sections of each subroute also differ. It depends on
the train’s destination (platform or yard) and whether
the last sections of the subroute are also the last sec-
tions of the entire route.

The pseudocode 4 summarizes the constraints for the
end occupation times for all sections. We proceed with
brief explanation. If the route ends at a yard, the occu-
pation times of the last sections are not extended with
the time for the parking (line 4). However, if we are
not going to a yard, then it must be a departure plat-
form, we extend the occupations of the variables with
d(stay t

i).

15

Last, if this is not the last subroute then we ex-
tend the end of the occupation variables with the
durStop(rk−1, rk) to reserve for the time spent at an
intermediate stop (line 9). In all other cases, we add
the given offset (end t

sj ,r) to the start of the subroute.

Algorithm 4 Code snippet for the different con-
straints introduced in different situations for the end
times of section occupations, ∀sj ∈ Sr

k, for i ∈
{1,maxM} and k ∈ {1,numSubr}
1: if sj ∈ S r

last,1 then ▷ the last sections
2: if k == numSubr then ▷ the last subroute of

the r
3: if eti ∈ Y then ▷ if the endpoint of the

route is a yard, we should not occupy the sections
4: e(occt,rsj) = startOfSubmr ,t

k + end t
sj ,r

5: else ▷ not a yard, extend the last sections
to be occupied while parking

6: e(occt,rsj) = e(stay t
i)

7: end if
8: else
9: e(occt,rsj) = startOfSubmr ,t

k + d t
rk

+
durStop(rk−1, rk) = ▷ Here k is at most numSubr
- 1, not a last subroute, but last sections

10: end if
11: else ▷ Not last sections
12: e(occt,rsj) = startOfSubmr ,t

k + end t
sj ,r

13: end if

Finally, the duration of an occupation is completely
determined by:

d(occt,rsj) = e(occt,rsj) − s(occt,rsj),∀sj ∈ S r (2.1)

On a final note, if a train is split or combined from/to
a through train at the arrival/departure platform, then
the section occupations constraints for the sections cor-
responding to the platforms (i.e., sections in S r

first,k and
S r
last,1) will differ. This will be discussed later.

2.3.7.2 Constraints for presence synchroniza-
tion between routes and sections occu-
pations

A route variable at,r
i is present, if route r will be taken

for movement i. This is allowed if the corresponding
chosenRoute variable is assigned to the index of this
route within Rt

i (the set of routes for movement i).

pres(at,r
i) = (chosenRouteti == indexOf(r,Rt

i))
(2.2)

pres(at,r
i) is true, if and only if all occupation’s sec-

tion variables of that route are present as well. These
are the sections from all subroutes of the route.

pres(at,r
i) = pres(occt,rsj),

∀sj ∈ S r (2.3)

2.3.7.3 Constraints for section occupations

If the occupation of a section is present (pres(occt,rsj) is
true), then the start and the end times of the occupa-
tion variables are constrained based on Section 2.3.7.1.
All constraints are presented in the pseudocode 2 and
4. If the variable is not present (pres(occt,rsj) is false),
the constraints are not considered.

Pseudocode 2 and 4. (2.4)

A section can be occupied by at most one train at a
given time. This constraint ensures that all occupation
intervals of each section are non-overlapping. We also
add the constant intervals from each of the predeter-
mined events pe from the set of all fixed events FE -
movements, parking, etc.

noOverlap(
⋃

t∈T,r∈Rt

occt,rs

⋃
pe∈FE

occpes),∀s ∈ S (2.5)

2.3.7.4 Time constraints for route interval
variables and group variables

The duration of each route variable is equal to the du-
ration of all subroutes and intermediary stops.

∀r ∈ Rt
i if

numSubr = 1 then d(at,r
i) = dtr′(r

′ ∈ r)

else d(at,r
i) =

∑
r′∈r

dtr′+∑
k∈{1..numSubr}

durStop(rk−1, rk), (2.6)

The following constraint ensures that any group vari-
able that corresponds to a movement greater than the
number of executed movements (i > numr t), is not
present.

i > numr t ⇔ pres(At
i) = 0 (2.7)

If a movement is not taken, meaning (pres(At
i) is

false) then the duration of it should be zero.

pres(At
i) == 0 ⇒ e(At

i)− s(At
i) == 0

∧ d(At
i) == 0 (2.8)

The next constraint states that if At
i is present

(meaning that the train will perform a particular repo-
sition), then exactly one of {at,r1i , at,r2i ..} is present,
and At

i starts and ends together with the chosen one.
Variable At

i is absent if and only if none of the route
variables is present. This article presents detailed infor-
mation about this constraint [Philippe Laborie, 2018].
Figure 2.6 illustrates this constraint.

alternative(At
i ,

⋃
rj∈Rt

i

a
t,rj
i) (2.9)

16

Unfortunately, Google-OR-Tools does not provide
a global constraint for “alternative”. Therefore, to
achieve the required functionality, the following sim-
pler constraints were used:

pres(At
i) ⇒

∑
r∈Rt

i

pres(at,r
i) == 1 (2.10)

pres(At
i) == 0 ⇒

∑
r∈Rt

i

pres(at,r
i) == 0 (2.11)

pres(at,r
i) ⇒ s(At

i) == s(at,r
i) (2.12)

pres(at,r
i) ⇒ e(At

i) == e(at,r
i) (2.13)

pres(at,r
i) ⇒ d(At

i) == d(at,r
i) (2.14)

The variable chosenRouteti for movement i of train t
should be assigned to -1 if and only if the movement is
not executed (i is greater than the number of executed
movements - numr t).

i > numr t ⇔ chosenRouteti == −1 (2.15)

Route one is completed before the start of route two.
In the general form, as follows:

e(at,r
i) ≤ s(at,r

′

i+1)

∀r ∈ Rt
i , r

′ ∈ Rt
i+1 (2.16)

Specify the constraints as such, requires |Rt
i | · |Rt

i+1|
(the # of routes for movement i times the # of routes
for movement i+ 1) for each pair of movements i and
i+1. However, if we utilize group variables, regardless
of the number of routes per movement, we require only
one constraint for each movement and train, as follows:

e(At
i) ≤ s(At

i+1) (2.17)

We proceed using the group variable for the same
reason.

Between each two movements there is a parking (we
allow this parking to be with zero duration). The start
of the movement i is at the end of (i-1)-th parking -
stayti−1.

s(At
i) = e(stayti−1) (2.18)

The start of stay t
i is at the end of the previous move-

ment At
i−1 .

s(stay t
i) = e(At

i−1) (2.19)

Analogously to Eq. 2.17, we can also define similar
constraints for the parking variables. Note that once
Eq. 2.17, Eq. 2.18 and 2.19 are defined, this constraint
will be redundant:

e(stay t
i) ≤ s(stayti+1) (2.20)

2.3.7.5 Constraints for endpoints of routes

The endpoint after movement i is equal to the end of
the present route for movement i.

pres(at,r
i) ⇒ eti = end(r) (2.21)

The start of the present route is at the previous end-
point.

pres(at,r
i) ⇒ eti−1 = start(r) (2.22)

The last route finishes at the departure platform, and
we introduce a dummy departure yard to represent it.
This constraint applies only to trains intended to reach
the departure platform, hence excluding arrival trains,
combined trains, and split-combined trains.

etnumr t
= dummy(dest),

t ∈ T\{AT,CT, SCT} (2.23)

The endpoints after the last route are assigned to a
dummy endpoint:

i > numr t ⇔ eti = dummy (2.24)

The first endpoint is the dummy yard representing
the arrival platform. Similarly, we do not constraint
the trains that do not start from the arrival platform:

et0 = dummy(initt)

t ∈ T\{DT, ST, SCT} (2.25)

With the constraints stated in this and the previ-
ous section, we have ensured that the routes are con-
nected, and the last route terminates at the departure
platform.

2.3.7.6 Constraints for splits and combines at
the yard

In case a train splits, we introduce constraints to en-
sure that the newly spawned trains from the split, start
at the end position of the composition. We denote the
composition (the arrival unsplit train) - at and the re-
sulting trains from the split as t1 and t2. Algorithm 5
outlines the constraints enforced when a train splits or
not.

When the arrival train at requires a split, the num-
ber of routes for at is fixed to one. According to As-
sumption A1 in 2.3.3, the split will be performed in
the first yard reached by at, hence only one movement
is allowed. If the train is not split, the first route is
planned for the shunt train corresponding to this ar-
rival train.

Last, again based on Assumption A1 in 2.3.3, we
have assumed that the arrival train is always split
immediately upon reaching the yard. Therefore, as
indicated in line 5, the start of the parking for t1 and
t2 is when the movement for at ends (e(Aat

1)).

We handle also the combine analogously in Algo-
rithm 6. We denote with dt - the combined train, and
with t1 and t2 - the shunt trains before combining.
Again, the specified constraints are based on Assump-
tion A1 in 2.3.3.

17

Algorithm 5 Constraints for at ∈ AT, and t1 , t2 ∈
ST or SCT

1: if at → {t1 , t2} then ▷ the arrival train will
require splitting

2: numrat = 1
3: numr t1 ,numr t2 ∈ {0, 1, 2}
4: et10 = et20 = eat1
5: s(stay t1

0) = s(stay t2
0) = e(Aat

1)
6: else
7: numrat = 0
8: end if

Algorithm 6 Constraints for dt ∈ DT, and t1 , t2 ∈
CT or SCT

1: if dt → {t1, t2} then ▷ the arrival train will
require splitting

2: numr t1 ,numr t2 ∈ {0, 1, 2}
3: numrdt = 1
4: edt0 = et1numrt1

= et2numr t2

5: s(Adt
1) = e(stay t1

numr t1
) = e(stay t2

numr t2
)

6: else
7: numrdt = 0
8: end if

2.3.7.7 Constraints for “stay” variables

The initial parking starts at the arrival time for all
trains that have an arrival. A split shunt train does
not have an arrival.

s(stay t
0) = arr t ,

∀t ∈ T\{DT, ST, SCT} (2.26)

The last parking ends at departure time for all trains
that will depart.

e(stay t
maxMt

) = dept ,

∀t ∈ T\{AT,CT, SCT} (2.27)

If the train performs fewer movements than the max-
imum allowed movements (maxM t), the parking vari-
ables that correspond to movements that are not taken,
should not be present. The number of parking variables
is maxM t + 1, after each movement and before the last
one.

pres(stay t
i) = 0,

∀ numr t + 2 ≤ i ≤ maxM + 1 (2.28)

Finally, the last present “stay" variable should end
at the departure time for each train type that moves
to the departure platform.

staytnumr t
= dept ,∀t ∈ T\{AT,CT, SCT} (2.29)

This constraint can be also enforced as follows:

pres(stay t
i) == 0 ⇒ e(stay t

i)− s(stay t
i) == 0

∧ d(stay t
i) == 0 (2.30)

2.3.8 The second version of the model
The second version of the model was developed to im-
prove upon the performance of the first one. In the
following lines, we outline only the modifications, in
particular any removals, changes, or additions. Cre-
ating this version originated from the observation that
the route variables could be removed, which would sim-
plify the model.

2.3.8.1 Changes to variables

We remove all route interval variables at,r
i , the vari-

ables corresponding to the period when the train exe-
cutes a route r when they are present. To substitute
their function in the model, we utilize the group vari-
ables for each move.

2.3.8.2 Changes to constraints

The first change is in the constraints about
startOfSubmr ,t

k in Subsection 2.3.7.1. In particular,
the constraint on line 2 at Algorithm 1 depends on
at,r
i . The constraint is as follows:

startOfSubmr ,t
k = s(at,r

i)

The new constraint is:

startOfSubmr ,t
k = s(At

i) (2.31)

In the next Subsection 2.3.7.2, constraint 2.2, repeated
below, is removed.

pres(at,r
i) = (chosenRouteti == indexOf(r,Rt

i))

Constraint 2.3 from:

pres(at,r
i) = pres(occt,rsj),∀sj ∈ S r

is changed as follows:

pres(occt,rsj) = (chosenRouteti == indexOf(r,Rt
i))

(2.32)

Constraint 2.6 for the duration of the route interval
variable, is changed to:

d(At
i) = dtr, where r = Rt

i [chosenRoute
t
i] (2.33)

Next, we also remove the alternative constraint 2.9
which enforces that exactly one of the alternative
routes, represented with the route variables at,r

i , for
each move is present or none if the movement is not
executed. In the revised model, each movement is
represented by a single variable - At

i that is assigned to
one route or not based on its presence. Therefore, the
functionality provided by the alternative constraint is
by design satisfied.

Finally, we substitute constraints 2.21 and 2.22, we
repeat them below:

pres(at,r
i) ⇒ eti = end(r)

18

pres(at,r
i) ⇒ eti−1 = start(r)

Before we present them, we first remind the reader
that Et

i where all possible end yards for routes for move
i ∈ {1..maxMt} and E t

0 is just the initial yard if the
train arrives at a yard or a dummy yard representing
the arrival platform.

pres(At
i) ⇔ start(Rt

i [chosenRoute
t
i]) = Et

i [e
t
i] (2.34)

pres(At
i) ⇔ end(Rt

i [chosenRoute
t
i]) = Et

i+1[e
t
i+1]
(2.35)

Every other constraint that was not mentioned does
not include at,r

i and remains the same.

2.3.9 Applied extension
Splits and combines with a through train

The distinction between the splits and combines dis-
cussed herein and those in the previous section 2.3.7.6
pertain to the types of trains included. In the previ-
ous section, an arrival train splits into two shunt trains
(both plannable trains), or two shunt trains combine
into a departure composition.

In this section, the split involves a through train,
resulting in an arrival train and a smaller through train.
Similarly, the combine entails a departure composition
and a through train, resulting in a longer through train.

We first focus on the split. The scenario when a com-
bine occurs is analogous. After a split on the platform,
there is a shorter through train that must continue its
scheduled route according to the timetable within a
short time. Meanwhile, the second train, originally
part of the through train, becomes an arrival train.

There is one through train and one plannable train
on the platform. The first issue is whether the arrival
train obstructs the through train to proceed. In case
the arrival train is blocking the through train, it re-
quires immediate routing, otherwise, routing can be
postponed.

Based on the through-train decomposition (input in-
formation), we can determine the location of the arrival
unit(s). Additionally, we know the direction of the
next movement of the through train. Hence, we can
deduce whether the arrival train is positioned ahead of
the through train, meaning it is blocking the through
train, or behind it. Depending on the situation, differ-
ent additional constraints are applied:

Case 1: If the arrival train is blocking the through
train, it requires an immediate routing. Hence,
we account for the following matters:

• Set the end of the stay at the platform to be
at most the departure time of the through
train:

e(stay t
0) ≤ depthrough (2.36)

• No parking occupation - As previously
mentioned in pseudocodes 2 and 4 for defin-
ing section occupation constraints, each ar-
riving train extends the occupation of the
first section with the platform dwell time
before routing to the yard. However, since
through trains also occupy this section si-
multaneously, dual occupation renders the
model infeasible. Therefore, for trains result-
ing from a split at the platform, we do not
occupy the initial section.

• No occupation of the first section of the
taken route - Additionally, we must avoid
occupying the initial section of any route
leading to a yard, as this section corresponds
to the arrival platform and, as previously
stated, is already occupied by the through
train.

• Move only from the free side - Only one
side of the platform is free, the other is oc-
cupied by the through train (Figure 2.11).
Since the arrival train will be routed before
the departure of the through train, it is re-
quired to exit from that free side. We can
ensure this by filtering the routes to consider
only those that exit from the correct side. Al-
ternatively, we can impose the following con-
straint:

originSide(r) == freeSide,

where r = Rt
1 [chosenRoutet] (2.37)

The first approach is better as it does not
introduce additional constraints.

Case 2: In case the arrival train is at the back and
does not obstruct the through train. Here again,
the following points need to be taken into account:

• First, there are two possibilities for depart-
ing:

– Either the platform is a LIFO track and
hence, the shunt train is obstructed by
the through train and requires to wait
(Figure 2.10).

e(stay t
0) ≥ depthrough (2.38)

– Or the platform is a free track, allowing
the shunt train to move at any time be-
fore the next scheduled arrival. Again,
the shunt train can only move from
the free side of the platform before the
through train departs. Once the through
train has departed, the shunt train can
exit from any side of the platform. To
simplify operations, we have decided to
always route the arrival train after the
through train, thereby mitigating the

19

issue with LIFO platforms. We enforce
again:

e(stay t
0) ≥ depthrough (2.39)

• Last, we should again avoid occupying park-
ing sections for both the through train and
the arrival train simultaneously. Since we
have decided that the arrival train will de-
part after the through train, the section cor-
responding to the arrival platform will be oc-
cupied by only by the arrival train, as the ar-
rival train will remain on the platform longer.
Additionally, the first section of the route is
also occupied.

Figure 2.10: A split at the platform that results in a
through train and a plannable train. The plannable
train requires to wait until the through train has de-
parted as the platform is LIFO.

Figure 2.11: A split at the platform that results in a
through train and an arrival train. The arrival train
must be routed promptly, as it obstructs the next
scheduled movement of the through train.

2.3.10 Output
Figure 2.12 illustrates the output that can be obtained
from the model. Initially, we provide the important in-
put information for the train - the arrival and departure
platforms, and arrival/departure times if available for
the type of the train. Next, for each parking and each
movement, we indicate whether it occurs, along with
the time interval and duration. For the movement, the
chosen route is also printed.

20

Figure 2.12: An example of the output of the model for one of the base shunt trains in the Enkhuizen instance.

21

Chapter 3

Instances

3.1 Instances

Two real-world instances were provided by NS - one
small instance from the Enkhuizen station and one
medium instance from Amersfoort station. To exten-
sively test and evaluate the created model, additional
instances, based on those, were created. In this sec-
tion, we first give a brief overview of these two real
instances (Section 3.1.1). Next, the used instance cre-
ation strategies are discussed (Section 3.1.2). Finally,
we conclude with a description of the performed data
preprocessing (Section 3.1.3).

3.1.1 Real instances

Enkhuizen instance

The first instance is located at Enkhuizen station, a
small station in the northern region of the Netherlands.
Figure 3.1 illustrates the station layout, and presents
the two platforms: platform 401 and platform 402, po-
sitioned on the left side of the figure. Additional details
are provided in Table 3.1.

There are 12 shunt (plannable) trains that arrive and
require routing to any of the three yards. Additionally,
160 predetermined movements must be considered and
satisfied by the model. The number of routes available
per movement ranges from 3-4 up to approximately 9-
10 when transfers between yards are considered. Only
the shortest routes between all possible endpoints are
included.

Lastly, this small instance involves no splits or com-
bines at the yards, in particular, only base shunt trains
are present.

Amersfoort instance

The next real-world instance is located at Amersfoort.
Amersfoort has a larger and busier station with more
through trains which leads to more fixed movements.
Table 3.1 provides the specific details.

On one hand, having a single yard simplifies the in-
stance, as the search space terms of the number of
possible routes, and the number of possible endpoints
is reduced compared to Enkhuizen. However, on the
other hand, since all trains are shunted to the same
yard, they frequently require routing over overlapping
routes.

The instance can easily become infeasible, in case
of insufficient free time to move a train between the
platforms and the yard. This issue may arise due to
parts of the infrastructure that are heavily utilized by
both through trains and plannable trains.

3.1.2 Instance creation

This section discusses possible methods to generate
more valid instances based on the two real-world exam-
ples. Due to specific checks before running the model,
it is rather difficult to introduce new trains to the ex-
isting instances. Not to mention generating entirely
new instances. The next subsections outline a set of
changes that could be utilized to create new instances.

3.1.2.1 Modifying the plannable (shunt) trains

These instances are created by selecting a subset of the
shunt trains from the real-life scenario. All other as-
pects of the real instance, such as through train move-
ments, yards, and routes, remain unchanged.

There are many options to generate instances based
on altering the set of shunt trains. We have opted to
select for each possible number of trains, a fixed num-
ber from all combinations with that number of trains.
The number of trains ranges from 1 to up to the total
number of trains in the real-world instance. In essence,
we generate a fixed number of instances from all combi-
nations with one train, two trains, three, and so forth.

3.1.2.2 Remove/Add a yard

Additionally, one could explore altering the station lay-
out. For instance, we could establish a new yard by
defining a set of tracks that allow for parking, to com-
pose a new yard.

Alternatively, a yard could be removed, allowing
trains to only reverse or briefly stop on those tracks.
For instance, in the Enkhuizen, one might eliminate the
yard with track 403, allowing trains to perform only re-
versals there. This could either simplify the problem
as fewer routes are considered or could result in harder
instances when the parking space at the yard is con-
sidered. As the yard extension C.1.2 is not included,
the instance should become easier.

22

Figure 3.1: The layout of the station in Enkhuizen instances.(sporenplan.nl)

Instance #Shunt trains #Fixed movements #Routes/movement Yards
Enkhuizen 12 160 3/4 - 9/10 405_406, 403, 404_407
Amersfoort 23(arrive) 1600 around 2 Bokkeduinen

Table 3.1: The table outlines the specific characteristics of the two real-life instances. For each instance, the
following information is provided: the number of arrival plannable trains, the number of fixed movements,
required to be additionally included, the number of available routes per movement, and the yards.

3.1.2.3 Remove/Add (compound) routes

A further modification could be to remove and add
(compound) routes. For instance, removing compound
routes, those consisting of more than one subroute, can
reduce the search space and potentially shorten com-
putation time. These routes are often less desirable.
In addition, not considering longer routes would also
result in better solutions.

Additionally, introducing alternatives to the shortest
routes could result in harder instances.

3.1.2.4 Reserving certain important/busy sec-
tions/tracks for long duration

Lastly, one could test the model in scenarios where
specific key sections at junctions are unavailable due to
maintenance or accidents. In such cases, certain trains
would be forced to take longer routes. Therefore, it is
crucial to ensure that alternative routes are available
and considered by the model.

3.1.3 Data preprocessing

The developed preprocessing ensures that the input
data for the section occupations for the predetermined
routes is feasible. Specifically, it guarantees there are
no simultaneous section occupations by different trains
for the same section. This situation could occur if two
trains are parked over the same section, which is per-
missible in practice.

To conform to the occupations for the predetermined
routes while also making the section occupations fea-
sible for the solver, all overlapping intervals for each
section were combined into one. This not only ensures
feasibility but also reduces the number of occupation

intervals, thereby lessening the workload of the noOver-
lap constraint.

In the Amersfoort instance, five plannable trains
were excluded due to their arrival or departure coin-
ciding with the presence of another through train on
the platform. This is not allowed, according to As-
sumption A6 (in Section 2.3.3). After the removal, the
plannable trains that arrived are 23. The total number
of trains, including all types, was 40, as some of these
trains split and combined to form new trains.

3.2 Validations

This section presents the validations performed on each
obtained solution. These validations aim to confirm
that the solutions satisfy indeed the requirements out-
lined in Section 2.3.2. Specifically, we strive to en-
sure that the implemented constraints accurately cor-
respond to the desired behavior. The validations are
similar to the defined constraints but are now applied
to the obtained solution.

In the following text, we first briefly state each re-
quirement and then describe the corresponding valida-
tion check. We begin with the validation checks for
the second version of the model (model-v2) and subse-
quently extend with those necessary for the first version
(model-v1).

3.2.1 Validations for model-v2

R1: The model should produce a feasible sched-
ule.

This requirement was further divided into three nec-
essary conditions for it to hold. We validate each of

23

them separately.

• No train is moving over infrastructure al-
ready reserved by another train.

After obtaining a solution from the model, we
know all present occupation intervals for each sec-
tion. These occupation intervals correspond to the
reservations of routes that include this section.

To verify that no two trains have reserved the same
section simultaneously, we require that none of the
intervals overlap with each other. A naive ap-
proach would check that no interval overlaps with
any other interval, running in O(n2), where n = #
present occupation intervals for section s. How-
ever, we opt for a more efficient version.

Our approach runs in O(n ∗ log(n)). Initially, we
sort all the start and end times of all present in-
tervals for a specific section. Afterward, we check
whether we can encounter the start of any inter-
val before the end of another one. In case such a
situation occurs, this indicates overlapping reser-
vations for the same section. Figure 3.2 illustrates
this situation.

Figure 3.2: On the timeline, the start and end times of
two present occupation intervals for the same section,
but for different trains, are ordered. As we process
each boundary (start or end) of each interval, we will
encounter the start of the second interval for train t2
before the end of the previous interval. This can only
happen if they overlap.

• All trains are planned at every point in
time.

This requirement is verified by ensuring that for
each train, the parking times and the movements
in between are continuous, meaning there is no gap
where the train’s place is unclear. For instance, we
validate that the first parking period ends exactly
when the first movement starts, and then the first
movement ends precisely when the second parking
interval begins, and so on.

Additionally, we verify that the first parking pe-
riod begins when the train arrives (for arriving,
base shunt train, and combining trains) or when
the train spawns (in the case of a split or departure
composition). Similarly, the last parking period
should end when the train either departs from the
platform or is combined with another train, ceas-
ing to exist.

• Trains do not move from one place to an-
other, without reserving a route in between.

For this, we verify that the start of each taken
route corresponds to the assigned position (eti) of

the train prior to this move. Similarly, the end of
the taken route corresponds to the next assigned
position (eti+1).

We also confirm that the initial and final positions
of trains are the arrival and departure platforms
for trains that arrive or depart. For the rest, we
ensure that the initial position, where the train
is spawned, matches the last position of the train
from which it was created. For instance, the initial
position of a split train should match the last po-
sition assigned to the arrival train containing the
split train.

If fewer than the maximum number of movements
are taken by the train, we check whether the end
positions are assigned to the dummy position.

R2: The routes of all through trains which are
predetermined and fixed, are respected by the
model.

This requirement is fulfilled by considering the section
occupations for the routes of the through trains.

R3: Train units that are combined at the yard,
traverse simultaneously the same route from
the yard to the platform. Analogously, for the
trains before splitting.

This requirement is satisfied by the modeling approach,
in particular, by the way we define and create the dif-
ferent types of trains.

R4: The model uses the section occupations
specified by HIP.

The start and end times of each section (end t
si ,r ,

start tsi ,r), relative to the beginning of the route, are
provided by HIP.

R5: The model routes each train to at most two
yards.

The restriction on the maximum number of movements
(maxM t) ensures that the solutions adhere to these
requirements as well.

3.2.2 Additional checks for model-v1
We further validate that if and only if At

i is present,
then exactly one route variable per move is present,
otherwise, none of the route variables should be
present. The equations 3.1 and 3.2 illustrate the check.

pres(At
i) ⇔

∑
r∈Rt

i

pres(at,r
i) == 1 (3.1)

pres(At
i) == 0 ⇔

∑
r∈Rt

i

pres(at,r
i) == 0 (3.2)

Furthermore, we also verify that the start and end
times of the route variable coincide with the start and

24

end times of the corresponding group variable. This
ensures that the route occurs exactly when the move-
ment is planned. Equation 3.3 presents this validation.

s(at,r
i) == s(At

i) ∧ e(at,r
i) == e(At

i) (3.3)

Last, we ensure that the present route variable (at,r
i)

corresponds to the route at position chosenRouteti
within the set of available routes for this move - Rt

i .

pres(at,r
i) ⇔ Rt

i [chosenRoute
t
i] == r (3.4)

25

Chapter 4

Experiments & Results

4.1 Goal of the experiments

The initial evaluation of the entire instance of
Enkhuizen requires from 4-5 to 10-15 minutes. While
this is a reasonable time, for larger instances the run-
ning time may considerably worsen. Therefore, the pri-
mary goal of the experiments concentrated on improv-
ing the performance of the model. Several experiments
were designed to achieve this by further constraining
the search space, guiding the solver’s search, and eval-
uating and comparing the second version of the model
(Section 2.3.8).

Next, a second set of experiments was designed to
identify how certain characteristics of the instances af-
fect the model performance. In particular, a set of ex-
periments with changing the number and type of routes
and removing a yard were conducted.

The final set of experiments was conducted on the
second version of the model, implemented also in
MiniZinc. The goal was to investigate and compare
the performance of other solvers. The designed exper-
iments also address all additional research questions
outlined in Section 1.7.

4.2 Experiments’ overview

Constraining the parking intervals

The initial tests reveal promising results when we con-
strain the durations of the variables corresponding to
the parking time at arrival and departure platforms to
a maximum of 90 seconds. Therefore, we further de-
sign experiments in this direction. However, limiting
the parking duration to be within 90 seconds could eas-
ily result in an infeasible solution and does not align
with a realistic platform dwell time. To increase the
likelihood of feasible solutions, we allowed the parking
durations to be up to 15 minutes. This upper bound is
considered more appropriate, as solutions, where trains
are planned to be parked on the arrival or departure
platform for longer than 15 minutes (900 seconds), are
also not desirable.

Using the notation introduced in Section 2.3, the

constraints are as follows:

if initat /∈ Y then:

d(stay t
0) <= 900,

∀t ∈ T\{ST, SCT,DT} (4.1)

if desat /∈ Y then:

d(stay t
numr t

) <= 900,

∀t ∈ T\{CT, SCT,AT} (4.2)

Variable and value selection strategies
Variables and value selection strategies are beneficial
as they can guide the search process of the solver, po-
tentially leading to a feasible solution more efficiently.

Variable selection strategy “instructs” the solver
which variables to initially assign during the search.
For instance, variables with small domains are usu-
ally better to fix at the beginning of the search com-
pared to those with large domains. This is because
the solver will require this initial stage of the search at
most as many times as there are values in the domain.
Hence, the larger the domain, the higher the number
of times the solver will potentially revisit this stage of
the search. For example, a good strategy is to assign
initially the variables for the number of movements for
each train as those have at most four different values
(0 to 3).

Once a variable is selected, the value selection strat-
egy suggests which values the solver should attempt
initially. In particular, a value selection strategy can
guide the solver to aim for the most promising values.
These could be values that based on some domain in-
sights, are expected to more likely result in a feasible
or better solution.

For example, solutions selecting fewer movements for
trains are generally better solutions. These solutions
are also easier to find, as fewer movements are expected
to result in fewer route conflicts that the solver must
resolve.

We conducted experiments with the variable and
value strategies for the number of movements. We fur-
ther also design experiments to fix the variables for
the arrival platform to the smallest values first. There,
we aimed for a similar effect as constraining the park-
ing time to 15 minutes, which was previously noted as

26

beneficial. Analogously, we developed a search strat-
egy for the departure platform variables to minimize
the durations as well.

Seed influence

To ensure that the seed used by the solver for generat-
ing reproducible solutions did not impact performance,
we ran all experiments with 5 different seeds. This ap-
proach allows us to also assess the influence of the seed
on the solver’s performance.

Influence of instance characteristics

We investigated the change in the performance when
altering specific features of the instances, such as:

• increasing the number of routes for Amersfoort in-
stances.

• removing a yard for Enkhuizen instances.

• removing compound routes for Enkhuizen in-
stances.

Compare the first and second versions of
the model

We compare the performance of both versions on the
default instances and the instances with additional
routes for Amersfoort.

Evaluate different solvers

Finally, we investigated the performance of other
solvers on the second version of the model, im-
plemented in the MiniZinc, and using Enkhuizen
instances.

Before further diving into the concrete experiments and
the obtained results, we present the supposed results
in the form of hypotheses.

4.3 Hypotheses

General Guidelines: If we have simply mentioned
model-vX or (default/base) model-vX, then we refer
to version X of the model without any additional con-
straints or search strategies. X can be 1 or 2. In case
we consider a model with search strategies or additional
constraints enabled, we will explicitly mention that.

4.3.1 Hypotheses for changes in the
model

Between model versions

H1: Model-v2 will have better performance than
model-v1.

Reason: The second version improves the first by re-
moving the interval variables for the routes and the
extra constraints for them. This simplification of
the model is expected to enhance search efficiency
and propagation, thereby improving overall per-
formance.

Between the default model-v1 and the model-v1
with variable and value strategies

H2: The models with variables and values strategies
for the duration on the arrival/departure platform
and the number of movements will improve upon
the default model-v1.

Reason: The search strategies aim to prevent the
solver from branching on variables that cause slow
propagation and extensive search for feasible solu-
tions. However, why do we envision that these
variables are crucial for finding a solution faster?

A lower number of movements leads to fewer sec-
tion occupations, reducing the conflicts in the
noOverlap constraint that the solver must resolve.

Platforms are heavily utilized, especially in busy
stations. Therefore, guiding the solver to priori-
tize lower values for platform durations increases
the likelihood of finding a feasible solution, com-
pared to allowing the solver to assign any value
within the domain. Note that the duration do-
main is defined as the departure time minus the
arrival time. This can be substantial, especially
when trains arrive and depart on different days.

Between the default model-v1 and model-v1
with additional parking constraints

H3: We envision that model-v1 with the additional
parking constraints will perform better.

Reason: Firstly, the additional constraints will reduce
the search space. Secondly, these constraints will
also facilitate better propagation and tightening of
the domains of other variables, such as the start of
the next movement and the next parking variable.

4.3.2 Hypotheses for the influence of
the instance characteristics

With more allowed routes for Amersfoort

H4: We expect the performance of the default model-
v1 to considerably degrade when additional routes
are enabled.

Reason: The additional routes expand the search
space. More routes increase route interval vari-
ables and section occupation variables, and con-
secutively number of constraints as well.

H5: We expect the performance of model-v2 with ad-
ditional routes to worsen compared to running
without them.

27

Figure 4.1: Comparison between the different seeds for the Amersfoort instances. The values are obtained by
averaging the running time in milliseconds of instances with the same number of trains. Seed 1353268747
exhibits consistently the highest average computational time. Moreover, performance degrades twice between
seed 166276356 and 1353268747 for instances with 17 and 18 trains.

Reason: The reasoning is analogous, without, in this
case, introducing additional route variables for
each new route. This leads to the next hypoth-
esis.

H6: Model-v2 will outperform model-v1 when addi-
tional routes are enabled for both.

Reason: The reasoning is analogous to the explana-
tion of why model-v2 is expected to perform better
than model-v1 (H1, Section 4.3.1).

Upon removal of the yard, or the routes with
reversals

H7: We hypothesize that the performance of model-
v1 will be comparable when a yard or routes with
reversals are removed.

Reason: In both cases the number of the removed
routes is approximately the same, equal to 1/3.
Therefore, we presume similar performance.

4.3.3 Hypotheses for the MiniZinc
model

H8: We envision that model-v2, implemented in
MiniZinc, will exhibit slightly worse performance
when solved with Google OR-Tools, compared to
the model, implemented with the Google OR-
Tools API.

Reason: For the same instance the model in MiniZ-
inc creates more variables and requires more con-
straints than the one implemented in Google OR-
Tools.

4.4 Experimental Setup

Hardware

Both versions of the model are implemented in C#
using Google OR-Tools Constraint Catalog. CP-SAT
solver was used, as this one is faster and recommended
by Google OR-Tools themselves.

The mentioned experiments were performed on the
DelftBlue cluster. For the MiniZinc experiments a sin-
gle thread, 1 CPU, and 16GB of RAM were utilized.
For all others, a single thread, 1 CPU, and 4GB of
RAM were employed.

MiniZinc version 2.8.3 1160085037 was used. Google
OR-Tools 9.3.10497 was used for most experiments, ex-
cept for the variable and value strategies, where version
9.10.4067 was utilized.

Benchmarks

We generate instances for all experiments by modify-
ing only the set of plannable trains from the real-life
instance 3.1.2.1. Recall, that this strategy selects a
fixed number of instances from all combinations with
one train, two trains, three, and so forth. The reason
for choosing this strategy is that the number of trains
is typically a key parameter influencing performance.
By using this approach, we can systematically exam-
ine the performance as the difficulty of the instances
increases. For some experiments, additional features
such as the yards or the number of routes are altered
as well.

The fixed number is 10 and each instance is executed
3 times, this produces 30 instances with the same seed
and the same number of trains. However, as there is
only one combination with all trains, namely the entire
instance, we execute it 5 times. The number of
instances based on Enkhuizen for one seed is 335 (10 ·

28

https://or-tools.github.io/docs/dotnet/classGoogle_1_1OrTools_1_1Sat_1_1CpModel.html

Figure 4.2: Comparison between the different seeds for Enkhuizen instances. The values per number of trains
are produced by averaging the running time in seconds for all instances with the same number of trains. Using
seed 1916129863 instead of 1617979407 results on average in a few minutes higher computational time.

3 · 11 (the #trains - 1 (the entire instance)) + 5 (#
of runs or the whole instance)), while for Amersfoort
- 665 instances. Executing all these instances for all
experiments with 5 seeds resulted in more than 30,000
instances. For each instance, an upper bound of 15
minutes was imposed. Furthermore, upon timeout, we
assign 15 minutes as the running time of the time-outed
instance.

In all experiments, we seek a feasible solu-
tion, and no objectives are applied.

Pre-experiment - Seed influence

Figures 4.2 and 4.1 depict the influence of seed by
comparing the average performance of instances with
the same number of trains for model-v1 on Enkhuizen
and Amersfoort, respectively. The lines above the bars
show the first standard deviation (34% of the data).

In Amersfoort, the variations in running times across
different seeds are consistent among instances with dif-
ferent numbers of trains (Figure 4.1). For the instances
with 17 and 18 trains, the average computation time
can double when altering the seed. However, as the
measurement unit is in milliseconds (ms), minor varia-
tions in the performance are not considered significant.
Nevertheless, based on the repeated differences in the
running time, we conclude that for Amersfoort, the
computation time depends on the seed.

The performance of the distinct seeds for Enkhuizen
exhibit varying patterns. For some instances of a cer-
tain number of trains, certain seeds result in better
performance, while for others, different seeds. Never-
theless, there could be on average a few minutes differ-
ence (Figure 4.2).

In general, it is difficult to determine whether a seed
is consistently better or worse. The seed that performs

best on Enkhuizen is worse for Amersfoort. However,
the seed does influence the results, sometimes con-
siderably. Hence, the seed is an important instance-
dependent parameter that should be fine-tuned further.

To mitigate this variability and produce more ac-
curate and robust results in the next experiments, we
will aggregate the results from five different randomly
selected seeds.

4.4.1 Types of experiments

We categorize the experiments into three main groups:
experiments about evaluating changes in the model,
assessing how modifications in the instances impact the
model’s performance, and experiments with MiniZinc
model. Table 4.1 presents an overview of all.

4.4.2 Solutions’ quality

After each experiment, we analyze the solutions focus-
ing on three key quality characteristics. We examine
the duration on the arrival platform, the duration on
the departure platform, and the number of movements
(specifically for Enkhuizen instances). These analyses
are conducted only on the entire instances. For Amers-
foort, the number of movements is not shown in a plot
as the values are consistent among experiments.

The intuition behind these metrics is that a pro-
longed duration on the arrival or departure platform
is generally not considered optimal, as it results in
wasted time for the drivers. An increased number of
scheduled movements requires more drivers and leads
to higher energy consumption. Furthermore, this fur-
ther intensifies the traffic at the station and reduces
schedule robustness. Besides, these metrics are also
deemed satisfactory by the planners (the people who
currently manually develop the shunt plans).

29

Type of Experiment Experiment Model version Solver version Solver search Special
Parameters

Changing
the
model

Adding parking
constraints

v1 9.3 default -

Variable and Value
Strategies

v1 9.10 fixed keep all feasi-
ble solutions
in presolve

Compare versions v1 and v2 9.3 default -
Changing
instance
characteristics

Adding additional
routes

v1 and v2 9.3 default -

Removing a yard,
or Reversals

v1 9.3 default -

MiniZinc Compare different
solvers

v2 Multiple
solvers (noted
later)

default con-
figurations

-

Table 4.1: An overview of the experiments and parameters utilized. The default search method is also referred
to as automatic.

Guidelines for reading the solutions’ quality
plots

Before discussing the results, we outline general guide-
lines for interpreting the figures on solution quality.

The x-axis allows for a comparison of values across
different seeds, except in one experiment where results
for a single seed are presented for clearer understand-
ing. On the y-axis, the duration (in minutes) that each
train spends on the arrival or departure platform is
plotted. The green triangle indicates the mean value.
The box represents the interquartile range, with the
bottom and top edges of the box marking the 25th and
75th percentiles, respectively. The box encloses the
middle 50 percent of the data.

Recall, the entire instance is executed five times per
seed. Each boxplot displays the duration on the ar-
rival/departure platform for all trains in these 5 in-
stances. A single circle represents the duration of one
train arriving or departing from a platform. The trains
that arrive or depart from a yard are excluded, as op-
posite to the platform, there, trains are preferred to
remain longer. Last, the table, for instance, table 4.4c,
presents the number of trains assigned one, two, or
three movements for one execution of the entire in-
stance. For Amersfoort, the trains that do not arrive
or depart are excluded from the respective figure. For
instance, a split shunt train is not included in the ar-
rival time plot but is part of the departure plot.

Finally, we note the observed slight variations in so-
lutions from different executions of model-v1 with the
same seed and instance when utilizing version 9.3 of
Google OR-Tools.

4.5 Experiments with model
changes

General Guidelines: By default instances, we refer
to those where only the number of trains is altered.
Other characteristics such as the number of routes or

yards are as in the original real-life instance. Any de-
viations from this will be explicitly noted.

4.5.1 Adding parking constraints

To answer the hypothesis H1 in 4.3.1 on the usefulness
of the additional parking constraints, we will compare
the running time of the first version of the model with
and without these constraints.

Figure 4.3 below summarizes the results for
Enkhuizen. Instances with constrained parking vari-
ables are solved within milliseconds and are not in-
cluded in the plot. However, the default model reaches
an average of 518 seconds (around 8-9 min).

We conclude that constraining these types of vari-
ables significantly improves solution times for instances
similar to Enkhuizen. Further analysis of these re-
sults is provided in Section 4.6.4.2. In particular, the
analysis demonstrates that only the variables control-
ling the durations on the departure platform lead to
improvement by enabling faster convergence for Sim-
plex, the core algorithm for linear programming (LP)
([sim, 2020]).

This experiment is conducted only for Enkhuizen.
In Amersfoort, some trains are required to stay longer
than 15 minutes on the platform to achieve a feasible
solution.

4.5.1.1 Solutions’ quality

Figure 4.4 illustrates the three quality metrics for the
real-life instances of Enkhuizen with and without ad-
ditional constraints.

Figure 4.4 presents that the solver has selected the
duration on the arrival platform to the minimum pos-
sible value for both the model with and without addi-
tional constraints. In contrast, the duration on the de-
parture platform is not minimized. This outcome can
be attributed to the default search strategy employed
by the solver, which selects the first unassigned vari-
able and assigns it its minimum value. As a result, the

30

Figure 4.3: The figure displays the average performance of Enkhuizen instances on the model without the
parking constraints. The obtained values on top of the blue bars are averages of the running times of the
different instances with the same number of trains and different seeds. The same instances, executed on the
model with the constraints, are solved within milliseconds.

arrival durations remain short regardless of any added
constraints, For the departure, the solver again assigns
a low value for the start of the parking, resulting in a
longer duration on the departure platform.

The number of movements on average is between 3
and 2, where 3 is the most common choice for both
versions (Table 4.4c).

4.5.2 Variable and value strategies

The experiments in this section address hypothesis H2
in 4.3.1. We investigate variable and value selection
strategies for the following variables for each train:

• For the end of the parking on the arrival platform

• For the start of the parking on the departing plat-
form

• For the number of movements

Controlling the start and the end of the parking corre-
sponds to restraining the durations on the arrival and
departure platforms, respectively.

In all aforementioned cases, the value selection strat-
egy is chosen based on the reasoning from hypothesis
H2 in 4.3.1. as it is anticipated to perform the best.
These strategies are expected to produce better solu-
tions, as discussed in Section 4.4.2 about the solution
quality metrics. For the variable selection strategy, we
explore each of the available options in Google OR-
Tools.

Strategies for the platforms durations

For the variables for the end of the parking at the ar-
rival platform the SelectMinValue and SelectLowerHalf
strategies were employed. SelectMinValue attempts to

find a solution first with the lowest value in the do-
main, while SelectLowerHalf selects a value from the
lower half of the domain. For the start of the park-
ing at the departure platform, the SelectMaxValue and
SelectUpperHalf strategies were utilized. These work
analogously to the SelectMinValue and SelectLower-
Half.

Figures 4.5 and 4.6 present the average results across
all seeds for each combination of variable and value se-
lection strategies for the variables controlling the park-
ing on the arrival platform. The corresponding results
for the departure platform are shown in Figures 4.7
and 4.8 for the Enkhuizen and Amersfoort instances,
respectively. The bars labeled with ”None-None“ cor-
respond to the default model-v1 when no variable and
value strategy is applied.

First, note the values on the y-axis: for Amersfoort,
in milliseconds as before, while for Enkhuizen, in sec-
onds, but now approximately 20 times lower (from an
average of 518 to 30 seconds) than in the experiment in-
volving additional constraints (Figure 4.3). For Amers-
foort, the improvement is approximately two times, re-
ducing the running time from around 400 ms in the
pre-experiment to less than 200 ms. The difference is
partially due to the new version of Google OR-Tools
(9.10) but to a larger extent due to the different solver
search strategy — fixed search, observed in several lo-
cal executions.

Specifying a search strategy for the variables on
the arrival platform does not improve the performance
of either Enkhuizen or Amersfoort. In fact, for the
larger instances, the strategies worsen the solutions.
This outcome is consistent with the findings from the
previous experiment involving additional parking con-
straints.

In contrast, Figure 4.7 demonstrates that instructing
the solver to prioritize the variables on the departure

31

(a)

(b)

(c)

Figure 4.4: The three quality aspects for both the model with and without the additional parking constraints.
The results are from the entire instance of Enkhuizen and solutions are categorized based on different seeds.

32

Figure 4.5: Comparison between the variable and value selection strategies for the variables denoting the parking
time on the arrival platform on Enkhuizen instances and model-v1. The bars labeled "None-None" in the
legend represent the performance of the default model-v1.

Figure 4.6: Comparison between the variable and value selection strategies for the variables denoting the parking
time in milliseconds on the arrival platform for Amersfoort instances for model-v1. Again, ”None-None“
corresponds to the default model-v1.

platforms is beneficial for Enkhuizen. The plot shows
that using the value strategy SelectMaxValue improves
the performance by at least half. However, SelectUp-
perHalf yields even better results, solving the entire
instance within 3-4 seconds.

This result, however, does not follow for Amersfoort
(Figure 4.8). We identify two potential reasons for
this result, perhaps both attributing to some extent.
First, as the computational time is already low (in mil-
liseconds), changing the default search strategy of the
solver to custom could perhaps introduce some com-
plexity and overhead that potentially shadows the gain
from adding a strategy.

The second reason pertains to the different charac-
teristics of Amersfoort. In a busier station like Amers-
foort, trains cannot depart from the yard to the de-
parture platform at the last moment; an average of
3 minutes (180 seconds) is required, as shown in the
4.11c. The time intervals during which a route from
the yard to the departure platform can be executed
vary between trains. Consequently, it is difficult to de-
termine a search strategy that will guide the solver to
the most promising values for parking on the departure

platform. Likely, assigning values, based on a search
strategy, to those variables would not result in a feasi-
ble solution, in contrast to the situation in Enkhuizen.

To conclude, using fixed search with the new version
of Google OR-Tools reports better results for the de-
fault model-v2. Furthermore, specifying a search strat-
egy for the variables on the departure platform appears
to be useful for Enkhuizen, the same does not extend
to the variables on the arrival platform.

4.5.2.1 Strategies on the number of move-
ments

Figure 4.9 summarizes the results for variable and
value selection strategies on the number of movements
for Enkhuizen. This experiment was conducted only
for Enkhuizen, because, in Amersfoort, the number of
movements per train is already defined by the station
layout and the high number of through trains. Fur-
thermore, running time is already considerably low.

SelectLowerHalf reports better average performance
for smaller instances, but for larger ones, performance
is comparable to not using any strategy. SelectMedi-

33

Figure 4.7: Comparison between the variable and value strategies for the variables denoting the parking time
on the departure platform on Enkhuizen instances for model-v1.

Figure 4.8: Comparison between the variable and value selection strategies for the variables denoting the parking
time on the departure platform on Amersfoort instances for model-v1.

Figure 4.9: Comparison between the variable and value selection strategies for the variables denoting the
number of movements for Enkhuizen.

34

(a)

(b)

(c)

Figure 4.10: The three quality aspects for the instances with 12 trains for Enkhuizen and selected set of the
variables and value strategies. One or two variables and value strategies are selected for each type of variable.
The performance of the not presented pairs of strategies is analogous to those of the same type.

35

(a)

(b)

(c)

Figure 4.11: The two quality aspects for the real-life instance of Amersfoort for all executed pairs of variables
and value strategies for one seed. The rest of the seeds are not presented, as they report the same results for
those two metrics. In c), we detailed one of the strategies on the departure platform. The rest are analogous.

36

anValue, however, consistently records a better aver-
age performance of around 7-8 seconds. The reason
for this result relies on the specifics of this instance.
SelectLowerHalf attempts to assign 0 or 1 movement
to different trains first. However, only three trains in
Enkhuizen can move directly from the arrival to the de-
parture platform immediately as in the other cases the
arrival and departure platforms overlap. Hence, the
train will be required to stay at the platform, however,
we did not allow this (R6 in 2.3.2). SelectMedianValue
chooses for most of the trains two movements for the
other three (Table 4.10c). The better running time is
due to selecting first the values that lead to a feasible
solution.

Last, during experimenting with model-v2, we ob-
served that restricting the number of movements for
all trains to less than or equal to two, or exactly
three movements, produces instantaneous results (in
less than a second).

Solutions’ quality

Figure 4.11 presents the metrics on a subset of all pairs
of variable and value strategies. The results for the rest
of the seeds and strategies are similar.

Figure 4.10a demonstrates that there are no outliers
when we impose a value strategy that minimizes the
parking time on the arrival platform compared to the
rest of the strategies that do not enforce this behavior.
An exception is one strategy for the number of move-
ments. Most values for all strategies are near zero again
due to the default search strategy of Google OR-Tools.

Figure 4.10b shows the durations of the departure
platform for the same pairs of strategies. The results
align with previous discussions about the default solver
strategy.

The Table in Figure 4.10c presents the number of
movements. Here, SelectLowerHalf assigns the small-
est values for each train, while SelectMedianValue as-
signs some trains with three movements.

For Amersfoort, the strategies on the duration on
the arrival platform do not improve upon the default
search strategy (Figure 4.11a) that is utilized for the ar-
rival variables in the other cases (the default model and
strategies for the departure platform). Figure 4.11b
exhibits also expected behavior based on the previous
discussion.

In Amersfoort, 7 trains are planned with zero move-
ments (these are mostly the ones that split and combine
at the yard), 22 will move once, and 11 - twice. 40 are
all trains from all different types, while 23 are all trains
that arrive at the platform (arrival, combined trains,
and base shunt trains).

4.5.3 Compare both versions of the
model

In this experiment, we answer the first hypothesis in
4.3.1 by comparing the performance of the first with
the second version of the model, without adding any

additional constraints or search strategies. For the in-
stances, we again alter only the set of plannable trains
for both Enkhuizen and Amersfoort.

Figure 4.13 presents the results for Amersfoort, with
again each bar showing the average running time of
all instances with the same number of trains and all
seeds. Despite the already good performance of model-
v1 on Amersfoort instances, Figure 4.13 shows that the
second version consistently outperforms the first. Fur-
thermore, the larger the instances (in terms of the num-
ber of trains), the greater the difference in the average
running time. These results also follow for Enkhuizen
(Figure 4.12).

In conclusion, in those two types of instances, model-
v2 outperforms model-v1. In later Section 4.6.4.1, we
analyze the number of variables and constraints in both
models to elucidate the improvement. In the next ex-
periment, we explore whether this trend persists when
enabling more routes for the Amersfoort instances.

Solutions’ quality

We observe similar patterns in the durations on the
arrival and departure platforms as in the previous ex-
periment in Figure 4.14 for Enkhuizen. In both ver-
sions, the solver selects similar values to those vari-
ables. Three routes per train are again the prevailing
option. We investigate the solutions for both versions
of Amersfoort in the next experiment.

37

Figure 4.12: Comparison between the two model versions for Enkhuizen instances. Each bar shows the average
running time in seconds, averaged between all instances with the same number of trains and all seeds.

Figure 4.13: Comparison between the two model versions for Amersfoort instances. Each bar shows the average
running time in milliseconds, averaged between all instances with the same number of trains and all seeds.

4.6 Experiments with instance
characteristics

4.6.1 Additional routes for Amersfoort

This experiment answers the hypotheses in 4.3.2 about
increasing the number of routes. In general, there are
multiple options for routing from platform A to plat-
form B. In the default instances, we always utilized
the shortest route between two points. In the follow-
ing, we investigate the performance of both versions
when allowing several alternative routes in addition to
the shortest route.

Consider Figure 4.15 for model-v1. In the
”alternatives-7“ scenario, we include all shortest routes
plus up to 7 alternative routes for each shortest route.
Furthermore, the ”alternatives-9“ scenario extends with

up to two more routes for each shortest route on top
of all the routes considered by ”alternatives-7“. We say
”up to“ since not every shortest route has that many
alternatives available. A specific route may only have
2-3 alternative routes, while others have up to 10-15.
If the required number of alternatives exceeds those
available, only the maximum available alternatives are
included.

Furthermore, this experiment focuses on the bigger
instances with more than 8 trains. The computation
times for the smaller instances remain under one sec-
ond.

As expected, increasing the number of possible
routes leads to a higher computational time. Except
for the entire instance with 23 trains, the orange bar,
representing the performance with all possible alter-
native routes, is always the highest, followed by the

38

Figure 4.14: The three quality aspects for both versions of the model and the real-life instances for Enkhuizen.

39

Figure 4.15: Comparison between the average run time when adding additional routes between 2 and all possible
additional routes.

Figure 4.16: Comparison between the average run time when adding additional routes between 2 and all possible.
A single bar is obtained by averaging all instances with the same number of trains and all seeds.

blue and purple bars. For the entire instances, 11 or 9
additional routes perform worse than adding all possi-
ble routes. Detailed performance for this exception is
shown in Appendix Figure D.2.

There is no way to measure route goodness in terms
of which routes will lead to faster solutions. In a
sense, it appears that adding a few more routes from
”alternatives-11“ to ”alternatives-all“ results in easier
instances. Therefore, we cannotconclude that the run-
ning time will certainly increase upon including a few
additional routes, but it is evident that the perfor-
mance with all routes downgrades with respect to
”alternatives-2“.

Figures 4.16 summarize the findings of running
model-v2. An important but subtle observation is that
the average running time decreases from 200 for model-
v1 ”alternatives-11“ to 18 seconds for model-v2 and all
alternative routes. For this version of the model, the
trend of higher numbers of alternative routes leading
to higher average running times is consistent across all
instances.

4.6.1.1 Solutions’ quality

Figure 4.17 illustrates the metrics for both versions of
the models on the real-life Amersfoort instance, with all
additional routes and without any (the default). Fig-
ure 4.17a indicates that additional routes enable the
solver to select slightly lower values for the duration
on the arrival platform for the v1. Both v2 and v2-alt-
all (v2 with alternatives) perform as v1 with alterna-
tives (v1-alt-all). Not that similar are the results on
the departure platform presented in Figure 4.17b. V2
assigns longer durations on the departure platform and
does not improve upon adding more routes, in contrast
to v1.

We investigated the solutions for the second version
with the parameter to keep all feasible solutions dur-
ing presolve set to true. The duration on the departure
platform for the second version was significantly lower
(see the additional plot in Appendix D.3). The dura-
tions, when alternatives are considered, do not change
with or without the parameter. However, without any
variable or value strategy enabled, the default search
tends to select higher values for the variables control-

40

(a)

(b)

Figure 4.17: The two quality aspects for model-v1 and the instances with all trains for Amersfoort. Only trains
that do arrive at the arrival platform and the departure platform are taken into account in the first and second
figures, respectively.

41

Figure 4.18: Comparison of the performance on Enkhuizen instances when a yard or the reversals are removed
with the default model-v1.

ling the duration on the departure platform, influenced
by the already assigned variables.

The number of movements for all versions with and
without alternatives is the same: 7 trains do not per-
form any movements, 22 - one, and 11 take two.

4.6.2 Removing a yard, or reversals
Figure 4.18 presents the aggregated results for model-
v1 on Enkhuizen instances under two modifications:
without the reversal routes (red), without the yard con-
taining the 405_406 tracks (Figure 3.1 for the station
layout) and in green the default instances. Removing
reversals leads to the greatest improvement. Interest-
ingly, removing a yard does not seem to enhance the
performance to the same extent as stated in hypothe-
sis 7 (4.3.2). We further analyze the results, but first
investigate the solutions in terms of the three metrics.

4.6.2.1 Solutions’ quality

The values of the variables on the arrival and depar-
ture platforms align with the default solver strategy, as
shown in Figure 4.19.

The number of movements in the default instances
and when a yard is removed are comparably the same,
with three movements prevailing in both cases. How-
ever, removing the reversals reduces the number of
movements to two for most trains.

Removing the reversals allows a train that arrives
at a platform, to only move to one of the yards op-
posite the platforms (either 404_407 or 405_406) and
then return to the platforms (Figure 3.1 for the station
layout). For instance, if a train arrives at Ekz_1 and
departs at Ekz_2 and the solver selects yard 404_407.
After reaching 404_407, going to 405_406 is impossi-
ble as a reversal is required. Similarly, moving to yard
403 is not feasible as a reversal is required to reach the
departure platform, Ekz_2. As most trains exhibit this

scenario, most trains are constrained to a maximum of
two movements.

Removing the reversals or a yard eliminates approxi-
mately one-third of the available routes, which explains
the improved performance compared to the default in-
stances. Furthermore, we previously observed that a
strategy assigning the most promising values for the
number of movements improves performance. Remov-
ing the reversals implicitly constrains the number of
movements for most of the trains to two. Figure 4.19c
does not impose such a restriction on the number of
movements. Hence, the additional improvement comes
from this implicit constraint.

To conclude, this experiment confirms some of the
previous results. In particular, the number of routes
and number of movements are again shown as impor-
tant key parameters.

42

(a)

(b)

(c)

Figure 4.19: The three quality aspects for the instances with 12 trains for Enkhuizen when one yard or all
reversals are removed and the default model-v1.

43

Figure 4.20: The average performance for each solver per number of trains for the MiniZinc model (version 2)
and also the average performance of the model-v2, implemented with Google OR-Tools API (or-tools-api).

Figure 4.21: The number of timeouts on Enkhuizen instances per solver for the MiniZinc model (version 2). For
each number of trains from one to eleven, there are 30 instances (10 different instances, each executed 3 times).
The instances with 12 trains correspond to the real-life scenario, executed five times.

4.6.3 Compare other solvers on model-
v2

Finally, to answer the hypothesis in 4.3.3, we have
re-implemented the part of model-v2, required for
Enkhuizen, in MiniZinc. The advantage of using
MiniZinc is the generic interface for writing models for
different solving backends.

The model is executed on all Enkhuizen instances
with the following solvers Google OR-Tools, Gecode,
Coin-BC, HiGHS, and Chuffed using their default
configurations. Gecode and Chuffed are open-source
constraint programming solvers. Chuffed builds
upon Gecode with lazy clause generation, an im-
portant constraint programming concept discussed in
[Stuckey, 2010]. According to the authors, disabling
the lazy clause generation reports performance compa-
rable with older versions of Gecode [chu, 2010]. In ad-
dition, they claim that overhead from lazy clause gen-

eration ranges from negligible to perhaps around 100%.
HighS and Coin-BC are open-source mixed integer lin-
ear programming solvers. HighS is also enhanced with
serialization and parallelization. Google OR-Tools is
a portfolio solver that employs various solving tech-
nologies when multi-threading is enabled. However,
unrelated to the number of threads Google OR-Tools
also utilizes LP-cutting planes to remove suboptimal
or unfeasible parts of the search space.

We evaluate each solver again on all 335 default in-
stances of Enkhuizen. The performance is again aver-
aged across instances with the same number of trains,
depicted in Figure 4.20. Due to a considerable num-
ber of timeouts (again with a 15-minute upper bound
on the running time), we also provide the number of
timeouts per solver and instance size in Figure 4.21.

Two interesting observations emerge. Firstly, we
compare the performance of model-v2, implemented in

44

https://www.minizinc.org/doc-2.8.3/en/index.html
https://or-tools.github.io/docs/dotnet/classGoogle_1_1OrTools_1_1Sat_1_1CpModel.html
https://www.gecode.org/
https://github.com/coin-or/Cbc
https://highs.dev/
https://github.com/chuffed/chuffed

MiniZinc and solved with the Google OR-Tools back-
end, and model-v2, implemented with the Google OR-
Tools API. Based on the number of timeouts, reach-
ing almost 20 for the instances with 11 trains, and a
higher running time (much over 443 seconds, the aver-
age performance of model-v2 on the entire Enkhuizen
instance (Figure 4.12), we conclude that the model-v2,
implemented with the Google OR-Tools API, performs
better. The outcome is likely due to the design of the
MiniZinc model that hinders propagation and/or effi-
cient presolve.

Secondly, on smaller instances (up to 8 trains)
Chuffed and HighS demonstrate the best performance.
For those, Gecode exhibits the highest number of time-
outs, leading to poorer performance. However, as the
instance size increases, the number of timeouts for
Gecode decreases and the solve time is significantly re-
duced, falling below 0 seconds for the entire instance.
This is orders of magnitude faster than the perfor-
mance of the default Google OR-Tools model, reducing
the average solve time from 443 seconds to less than a
second.

Gecode is the only solver that does not time out on
the entire instance, while the rest of the solvers time
out on all five executions of the entire Enkhuizen in-
stance. The interested reader can further observe the
data. Gecode either solves the instance in less than a
second or times out. This intriguing result warrants
further exploration. However, due to time limitations
and slightly out of the project’s scope, a reasonable
explanation is deferred to future work.

Possible explanations could be the different struc-
ture of some smaller instances in terms of search space,
compared to the larger ones. Alternatively, perhaps
optimizations and heuristics are more effective when
the full instance with all trains is used. Neverthe-
less, it appears that either the newly built features of
Gecode or the overhead of the lazy clause generation of
Chuffed are the main reasons for Gecode outperform-
ing Chuffed.

The remaining solvers exhibit the expected behavior:
as the number of trains in the instance increases, both
the number of timeouts and the average solving time
increase.

4.6.4 Deeper analysis of some results

4.6.4.1 The two model versions

We begin with the differences in the search log of the
solver for both versions of the model. The search statis-
tics are gathered from running the real-life instance of
Enkhuizen with the same seed. Listings 4.1 and 4.2
illustrate the initial models.

First, observe the number of variables, which is
slightly lower in v2. Next, all types of constraints
(denoted as k) and their occurrences in the model are
presented. The first version contains constraints with
more than 3 linear expressions (#kLinearN). This
indicates higher complexity. Additionally, it includes
the boolAnd constraint (kBoolAnd), which is part of

the alternative constraint and has been removed in the
second version. Although the other constraints are
present in both versions, they are more prevalent in
the first version.

Initial satisfaction model ’’:
#Variables: 3262

- 158 different domains in [-1 ,201900]
with a largest complexity of 1.
- 32 constants in {-1,0,1,2,3,4,121980
,124140,
14...93140 ,194940 ,196740 ,
197820 ,198540 ,199620 ,
201600}

#kBoolAnd: 70 (# enforced: 70)
(# literals: 358)
#kElement: 28
#kInterval: 1709 (# enforced: 1065)
#kLinear1: 1903 (# enforced: 1175)
#kLinear2: 2402 (# enforced: 642)
#kLinear3: 1021 (# enforced: 918)
#kLinearN: 36 (# enforced: 36) (#terms: 258)
#kNoOverlap: 12 (# intervals: 1447,
#optional: 815, #variable_sizes: 815)

Listing 4.1: The initial model statistic when running
model-v1 on the whole Enkhuizen problem. The full
version here.

Initial satisfaction model ’’:
#Variables: 3083
...
#kElement: 28
#kInterval: 1530 (# enforced: 886)
#kLinear1: 1903 (# enforced: 1175)
#kLinear2: 2042 (# enforced: 282)
#kLinear3: 989 (# enforced: 886)
#kNoOverlap: 12 (# intervals: 1447,
#optional: 815, #variable_sizes: 815)

Listing 4.2: The initial model statistic when running
model-v2 on the whole Enkhuizen problem. The full
version here.

After gathering the initial statistic, the solver under-
goes a presolve step. During this phase, the solver de-
duces as much information as possible from the model
and proceeds to reduce and simplify it based on intel-
ligent heuristics.

After presolve, the solver again produces statistics
for the models. In Listings 4.3 and 4.4 demonstrate the
results for the first and second versions, respectively.
The smaller number of constraints and an initial
number of boolean variables for the second version
indicate that the solver has fixed and inferred more
about version two than version one.

This investigation further supports our claim that v2
improves upon v1.

Presolved satisfaction model ’’:
#Variables: 606

- 261 different domains in [0 ,201600]

45

https://docs.google.com/spreadsheets/d/11cky8BiLFkpVXqxYXe_ZOrPC5vGwld4c/edit?usp=drive_link&ouid=116160336093146450641&rtpof=true&sd=true
https://drive.google.com/file/d/1iQt0XjSgD8gQTVmQOsD48268Nv55NjNr/view?usp=sharing
https://drive.google.com/file/d/10HngfllMlue7T1pLH_bIJvle0TLb-IxB/view?usp=drive_link

with a largest complexity of 4.
#kBoolAnd: 51(# enforced: 51)(# literals: 96)
#kExactlyOne: 41 (# literals: 208)
#kInterval: 1661 (# enforced: 982)
#kLinear1: 400 (# enforced: 400)
#kLinear2: 417 (# enforced: 393)
#kLinear3: 233 (# enforced: 111)
#kLinearN: 6 (# enforced: 6) (#terms: 51)
#kNoOverlap: 15 (# intervals: 1010,
#optional: 775, #variable_sizes: 87)
...
Initial num_bool: 514

Listing 4.3: The model statistic after presolved when
running model-v1 on the whole Enkhuizen problem.
The full version here.

#kBoolAnd: 1 (# enforced: 1) (# literals: 2)
#kExactlyOne: 12 (# literals: 38)
#kInterval: 1064 (# enforced: 379)
#kLinear1: 84 (# enforced: 84)
#kLinear2: 14 (# enforced: 10)
#kLinear3: 93 (# enforced: 32)
#kNoOverlap: 23 (# intervals: 593,
#optional: 367, #variable_sizes: 57)
...
Initial num_bool: 128

Listing 4.4: The model statistic after presolved when
running model-v2 on the whole Enkhuizen problem.
The full version here.

4.6.4.2 Additionally constraining the parking
time

The search statistics when constraining the parking
time to be up to 15 minutes are shown in Listings
4.5 and 4.6. Surprisingly, the model after the presolve
(Listing 4.6) is almost identical to the model after the
presolve of the first version without the additional con-
straints (Listing 4.3). The significant difference lies in
the LP statistics, which reports solutions with fewer
simplex iterations and lower optimal values. The part
with the LP statistics is visible in Listings 4.7 4.8 for
the model with and without additional constraints, re-
spectively. After presolve, the problem with the ad-
ditional constraints is solved faster, indicated by both
the running time and the lower number of simplex it-
erations. Simplex is the core algorithm for linear pro-
gramming (LP). Details about it in [sim, 2020].

Initial satisfaction model ’’:
#Variables: 3262

- 158 different domains in [-1 ,201900]
with a largest complexity of 1.
- 32 constants in {-1,0,1,2,3,4,121980,
124140 ,14 ... 93140 ,194940 ,196740 ,
197820 ,198540 ,199620 ,201600}

#kBoolAnd: 70 (# enforced: 70)
(# literals: 358)
#kElement: 28
#kInterval: 1709 (# enforced: 1065)
#kLinear1: 1903 (# enforced: 1175)
#kLinear2: 2402 (# enforced: 642)

#kLinear3: 1021 (# enforced: 918)
#kLinearN: 36 (# enforced: 36)
(#terms: 258)
#kNoOverlap: 12 (# intervals: 1447,
#optional: 815, #variable_sizes: 815)

Listing 4.5: The initial model statistic when running
model-v1 on the whole Enkhuizen problem with ad-
ditional parking constraint. The full version can
be seen here.

Presolved satisfaction model ’’:
#Variables: 582

- 236 different domains in [0 ,201600]
with the largest
complexity of 4.

#kBoolAnd: 96 (# enforced: 96)
(# literals: 186)
#kExactlyOne: 36 (# literals: 183)
#kInterval: 1607 (# enforced: 918)
#kLinear1: 215 (# enforced: 215)
#kLinear2: 406 (# enforced: 384)
#kLinear3: 215 (# enforced: 92)
#kLinearN: 1 (# enforced: 1) (#terms: 6)
#kNoOverlap: 15 (# intervals: 961,
#optional: 726,
#variable_sizes: 78)
...
Initial num_bool: 424

Listing 4.6: The model statistic after presolved when
running model-v1 on the whole Enkhuizen problem
with additional parking constraint. The full ver-
sion can be seen here.

LP statistics:
final dimension: 2 rows , 10 columns ,
6 entries with magnitude in
[1.000000e+00, 1.000000e+00]
total number of simplex iterations: 2
num solves:

- #OPTIMAL: 9
managed constraints: 5
total cuts added: 0 (out of 0 calls)

LP statistics:
final dimension: 7 rows , 16 columns , 21
entries with magnitude in
[1.000000e+00, 1.000000e+00]
total number of simplex iterations: 7
num solves:

- #OPTIMAL: 9

Listing 4.7: The LP statistic after presolved when
running model-v1 on the whole Enkhuizen problem
with additional parking constraint. The full ver-
sion can be seen here.

LP statistics:
final dimension: 4 rows , 10 columns ,
12 entries with magnitude in
[1.000000e+00, 1.000000e+00]
total number of simplex iterations: 6
num solves:

- #OPTIMAL: 41792
managed constraints: 5

46

https://drive.google.com/file/d/1iQt0XjSgD8gQTVmQOsD48268Nv55NjNr/view?usp=sharing
https://drive.google.com/file/d/10HngfllMlue7T1pLH_bIJvle0TLb-IxB/view?usp=drive_link
https://drive.google.com/file/d/1DKCvW2kihHG9rwmEXIZt3PFpXPAhFR56/view?usp=drive_link
https://drive.google.com/file/d/1DKCvW2kihHG9rwmEXIZt3PFpXPAhFR56/view?usp=drive_link
https://drive.google.com/file/d/1DKCvW2kihHG9rwmEXIZt3PFpXPAhFR56/view?usp=drive_link

total cuts added: 0 (out of 0 calls)
LP statistics:

final dimension: 6 rows , 16 columns ,
18 entries with magnitude in
[1.000000e+00, 1.000000e+00]
total number of simplex iterations: 1382
num solves:

- #OPTIMAL: 37615

Listing 4.8: The LP statistic after presolved when
running model-v1 on the whole Enkhuizen problem
without parking constraint. The full version can
be seen here.

As previously acknowledged, imposing a search
strategy for the duration of the arrival platform is not
beneficial for reducing computation time. Therefore,
we opt to separately constrain the duration on the de-
parture and arrival platform to 15 minutes and examine
the performance and the search log of the solver.

We summarize the main findings. Constraining the
duration on the departure platform yields nearly the
same performance in terms of running time, the num-
ber of simplex iterations, and the size of the found LP
solutions (search log - here). In contrast, when we re-
strict only the duration on the arrival platform (see
here) the performance is similar to the model with-
out any additional constraints. This outcome is likely
related to the fact that the solver’s default search strat-
egy already acts as if constraining the durations on the
arrival platform, according to the solutions’ quality re-
sults. this aspect. This result aligns with the outcome
of the experiments with the search strategies.

4.6.5 Main contributions
The evaluation demonstrated that the second version
of the model improves upon the first. The second ver-
sion requires fewer variables and constraints to model
the same instance (see initial and presolve statistics in
Section 4.6.4.1). Both versions were evaluated on the
default instances and the instances with the alterna-
tive routes for Amersfoort. In both experiments, the
second version consistently outperforms the first.

The experiments produce valuable insights into the
influences of more trains and more routes on the model
for two different real-life instances. As expected, a
higher number of trains results in slower performance
for a specific instance type. However, this result does
not translate between different instances. For instance,
Amersfoort, despite being a larger instance, exhibits
better running time compared to Enkhuizen. Addition-
ally, as anticipated, including additional routes gener-
ally leads to slower performance.

The experiments and the deeper analysis further re-
vealed several insights into the model regarding the
instance characteristics.

The variables controlling the duration on the depar-
ture platform were found to enhance the performance
of the model. Further constraining them on model-v1
with default search, results in instantaneous solutions,
in less than a second, compared to 518 seconds oth-
erwise. Similarly, implementing a variable and value

strategy that prioritizes the selection of those variables
and guides towards shorter departure parking dura-
tions improves running time.

Both the strategies and the constraints also en-
hance the quality of the solutions produced for
Enkhuizen. Other instances with characteristics simi-
lar to Enkhuizen’s would also benefit from the above-
mentioned enhancements. In particular, these features
are a higher number of allowed movements, indicated
by more than one yard, and the larger search space,
corresponding to less through traffic.

Highly constrained instances, such as Amersfoort,
where routing of trains is possible only within limited
time windows that are not necessarily close to the ar-
rival or departure times, may not exhibit improvement,
especially if the solving time is already low. However,
specifying a strategy in such cases can still be beneficial
for obtaining better solutions.

Performing analogous experiments on the variables
controlling the duration on the arrival platform did not
result in any improvement. Neither was the quality of
the solutions enhanced, as the default strategy of the
solver was already preferring values, leading to shorter
durations on the arrival platform.

The number of movements is another important pa-
rameter that reduces the computation time and can
improve the solutions for instances where a higher num-
ber of movements is possible, such as Enkhuizen. The
experiment with the removal of a yard and reversals
further confirmed that the number of movements, even
when implicitly constrained, enhances the computation
time.

Introducing additional alternative routes does in-
crease the running time. However, even with all alter-
native routes, the second version of the model solves
Amersfoort on average under 18 seconds. The correla-
tion between an increased number of routes and slower
computation was also validated by the experiment with
a yard or the reversals removed. Despite this result, it
also became evident the addition of a few more routes
does not necessarily degrade performance. Incorporat-
ing all routes in the first version of the solver yields
better average performance than limiting the number
of routes to up to 11 routes.

The new version of Google Or-Tools (9.10) together
with the transition from default to fixed search, cor-
responds to an improvement of up to 20 times for
Enkhuizen and two times for Amersfoort.

Finally, the experiments in MiniZinc yielded intrigu-
ing outcomes. Model-v2, implemented with the Google
OR-Tools API, defeats its twin (the model-v2, imple-
mented in MiniZinc and solved with the Google OR-
Tools backend, reducing the average solve time from
over 900 seconds to approximately 443 seconds. Al-
though this result was attributed to a less efficient
MiniZinc model, this did not hinder Gecode’s excel-
lent performance on the entire instance. Gecode expe-
rienced timeouts primarily on smaller instances. How-
ever, as the instance size increased, its performance im-
proved, eventually achieving no timeouts on the entire
real-life instance for Enkhuizen and solving it within

47

https://drive.google.com/file/d/1tSh1FdccMoGo3c7DK8JApUE13Z04N-l7/view?usp=sharing
https://drive.google.com/file/d/1Actw5UJ0vQBvKB80BRpqf5bXcMUfhwBl/view?usp=drive_link
https://drive.google.com/file/d/1hkpOWhtNd5uht9cyqFZUP-GCLOzF7XWj/view?usp=drive_link

milliseconds. This is an order of magnitude faster than
the default model-v2, implemented with the Google
OR-Tools API, reducing the average solve time from
443 seconds to less than a second.

48

Conclusion

In this research, we designed a constraint program-
ming model for the Shunt Routing Problem (SRP) at
NS. A second improved version was also proposed and
evaluated. The model will be utilized for construct-
ing the initial solution for the Local Search at NS. It
incorporates all essential feasibility requirements and
generates conflict-free solutions, unlike the current al-
gorithm at NS. The performance on Amersfoort is in-
stantaneous (under a second). In comparison, the Lo-
cal Search algorithm requires up to 14 hours to solve
all four subproblems for the same instance and often
being impeded by the decisions part of SRP. For in-
stance, identifying routing possibilities if the possible
time interval to execute the movement is very short. By
providing a conflict-free solution for the Shunt Rout-
ing problem, we anticipate a significant reduction in
the computation time for the Local Search.

As already acknowledged, a model solving the Shunt
Routing Problem the Eindhoven station, was devel-
oped previously by [Wattel, 2021]. In his thesis, he
concludes that CP appears a promising and well-suited
approach for addressing the Shunt Routing Problem.
Our evaluations also demonstrated this result by apply-
ing the model to two other real-life instances, as well as
multiple others, generated from these. We confirmed
that the CP model exhibits reasonable performance in
solving the generic Shunt Routing Problem. Hence,
aligning with the goal of NS to produce an algorithm
capable of solving TUSP at any station.

In contrast to the experimental setup described by
[Wattel, 2021], which applied the model to time inter-
vals of 2 or 4 hours and once over a 24-hour period,
we evaluate the performance over a continuous time
window of two to three days.

In addition, route reservations are performed in
terms of sections that more accurately reflect the situ-
ation in practice compared to the previously employed
method. There, the entire route is reserved before the
movement, and the infrastructure is released only af-
ter the train has completed the transit. The downside
of the new approach is the more interval variables and
constraints for infrastructure reservations. However,
this complication did not significantly hinder perfor-
mance. For instance, solving the Amersfoort instance
with all additional routes and in the presence of all
202 sections still demonstrates reasonable performance
(within 18 seconds for model-v2). This result con-
tributes to the objective of NS, to replicate the real-
world situation while still adhering to reasonable per-
formance.

We further proceed with important insights regard-
ing the model that could be considered to further im-

prove and adjust the performance and solutions ob-
tained.

The experiments reveal the usefulness of imposing a
search strategy on both the solution quality and the
computation time. Furthermore, variable and value
strategies can, in certain cases, serve as alternatives to
an objective function. For instance, rather than im-
posing an objective function to minimize the duration
on the departure platform which would likely degrade
the performance, one could impose a variable or value
strategy. This approach not only produces more desir-
able solutions but also reduces computation time. This
effect of the variable and value strategies could be ap-
plied to other types of instances at NS and explored
and utilized instead of other objective functions.

Furthermore, the implication of some of the vari-
ables, such as the duration on the departure plat-
form and the number of movements for Enkhuizen,
on performance could be considered for solving other
instances and improving the model. This could be
achieved by, for instance, suggesting the most probable
values for these variables using solver hints.

Insights into how other solvers perform on the Shunt
Routing Problem at NS can identify and open new av-
enues for future research. In particular, Gecode seems
to be a promising competitor of Google OR-Tools for
this problem. All evaluated solvers are open-source
and can be utilized by NS at no cost, although addi-
tional efforts would be required to integrate them into
operational use.

Additionally, the experiments provided a further un-
derstanding of the parameters and search strategies
available within Google OR-Tools.

To summarize, the second version of the model could
provide a good foundation for a model addressing the
Shunt Routing Problem at NS. Understanding the im-
pact of certain variables, solver parameters, and search
strategies on performance is invaluable, as this knowl-
edge can be applied to further enhance the model and
improve solution quality for various types of instances.

49

Future work

While we conducted several experiments with both
versions of the model, the project’s duration did not
permit the exploration of others, by no means less im-
portant. The following are our recommendations for
future research.

Local Search

Future research should begin with an investigation of
the influence of the new model on the Local Search. In
particular, to confirm whether the model is still useful
to decrease the running time of the Local Search at
least to some extent, a conclusion initially suggested
by [Wattel, 2021]. To achieve this, the output of the
model should be integrated with the input of the sub-
sequent model addressing the Train Parking Problem.
The model may require the addition of certain details,
such as the reversal time on the platform or the in-
clusion of other idle trains on the platform, to more
closely resemble a final solution of the Local Search.
The closer to the final solution, the fewer adjustments
the Local Search will need to perform, thereby short-
ening the computation time.

Other types of instances

The experiments provided several key insights into the
model, as well as the underlying problem and the types
of instances evaluated. Nevertheless, to obtain an even
deeper understanding of the performance strengths and
weaknesses of the model, it is beneficial to evaluate
the model in more real-life instances from different sta-
tions.

Other searches of the solver

Modifying the solver’s default search strategy to a
fixed search significantly reduced computation time for
Enkhuizen. Additional strategies, such as LP search
(which utilizes heuristics from LP relaxation), pseudo-
cost search, and others, specified here worth exploring.

Solving in phases

Constraining the variables for the duration on the de-
parture platform produces instantaneous solutions for
Enkhuizen. However, this approach is not always fea-
sible, for example, as evidenced by the Amersfoort
instance. Therefore, future research could explore a
phased approach. Initially, a more constrained version
of the problem could be considered for a brief period
that is expected to produce better and faster results.

Should this approach prove infeasible, the second phase
will resolve the instance using the default model. The
constraint version could vary. For instance, we could
constrain the number of movements or the time at the
departure platform. Additionally, a search strategy
could be employed in the first phase; if it proves in-
efficient, it could be abandoned and proceed with the
default model.

Time reduction

Imposing additional constraints was one strategy to
minimize the search space, alternatively one could con-
sider discretizing the time into units of several seconds.
For instance, instead of allowing the solver to assign a
specific action at every possible second, we consider as
insignificant whether it performs a route one second
earlier or later. To enforce this behavior, the time for
all time interval variables and time-related events (e.g.,
route durations) could be divided by a factor, such as
6, before solving. This would constrain the solver to
assign actions only every 6 seconds. In the obtained
solution, all time-related events should again be multi-
plied by the reduction factor - 6.

This approach is expected to enhance performance
for instances with a larger search space, particularly
where train movements could potentially be planned
at any time. However, careful consideration and fine-
tuning of the reduction factor parameter are required,
as a larger factor could easily result in an infeasible
solution, while the advantages of a smaller factor may
be lost.

Imposing hints

When domain insights are available, hints can be em-
ployed as a warm start, potentially accelerating compu-
tation time significantly. The advantage of using hints
is that they are not hard constraints; even if a hint ren-
ders the instance infeasible or non-optimal, the solver
will disregard the hint and still find a feasible or op-
timal solution. Specific to our case, we could utilize
hints, for instance, to assign promising values for the
number of movements for each train.

Other objectives

It is not always possible to guide the search toward
better solutions with a search strategy. Therefore, it
is worthwhile to explore the model’s performance un-
der various objective functions, as outlined in Section
C.2. Additional objective functions, as mentioned and

50

https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto

evaluated by [Wattel, 2021, inline], could also be con-
sidered.

Furthermore, we could compare the solution quality
and performance when imposing an objective analo-
gous to the search strategies for the departure parking
duration. As previously mentioned, we anticipate that
the search strategy will be a faster option, while in both
cases the same solutions’ quality will be obtained.

Additional model improvement
[Marlière et al., 2023] proposes a custom constraint
that decides based on the present route, the present
status of all other sections for this movement and this
train. Currently, in the proposed model, this connec-
tion is performed with binary constraint between the
route and the section occupation variables, as illus-
trated below (repeated from Section 2.3.7.2):

pres(at,r
i) = pres(occt,rsj),

∀sj ∈ S r (4.3)

We could alter it, as follows:

pres(at,r
i) =

∧
∀sj∈S r

pres(occt,rsj)

∧
∀sj∈S r′ ,r′∈Rt

i ,r
′ ̸=r

¬pres(occt,r
′

sj), (4.4)

The aforementioned constraint specifies that if a
route r for a particular movement i is present, then
only the occupations for the sections included in that
route should be present, while all other section occupa-
tions for alternative routes in this movement and this
train should be non-present.

The usefulness of this compact constraint may have
already been shadowed by the heuristics of Google
OR-Tools. Nevertheless, as claimed by the authors in
[Marlière et al., 2023], this constraint strengthens the
propagation for a similar problem, solved, however,
with CP Optimizer.

51

Appendix A

TMP

A.1 Train Matching Problem
(TMP)

In this section, we introduce the Train Matching Prob-
lem (TMP), but first, we begin with some relevant no-
tation and train terminology. We refer to trains that
pass the station and either stop or not as through
trains. In this problem, however, we are interested
in the trains that start and end their service at the
station.

The trains that reach their final destination need to
be associated (also referred to as matched) with an-
other departure and this is the task of TMP.

The Train Matching Problem (TMP) was first speci-
fied by [Lentink, 2006]. The task of the matching prob-
lem is to find a feasible matching of arriving train units
to departing train units while adhering to certain con-
ditions and minimizing resources.

One of the main objectives of TMP is to keep the
train units of the same train together as much as pos-
sible since this results in the minimum required re-
sources [Lentink, 2006]. More splits will require more
crew assistants for splitting and then combining the
train units. Each split will result in two new separate
trains, hence more drivers are necessary and the rout-
ing becomes harder. Resources can be crew assistants,
shunt drivers, or even routing plans to the shunting
yard/platform.

A matching of an arriving train unit to a departing
train unit means that the same unit from the arriving
train will be used in the departing train. The matching
of an arriving train unit to a departing train unit is
feasible if the following is satisfied:

• The time difference between the arrival and de-
parture of the trains whose parts are matched is
sufficiently large. This time can vary depending
on the task that needs to be performed. For in-
stance, time is needed to accommodate passenger
out/in-boarding and routing from arrival to de-
parture track. If the train requires maintenance
checks and cleaning, it needs to be routed to the
shunting track, and time for those tasks also has
to be accounted for.

• The types of train units are the same.

It is important to note that a considerable part of
the matching is fixed by the planning of the timetable.

These are train units that arrive and are already as-
signed a departure. For instance, passing trains have
usually insufficient dwell time on the platform to make
bigger changes to the configuration of those trains. One
could at most combine or split a train unit from the
train.

As we have already mentioned, the main objective of
TMP is to keep train units of arriving trains as much as
possible together which will result in fewer splits and
combines. Other possible objectives [Lentink, 2006]
that could be combined with the main objective look
into the average time a train has to stay at the station
which could be either on the shunting yard or on the
platform.

• For instance, one could try to minimize the aver-
age stay of the trains at the station which should
potentially simplify the parking problem.

• Alternatively, we could maximize the average time
the train stays at the station. This will prefer to
match trains such that they either need to stay at
the shunting yard for a short period or a long one.

A.1.1 Common notation for both prob-
lems

• trackID - an integer representing the unique num-
ber of the track, Figure ...

• sectionID - the ID of a section, also unique integer

Constants:

• Types - all available subtypes of train units

• Tr - a set of all tracks at a specific station

• mty - maintenance time for each type of train unit
ty ∈ Types

• icty - internal cleaning time for each type of train
unit ty ∈ Types

• ecty - external cleaning time for each type of train
unit ty ∈ Types

• dw - mandatory dwell time for off-boarding and
on-boarding of passengers

• reach(tr1,tr2) - boolean representing whether track
tr2 is reachable from tr1

52

There could be multiple routes between two tracks,
however, the following constants represent the shortest
one in terms of time/distance or number of reversals.

• tmovety(tr1,tr2) - the shortest time required to move
from one track tr1 to the other tr2, where tr1, tr2 ∈
Tr and ty is the type of the train ∈ Types

• dmovety(tr1,tr2) - distance from track tr1 to the other
tr2 based on the shortest route

• revty(tr1,tr2) - min number of reversals required from
track tr1 to tr2

A.1.2 Initial general matching model
for NS

A.1.2.1 Input

• Ta - all arriving train units that have not been
assigned to a departing train unit

• Td - all departing train units

For each arriving train unit t with an id IDtua, we
know the following information:

• trainIDt - unique integer number representing the
ID of the whole train that this train unit is part
of

• initt - initial/arrival track (platform or a side track
id), initt ∈ Tr, where Tr is the set of all tracks’
numbers

• asidet - side of the arrival track, asidet ∈ {0, 1}
(boolean) since the side of the arrival platform can
only be A or B

• arrt - arrival time of t at initt in seconds (minutes
or a few seconds (1/10 of minute))

• tyt ∈ Types

• tIDn - the ID of the left neighboring of an arriving
train unit

• tm - whether the arriving train unit needs main-
tenance is needed, tm ∈ {0, 1}

• tec - whether the arriving train unit needs external
cleaning is needed, tec ∈ {0, 1}

• tic - whether the arriving train unit needs internal
cleaning is needed, tic ∈ {0, 1}

For each departing train unit t’ with an id - IDtud,
we know the following information:

• trainIDd - unique integer number representing
the ID of the whole train that this train unit is
part of

• dest′ - destination point (platform, side track) of
the scheduled departure at dept time

• dsidet′ - side of the arrival track, dsidet ∈ 0, 1
(boolean) since the side of the arrival platform can
only be A or B

• dept′ - scheduled time for departure from destina-
tion dest

• tyt′ , where tyt′ ∈ Types

• t′IDn - the ID of the left neighboring of a departing
train unit

• t′m - whether the departing train unit requires
maintenance, t′m ∈ {0, 1}

• t′ec - whether the departing train unit requires ex-
ternal cleaning, t′ec ∈ {0, 1}

• t′ic - whether the departing train unit requires in-
ternal cleaning, t′ic ∈ {0, 1}

A.1.2.2 Variables

Let us first introduce some relevant notation. We de-
fine DUt to be the set that contains all departing train
units (departing units) that depart after the arrival of
t. The matched train units should also have the same
type. Furthermore, there needs to be a way to reach the
new departure track from the arrival track. Sometimes
that could not be possible due to having maintenance
that blocks certain tracks or any other type of obsta-
cles.
The definition of DUt can be expressed formally as fol-
lows:

∀t′ ∈ Td,∀t ∈ Ta : dept′ ≥ arrt∧
tyt = tyt′ ∧ reach(initt,dest′)

⇔ t′ ∈ DUt (A.1)

We can now introduce an integer variable Xt for each
arriving train unit t that will state departing train t′ ∈
DUt to which t is matched to:

Xt ∈ DUt, ∀t ∈ Ta (A.2)

A.1.2.3 Constraints

• 1. We require each arriving unit of each arriv-
ing train, denoted as t, to be matched to ex-
actly one departing train unit of a departing
train. This constraint is satisfied by the way
we have defined our variables.

2. Each departing unit of each departing train
has exactly one matched arriving unit from
an arriving train.

Furthermore, for the period we are looking
at, the number of arriving train units of a cer-
tain type is equal to the number of departing
train units of that type. Hence, if we enforce
that each arriving train unit is matched to
different departing train unit, the above con-
straint will be satisfied.

53

alldifferent(
⋃
t∈Ta

Xt...), (A.3)

3. Connectedness:
One should make sure that the arrival train
unit that is matched to specific departure
can reach the departing platform from the
arrival platform. This is already included
when creating the set of possible departure
trains DUt.

A.1.2.4 Objectives

• For each pair of matched train units t to t′ = Xt

there is sufficient time between arrival and depar-
ture for the execution of all needed tasks (mov-
ing between platforms, on/offboarding, or clean-
ing and maintenance).

Timet
′

t = tm ·m+ tic · ic+ tec · ec+ 2 · dw+
t′m ·m+ t′ic · ic+ t′ec · ec+ tmovetyt

(initt,dest)
)

(A.4)

This equation finds the time for the service tasks
by summing for each task the time needed for the
task multiplied by whether the task needs to be
executed.

We can include it in the objective as follows:

ITt = max((arrt+Timet
′

t −dept), 0) ·ps (A.5)

ps is a fraction that represents the penalty for each
insufficient minute. If the arrival time plus the
time needed for services and moving is less than
the departing time, then (arrt + Timet

′

t − dept′)
will be negative and no penalty will be incurred.

This objective can be introduced as a con-
straint if we include it in the definition of
DUt where instead of dept′ ≥ arrt, we use
dept′ ≥ arrt + Timet

′

t and Timet
′

t is calculated
for each t′ ∈ DUt. The effect of this will be quite
beneficial for the performance, the domain of Xt

will decreased. The arriving train unit will be
only matched to departing train units that de-
part sufficiently later to execute all required tasks.

However, since the solution may become in-
feasible and in practice, it can happened that
certain services are shorten or not executed if
there is not enough time. Therefore, we opt to
introduce dept′ ≥ arrt as a hard constraint, but
dept′ ≥ arrt + Timet

′

t as a soft constraint.

• Service requirement objective:
Match arriving and departing train units such that
the service requirements of the departing train
unit are covered by the arriving train unit.

A penalty - pms for a service requirement of the
departing unit that the arrival unit does not have.
This penalty could be multiplied by the needed
time for the extra services that the departing train
needs. No penalty will be acquired if the arrival
train unit has more service requirements than the
departing train. Since it is more important that
the services of the departing unit are covered by
the matched unit, hence are a subset of the services
of the arriving unit.

We will denote the service cost that the objec-
tive function accumulates when matching arriving
train unit t to departing train unit t′ = Xt by St′

t .

St′

t = pms · (max(t′m − tm, 0)+

max(t′ic − tic, 0) +max(t′ec − tec, 0) (A.6)

(max(t′m − tm, 0) will be 1 iff the departing train
unit has a maintenance requirement, but the ar-
riving does not.

• Match close trains objective:
Match arriving and departing train units that
arrive and depart from platforms that can be
reached from the same yard or are close enough.
We will express this objective in terms of the
number of reversals one needs to perform to get
from the arrival track to the departing track. We
do so, since reversals are most time consuming.
Penalty - pr is introduced for each reversal.

Note, that one could also use either the time -
tmovetyt

(initt,dest)
or the distance dmovetyt

(initt,dest)

between the tracks.

• Minimize the number of splits and com-
bines:

Introduce a penalty - psc for each split/com-
bine. In sense, we count the number of splits
and combines by looking at the left neighbor
of each train unit. If the left neighbor of a
train unit in the arriving train is different from
the left neighbor of the same unit in the depart-
ing train then a penalty is accumulated, as follows:

(tIDn ̸= t′IDn) · psc, again t′ = Xt (A.7)

We next give two variants of the objective func-
tion:

54

A.1.2.5 Objective function

First variant:

Objective function:

min
∑
t∈T

(St
t′ + (tIDn ̸= t′IDn) · psc

+ revtyt

(initt,dest′)
· pr + ITt) (A.8)

Second variant: It is only based on objective 2.)
and introduce constraints for the other three objec-
tives:

Objective function:

min
∑
t∈T

((tIDn ̸= t′IDn) · psc), where t′ = Xt (A.9)

Additional Constraints:

1. A constraint for the service requirements objec-
tive:

St′

t = 0,∀t ∈ Ta and t′ = Xt (A.10)

This constraint states that if t is matched to t′,
then St′

t = 0, which essentially means that all ser-
vice requirements are covered by the arriving train
unit.

2. Introduce a constraint for the needed reversals:

revtyt

(initt,dest′)
≤ 1,∀t ∈ T (A.11)

We bound the reversals to 1, since in practice it is
almost always the case that moving from one plat-
form to another one contains at least one reversal.

3. Last for ITt, the definition of DUt will changed
as follows:

dept′ ≥ arrt + Timet
′

t ∧ tyt = tyt′

∧ reach(initt,dest′)
⇔ t′ ∈ DUt (A.12)

The reason for introducing a second objective func-
tion is that we believe that the more constraint the
solution space is the better will be the performance in
CP.

A.1.2.6 Output

Each train unit of each arriving train is matched to
train unit of a departing train. An arriving train unit
with an IDtua to departing train unit with an IDtud

(after this the departing unit stops to exists) (IDtua)
- (IDtud)

A.1.2.7 Additional objectives

• For instance, one could try to minimize the aver-
age stay of the trains at the station which should
potentially simplify the parking problem.

• Alternatively, we could maximize the average time
the train stays at the station. This will prefer to
matched trains such that they either need to stay
at the shunting yard for a short period or for a
long one.

A.2 CP model:
The simple model in MiniZinc does not take into
account:

• service requirements

• connectedness

• numReversals

A.3 Solve TMP together with
SRP

The combination of both models the TMP and SRP
will enable more accurate and correct estimate of the
number of required reversals/distance between the ar-
rival train unit and a concrete considered departing
unit.

Furthermore, I believe also the service time between
arrival and departure can be seen whether it is indeed
feasible to perform between the arrivals and depar-
tures.

In terms of the other aspects incorporated in the ob-
jective function in the TMP such as matching services,
#splits and combines, SRP would not help.

Instead of revtyt

(initt,dest′)
, we could include the actual

number of of the required reversals for train t.

∑
i∈numrt

∑
i∈Rt

i

numSubr·(at,ri) = all reversals for train t

(A.13)

A.4 Additional extension for de-
ciding on where to perform
a split or a combine

Until now the place where the split or the combines
are executed was given prior to solving. However, this
decision may not sometimes result in a worse solution
and less optimal solution. For this reason, we introduce
an extension in which the model will choose when to
perform the splits and combines. In the following piece
of text, we will explain how this could be modeled.

The main idea is to introduce (a) new train(s) when
a split or combine is performed

55

Let us first consider only splitting an arriving train.
The split should be performed prior to the last move-
ment from the yard to the departing platforms. Hence,
there are three places where the split can happen - ei-
ther on the arrival platform, at the first yard, or at the
second yard. The following constraints could be intro-
duced for the number of routes of the composition (the
unsplit train) - t and for the already new resulting from
the split train t1 and t2.

numrt ≤ 2 (A.14)

The overall number of movements is still preserved.

numrt1 ≤ maxr − numrt (A.15)
numrt2 ≤ maxr − numrt (A.16)

The initial place (track or yard) of t1 and t2 is the
last place of the composed train t.

et10 = et20 = etnumrt (A.17)

et0 = initt (A.18)

et1numrt1
= dest1 , et2numrt2

= dest2 (A.19)

Arrival/Creation times of those trains are given by
the end of the last route of the composition. Further-
more, we do not introduce a stay variable for the com-
position t at the place where the split is performed,
however we do introduce “stay variables for the new
trains stayt10 , stayt20 .

arrt1 = arrt2 = e(At
numrt) (A.20)

s(stayt10) = s(stayt10) = arrt1 (A.21)

One should only note that enabling the solver to de-
cide for a place where to split, restricts us to define a
more narrow set of available routes. In particular, since
we do not know where the train will be split, we do not
know from where to where will be the first route. In
particular, whether it will be between the arrival plat-
form and yards or between yards and departure plat-
form. In a sense, the route could be between platforms
and the arrival platform and any of the gateways of the
yards, but it could also be between any of the yards or
even between any of the yards and the departure plat-
form. We shall include all possible routes in each set
Rt1

1 , Rt1
2 , Rt1

3 for train t1 and as well as for train t2.
We briefly note the combining, which is analogous.

Combining can be done either at the first yard, the
second, or at the departing platform.

numrt ≤ maxr −max(numrt1 , numrt2) (A.22)

et0 = et1numrt1
= et2numrt2

(A.23)

Here, Rt
1/2 consists of all routes between gateways

of the yards and all routes between gateways and the
departure platform.

56

Appendix B

Model with varying time between
submovements

B.1 Additional variables
As we have already mentioned, a route can consist of a
few separate subroutes. Between each of the subroutes,
the train can wait at the last track (sections) of the
previous subroute for some time. In this section, we
extend Section 2.3.6 with a variable that will capture
the parking between submovements:

• waitt,rk , k ∈ {1, numSubr − 1}

Note that when the route consists of only one sub-
route, then k is between 1 ≤ k ≤ 0, which is not possi-
ble. Hence, no “wait” variables are introduced.

The distinct routes have different numbers of sub-
routes, for instance, we can see in Figure B.1 that at,r11

and at,r31 consists of two subroutes, while at,r21 is one
whole (this can be deduced by the wait variables in be-
tween the section occupations). A more detailed pic-
ture for the interval variable at,r31 , can be seen in Figure
B.2, where the light orange boxes represent the section
occupation intervals which in practice will overlap. The
red represents the time interval of the first and only one
wait variable.

Figure B.1: Breakdown structure of the route variables
(Extension of Figure 2.6 with waiting variables.

Figure B.2: Visualization of the time-span of the dif-
ferent time-interval variables (Extension of Figure 2.9
and wait variables.

B.2 Constraints
The following constraints are ∀t ∈ T, 1 ≤ i ≤ maxM t

and r ∈ Rt
i or simply Rt (all routes for all movements

for train t) if i is not in the equation.

B.2.1 Constraining the start and end
times for section occupations

To simplify the constraints for the start and end times
for section occupations, we introduce an integer chan-
neling variable - startOfSubm for the start of each
subroute (submovement) of each route r ∈ R for the
routes of all trains. The following code snippet 7 in-
troduces required the constraints:

Algorithm 7 Constraints for the start of each
submovement variables startOfSubmr ,t

k , where r ∈
Rt

i, k ∈ {1,numSubr}
if (k == 1) then ▷ The start of the first
submovement coincides with the start of the route

startOfSubmr ,t
k = s(At

i)
else ▷ The start of each other submovement is the
start of the previous + the duration of the previous
+ the time for the intermediary stop

startOfSubmr ,t
k = startOfSubmr ,t

k−1 + dtrk−1
+

d(waitr,tk)
end if

The start times of the section occupations:
We differentiate between the sections based on their
position within the route and subroute in order to cal-
culate the start times of their occupations. The sec-
tions of each subroute are divided into first sections
S r
first,k and middle and last sections - S r

last,k . The set
of first sections S r

first,k contains the sections which the
train is currently on at the beginning of subroute k in
route r. The set of last sections - S r

last,k will be also the
sections on which the train will stay once the subroute
has finished and until the next subroute starts. The
middle sections are all other sections.

The pseudocode 8 presents the logic of how sec-
tions’ occupation start times will be inferred. We ex-
plain the code briefly. The first sections of the route,
the sections that the train is currently on (sections in

57

S r
first,1), should be occupied for the parking, but only

if the route starts from outside a yard (so if we are at
the arrival platform). Hence, their start times will be
equal to subtracting the parking time from the start of
the movement. In all other cases, the section occupa-
tions start times are equal to the start of the route if
sj ∈ S r

first,k , otherwise relative to the start of the route
with an offset of a given start tsj ,r .

Hence, the occupations of the intermediate stops are
only handled once, by extending the end times of the
section occupations. This will be the topic of the next
paragraph.

Algorithm 8 Code snippet for the different con-
straints introduced in different situations for the start
times of section occupations for a route r ∈ Rt

i , sj ∈
S r
k , i ∈ {1,maxM}
if k == 1 then ▷ the first subroute

if et0 == init t then ▷ at a platform (not yard)
if sj ∈ S r

first,k then ▷ the first sections
s(occt,rsj) = startOfSubmr ,t

k − d(stayr ,t
i)

else ▷ all other sections of the first subroute
s(occt,rsj) = startOfSubmr ,t

k + start tsj ,r
end if

else ▷ first subroute, but not at arrival platform
code snippet 9

end if
else ▷ other subroutes of any route

code snippet 9
end if

Algorithm 9
if sj ∈ S r

first,k then ▷ the first sections
s(occt,rsj) = startOfSubmr ,t

k

else ▷ all other sections of the first subroute
s(occt,rsj) = startOfSubmr ,t

k + start tsj ,r
end if

The end times of the section occupations:

The calculation of the end occupations times of the
last sections of each subroute also differ. Depending on
where the train goes (platform or a yard) and whether
the last sections from the subroute are also the last
sections of the route.

The pseudocode 10 summarizes the calculation of the
end occupation times for all sections. We now briefly
explain the code. If the route ends at a yard, the oc-
cupation times of the last sections are not extended
with the time for the parking (line 4). However, if we
are not going to a yard, then it must be a departure
platform, we extend the occupations of the variables
with d(stay t

i . Last, if this is not the last subroute then
we extend the end of the occupation variables with the
d(wait t,rk) to reserve for the time spent at an interme-
diate stop (line 9). In all other cases, we add the given
offset (end t

sj ,r) to the start of the subroute.
Finally, the duration of an occupation is completely

determined by:

Algorithm 10 Code snippet for the different con-
straints introduced in different situations for the end
times of section occupations, ∀sj ∈ Sr

k, for i ∈
{1,maxM} and k ∈ {1,numSubr}
1: if sj ∈ S r

last,1 then ▷ the last sections
2: if k == numSubr then ▷ the last subroute of

the r
3: if eti ∈ Y then ▷ if the endpoint of the

route is a yard, we should not occupy the sections
4: e(occt,rsj) = startOfSubmr ,t

k + end t
sj ,r

5: else ▷ not a yard, extend the last sections
to be occupied while parking

6: e(occt,rsj) = e(stay t
i)

7: end if
8: else
9: e(occt,rsj) = startOfSubmr ,t

k + d t
rk

+

d(wait t,rk) = e(wait t,rk) ▷ Here k is at most
numSubr - 1, not a last subroute, but last sections

10: end if
11: else ▷ Not last sections
12: e(occt,rsj) = startOfSubmr ,t

k + end t
sj ,r

13: end if

d(occt,rsj) = e(occt,rsj) − s(occt,rsj),∀sj ∈ Sr (B.1)

On a final note, if a train is split or combined from/to
a through train at the arrival/departure platform, then
the section occupations constraints for the sections cor-
responding to the platforms (so sections in S r

first,k) and
S r
last,1) will differ, but this will be discussed later.

B.2.2 Constraints for synchronization
between routes and sections oc-
cupations and waiting variables

A route variable at,r
i is present, meaning route r will

taken for movement i if the chosenRoute variable is
assigned to the index of this route within the set of
routes for movement i.

pres(at,r
i) = (chosenRouteti == indexOf(r,Rt

i))

(B.2)

An optional variable for a route r and train t is
present, meaning it is taken and pres(at,r

i) is true, iff all
occupation’s section variables of that route are present
as well. These are the sections from all subroutes of
the route.

pres(at,r
i) = pres(occt,rsj),

∀sj ∈ Sr (B.3)

Analogously, each “wait” variable - waitt,rk for the
time between subroutes of route r is present if and
only if the variable for route r is present.

58

pres(at,r
i) = pres(waitt,rk),

∀k ∈ {1, numSubr − 1} (B.4)

B.2.3 Constraints for determining sec-
tion occupations

If the occupation of a section is present (pres(occt,rsj)
is true), then based on the previous subsection B.2.1
the start and the end times of the occupation variables
are constrained. All equations are compactly written
in the pseudocode snippets 8 and 10. When a variable
is present, then the solver will impose the constraints
to be satisfied, otherwise, no.

Pseudocode 8 and 10. (B.5)

B.2.4 Constraints for start and end
times of “wait” variables

The duration of the “wait” will usually be at least some
time, given by the parameter minWait. Furthermore,
to ensure that the driver is not in the middle of the
route for an incredibly long time, the duration is also
bounded by maxWait.

maxWait ≥ d(waitt,rk) ≥ minWait,

∀k ∈ {1, numSubr − 1} (B.6)

The start time of the intermediate parking between
routes is the time when the train finishes subroute r,
where d t

r1 is the respective duration of this subroute.

s(wait t,r1) = s(at,ri) + d t
r1 (B.7)

s(waitt,rk) = s(waitt,rk−1) + d t
rk−1

(B.8)

The following constraints can be seen in the main
documentation of Google-OR-Tools. There is not a lot
of explanation there, so one could refer to this website.
The end of parking waitt,rk should be before the start
of the next parking/staying.

EndBeforeStart(waitt,rk , waitt,rk+1)

k ∈ {1, numSubr − 1}, r ∈ Rt (B.9)

The route should start before the start of the first
wait variable. Actually, before the start of any “wait”
variable.

StartBeforeStart(at,r
i , waitt,r1) if numSubr ≥ 2

(B.10)

A section can be occupied by at most one train at a
given time. This constraint ensures that all occupation
intervals of each section are non-overlapping. We also
add the constant intervals from each of the predeter-
mined events pe from the set of all fixed events FE -

movements, parking, etc.

noOverlap(
⋃

t∈T,r∈Rt

occt,rs

⋃
pe∈FE

occpes),∀s ∈ S

(B.11)
The remaining constraints are identical to those de-

scribed in Section 2.3.

59

https://or-tools.github.io/docs/dotnet/classGoogle_1_1OrTools_1_1ConstraintSolver_1_1Solver.html#a4b1fec2ee0deef7d1f611f879d8f4b00
https://acrogenesis.com/or-tools/documentation/user_manual/manual/ls/scheduling_or_tools.html

Appendix C

Other extensions & Objective functions

C.1 Other extensions

C.1.1 Additional parameters
• m - maintenance time for each type of train unit.

We opt to use one parameter for all types of trains
to simplify notation.

• ic - internal cleaning time for each type of train
unit

• ec - external cleaning time for each type of train
unit Furthermore, for each yard y ∈ Y we know:

– cy - the capacity of y (the length of all tracks)

– Sery - a set of all services that can be per-
formed at yard y

Additional known information for each train
(t ∈ T)

• lent - the length of the whole train, this is the sum
of the length of all train units in the train

• tm - whether the train part/unit needs mainte-
nance, tm ∈ {0, 1}

• tec - whether the train part/unit needs external
cleaning, tec ∈ {0, 1}

• tic - whether the train part/unit needs internal
cleaning, tic ∈ {0, 1}

C.1.2 Yard extension
This extension lifts the assumption for the infinite ca-
pacity of the yards (Section 2.3.3).

We have already defined the most important nota-
tion (Section 2.3.4) that will be used for extending the
model. To remind the reader Y was the set of all yards
at the station, cy and Gy the capacity and the set of
gateways of y ∈ Y , respectively.

The main task of this extension is to ensure that
for each yard at the station, the yard capacity is NOT
exceeded at any point. To model this, we will use the
concept of cumul functions.

A cumul function illustrates the amount of par-
ticular resources over time. It is an expression built as
the algebraic sum of the elementary cumul functions or
their negations f =

∑
i ϵi ·fi, where ϵi ∈ {−1, 1} and fi

is the elementary cumul function which illustrates
the contribution (an increase or decrease) of an (inter-
val) variable to the resource. We will present only one
type of elementary cumul function - pulse(a, h), where
h is the amount with which the resource increases dur-
ing the interval of a. Figure C.1 presents the function
graphically.

Figure C.1: Illustrates the contribution of the elemen-
tary function - pulse to the resource. The resource
increases with the amount h during the interval of a.

We can now define the cumul function fy for each
yard y as follows:

fy =
∑

st∈ST

∑
i∈{0,1}

pulse(staysti , lenst) · bool(eti == y),

where st is a shunt train and
ST is the set of all shunt trains (C.1)

Each stay t
0 and stayt1 if they are present, correspond

to parking at the first or the second yard for all shunt
trains.

The yard capacity is constrained as follows:
The yard is at most cy occupied at a given point in
time.

fy ≤ cy,∀y ∈ Y (C.2)

C.1.3 Service extension

This section extends the model with two important as-
pects of service management. First, we want to shunt
trains to yards where they can execute the services they
demand, as not all services are possible at each yard.
Next, we should ensure that the train stays for enough
time in the yard to execute all services.

We define SerT imet as the sum of the time
for all services that t (shunt train) requires, hence

60

SerT imet = tm ·m+ tic · ic+ tec ·ec. We have assumed
that the difference between the arrival and departure
time is more than the required service time for each
train 2.3.3, otherwise the input will not be feasible.

In the current model, services can be handled at one
or two yards. Unfortunately, fixing the number of vis-
ited yards for all trains before solving, will result in
a further decrease of the optimality of the solution.
Nevertheless, there are certain cases where we can fix
the number of yards to two in case we insist all ser-
vice needs to be executed. For instance, if no yard
at the station can handle all services of train t, then
numr t = 3, or if the set of services is non-empty then
numr t ≥ 2 (shunting to yard is required).

We now present the constraints required to model
the aspects, mentioned at the beginning of the section,
namely for ensuring that there is enough time at
the yards and that it is also possible to execute all
services. We also define Srvt - the set of all services
required by t. Depending on the number of visited
yards, we have:

• One Yard: Hence, numr t = 2.

numr t == 2 ⇒ d(stayt1) ≥ SerT imet (C.3)

Srvt ⊂ Seret1 (C.4)

• Two Yards:

numr t == 3 ⇒ d(stayt1)+d(stayt2) ≥ SerT imet

(C.5)

Srvt ⊂ Seret1 + Seret2 (C.6)

pres(stayti) ⇒ d(stayti) ≥ minServiceDuration,

∀i ∈ 1, 2 (C.7)

C.2 Examples of objective func-
tions

This section will give a few variants and examples of
the objective function. Nevertheless, those are not part
of the experiments.

C.2.1 Minimize total number of shunt
movements

The total number of shunt movements can be based
either on the number of all movements taken by all
trains in T (as in C.8) or on the number of the sub-
routes contained in the routes for each movement (as
in C.9). Instead of C.9, C.10 can be utilized as it elimi-
nates the summation over a variable, which is generally
preferred.

min
∑
t∈T

numr t (C.8)

min
∑
t∈T

∑
i∈numr t

∑
r∈Rt

i

numSubtr (C.9)

min
∑
t∈T

∑
i∈maxM

∑
r∈Rt

i

numSubtr · pres(at,r
i) (C.10)

Additionally, to count the number of reversals, ob-
jective C.9 could be employed. The only modification
required is to replace numSubtr with numSubtr − 1, as
a route with two subroutes involves one reversal.

C.2.2 Minimize total routing time
The total routing time is obtained by summing the
duration of all present route variables.

min
∑
t∈T

∑
i∈maxM

∑
r∈Rt

i

d(at,r
i) (C.11)

We use maxM instead of numr t as numr t is a vari-
able, while maxM is a parameter. This allows the
objective function to be fully defined before assigning
numr t for each train t ∈ T .

C.2.3 Minimize total distance
The total distance is obtained by summing the length
of each present route.

min
∑
t∈T

∑
i∈maxM

∑
r∈Rt

i

disr · pres(ar,ti) (C.12)

61

Appendix D

Additional Figures

62

Figure D.1: Comparison between the two model versions for Enkhuizen instances. Each bar shows the average
running time, averaged between all instances with a specific number of trains and all seeds. Time is in seconds.

Figure D.2: Comparison between the two model versions for Amersfoort instances presented with boxplots.
Again, time is in order of milliseconds.

63

Figure D.3: The figure presents the additional executions (v2-with-param and v2-alt-all-with-param), produced
locally with the parameter for keeping all feasible solutions set to true for the second version and the second
version with alternative routes. These are compared with v1, v2, and v2 with all alternative routes.

64

Bibliography

[chu, 2010] (2010).
https://github.com/chuffed/chuffed?tab=readme-
ov-file.

[sim, 2020] (2020). https://www.pnw.edu/wp-
content/uploads/2020/03/attendance5-1.pdf.

[Broek, 2016] Broek, R. v. d. (2016). Train shunting
and service scheduling: an integrated local search
approach.

[Cappart and Schaus, 2017] Cappart, Q. and Schaus,
P. (2017). Rescheduling railway traffic on real time
situations using time-interval variables. In Sal-
vagnin, D. and Lombardi, M., editors, Integration
of AI and OR Techniques in Constraint Program-
ming, pages 312–327, Cham. Springer International
Publishing.

[Delahaye et al., 2019] Delahaye, D., Chaimatanan,
S., and Mongeau, M. (2019). Simulated annealing:
From basics to applications. In Gendreau, M. and
Potvin, J.-Y., editors, Handbook of Metaheuristics,
volume 272 of International Series in Operations
Research & Management Science (ISOR), pages 1–
35.ISBN 978–3–319–91085–7. Springer.

[Edelkamp and Schrödl, 2012] Edelkamp, S. and
Schrödl, S. (2012). Chapter 13 - constraint search.
In Edelkamp, S. and Schrödl, S., editors, Heuristic
Search, pages 571–631. Morgan Kaufmann, San
Francisco.

[Haahr et al., 2017] Haahr, J. T., Lusby, R. M., and
Wagenaar, J. C. (2017). Optimization methods for
the train unit shunting problem. European Journal
of Operational Research, 262(3):981–995.

[Hendrikse, 2021] Hendrikse, K. (2021). Branch-and-
cut-and-price to solve a relaxation of the train unit
shunting and service problem. Master’s thesis.

[Kamenga et al., 2021] Kamenga, F., Pellegrini, P.,
Rodriguez, J., and Merabet, B. (2021). Solution
algorithms for the generalized train unit shunting
problem. EURO Journal on Transportation and Lo-
gistics, 10:100042.

[Kamenga et al., 2019] Kamenga, F., Pellegrini, P.,
Rodriguez, J., Merabet, B., and Houzel, B. (2019).
Train unit shunting: Integrating rolling stock main-
tenance and capacity management in passenger rail-
way stations. In 8th International Conference on
Railway Operations Modelling and Analysis (Rail-
Norrköping 2019).

[Kroon et al., 1997] Kroon, L. G., Edwin Romeijn, H.,
and Zwaneveld, P. J. (1997). Routing trains through
railway stations: complexity issues. European Jour-
nal of Operational Research, 98(3):485–498.

[Lentink, 2006] Lentink, R. (2006). Algorithmic Deci-
sion Support for Shunt Planning. PhD thesis, E.

[Marlière et al., 2023] Marlière, G., Sobieraj Richard,
S., Pellegrini, P., and Rodriguez, J. (2023). A con-
ditional time-intervals formulation of the real-time
railway traffic management problem. Control Engi-
neering Practice, 133:105430.

[Peer et al., 2018] Peer, E., Menkovski, V., Zhang, Y.,
and Lee, W.-J. (2018). Shunting trains with deep
reinforcement learning. In 2018 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics
(SMC), pages 3063–3068.

[Philippe Laborie, 2018] Philippe Laborie,
Jérôme Rogerie, P. S. . P. V. (2018). Ibm ilog
cp optimizer for scheduling. SpringerLink.

[Richard Freling, 2005] Richard Freling, Ramon
M. Lentink, L. G. K. D. H. (2005). Shunting
of passenger train units in a railway station.
Transportation Science 39(2):261-272.

[Rodriguez, 2007] Rodriguez, J. (2007). A constraint
programming model for real-time train scheduling at
junctions. Transportation Research Part B: Method-
ological, 41(2):231–245. Advanced Modelling of
Train Operations in Stations and Networks.

[Rossi et al., 2008] Rossi, F., van Beek, P., and Walsh,
T. (2008). Chapter 4 constraint programming. In
van Harmelen, F., Lifschitz, V., and Porter, B., ed-
itors, Handbook of Knowledge Representation, vol-
ume 3 of Foundations of Artificial Intelligence, pages
181–211. Elsevier.

[Stuckey, 2010] Stuckey, P. J. (2010). Lazy clause gen-
eration: Combining the power of sat and cp (and
mip?) solving. In Lodi, A., Milano, M., and Toth,
P., editors, Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Op-
timization Problems, pages 5–9, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[Wattel, 2021] Wattel, N. (2021). Routing of shunt
trains at logistics hubs of ns using constraint pro-
gramming.

65

[Winter and Zimmermann, 2000] Winter, T. and Zim-
mermann, U. T. (2000). Real-time dispatch of trams
in storage yards. SpringerLink, 96:287–315.

66

	Introduction to TUSP
	Train planning processes
	Problem description
	Solution approaches for TUSP
	Terminology
	Literature review
	NS approach for TUSP
	Research questions

	Shunt Routing Problem
	Shunt Routing Problem
	A high-level description
	Routing concepts
	Formal definition of SRP

	Constraint programming
	Model
	Scope of the model
	Requirements
	Assumptions
	Parameters
	Input
	Variables and function definitions
	Constraints
	The second version of the model
	Applied extension
	Output

	Instances
	Instances
	Real instances
	Instance creation
	Data preprocessing

	Validations
	Validations for model-v2
	Additional checks for model-v1

	Experiments & Results
	Goal of the experiments
	Experiments' overview
	Hypotheses
	Hypotheses for changes in the model
	Hypotheses for the influence of the instance characteristics
	Hypotheses for the MiniZinc model

	Experimental Setup
	Types of experiments
	Solutions' quality

	Experiments with model changes
	Adding parking constraints
	Variable and value strategies
	Compare both versions of the model

	Experiments with instance characteristics
	Additional routes for Amersfoort
	Removing a yard, or reversals
	Compare other solvers on model-v2
	Deeper analysis of some results
	Main contributions

	Conclusion
	Future work

	TMP
	Train Matching Problem (TMP)
	Common notation for both problems
	Initial general matching model for NS

	CP model:
	Solve TMP together with SRP
	Additional extension for deciding on where to perform a split or a combine

	Model with varying time between submovements
	Additional variables
	Constraints
	Constraining the start and end times for section occupations
	Constraints for synchronization between routes and sections occupations and waiting variables
	Constraints for determining section occupations
	Constraints for start and end times of ``wait'' variables

	Other extensions & Objective functions
	Other extensions
	Additional parameters
	Yard extension
	Service extension

	Examples of objective functions
	Minimize total number of shunt movements
	Minimize total routing time
	Minimize total distance

	Additional Figures

