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Preface
This thesis is comprised of two parts: a paper with similar title as the thesis submitted to the IEEE
Transactions of Robotics special issue on Aerial Swarming, and a literature study into the previous
attempts at, and literature on, aerial swarming. The literature study is not a part of the thesis but is
included for context on referenced literature and background information.

The object of the thesis is to realise a vision based autonomous quadcopter swarm capable of
operating at close proximity and extend on existing literature in order to improve implementation and
increase controllability from high level directives.

The ability to control autonomous dense aerial swarm from high level objectives and their ability to
resolve conflicts with sub-groups or other swarms with conflicting objectives could in the near future
open up the application of aerial swarms for many different applications.

This thesis contributes to the literature on autonomous swarming on unmanned aerial vehicles by
providing a demonstrated effective approach. It is unique due to the application of only vision for de-
tection and being effective when scaling and at close proximity.

Experiments indoor have shown the improved performance of the developed approach and a proof of
concept experiments have been conducted outdoors. Unfortunately issues with outdoor stable flight of
the chosen platform prevented the implementation to be tested at large scale outside.

W. Vlenterie
Delft, July 2017
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Velocity Templates for Dense Swarms
of Flying Robots

Wilco Vlenterie, Guido C. H. E. de Croon, Bart D. W. Remes, Qiping Chu

Abstract—In the near future many tasks could be performed
by swarms of flying robots. To successfully implement multiple
of these swarms in the same airspace they will have to be
decentralised, autonomously cope with high densities and even
resolve conflicting objectives of other swarms, while remaining
controllable by operators through high-level objectives. This
article introduces a novel swarming approach dubbed ”Velocity
Templates” based on artificial potential fields. These global fields
represent the objectives of the swarm, which are balanced with
local interaction. Different fields are considered leading to still
or sustained motion swarms where conflicting objectives between
sub-groups or multiple swarms are gracefully resolved. The
approach is implemented on groups of 2 and 4 Parrot Bebop
UAVs, using an efficient on-board vision algorithm to locate
neighbours and a motion tracking system for guidance. The
experiments show promising results for further outdoor tests
assessing the scalability of the proposed approach.

Keywords—Aerial Robotics, Distributed Robot Systems, Swarms,
Autonomous Agents.

I. INTRODUCTION & GOALS

For decades the complex emergent behaviour and agent-
level control of flocks and schools have intrigued biologists
and engineers alike. Flocks of sandhill cranes, dunlins and
starlings were among the earliest aerial swarms extensively
studied [1], [2], [3]. Computer simulations and further studies
unravelled much of the mysteries surrounding these flocks
and made swarming a topic of interest [4], [5], [6], [7].

For flying robots, which are the focus of this article, swarming
has obvious advantages as many robots can explore a given
region more quickly or observe multiple targets at the same
time [8], [9]. Swarming is also useful for groups of UAVs
heading to the same destination to restrict interference with
the local airspace.

Some of the more well-known aerial robot swarms are
choreographed, where every agent motion is pre-planned,
as in the recent impressive show performed by Intel with
hundreds of UAVs [10]. However, this approach is complex,
offers none of the flexibility required by real-world swarming
missions, and is mainly meant for visual appeal.

In order to render large swarms of UAVs practical, they
will have to satisfy four requirements. First they will have
to operate at close separation in order to limit interference
with the local airspace. Second they have to operate in a

The authors are with the Department of Aerospace Engineering, Delft
University of Technology, 2629HS Delft, The Netherlands.
E-mail: w.vlenterie@student.tudelft.nl.

Figure 1: Photograph of 4 flying robots that use an efficient on-
board vision algorithm and Velocity Templates developed for
Dense Swarms. The photograph depicts a swarm performing
circular sustained motion at 1.5 m separation. Desired flight
path shown in red.

decentralised fashion in order to account for scalability. Third
they have to respond to high level centralised objectives to
render control practical. Last they have to be able to resolve
conflicts with other swarms with conflicting objectives.

To the best of our knowledge, no research has yet been able to
satisfy these requirements for aerial swarms. On the one hand
there are centralised approaches, which allow for collaboration
but rely on a single central computer to compute and distribute
commands [11], [12]. This leads to obvious scaling issues and
creates a single point of failure, which is clearly undesired.

On the other hand there are decentralised approaches,
where each robot interacts locally with its environment
often while trying to achieve a global goal, which do not
suffer from these scalability issues. A major difficulty for
decentralised flying robots is estimating each other’s relative
positions. This has been tackled in various ways, but often
heavily relying on inter-agent communication [13], [14], [15],
[16]. A reliance on communication is a risk, as it suffers
from bandwidth constraints when scaling up. Finally, many
swarm approaches mimic biological swarms, which actually
makes it harder for a human designer to create new global
behaviours and complicates their control. For example, in a
typical application of evolutionary swarm robotics [17], each
new behaviour requires a new optimisation, which is not
guaranteed to succeed.

The main contribution of this article is the introduction
of a novel approach of UAV swarming dubbed ”Velocity
Templates” satisfying the four above mentioned requirements,
and a demonstration of this approach on computationally
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Figure 2: Example of the rendezvous point global field, guiding
swarm members at constant velocity towards the predefined
centre-point.

restricted consumer grade UAVs. The goal of the approach is
to obtain a high-level controllable, scalable, and collision-free
swarm at minimal inter-agent separation using on-board
sensing and computation only. The swarms will be controlled
using Velocity Templates. An example of a velocity template
can be seen in in Figure 2. The UAVs will be equipped with
a Global Navigation Satellite System (GNSS) for outdoor
positioning.

The proposed approach has its foundation in artificial potential
fields [18] and is based on the scalable shape formation (SSF)
approach for pico satellites proposed by Pinciroli et al. [19]
to form hexagonal lattices. SSF - as will be shown in this
article - generalises poorly to dense swarms of flying robots,
leading to excessive oscillations and deadlocks in the case of
conflicts. The new approach allows for easy-to-design velocity
templates and successfully deals with the aforementioned
problems, leading to smooth decentralised control even in
dense air space.

First Section II will explain the approach of SSF as proposed
in [19]. Then Section III covers the implementation of the
algorithm on quadcopter UAVs. The performance of the SSF
implementation and the conducted experiments in order to
assess it are discussed in Section IV. Subsequently Section V
explains the velocity template approach. Experiments with
the velocity template implementation are be discussed and
the results compared with that of the SSF experiments in
Section VI. Lastly Section VII reflects on the results and
discusses further outdoor tests.

II. SCALABLE SHAPE FORMATION FOR SWARMS OF PICO
SATELLITES

This section explains the approach of the scalable shape
formation (SSF) proposed by Pinciroli et al. for pico satel-
lites [19]. The approach is based on artificial potential

fields [18] and considers three components representative of
the following behaviours:
• Flattening & Gathering – causes all agents to adhere to

a 2-dimensional flat surface on the xy plane and attracts
all agents to a common centre, preventing separation and
allowing swarm control. As shown in Figure 2.

• Lattice formation & Collision avoidance – causes the
agents to form a hexagonal lattice, as shown in Figure 3,
on the xy plane whilst avoiding collisions.

• Damping – causes the agents to converge to a steady
state and is intended to prevent undesired oscillations
around equilibrium positions and the swarm centre.

The total velocity response is the sum of these behaviours as
shown in Equation 1, comprising the flattening and gathering
component ~g, the lattice formation and collision avoidance
term ~l and the damping component ~d; onwards referred to
as the global, local and dissipative components respectively.

~u = ~g +~l + ~d (1)

The global field is a function of a common centre point, shared
between all agents of a particular group, the current location of
the agent, and can vary over time as described by Equation 2.
The resulting vector field has a direction and magnitude for
any combination of agent position Pxy and a given centre point
Cxy . An example of such a global field is shown in Figure 2.

~g = f (Cxy, Pxy, t) (2)

The local component is modelled after inter-molecular forces
by means of the Lennard-Jones pair potential [20], having
two intuitive parameters: separation range σ and potential-well
depth ε, as depicted in Figure 4. The local component for any
agent is the average of the inter-agent forces for all M agents
in range, as defined by Equation 3. The force between an agent
i and an in-range neighbour j is defined as the derivative of
the Lennard-Jones pair potential, as shown in Equation 4.

It is conjectured that the steady state arrangement is a
hexagonal lattice as depicted in Figure 3.

~l =
1

M

M∑
j=1

Pj − Pi

|Pj − Pi|
lj (3)

lj =
dL

dr
=

12ε

r

[(σ
r

)12
−
(σ
r

)6]
(4)

The dissipative component, required to dissipate virtual energy,
acts as a viscosity term allowing the swarm to converge to a
steady state. The dissipation is described by Equation 5 where
ξ is a design parameter, which increases viscosity when raised.

~d = −ξ · ~̇q (5)

III. SCALABLE SHAPE FORMATION FOR UAVS

This section discusses the implementation of the SSF ap-
proach on UAVs. At first the platform on which it is imple-
mented to conduct experiments is discussed and afterwards the
vision pipeline, constructed to obtain on-board decentralised
sensing of neighbouring agents, is explained.
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Figure 3: Conjectured steady state arrangement of agents util-
ising the Lennard-Jones potential - a hexagonal lattice.
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Figure 4: L(r) - The Lennard-Jones potential [20]. With
potential-well depth ε and separation range σ.

A. Platform

The platform used for all experiments is the Parrot Bebop
2 [21], as shown in Figure 5. The bebop 2 is a consumer grade
quadcopter featuring a 14MP 180◦ fisheye camera tilted 30◦

downwards, dual-core CPU, quad-core GPU, WiFi and GNSS
receiver and yet weighs only 500 grams.

Paparazzi UAV [22] runs on-board the UAVs, which is
an open-source autopilot with focus on autonomous flight
supported on a range of Parrot products [23].

The autopilot inner-loop utilises the cascaded Incremental
Nonlinear Dynamic Inversion (INDI) controller designed
and implemented in Paparazzi UAV by Smeur et al. [24],
which offers superior disturbance rejection when compared to
Proportionate Integral Derivative (PID) control. This should
allow for highly accurate control even in unfavourable wind
conditions, which is essential when flying in close proximity
to other UAVs.

Positioning: In order to maximise the potential accuracy of
the INDI controller and achieve minimal inter-agent separation
as described in Section I the UAVs need accurate position
information.

For indoor flights, since GNSS coverage is poor, use was
made of an OptiTrack motion capture system, which provides
below centimetre level precision.

Outdoors Real-Time Kinematic (RTK) GNSS provides a
possibility to decrease the horizontal position accuracy from
2.5 m using the Bebop 2’s stock u-Blox M8N [25] to 2.5 cm

38.2cm 32.8cm

8.9cm

3”

Figure 5: Picture of the Parrot Bebop 2 quad-rotor including
dimensions. Source: parrot.com

using a RTK base-station and the high precision u-Blox
M8P [26]. The stock M8N was replaced with the pin com-
patible M8P.

Using RTK equipped UAVs enhances the operational
weather/wind envelope and drastically reduces the minimum
safe inter-agent distance due to the more accurate position
control.

Heading: Accurate heading information is essential dur-
ing autonomous GNSS based flight. For indoor flight the
OptiTrack provided accurate heading information. Outdoors
however, UAVs tend to suffer from magnetometer drift due to
their relatively cheap and inaccurate sensors.

Consistent manual re-calibration using batch methods such
as TWOSTEP [27] can remedy this, although this is considered
highly undesirable for large swarms of UAVs.

To omit frequent manual re-calibration of all agents an
Unscented Kalman Filter (UKF) is used to estimate the full
magnetometer calibration on-line during flight. The Kalman
filter design is based on the work by Crassidis et al. [28] where
the UKF implementation (in C) from the TRICAL library by
Ben Dyer is used [29].

B. Vision

In order to implement the SSF approach, a position estimate
to the neighbours in range is required. Due to the focus on
decentralisation and the complication of adding extra sensors
to all UAVs the neighbour detection will be based on computer
vision. Other on-board methods for neighbour positioning,
such as Radio Frequency based techniques, would also have
been possible.

To limit the computational complexity of the vision algo-
rithm, 10 cm diameter coloured styrofoam spheres are placed
atop the UAVs. The spheres allow for pose invariant recog-
nition and the algorithm is further simplified by the use of a
colour filter for segmentation.

Achieving successful and collision-free flight hinges on an
adequate update rate and accuracy of the computer vision
algorithm.

Most swarming algorithms in the literature tend to consider
agents with omni-directional field of view (FOV) and unlimited
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Figure 6: Illustrations of fisheye lens correction (left) and
perspective correction (right). With input image (solid) and
corrected output image (dashed).

sensing range [30], [31], [32]. Only few applications consider
realistic agents with a limited FOV and sensor range [33], [16].

Since the forward positioned camera on the chosen platform
only has a 180◦ diagonal FOV with finite resolution, such
realistic limitations should be accounted for and their effects
mediated.

Agents are constricted to point their camera towards the
direction of the global field. This ensures all agents behind
a particular agent are looking in its direction, allowing for
backwards motion without collision.

In order to evaluate the relative position of neighbouring
agents, their position in the camera frame, given by pixel
coordinates and contour area, has to be converted to
homogeneous world coordinates. In order to do so both the
fisheye lens distortion and 30◦ downwards tilt have to be
corrected for.

Lens correction: Several approaches exist in literature for
correcting fisheye distortions on images, the most well-known
being the 6th order Brown-Conrady distortion model [34],
[35]. A disadvantage to the 6th order polynomial model is the
challenge inverting it. This would put computational restriction
on the horizon detection and possible GPU implementation.

The invertible nonlinear correction method proposed by
Dhane et al. [36] is used for mapping the input radius
r to output radius R using invertible Equation 6 where
k = 1.2247445. The image is mapped as shown on the left
hand side of Figure 6 from the solid to dashed circles.

R = f ∗ tan
(
arcsin

(
sin

(
arctan

(
r

f

))
∗ k
))

(6)

Attitude perspective correction: Due to the camera being
tilted 30◦ downwards the image is distorted in the horizontal
plane. This distortion is corrected for using model, view and
projection (MVP) matrices [37]. Equation 7 illustrates the
concept of correcting the camera coordinates to homogeneous
coordinates using MVP matrices.

[
xh

yh
zh

]
=

[
projection

]
·

[
view

]
·

[
model

]
·

[
xc

yc
zc

]
(7)

The model matrix positions the centre of the frame in 3D
world space, the view matrix maps the 3D world space to
a chosen viewport tiled 30◦ opposite of the physical camera

tilt, and the projection matrix applies a perspective projection
causing the part of the frame further away from the viewport
to appear smaller than that close-by.

The resulting correction is similar to the right hand side of
Figure 6, where the top section of the camera image, which
was stretched due to the downward camera tilt, is shrunk
back proportionately.

Horizon stabilisation: To reduce computational effort, only
a given FOV around the horizon is used for vision processing.

The estimated attitude for each frame is used to map
homogeneous output coordinate (0, 0), corresponding to the
body x-axis, to a corresponding pixel position on the image
(xh, yh).

The horizon position (xh, yh) and requested horizon FOVx

and FOVy , set to 180◦ and 30◦ respectively, can then be used
to set the image sensor cropping such that only the requested
area is read from the sensor.

Contour detection: In order to accurately position
neighbours in range at a sufficient update rate an active
random colour filter was designed. A sample size N of
random pixel positions are tested against the colour filter
which if it passes recursively first to the top and then follows
the edge of the blob clockwise in search of a closed contour.
Figure 7 demonstrates this approach.

The major benefit of this method in comparison to a more
straightforward flood-fill is that the clockwise contour
approach scales relative to the circumference O (r), instead
of relative to the area O

(
r2
)
, of the blob.
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Figure 7: Example illustration of contour detection algorithm.
Every block represents a pixel. Only grey pixels pass the
colour-filter. Search pixels, on the way to the top, are indicated
as S1,2,...,N and all remaining evaluated pixels are numerically
labeled in ascending order. Darker grey squares represent the
start and end location.
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Figure 8: Geolocation results 3D view. Ground truth locations
are marked with crosses, circular dots represent on-board esti-
mates and dashed trajectory indicates flight-path.
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Figure 9: Geolocation results top view. Ground truth locations
are marked with crosses, circular dots represent on-board esti-
mates and dashed trajectory indicates flight-path.

This results in an essential speedup especially when the blobs
are large, i.e. the neighbouring agent is close-range.

Object geolocation: To assess the performance of the com-
plete vision pipeline an experiment is conducted in an indoor
controlled area. Nine red styrofoam spheres, identical to those
mounted atop of all agents, are positioned across the area and
a single UAV is made to fly circles registering its estimates of
the area coordinates of the spheres.

The positions of both the UAV and the spheres are measured
using a motion capture system so that the estimates can be
compared to a ground truth. Figures 8 and 9 show a 3D
and top view of the results respectively. The black crosses
mark the ground truth locations of the spheres and the grey
circular markers indicate onboard position estimates in world
coordinates.

The spread in the estimates are correlated with the relative

0

100

1 2 3 4 5

0

2

|angle| [deg] Range [m]

E
rr

or
[m

]

Figure 10: Surface fit of the on-board estimation error versus
the absolute relative heading and range of the to be detected
object. Surface represents the fit, actual measurements are
shown as dots.

angle between the camera principal axis and the spheres due
to residual fisheye distortions at the edges of the camera FOV.
Figure 10 provides an indication of the correlation between
the estimate error and the range and relative angle between
the UAV and the spheres. Where in the critical range between
1 m and 2 m the average absolute measurement error from a
moving platform was only about 30 cm across the entire FOV
domain.

IV. EXPERIMENTS WITH SCALABLE SHAPE FORMATION

In this section SSF experiments are conducted according
to the implementation discussed in section III. First the global
fields are explained, then the experimental set-up is shown and
the results discussed.

A. Global fields
Pinciroli et al. [19] only considered a single global field

for a swarm of pico satellites. In our experiments we used
different global fields, more representative of the tasks UAVs
may encounter.

The global fields used in the experiments can be categorised
into three different types, examples of which can be seen in
Figure 11:
• Rendezvous point - The simplest field used, consisting

of a constant attractor towards the centre of the field.
This field can be described by Equation 9 with ~q defined
according to Equation 8. Where V is the constant
velocity with which agents are attracted.

~q =

[
Cx − Px

Cy − Py

]
(8)

~g =
V

|q|
· ~q (9)

• Rendezvous bucket - A modification of the rendezvous
point field where the magnitude of the global field is
scaled down when agents are within a distance R of
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Figure 11: Examples of the three types of global fields used in
the experiments. A rendezvous point (left), a rendezvous bucket
(middle) and a circular field (right).

Figure 12: Examples of conflicting objectives for two swarms.
The two conflicting objectives are indicated as solid and dashed
respectively. Dots represent possible starting locations.

the centre of the field. The field can be described as
in Equation 9 where V is defined as in Equation 10.
Where Vmax and Vmin are the maximum and minimum
attractive velocities respectively.

V = Vmax

(
1− 1

1 + e
6
R ·(|q|−R)

)
∈ [Vmin, Vmax]

(10)
• Circular field - This field guides all agents in a circular

path with radius R around the centre point. This field
can be described by Equation 13 where ~q is given by
Equation 8, α by Equation 11 and V by Equation 12.
The direction of rotation is given by cd (-1 and +1
for clockwise and counter-clockwise respectively), cs
configures the radial component increase and cb the
increase in magnitude with increasing deviation from the
circular path.

α = cd · (90 + cs · (R− |q|)) ∈ [0, 180] (11)

V = cb(|q| −R)2 ∈ [Vmin, Vmax] (12)

~g = V ·
[
cos(α) − sin(α)
sin(α) cos(α)

]
· ~q (13)

B. Experiments with Scalable shape formation on flying robots
Indoor test-flights were conducted in order to assess the

performance of the swarming algorithm on small scales of
2 - 4 agents. Larger swarms can, due to the constrained size
indoor, only be tested outside.

Four experiments were conducted in order to assess the
performance of the SSF approach in four different scenario’s:

1) Steady state behaviour of a four agent group.
2) Sustained motion of a four agent group.
3) Residual oscillations between one static and one dy-

namic agent.
4) Conflict resolution between two agents with conflicting

global fields.
In order to evaluate the steady state performance of a group of
four agents a bucket global field was used. The radius of the
bucket was configured as in Equation 14 to be able to contain
all N = 4 agents at their separation distance σ = 1.5m,
according to the maximum density for circle packing in a flat
plane π√

12
[38].

R =

√
N · σ

2

4
·
√
12

π
(14)

Sustained motion, due to the constrained area available
indoors, was mimicked using a circular global fields and
a four agent swarm. The radius was chosen at R = 1.5m
such that the agents can still dodge each other without flying
out of the geofenced area of 8 by 8m. The four agents at
a separation of σ = 1.5m all are able to fit on the circular path.

A rendezvous point global field was used to evaluate residual
oscillations between a static and dynamic agent under the
presence of a non-zero global field. A single stationary
agent was positioned in the centre of the field and a second
agent was instructed to follow the field while maintaining a
separation distance of σ = 1.5m.

For the experiment assessing the conflict resolution perfor-
mance, two agents with conflicting goals are made to interact
with each other. Examples of what are considered conflicting
goals are illustrated in Figure 12.

Such conflicting goals and multiple interacting swarms were
not considered for pico satellites by Pinciroli et al. However,
since UAVs operate in an entirely different spatial domain and
airspace density such situations are more likely to occur and
thus should be considered. For this experiment two counter-
rotating circular fields, with R = 1.5m and a single agent per
field, were used.

All experiments are conducted for a duration of T = 10
minutes, at a separation of σ = 1.5m, using a potential well
depth ε = 0.06 and viscosity coefficient ξ = 0.03.

C. Results Scalable Shape Formation experiments
This section discusses the performance and experimental

results of the SSF implementation on UAVs. Although initial
test-flights were collision-free, limitations can be anticipated
when scaling up the size of the swarm, the complexity of the
objectives or both.

Experiment 1 - Group steady state behaviour: The results
of the first experiment, assessing the steady state behaviour
of a four agent swarm can be seen in Figure 13, which
shows the flight-paths of all agents. From the flight-paths the
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Figure 13: Experimental set-up to test steady state behaviour of
a four agent swarm. Flight paths of agents are shown in black,
global field shown in light grey.
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Figure 14: Experimental set-up to test sustained motion of a
four agent swarm. Flight paths of agents are shown in black,
global field shown in light grey.

oscillations can easily be seen. Additionally the total average
x-axis displacement was 143.0 m of which 69,7 m backwards
which is also indicative of the extend of the longitudinal
oscillations. The average absolute longitudinal velocity was
0.27 m/s, which ideally should have been close to 0.

These oscillations tend to propagate outwards from the
swarm centre. Effectively constraining the maximum swarm
size, which is detrimental to the research objective.
When scaling to larger swarms, self-induced oscillations tend
to become undamped. Pinciroli et al. recognised these residual
oscillations and proposed increasing the viscosity coefficient
over time, eventually locking every agent in its position.

This is however not longer a viable solution when the
global field does not lead to an eventual standstill but sustains
agent motion, e.g. in the case of the second experiment testing
sustained agent motion.

Experiment 2 - Group sustained motion: Sustained swarm
motion is hindered by the oscillations also identified in the first
experiment. Agents that get too close to their neighbours, r <
σ, are repelled backwards and severely disrupt the collective
motion of the swarm as can be seen from the flight-paths in
Figure 14.

In Figure 14 the oscillations can be best seen from the saw-
tooth like circumference of the flight-paths. Where an outwards
dodging agent, forming a saw-tooth, excites the agent behind
it to divert in a a similar fashion. This leads to oscillations
travelling through the swarm in the opposite direction of
movement, similar to highway traffic jams.

The mean and standard deviation of the body x-axis velocity
are 0.36 ± 0.26m/s which would ideally be large and small
respectively indicating fast and constant sustained motion. The
average total distance travelled backwards along the body x-
axis was 13.32 m which should ideally be 0.

A steady state where all agents are separated equally
over the circumference of the circle is eventually reached,
albeit after a period where both the collective swarm motion
and oscillations are very chaotic. Additionally this steady

state is easily disturbed, leading to new periods of oscillations.

Experiment 3 - Oscillations: As can be clearly seen in
Figure 15, depicting the flight path of the dynamic agent during
the third experiment, the oscillations are very poorly damped
and no constant separation distance is achieved. The lateral
motion of the UAV is due to sensing and actuation noise.

The mean separation was 1.65 m and the standard
deviations 0.399 m, which is representative of the intensity of
the oscillations.

Residual oscillations will occur long after a steady state has
been achieved. Moreover these oscillations significantly reduce
the minimum experienced separation distance, potentially
leading to collisions.

Experiment 4 - Conflicts: An additional disadvantage is
the slow resolution of conflicting objectives when considering
multiple global fields spread over multiple swarms of agents.

Figure 16 shows the flight paths of all agents during
the experiment testing conflicts. Each conflicts is eventually
resolved due to sensing and actuation noise but takes a long
time and the motion is chaotic and oscillatory in nature.

The oscillations in the flight-paths in Figure 16 can best be
seen from the saw-tooth like exterior circumference, caused by
the most outward neighbour dodging further outwards.

The average effective distance travelled in body x-axis was
57.9 m forwards, whereas the average backwards distance
travelled was 63.7 m. Clearly indicative of the high degree
of oscillations due to which the effective distance covered is
low compared to the distance coved avoiding the conflicting
neighbour.

When scaling to larger conflicting swarms the resolution will
either take much longer or never occurs.
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Figure 15: Experimental set-up to test residual oscillations. A
static agent is positioned in the centre, flight path of dynamic
agent indicated in black. Global field shown in light grey.
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Figure 16: Experimental set-up to test conflict resolution be-
tween conflicting global fields. Halves of two circular fields are
shown, one clockwise (light blue) the other counter-clockwise
(light red). Flight paths of agents guided by the fields are
indicated in blue and red respectively.

V. VELOCITY TEMPLATES FOR DENSE SWARMS

In order to alleviate the problems uncovered in Section IV
two extensions to the SSF approach are proposed. These
extensions preserve the feasibility and scalability of the swarm-
ing algorithm when changing from satellite swarms to dense
swarms of flying robots.

These extensions allowed us to consider more complicated
fields, interactions between multiple swarms and fields that
vary over time.

To emphasise this distinction between the simple linear point
global field used by Pinciroli et al. and the more sophisticated
fields considered in this paper the global fields will be referred
to as ”Velocity Templates”.

A. Oscillations

Oscillations seem to be caused by the lack of an equilibrium
state at the separation range in the presence of a non-zero
global field |~g| > 0 since |~u| 6= 0 when ri = σ.

The proposed solution involves scaling down the magnitude
of the global component |~g| when it is directed towards one
or multiple neighbours such that the magnitude of the global
field is unaltered when ri � σ and tends to zero when ri = σ.
This ensures there always exists an equilibrium point at ri = σ.

On detailed examination, whenever agents are in a perfect
lattice pattern, as depicted in Figure 3, the local component
is zero: |~l| = dL(σ)/dr = 0, as is evident from Figure 4.
However, they are still excited by the global field component
~g, and hence there is no equilibrium at ri = σ when |~g| 6= 0
since the total response is non-zero |~u| = |~g|+ |~d| 6= 0.

When there is no global field (|~g| = 0) the total combined
force ~u changes sign at ri = σ where the slope of the Lennard-
Jones potential is minimal since dL(σ)/dr = 0.

However when there is a global field (|~g| > 0) this decreases
the radius at which the total combined force ~u changes sign
to the distance where |~l| = |~g|. Due to the exponential nature
of the Lennard-Jones potential the repulsive force is rapidly
increasing for ri < σ, resulting in an equilibrium point with a
much steeper slope.

This is the case especially when ~g is directed towards a
neighbour i located at the separation range (ri = σ) and
leads to undamped self-excitation of the swarm leading to
rapid outwards expansion of the swarm due to the disturbance
being propagated outwards.

To mediate this phenomenon let us first introduce the lattice-
ratio κ, defined as in Equation 15, where rcam is the camera
range and σ the separation range as defined in Equation 4. In
order to form stable lattices the lattice-ratio should be smaller
than 2, otherwise agents are drawn to neighbours at ri = 2σ
at the expense of neighbours at ri = σ, and larger than 1 in
order to be able to detect neighbours at ri = σ.

κ =
rcam
σ

∈ [1, 2〉 (15)

The ”relative range” r̄i, which can be considered a neighbour
weighing factor, can then be defined as in Equation 16. The
numerator represents the distance agent i has intruded into
the camera range, and the denominator the difference between
the camera range and the separation range. The relative range
stretches from 0 for agents at the camera range, ri = rcam, to
1 for agents at the separation range or closer, ri ≤ σ.

r̄i =
κ · σ −max(ri, σ)

(κ− 1) · σ
(16)

The total weighed neighbour vector ~WN can then be expressed
as in Equation 17, where px,y is the agent position and nix,y

is the estimated position of neighbour i. The contribution of
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each neighbour i is summed over all in-range neighbours N .
The magnitude of the weighed neighbour vector is restricted
to the domain | ~WN | ∈ [0, 1]. The vector reaches unity for a
single neighbour at range ri = σ or with any larger number
of neighbours at ranges ri > σ.

~WN =

N∑
i=1

r̄2i

[
(px − nix)/ri
(py − niy )/ri

]
(17)

The weighed neighbour vector contains both directional infor-
mation about the mean squared direction of the neighbours
6 ~WN ∈ [−π, π] and scalar information about the relative
proximity of those neighbours | ~WN | ∈ [0, 1].

Using Equations 15 - 17 a scalar coefficient for the global
field component ~g can now be defined as in Equation 18. The
coefficient is constrained to the domain gcoef ∈ [0, 1]. The
desired agent velocity ~u from Equation 1 can now be rewritten
as Equation 19. Figure 17 illustrates the vectors ~WN · |g| and
projg(WN · |g|) expressed in this section as a result of two
nearby neighbours N1 and N2. For the sake of clarification
the neighbours are situated such that | ~WN | = 1.

gcoef =
g − projg(WN · |g|)

|g|
(18)

~u = gcoef · ~g +~l + ~d (19)

As a result of Equation 19 the global field component ~g is
scaled from 1 to 0 dependant on the nearby neighbours and
their spatial configuration. Therefore all agents in Figure 3,
due to their global field scalar coefficient gcoef = 0 since their
separation r1,...,N = σ, are in equilibrium: |~u| = |gcoef · ~g| =
|~l| = |~d| = 0.

−2 −1 1 2

−1

1

2

N1

N2

gWN · |g|

projg(WN · |g|) x
|g|

y
|g|

Figure 17: Example illustration of derivation of ~WN · |g| and
projg(WN · |g|) used in calculating gcoef . UAVs are indicated
as black dots and vector quantities as dashed arrows. N1 and
N2 are chosen such that | ~WN | = 1.

σ
−2 2

−2

2

x
σ

y
σ

Figure 18: Illustration of uniform flow in x-direction around a
circular cylinder with radius σ, represented by a flow doublet.

B. Conflict resolution
The SSF approach does not account for multiple swarms

with conflicting objectives, some examples of which can be
seen in Figure 12.

In the original setup two counter rotating swarms around the
same centre point would lead to almost indefinite oscillations.
Although the chaotic motion during the oscillations could
cause the blockage to clear eventually, the performance was
not sufficient.

Now, with the addition of the oscillation remedying
coefficient gcoef , introduced in Section V.V-A, the oscillations
are severely reduced. This in turn prevents chaotic conflict
resolution resulting in both swarms arriving at a standstill at
the point of first encounter and forming a combined lattice.
Although less chaotic both global objectives are not achieved
and the performance is thus still undesirable.

In order to enhance resolution of conflicting objectives
the concept of a flow doublet is borrowed from
hydrodynamics [39]. The proposed inclusion of flow
doublets should guide agents around each other, greatly
enhancing the conflict resolution performance.

A flow doublet is a source/sink combination where the distance
between the source and sink tend towards 0. This source
and sink combination models incompressible uniform potential
flow around a circular cylinder.

The equations for the X and Y components, u and v, of
a uniform flow ~g around circular cylinder i with radius σ are
given in terms of radial coordinates ri and θi in Equations 20
and 21.

ui = |~g| · σ2 · sin(θi)
2 − cos(θi)

2

r2i
(20)

vi = 2 · |~g| · σ2 · sin(θi) · cos(θi)
r2i

(21)
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Figure 19: Experimental set-up to test steady state behaviour of
a four agent swarm. Flight paths of agents are shown in black,
global field shown in light grey.
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Figure 20: Experimental set-up to test sustained motion of a
four agent swarm. Flight paths of agents are shown in black,
global field shown in light grey.

The flow-field is illustrated in Figure 18, where the flow travels
around the cylinder to continue undisturbed on its initial path
afterwards.

In order to incorporate this behaviour into the swarming
dynamics, such that agents are inclined to travel around each
other with a separation of σ instead of colliding head-on
and coming to a standstill, Equation 2 can be rewritten as
Equation 22. Where a flow doublet according to Equations 20
and 21 is added to the global field contribution ~g for every
neighbour i of the in-range neighbours N .

~g = f (Cxy, Pxy, t) +

N∑
i=1

[
ui

vi

]
(22)

Important to note is that the contribution of the flow doublets
is added to the global contribution before calculating the
oscillation prevention coefficient gcoef . Therefore Equations 18
and 19 in Section V.V-A consider the contribution of the global
field including flow doublets.

Effectively Equation 19 can be rewritten to the form of
Equation 23 to show all contributions to the desired agent
velocity ~u.

~u = gcoef

(
f (Cxy, Pxy, t) +

N∑
i=1

[
ui

vi

])
+~l + ~d (23)

VI. EXPERIMENTS WITH VELOCITY TEMPLATES FOR
DENSE SWARMS OF FLYING ROBOTS

To test the improvements the Velocity Template method
makes to the SSF approach, the indoor experiments conducted
with the SSF are also conducted for the Velocity Template
method.

Additionally outdoor experiments are conducted to assess
the scalability of the approach using up to 20 agents.

A. Indoor experiments

This section will discuss the experimental results for the
Velocity Templates method and will compare the results with
those from the SSF experiments. Section IV explains each
experiment in more detail.

Experiment 1 - Group steady state behaviour: Figure 19
shows the flight-path of all four agents during the group steady
state experiment using Velocity Templates. Most notable when
comparing this figure to Figure 13 is the reduction of the
oscillating motion clearly observable in the flight-paths of the
SSF experiment.

The difference can also be noticed in total body x-axis
displacement which was on average 37.2 m of which 17.0 m
backwards compared to 143.1 m and 69.7 m backwards for the
SSF experiment.

The agents also seem to move around more across the area
when compared to the SSF experiment, caused by the lateral
motion introduced by the addition of flow doublets. This makes
agents rotate around the circumference of the formed lattice,
allowing them to find lower energy positions.

The ideal steady state would show limited oscillating
movement whilst the deviation of the configuration of agents
from a perfect lattice is minimal.

A clear comparison can be made by comparing the body x-
axis velocities of the agents, which provide an indication of
the degree of longitudinal oscillations. Figure 21 shows the
body x-axis velocities of all agents for both the SSF (blue)
and Velocity Templates (red) experiments.

Evident is that the degree of longitudinal oscillations is
much lower than for the SSF, a absolute average longitudinal
velocity of 0.10 m/s compared to 0.27 m/s for SSF.

Experiment 2 - Group sustained motion: Figure 20 shows
the flight-paths of all four agents during the group sustained
motion experiment for the Velocity Template method. Most
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Figure 21: Body x-axis velocity for all agents during group
steady state experiment for both Scalable Shape Formation
(blue) and Velocity Templates (red). 30 Second time span used
for visual clarity.
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Figure 22: Body x-axis distance travelled for all agents during
group sustained motion experiment for both Scalable Shape
Formation (blue) and Velocity Templates (red).

notable when compared to Figure 14, the flight-path of the
same experiment for the SSF approach, is the increase in
effective template circle radius R. Additionally the sawtooth
like circumference of the flight-paths in Figure 14 are not
present in Figure 20.

The increase in circle radius is due to the outwards lateral
velocity introduced by the added flow doublets, which
enlarges the effective circle radius instead of causing the
traffic jam like longitudinal oscillations observed during the
SSF experiment.

In order to objectively compare between the SSF and Velocity
Template experiments the mean and standard deviation of the
velocity in body x-axis direction as well as the integrated body
x-axis distance are measured.

The mean and standard deviation of the body x-axis ve-
locity, expressed as µ ± σ, would ideally be large and small
respectively indicating fast and constant sustained motion.

The SSF experiment velocity 0.36± 0.26m/s is lower than
that of the Velocity Template experiment 0.43± 0.26m/s with
almost identical standard deviation.

The implications of the mean velocity difference is best
visualised by Figure 22, showing the integrated body x-axis
velocity or longitudinal distance travelled for both the SSF
(blue) and Velocity Template (red) experiments. The higher
mean velocity results in nearly 40m more being travelled by
the Velocity Template swarm on average.

Another measure of continuity is the total distance travelled
backwards in the body x-axis, which is on average 13.32m
for the SSF experiment and only 2.30m on average for the
Velocity Template experiment.

Experiment 3 - Oscillations: The flight-path of the dynamic
agent and the location of the static agent for the oscillation
experiment using the Velocity Template method can be seen
in Figure 23. When comparing the flight-path to that of the

same experiment using the SSF approach, shown in Figure 15,
a very noticeable reduction in oscillations can be observed.

Additionally more lateral movement can be seen, this
is caused by the addition of the flow doublets. The lateral
motion causes the agent to search rotationally for the lowest
energy position it can obtain.

A comparison between the achieved separation distance for
both experiments, and the ideal separation distance of σ =
1.5m, is shown in Figure 25.

Most notable is the relatively large reduction in amplitude
of the separation oscillations between the SSF (blue) and the
Velocity Template method (red).

Whereas the mean separation for the SSF is similar to
that of the Velocity Template experiment, 1.65 m and 1.63 m
respectively, for the timespan shown in Figure 25, the standard
deviations for the SSF experiment is nearly four times as large,
0.399m versus 0.105 m respectively.

The decrease in oscillations, illustrated by the decrease in
separation standard deviation, besides allowing the size of the
swarm to be increased also allows for the separation between
agents to be decreased.

The separation distance could be decreased due to the fact
that the minimum expected separation with a 99% confidence
interval, given by µ − 2 · σ, which increases from 0.85 m for
the SSF approach to 1.42 m for the Velocity Template method.

Experiment 4 - Conflicts: Figure 24 shows the flight-paths
for both agents during the conflict resolution experiment.
When comparing the flight-paths to those of the SSF
experiment, shown in Figure 16, most notably is the transition
of the saw-tooth like circumference, seen in the SSF
experiment, into a much smoother circumference for the
Velocity Template experiment.

To be able to objectively compare both experiments the total
travelled distance in body x-axis is measured as well as the
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Figure 23: Experimental set-up to test residual oscillations. A
static agent is positioned in the centre, flight path of dynamic
agent indicated in black. Global field shown in light grey.
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Figure 24: Experimental set-up to test conflict resolution be-
tween conflicting global fields. Halves of two circular fields are
shown, one clockwise (light blue) the other counter-clockwise
(light red). Flight paths of agents guided by the fields are
indicated in blue and red respectively.

total distance travelled backwards in body x-axis. In the ideal
scenario no distance would be travelled backwards, and the
total average distance would be maximal.

The total average distance travelled in body x-axis increases
from 57.9 m to 87.6 m when changing from the SSF to
Velocity Template approach respectively. Additionally the
total distance travelled backwards sees a major decrease from
63.7 m for the SSF to only 7.5 m for the Velocity Template
experiment.

Figure 26 shows the flight-path for a typical conflict resolution
using the SSF (left) and Velocity Template method (right).

Very noticeable is the saw-tooth like flight-path, typical of
the longitudinal oscillations from the SSF approach, when
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Figure 25: Seperation distance between static and dynamic
agent during oscillations experiment for both Scalable Shape
Formation (blue) and Velocity Templates (red). 60 Second
timespan chosen for visual clarity.

compared to the much smoother flight-path of the Velocity
Template resolution, where both agent travel around each other.

B. Outdoor experiments
After successful indoor testing, showing the reduction in

oscillations and enhanced conflict resolution performance, the
scalability of the approach has yet to be demonstrated. In order
to do so outdoor experiments using up to 15 agents are being
prepared.

Besides demonstrating the scalability of the swarm, the test
will also assess outdoor performance and the robustness of
the vision pipeline in a real-world environment.

The final article will include the results of the outdoor
experiments.
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Figure 26: Flight-path of typical conflict resolution for both
clockwise agent (blue) and counter-clockwise agent (red) dur-
ing conflict resolution experiment, shown for both Scalable
Shape Formation (left) and Velocity Templates (right). The
timespans are chosen such that only a single resolution is
visible.
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VII. CONCLUSION

A novel approach to decentralised swarming for swarms of
flying robots dubbed ”Velocity Templates” is proposed. The
new approach extends the scalable shape formation (SSF) for
pico satellites approach proposed by Pinciroli et al. [19]. The
extensions are introduced in order to reduce oscillations and
enhance conflict resolution performance.

Indoor flight tests were conducted in order to demonstrate
the effectiveness of the approach. A comparison is made
between results from SSF and Velocity Template experiments,
resulting in much improved oscillatory and conflict resolution
behaviour and showing an increased adherence to the desired
velocity template.

We are currently working towards outdoor experiments with
the velocity template approach. We will include the corre-
sponding results - featuring a larger number of drones - in
the next version of the article.
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1
Introduction

Anyone who has ever gazed at a flock of passing starlings must have wondered what and why each
and every individual bird contributes to the flock. For decades the complex emergent behaviour and
deceivingly simple agent-level control of flocks and schools have intrigued biologists and engineers
alike[1–3].

Using modern techniques and equipment, much of the mysteries surrounding flocks, herds and
schools have been unravelled[4–7]. However, whilst swarms of micro aerial vehicles (MAVs) provide
possibilities no single agents can offer, they are not yet part of our technological landscape.

In the past three decades many studies have focused on simulating swarming agents with particular
control and studying their emergent behaviour and dynamics [5, 8–10]. However, only few of these
studies have considered decentralised swarms and the feasibility of realistically implementing these
techniques using currently available technology [11].

Whilst centralised swarming behaviour has been successfully implemented on small scales, distributed
swarming remains a challenging area[12–14]. In order to achieve a practically scalable and environ-
ment independent swarm it should possess distributed autonomous behaviour.

The objective of this literature research report is to determine a set of feasible technological require-
ments for a set of micro aerial vehicles (MAVs) and appropriate control dynamics. These should enable
the MAVs to swarm autonomously in a decentralised fashion amongst homogeneous agents. The re-
quirements and control dynamics will be based upon the available literature in this area.

The report will start with the benefits and possible applications of MAV swarms in chapter 2. Then
chapter 3 focusses on historic attempts at swarming and multi-agent colaboration.

Chapter 6 gives a review of the definitions of swarming and the project’s requirements, after which
swarming algorithms and control laws of both aerial and space vehicles, proposed in existing scientific
literature, are described and compared.

Chapter 7 will examine existing implementations, found in literature, of autonomous MAVs with
the ability to detect other, homogeneous, agents. The ability to sense neighbours, and to accurately
measure the distance, is of critical importance for the MAVs since the swarming strategies rely heavily
on this ability and accurate measurements.

Chapter 8 will showcase the characteristics and on-board technology of the platform and existing
literature available for the chosen demonstration platform, the Parrot Bebop drone.

The thesis which will be based on this literature research has as objective to develop an approach
to achieve large (ideally ~200 agents, 20 for demonstration purposes) stable real-life decentralised
swarm. The report will conclude with a roadmap on how to achieve these goals in chapter 9.
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2
Purpose of swarms?

Swarming is useful for approaches where the cost and/or complexity of a single agent possessing all
required functions is outweighed by that of multiple co-operating agents able to achieve the same
functions or when the operations of a single agent are so operation critical a redundant multi-agent
approach is more successful.

According to Parunak, who carried out studies to evaluate the use of swarming for military applications,
swarming is appropriate for a problem that has four main characteristics[15]:

• Diverse – It can integrate diverse functions, handle information of diverse kinds concerning
diverse entities originating from diverse sources.

• Distributed – Due to local interactions agent need only communicate with neighbours. The
swarm itself can form a communication network. The information considered has a strong geo-
graphical component and is most relevant to the closest agents.

• Decentralised – Centralised control can causes choke points that impede system operations.
Additionally, time delay due to remote control can be unacceptable in rapidly changing scenarios
and a reduction in manpower cost of unmanned missions is necessary.

• Dynamic – The self-organising nature of swarms allow them to respond to an uncertain and
rapidly changing environment even using imperfect knowledge.

Additionally, the application of the swarm has to be practical. This emphasises that the behaviour of the
swarm is justifiable. Some forms of self-organisation, such as oscillations and riots might be interesting
for research but undesirable in the current application.

Several applications for the deployment of MAV swarms have been discussed in literature, often with
the distinction between civil, military and space purposes. Some examples are given of each of these
categories[16–18]:

• Civil applications – Enhancing agricultural practices, police surveillance, pollution control, envi-
ronment monitoring, fighting fires, inspecting dams; pipelines or electric lines, video surveillance,
motion picture film work, cross border and harbour patrol, light cargo transportation, natural
disaster inspection, search and rescue.

• Military applications – military operations in urban terrain, building exploration, protect mil-
itary camps; convoys; industrial premises and/or other safety critical infrastructures, perimeter
monitoring, mine detection, search and capture.

• Space applications – Coordinated observation, planet exploration, on-orbit self-assembly of
solar panels; large antennas or large reflectors in space.
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3
Approaches at swarming

This chapter will lists the approaches taken up to date to achieve swarming/cooperative flight. The
approaches will be characterised according to several criteria: type of vehicle, number of agents, degree
of decentralisation, environment, (technologic) dependencies and the uniqueness of solution.

The chapter will progress chronologically through the attempts made in the past in order to sketch
the progress and achievements made in swarming flight. Figure 3.1 shows some examples of swarming
approaches.

• 2001 Welsby et al. – The first project exploring multi-agent systems in three dimensions was
conducted using 3 small controllable helium balloons. On-board relative infrared (IR) positioning
allowed for decentralised control in an indoor environment[19].

• 2011 Hauert et al. – The first approach to swarming using a larger group of 10 agents was
conducted using fixed wing drones. The drones incorporated reynolds flocking methodology and
used a global navigation satellite system (GNSS) in order to swarm decentralised outdoor[20].

• 2011 Bürkle et al. – The first extendible swarming platform and framework adapted from
commercially available quadcopters. Using 5 quadcopters equipped with a GNSS and a centralised
integrating ground control station outdoor swarming was achieved outdoor[18].

• 2011 Hoffmann et al. – Another testbed developed in order to experiment with quadrotor
swarming. The approach includes the complex vehicle dynamics of the quadrotors. Experiments
included only 3 agents and a centralised ground station, extended with either GNSS or an over-
head camera when flying outdoor and indoor respectively[21].

• 2012 Kushleyev et al. – An indoor swarming approach using 20 micro-quadrotos, a VICON
camera system and a centralised ground station. The positioning precision is very accurate yet
heavily reliable on the external sensors[13].

• 2012 Turpin et al. – Using an indoor VICON system, a centralised ground station and using
micro-quadrotors formation flight is achieved. The swarm of only 4 agents is able to change
formations, such as a straight line or a square, rapidly[22].

• 2012 Stirling et al. – The first approach to use only on-board relative sensing on quadrotors.
Using two agents fixed to a ferromagnetic ceiling, a third agent is able to position itself relatively
to the others. The approach is truly decentralised. However, using only a single flying agent[23].

• 2013 Quintero et al. – Using a flock of 3 fixed-wing UAVs, a GNSS and a centralised ground
control station this approach demonstrates distributed sensing. The resulting sensor network is
less sensitive to sensor errors or faults[24].

• 2014 Vasarhelyi et al. – Using 10 quadrotors and a GNSS this decentralised approach relies
only on on-board sensing and satellite signals. The swarm is optimised to cope with large inner
and outer errors such as noise, delays and communication range[25].
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6 3. Approaches at swarming

• 2014 Rubenstein et al. – Although not a three dimensional swarm, this project is included
due to its large number of agents. Using a swarm of 1024 2D agents arbitrary shapes can be
constructed by following the swarm contour[26].

(a) Source: Hauert et al.[20] (b) Source: Hoffmann et al.[21]

(c) Source: Kushleyev et al.[27] (d) Source: Turpin et al.[22]

(e) Source: Vásárhelyi et al.[25] (f) Source: Rubenstein et al.[26]

Figure 3.1: Illustrations and images of approaches to swarming.
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Swarm taxonomy

The emergence of complex characteristics in large groups of agents could arguably only be a trick of
our own perception. This discussion is not particular to swarming MAVs but a philosophical debate on
the existence of emergence spanning at least the past 150 years[28]. A good, but general, definition
of emergence is given in definition 1 [29].

A second term, often encountered when analysing global behaviours of distributed systems, is self-
organisation. The term self-organisation was originally found in the context of chemistry to describe
global effects arising from interactions on the microscopic or particle level[4]. Bonabeau et al. later
extended the concept to social insects and artificial systems and defined it as in definition 2[30].

Swarming-intelligence, another important definition, was originally used only in the context of cel-
lular robotics[31], but was later extended by Bonabeau et al. to definition 3 [30].

Definition 1 Emergence
Properties of a complex physical system are emergent just in case they are neither (i) properties had
by any parts of the system taken in isolation nor (ii) resultant of a mere summation of properties of
parts of the system.

Definition 2 Self-organization
A set of dynamical mechanisms whereby structures appear at the global level of a system from inter-
actions among its lower-level components. It relies on four basic ingredients: (i) positive feedback, (ii)
negative feedback, (iii) amplification of fluctuation and (iv) reliance on multiple interactions.

Definition 3 Swarming Intelligence
Any attempt to design algorithms or distributed problem-solving devices inspired by the collective
behaviour of social insect colonies and other animal societies.

These definitions, though helpful in understanding the governing concepts, do not define any particular
swarm characteristic. In order to classify how a swarm can be structured Dudek et al. proposed a more
exhaustive taxonomy for swarm robots and their characteristics[32].

The taxonomy proposed in 1993 organises the variety of possible swarm designs along a set of taxo-
nomic axes[32]. The purpose of the taxonomy, as described by Dudek et al., is to ”clarify the strengths,
constraints and tradeoffs of various designs, and also to highlight various design alternatives”. Table
4.1 lists and describes these taxonomic axes. Each of these axes have key sample points used in the
characterisation of swarms. The rest of this chapter focusses on explaining these key sample points.
In chapter 5 the taxonomy is used to express the project requirements.

Collective size:
ALONE – 1 robot. The swarmless swarm.
PAIR – 2 robots. The simplest group.
LIM-GROUP – Multiple robots. The number 𝑛 is small relative to the size of the task/environment.
INF-GROUP – 𝑛 >> 1 robots. There is effectively an infinite number of robots.

7



8 4. Swarm taxonomy

Table 4.1: Summary of the taxonomic axes. Source: Dudek et al. 1996[33]

Axis Description
Collective size The number of autonomous agents in the collective.
Communication range The maximum distance between two elements of the collective

such that communication is still possible.
Communication topology Of the robots within the communication range, those which can be

communicated with.
Communication bandwidth How much information elements of the collective can transmit to

each other.
Collective reconfigurability The rate at which the organisation of the collective can be modified.
Processing ability The computational model used by the elements of the collective.
Collective composition Are the elements of the collective homogeneous or heterogeneous.

Communication range:
COM-NONE – Robots can not communicate with other robots directly.
COM-NEAR – Robots can only communicate with other robots which are sufficiently nearby.
COM-INF – Robots can communicate with any other robots.

Communication topology:
TOP-BROAD – Broadcast. Every robot can only communicate with all of the other robots.
TOP-ADD – Address. Every robot can communicate with any other robot by name or address.
TOP-TREE – Robots are linked in a tree and may only communicate through this hierarchy.
TOP-GRAPH – Robots are linked in a general graph.

Communication bandwidth:
BAND-HIGH – Communication is (essentially) free.
BAND-MOTION – Communication costs similar to the cost of moving the robot.
BAND-LOW – Communication costs much more than the cost of moving the robot.
BAND-ZERO – No communication. Robots are unable to sense each other.

Collective reconfigurability:
ARR-STATIC – The topology is fixed.
ARR-COM – Coordinated. Re-arrangement with members that communicate.
ARR-DYN – Dynamic. The relationship of members of the swarm can change arbitrarily.

processing ability:
PROC-SUM – Non-linear summation unit.
PROC-FSA – Finite state automaton.
PROC-PDA – Push-down automaton.
PROC-TME – Turing machine equivalent.

Collective composition:
HOMOGENEOUS – Made up of units all with the same characteristics.
HETROGENEOUS – Robots differentiated by programming or behaviour.



5
Project requirements

Chapter 4 proposed a common taxonomy to describe various aspects of swarms. This section will focus
on how to apply this taxonomy to the current project and what requirements can be constructed.

The ultimate purpose of this project is to facilitate a scalable approach to decentralised and autonomous
swarming. Where scalable refers to ideally hundreds of drones, as demonstrated by Intel in order to
break the Guinness world record for most drones airborne simultaneously, broken early in 2016[34].

In order to truly decentralise the swarm two requirements will have to be imposed on the project.
The first requirement is to minimise agent-to-agent communication. This requirement aids in the

scalability of the project, since it removes the need for ever increasing inter-agent communication
bandwidth, leads to the swarm obtaining a decentralised character and eliminates the need for a
complex central command. The first requirement stimulates a vision based method for neighbour
detection since digital communication between agents is penalized.

The second requirement is to minimise the three-dimensional volume occupied by the swarm. In
other words: the inter-agent distances should be minimised, ideally to 1 metre, whilst retaining col-
lective stability. This objective is added in order to challenge the control strategy and commercially
available technology and assesses the currently feasible minimum inter-agent distance. Minimising the
inter-agent distance is very important when considering: indoor flight, swarm visibility, footprint or
signal coverage.

In order to omit inter-agent communication, but allow for accurate collective position tracking, use will
be made of a real time kinematic (RTK) differential global navigation satellite system (DGNSS). The
RTK DGNSS, further explained in section 8.2.1, transmits from a ground station to all in range agents
and enhances their onboard GPS signal. The addition of RTK DGNSS technology facilitates both the
first and second requirements.

When considering the swarm taxonomy, discussed in chapter 4, the desired swarm of agents should
be classified as:

• INF-GROUP – Due to the requirement for scalability effectively an infinite number of agents
should be able to join.

• COM-NEAR – The range of communication, which includes visual cues used for neighbour sens-
ing, is limited yet nonzero.

• TOP-TREE – The communication hierarchy tree allows the agents to communicate with a ground-
station, to allow for tracking, yet discourages inter-agent communication.

• BAND-LOW – Communication between agents is discouraged, thus the bandwidth is low and
ideally zero.

• ARR-DYN – The swarm has to configure itself autonomously thus there exists no fixed topology.

9



10 5. Project requirements

• PROC-TME – The on-board processing of our platform is turing machine equivalent.

• HOMOGENEOUS – The composition of the swarm will be consisting of only identical agents.



6
Swarming control theory

The dynamic patterns and apparent complexity of a flock of birds is truly a beautiful sight to behold.
Whether concerning flocks, herds, schools or colonies, the overall construct seems agile, fluid and syn-
chronised whilst each individual agent exhibits only simple behaviours [1, 3, 35]. The characteristics
of these groups, as discussed in chapter 4, emerge only as a collective behaviour.

This chapter focusses on different techniques researchers have proposed as methods to achieve swarm-
ing. Each strategy is explained in detail and concluded with an overview of its strengths and weak-
nesses. At the end of this chapter the different algorithms are compared and the most feasible set is
selected for further study.

6.1. Reynolds flocking model
Swarming behaviour in animals has been studied throughout the second half of the twentieth century[1,
3]. However, research in the field did not gain true attention until it was used by Reynolds for animation
purposes [5]. Since manually scripting bird trajectories for animations did not look natural, Reynolds
decided to govern his animated boids autonomously1.

In order to make realistic computer-animations of bird flocks, Reynolds determined three simple
behaviours every boid should adhere in order to achieve robust realistic flocking[5]. These behaviours
are defined in this section in order of decreasing precedence and lay the groundwork for flocking
dynamics.

• Collision avoidance – Avoid collisions with neighbouring boids by negatively summing their
relative position vectors. This behaviour is illustrated in figure 6.1a.

• Velocity matching – Match velocity, heading and speed, to neighbouring boids. Can be inter-
preted as a predictive version of collision avoidance and is illustrated in figure 6.1b.

• Flock centering – Move toward the locally perceived centre of neighbouring boids. This causes
boids on the boundary of the flock to steer towards the centre and is illustrated in figure 6.1c.

Each of these behaviours return a desired acceleration consisting of a normalised 3D vector and a
unit interval strength which indicates the emphasis of the acceleration requests. The strength factor is
taken inversely proportional to the exponential of the distance to the relevant neighbouring boid. It is
then up to the navigation module to collect all requests and determine the appropriate response, after
which the pilot module instructs the flight model to fly the selected course.

Due to each boid only considering the states of nearby boids, the flock obtains a decentralised
characteristic.

In order to combine behaviours, Reynolds proposes either a weighted average or prioritised accelera-
tion allocation. The latter considers that acceleration is a limited resource for the boid and distributes
1Reynolds refers to simulated bird-like objects generically as ’boids’ even when they represent other sorts of creatures
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12 6. Swarming control theory

(a) Collision avoidance (b) Velocity matching (c) Flock centering

Figure 6.1: Basic behaviours governing Reynolds flocking boids. Source: Park, 2003[10]

available capacity in order of priority. This approach is used to counter the indecision which can be
encountered when using a weighted average approach, due to the potential of behaviours averaging
each other out.

Reynolds made two extensions to his flocking model in order to gain direct control over the flock. The
first extension considers a migratory urge. All boids have a globally preferred direction or position to
which it will incrementally turn.

The second extension is environmental collision avoidance, either in the form of a repulsive force
field or a steer-to-avoid model. The latter, which detects obstacles in the direction of flight and steers
towards a body length beyond the boundary of the object, is a better resemblance of a bird guided by
vision.

Although Reynolds included these extensions mainly to control his animations and make them more
interactive with the environment, they are potentially desired behaviours for a flock of MAVs.

6.2. Stigmergy & artificial pheromones
The term stigmergy was first introduced by French zoologist Grassé to explain the behaviour of termites[36].
It describes a mechanism in which individual work (Greek: ergon) is triggered through the use of
signs (Greek: stigmata) from the environment. For instance with termites, as a result of an action,
pheromones can be released into the environment which triggers a, possibly different, action in neigh-
bouring termites which sense the pheromone.

There are generally two types of stigmergy. Sign-based stigmergy involves the use of non-contributing
markers in the environment which influence the behaviour of sensing agents. This is a type of stig-
mergy used for instance to find the shortest path when termites are gathering food. The other type
is sematectonic stigmergy, this involves agents reacting to a physical change in the environment. This
can be found for instance in termite nest-building where the agents reacts to the structure of the nest
being built.

The stigmergy approach to multi-agent systems can also be applied digitally. Those digital pheromones
can be considered a variation of artificial potential functions[37]. Researchers have successfully applied
this approach, using digital pheromones, for finding information in networked environments[38].

Pheromones deployed by animals in the real world show three time-variant processes[39]:

• Aggregation – Deposits of multiple pheromones from multiple agents aggregate, fusing the
information.

• Evaporation – Pheromone strength decreases over time, allowing for adaptations of the envi-
ronment and the resolving of inconsistencies.

• Diffusion – Pheromones spread in time allowing access for nearby agents.
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In the past two decades researchers have started studying the use of digital pheromones for au-
tonomous coordination of multi agent systems[39, 40]. However, the current pain point is that in order
to have a physical implementation, these processes have to be maintained in the same de-centralised
and autonomous fashion as the swarm itself, imposing heavy requirements on the communication
bandwidth and communication topology of the swarm.

6.3. Swarming using artificial potential fields
A variation on digital pheromones, described in section 6.2, is the use of artificial potential fields. Ar-
tificial potential field are often used to conduct research in or simulations of swarms[17, 37, 41, 42].
This method uses fixed or mobile attraction and/or repulsion functions in order to create a potential
field along which individual agents can navigate. This section will focus on research done by Gazi and
Passino into the application of artificial potential functions for stable swarm aggregation[43–45].

In his work on artificial potential functions, Gazi considers the motion dynamics of each of the swarm
members as in equation 6.1[45].

𝑥̇። =
ፍ

∑
፣዆ኻ
።ጽ፣

𝑔(𝑥። − 𝑥፣) (6.1)

In equation 6.1 𝑥። represents the position vector of individual agent 𝑖 and 𝑔(⋅) is the attractive/repulsive
function governing the interaction between agents. The function 𝑔(⋅) can be considered as a function
consisting of an attractive 𝑔ፚ(⋅) and a repulsive part 𝑔፫(⋅) as shown in equation 6.2 where ‖𝑦‖ = √𝑦ፓ𝑦
is the Euclidian norm.

𝑔(𝑦) = −𝑦 [𝑔ፚ(‖𝑦‖) − 𝑔፫(‖𝑦‖)] (6.2)

The functions chosen to represent these attractive and repulsive parts are given in equation 6.3 and
6.4, resulting in the combined attractive/repulsive function in equation 6.5 where 𝑎, 𝑏 and 𝑐 are positive
constants satisfying 𝑏 > 𝑎[43].

𝑔ፚ(‖𝑦‖) = 𝑎 (6.3)

𝑔፫(‖𝑦‖) = 𝑏𝑒ዅ
‖ᑪ‖Ꮄ
ᑔ (6.4)

𝑔(𝑦) = −𝑦 [𝑎 − 𝑏𝑒ዅ
‖ᑪ‖Ꮄ
ᑔ ] (6.5)

When combining equation 6.1 and 6.5 the motion dynamics of agent 𝑖 can be rewritten as shown in
equation 6.6.

𝑥̇። =
ፍ

∑
፣዆ኻ
።ጽ፣

(𝑥፣ − 𝑥።) [𝑎 − 𝑏𝑒ዅ
‖ᑩᑚᎽᑩᑛ‖Ꮄ

ᑔ ] (6.6)

The motion dynamics can also be expressed in terms of the potential field, as shown in equation 6.7
where 𝐽(𝑥) is the artificial potential function describing the attractive and repulsive relationship between
all agents and 𝑥ፓ = [𝑥ፓኻ , … , 𝑥ፓፍ] is a vector containing all individual agents positions.

𝑥̇። = −∇፱ᑚ𝐽(𝑥) (6.7)

Using the the attractive/repulsive function given in equation 6.5 the artificial potential function can be
rewritten as in equation 6.8.



14 6. Swarming control theory

𝐽(𝑥) =
ፍዅኻ

∑
።዆ኻ

ፍ

∑
፣዆።ዄኻ

[𝐽ፚ(‖𝑥። − 𝑥፣‖) − 𝐽፫(‖𝑥። − 𝑥፣‖)] =
ፍዅኻ

∑
።዆ኻ

ፍ

∑
፣዆።ዄኻ

𝐽ፚ፫(‖𝑥። − 𝑥፣‖)

=
ፍዅኻ

∑
።዆ኻ

ፍ

∑
፣዆።ዄኻ

[𝑎2‖𝑥። − 𝑥፣‖
ኼ + 𝑏𝑐2 𝑒

ዅ
‖ᑩᑚᎽᑩᑛ‖Ꮄ

ᑔ ] (6.8)

Gazi showed that using the artificial potential function of the type mentioned in equation 6.8 a set of
desirable results can be obtained summarised below.

• The swarm centre 𝑥̄ = ኻ/ፍ ∑ፍ።዆ኻ 𝑥። is stationary for all time.

• For any initial position 𝑥(0), as 𝑡 → ∞, 𝑥̇(𝑡) → 0 and the swarm converges to a constant configu-
ration.

• For 𝑔(⋅) as in equation 6.5 with linear attraction and bounded repulsion as 𝑡 progresses all agents
will converge to a hyperball: ‖𝑥። − 𝑥̄‖ ≤ 𝜖 where 𝜖 is dependant on the parameters of the
attractive/repulsive function in equation 6.5.

• The convergence to the hyperball occurs in finite time limited by:

𝑡̄ = max
።዆ኻ,…,ፍ

{− 1
2𝑎 ln (

𝜖ኼ
‖𝑥።(0) − 𝑥̄(0)‖ኼ

)} (6.9)

6.3.1. Formation control
An extension to the artificial potential field algorithm, discussed in section 6.3, is proposed by Gazi in
order to solve the multi-agent formation problem[45]. In this extension the control dynamics, described
by both equations6.6 and 6.7, consider pair dependant potentials.

Different pairs of agents can have different sets of attractive/repulsive and potential functions, pair-
wise denoted as 𝑔።,፣(⋅) and 𝐽ፚ፫ᑚ,ᑛ(⋅). A formation constraint is introduced such that a unique minimum
of 𝐽ፚ፫ᑚ,ᑛ(‖𝑥። − 𝑥፣‖) occurs at 𝑑።,፣ and ∇𝐽ፚ፫ᑚ,ᑛ(‖𝑥። − 𝑥፣‖) = 𝑔።,፣(𝑥። − 𝑥፣) = 0 when ‖𝑥። − 𝑥፣‖ = 𝑑።,፣.

6.3.2. Conclusion
The potential field method considered by Gazi is a straightforward approach to swarming. It includes
only attractive and repulsive components per agent and is not too computationally demanding or com-
plex. Additional desirable results shown by Gazi, summarised in section 6.3, cause the swarm to
converge to a hyperball around a stationary centre within finite time.

However, a disadvantage is that the movement of an individual agent is dependant on the respective
distances to all other agents, every agent is assumed to be able to detect all other agents.

An additional shortcoming, also identified by Gazi, is that the dynamics in equation 6.1 are not
correspondent to that of realistic agents[45].

Another difficulty is the direct relation between the initial swarm position 𝑥(0) and the final swarm
position 𝑥(∞) is not easily found, which makes it significantly harder to estimate the behaviour of the
swarm.

Although the configuration of the swarm can be controlled using the formation control strategy, dis-
cussed in section 6.3.1, the formation constraints have to be designed in such a way a unique minimum
occurs. The formation constraints thus fix specific agents to specific positions within the formation,
reducing the level of autonomy.

6.4. Equilibrium shaping
In this section another distributed flocking algorithm, proposed by Izzo and Petazzi, is presented which
was originally designed for the motion planning of satellite swarms[46, 47]. This algorithm extends
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earlier work done by Gazi and Passino, discussed in section 6.3, on preassigned formation flocking
using artificial potential fields[43, 45]. This extension by Izzo and Petazzi eliminates the requirement
to preassign positions in the formation for each agent, and thus solves the target assignment problem
autonomously.

The algorithm uses a dynamical system where the equilibria are permutations of all agents at all
the pre-defined target formation points. Using this system the agents are guided based on velocity
potentials.

The velocity potential field contains three distinct contributions: gathering, docking and avoidance.
A brief explanation and mathematical description of each of the three components, henceforth de-
scribed as behaviours, are given in this section.

• Gathering – This behaviour concerns global attractors for each of the 𝑁 points in the formation
so that a velocity field is generated around each point. The analytical expression for the 𝑖-th
agent can be written as in equation 6.10 where the function 𝜓ፆ is a non-linear dependency from
the target distance, and 𝜉፣ and x። are the formation point and agent location respectively.

Yፆፚ፭፡፞፫። =
ፍ

∑
፣
𝑐፣𝜓ፆ (‖𝜉፣ − x።‖) (𝜉፣ − x።) (6.10)

• Docking – The docking behaviour concerns local attractors towards each of the 𝑁 formation
points. The desired velocity component due to docking is only non-negligible in the vicinity of
the formation point. Equation 6.11 describes the analytical expression for the docking behaviour,
where the terms are comparable to equation 6.10 except 𝜓ፃ is a local function where the 𝑘ፃ
parameter determines the radius of influence of the formation point.

Yፃ፨፜፤። =
ፍ

∑
፣
𝑑፣𝜓ፃ (‖𝜉፣ − x።‖, 𝑘ፃ) (𝜉፣ − x።) (6.11)

• Avoidance – The avoidance behaviour establishes a repulsive velocity potential between different
agents in proximity of each other. The velocity component can be analytically described as in
equation 6.12, where the terms are comparable to equation 6.10 except 𝜓ፀ is a local function
and 𝑘ፀ determines its radius of influence comparable to a danger of collision radius. In order to
maintain symmetry between agents the parameter 𝑏 does not depend on a particular agent.

Yፀ፯፨።፝። =
ፍ

∑
፣
𝑏𝜓ፀ (‖x። − x፣‖, 𝑘ፀ) (x። − x፣) (6.12)

According to the analytical definitions of the three guiding behaviours, the desired velocity Y፝ for agent
𝑖 can be described as in equation 6.13.

Y፝ᑚ = Yፀ፯፨።፝። + Yፃ፨፜፤። + Yፆፚ፭፡፞፫። (6.13)

The system can now be summarised as in equation 6.14, where Y፝ = [Y፝Ꮃ , … , Y፝ᑅ], x = [xኻ, … , xፍ] and
࿽ = [𝑐፣ , 𝑑፣ , 𝑏]. The last vector in equation 6.14 contains the weighing parameters which have to be
chosen such that all defined formation points are equilibrium points.

ẋ = Y፝ = I (x, ࿽) (6.14)

In order to ensure all the defined formation points are equilibrium points, the relation in equation 6.15
has to be satisfied where x፞ = [𝜉ኻ, … , 𝜉ፍ]. Note that equation 6.15 is, by design, not dependant of
agent permutations since ࿽ is not dependant on any agent position.

I(x፞ , ࿽) = 0 (6.15)
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Izzo and Petazzi refer to equation 6.15 as the Equilibrium shaping formula since it determines the
values of ࿽ that shape the equilibria of the dynamical system described by equation 6.14[46]. When
expanding equation 6.14, using equation 6.12-6.14, a set of 𝑁 vectorial equations related to each
target position 𝜉። is obtained as in equation 6.16.

ፍ

∑
፣዆ኻ
።ጽ፣

{[𝑐፣𝜓ፆ(‖𝜉፣ − 𝜉።‖) + 𝑑፣𝜓ፃ(‖𝜉፣ − 𝜉።‖, 𝑘ፃ) − 𝑏𝜓ፀ(‖𝜉፣ − 𝜉።‖, 𝑘ፀ)] (𝜉፣ − 𝜉።)} = 0 (6.16)

When concidering 𝑏 as a parameter, equation 6.16 can be rewritten in the form of equation 6.17 where
matrix $ and vector J are dependant on the potential fields 𝜓ፆ , 𝜓ፃ , 𝜓ፀ and the chosen formation points
[𝜉ኻ, … , 𝜉ፍ].

$[𝑐ኻ, … , 𝑐ፍ , 𝑑ኻ, … , 𝑑ፍ]ፓ = J (6.17)

6.4.1. Formation control
Equation 6.17 has, for each formation and set of chosen parameters 𝑘ፃ and 𝑘ፀ, a set linear set of
equations in the 2𝑁 unknowns 𝑐፣ , 𝑑፣. This set of 3𝑁 equations in 2𝑁 unknowns has no solution in the
general case, so we must consider a linear dependancy in order to reduce the number of independent
vectorial equations. In order to do this we must create a punctual symmetry group of the target points,
denoted 𝐺,.

Whenever there exists a punctual symmetry in 𝐺 that maps point 𝜉። to point 𝜉፣ the corresponding
vectorial equations are linearly dependant when we set 𝑐። = 𝑐፣ and 𝑑። = 𝑑፣. Using this symmetry the
set of independent vectorial equations reduce to either an identity, a single or a double scalar equation
depending on wether more than one symmetry axis, a single symmetry axis or a symmetry plane passes
through the considered point respectively[46]. If no symmetry axis or plane passes through the point
it reduces to a set of three scalar equations. Figures 6.2a and 6.2b show visualisations of Bravais lat-
tices, which have high degrees of symmetry and to which these simplifications are especially applicable.

In the work of Izzo and Petazzi, the example of a hexagonal Bravais lattice is considered, illustrated in
figure 6.2a[46]. Two symmetry groups can be identified: the vertices and the hexagonal centres.

A symmetry plane passes through the vertices, resulting in two independent equations, and a sym-
metry axis passes through the hexagonal centres, resulting in a single independent equation. The
equilibrium shaping equation, given in equation 6.15, thus reduces to a set of only three independent
equations when 𝑐። = 𝑐፣ and 𝑑። = 𝑑፣ is set for all the point belonging to the same symmetry group.

When the number of equations is smaller than the number of unknown many solutions to the equilib-
rium equations exist. Every agent can have a ”subjective” view of the equilibrium conditions and there
is no need to synchronise the chosen solution since all options are equally valid.

When considering the case of regular solids, such as an icosahedron, where a symmetry axis passes
through every point and all points belong to the same symmetry group, the equilibrium shaping equa-
tion can be reduced to a single independent equations with two unknowns.

Using regular solids allow the equilibrium shaping formula, given in equation 6.16, to be rewritten
to equation 6.18 which describes the relation between weights 𝑐 and 𝑑 for any chosen parameter 𝑏.
The parameters ℓ and 𝑅 in equation 6.18 are the number of edges of the icosahedron and the radius
of the circle in which it can be inscribed respectively, ℎ and ℓᖣ are defined as in equations 6.19 and
6.20.

𝑐 = [5(𝑅 − ℎ)𝑒ዅ
ℓᎴ
ᑜᐸ + 5(𝑅 + ℎ)𝑒ዅ

ℓᖤᎴ
ᑜᐸ + 2𝑅𝑒ዅ

ᎴᑉᎴ
ᑜᐸ ] 𝑏

− [5(𝑅 − ℎ)𝑒ዅ
ℓᎴ
ᑜᐻ + 5(𝑅 + ℎ)𝑒ዅ

ℓᖤᎴ
ᑜᐻ + 2𝑅𝑒ዅ

ᎴᑉᎴ
ᑜᐻ ] 𝑑 (6.18)
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(a) Hexagonal Bravais lattice. (b) Some other possible Bravais lattices.

Figure 6.2: Visualizations of Bravais lattices. Source: Izzo and Petazzi[46]

ℎ = √𝑅 − ( 𝑙
2 sin(0.1𝜋))

ኼ
(6.19)

ℓᖣ = √(𝑅 + ℎ)ኼ + ( 𝑙
2 sin(0.1𝜋))

ኼ
(6.20)

Any choice of parameters 𝑏, 𝑐 and 𝑑, according to equation 6.18, leads to the dynamical system defined
in equation 6.21. In this example the function chosen for 𝜓 is the one proposed by Gazi[45] and Gazi
and Passino[43], also discussed in section 6.3 and which can be found in equation 6.5.

In order to decrease the computational load other choices for 𝜓(⋅) can also be used, for instance a
simple sine function as used by Large et al.[48].

ẋ። =
ፍ

∑
፣዆ኻ
[−𝑏𝑒ዅ

‖ᏴᑚᎽᏴᑛ‖Ꮄ
ᑜᐸ ] (x። − x፣) +

ፍ

∑
፣዆ኻ
[−𝑐 − 𝑑𝑒ዅ

‖ᒓᑚᎽᒓᑛ‖Ꮄ
ᑜᐻ ] (𝜉። − 𝜉፣) (6.21)

6.4.2. Conclusion
The equilibrium shaping approach considered by Izzo and Petazzi is, as mentioned earlier in this sec-
tion, an extension to the artificial potential field control method discussed in section 6.3. Whereas the
formation control strategy extension proposed by Gazi required every agent to have a pre-assigned
position in the formation, the work done by Izzo and Petazzi eliminates this requirement. Using three
global behaviours the agents are autonomously guided to the final formation.

Since they too use a behaviour based approach additional behaviours could relatively easily be added
to the control strategy of the agents. Also the ability to alter the used potential fields to match the
computational ability of the platform is a clear advantage to this control strategy.

A disadvantage, also described by Izzo and Petazzi, is that there exists a chance that an agent gets
stuck in an undesired equilibrium position. Although the final formation is an equilibrium point for the
system there is no guarantee that it is globally stable. However, there exist strategies to minimise the
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Figure 6.3: Overall control architecture for each agent. Source: Izzo, Simões and de Croon[49]

effect that this local minima problem has on the final configuration.

Since the chosen platform, discussed in chapter 8, does not have a 360∘ field of view it will pose a
challenge to measure the inter-agent distances in every direction. When the algorithm is considered in
a two dimensional environment these problem could be reduced and only a semi-sphere field of view
can be used.

6.5. Evolutionary Robotics shaping
The control strategy proposed by Izzo and Petazzi, discussed in section 6.4, was able to autonomously
solve the target assignment problem encountered in multi-agent shape formation. However, the pos-
sible configurations were limited to symmetrical shapes.

In an extension to his earlier work Izzo, in cooperation with Simões and de Croon, developed an
approach using evolutionary robotics (ER) techniques[49]. The ER approach allows for more flexibility
with respect to task allocation, and enables the formation of asymmetrical triangles.

Although the technique by Izzo, Simões and de Croon was developed for the MIT SPHERES robotic
platform aboard the international space station, it can be extended straightforwardly to formation flight
of MAVs[50].

6.5.1. Formation acquisition task
Consider a virtual structure, defined by frame F ∗ located in point 𝑂∗ consisting of 𝑁 target vectors
⃗⃗𝜉። = F ∗ፓ𝜉።, defining the desired target geometry of a swarm of 𝑁 agents. Additionally 𝑁 sets of
possible target quaternions Q። define the allowed final orientations for each target position 𝜉።.

The formation acquisition task can then be defined for a group of 𝑁 agents in randomised initial
positions as constructing the before mentioned virtual structure.

6.5.2. Agent control architecture
Since the work by Izzo, Simões and de Croon considers satellites, where preventing a ”lost in space”
situation is critical, they assume the 𝑖-th agent is able to detect all other agents in the formation and
estimate their respective relative position ⃗⃗x።፣ = ⃗⃗x፣ − ⃗⃗x።.

A second assumption, proven to be valid by Izzo and Petazzi, is that agents do not sense velocity
components. Although velocity information is useful in action planning, it is not necessary for the for-
mation acquisition task.

Based on the information perceived by the 𝑖-th agent the velocities 𝑣። and 𝜔።, leading to the desired
formation behaviour , are determined using two different artificial neural networks N፭ and N፫.

Subsequently, the desired velocities are translated by a control layer into control inputs 𝑢። and 𝑀።.
A schematic view of the controller architecture is given in figure 6.3.
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6.5.3. The artificial neural networks
Two different artificial neural networks are used for each agent. The first network, N፭, controls the
translational kinematics by translating the perceived relative positions of all other agents into desired
velocities 𝑣፝ᑩ , 𝑣፝ᑪ and 𝑣፝ᑫ . The second network, N፫, controls the rotational kinematics by translating
a final target orientation into desired angular velocity 𝜔፝ in body coordinates.

When considering only three agents the desired translational and rotational velocities can be sum-
marised as Y፝ = N፭(Uኻ, Uኼ) and 𝜔፝ = N፫(n).

Using denotations 𝑁።,𝑁፨ and 𝑁፡ for the number of input, output and hidden neurons respectively
and ,, K, 2 for the values of the input, hidden and output neurons; equations 6.22 and 6.23 detail
the workings of the selected networks. Where 𝑤፤፣ and 𝑤ᖣ፤፣ indicate the network weights, 𝑏፤ and 𝑏ᖣ፤
the network biases and 𝜎(𝑥) = 1/(1 + 𝑒ዅ፱) the sigmoid activation function. The output domain is
transformed linearly from the domain [0, 1] to [𝑂፦ , 𝑂ፌ] using 𝑂፤ = 𝑂፦ + 𝑂̂፤(𝑂ፌ − 𝑂፦).

ℎ፤ = 𝜎(𝑏፤ +
ፍᑚ
∑
፣዆ኻ
𝐼፣𝑤፤፣) 𝑘 = 1,… ,𝑁፡ (6.22)

𝑂̂፤ = 𝜎(𝑏ᖣ፤ +
ፍᑚ
∑
፣዆ኻ
ℎ፣𝑤ᖣ፤፣) 𝑘 = 1,… ,𝑁፨ (6.23)

The translational kinematics network N፭
The neural network N፭, in charge of desired velocity Y፝, is designed using three requirements:

1. Avoid disorientation effects by relating to a common absolute frame.

2. Be invariant to agent permutations.

3. Allow for micrometre precision in the final formation maintenance.

In order to prevent disorientation, the absolute cartesian components of the relative position vectors
Uኻ and Uኼ are used. The sum of Uኻ and Uኼ is input to the network, which is equivalent to inputting the
vectors separately and forcing the output’s invariance over satellite permutations. In order to achieve
micrometer precision an additional, redundant, input is added: 𝑑ኻ+𝑑ኼ = |Uኻ|+ |Uኼ|. An output domain
of [𝑂፦ = −0.3, 𝑂ፌ = 0.3] is considered, relating to the minimum and maximum output velocities.

The resulting artificial neural network has 𝑁። = 4, 𝑁፡ = 10, 𝑁፨ = 3 corresponding to (𝑁።+𝑁፨)𝑁፡ = 70
network weights and 𝑁፡ + 𝑁፨ = 13 network biases. A graphic representation of the network N፭ is
given in figure 6.4a.

The rotational kinematics network N፫
The neural network N፫, in charge of desired rotational velocity 𝜔፝, is asked to keep the agents’ 𝑧-axis
aligned perpendicular to the formation plane. Thus, the input to the network is the target unit vector
ñ = & ፫ᑚᑛ×፫ᑚᑜ

|፫ᑚᑛ×፫ᑚᑜ| , where & = F።F
ፓ is the relation between the absolute and the agent body frame. An

output domain of [𝑂፦ = −0.3, 𝑂ፌ = 0.3] is considered, relating to the minimum and maximum output
angular velocities.

The resulting artificial neural network has 𝑁። = 3, 𝑁፡ = 2, 𝑁፨ = 2 corresponding to (𝑁። +𝑁፨)𝑁፡ = 10
network weights and 𝑁፡+𝑁፨ = 4 network biases. A graphic representation of the network N፫ is given
in figure 6.4b.

6.5.4. Evolution of the neural networks
To design the network weights and biases of the networks N፭ and N፫, defined in section 6.5.3, the
ER technique is used. Analogous to biological evolution the artificial neural networks are encoded in
chromosomes § = [Z, E] containing their respective weights and biases. Simulations evaluating such
neural network provide a measure of quality through a fitness function which drives an evolutionary
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(a) Artificial neural network defining the transla-
tional kinematics.

(b) Artificial neural network defining the rotational
kinematics.

Figure 6.4: The artifical neural networks Nᑥ (a) and Nᑣ (b). Source: Izzo, Simões and de Croon[49]

algorithm, interbreeding the best chromosomes in order to optimise the neural network performance.
In the case of Izzo, Simões and de Croon a Particle Swarm Optimiser was selected.

Fitness evaluation for N፭
In order to compare the performance of the different N፭ networks a fitness function is used. First the
agent dynamics are simulated integrating equations 6.24 - 6.26, where desired velocities are assumed
to be actuated perfectly and randomised initial positions are used. Subsequently, at time 𝑡 = 𝑇, the
performance of the network is evaluated based on the deviation from the desired formation and residual
velocity, as described by equation 6.27. Where 𝑙ኻ, 𝑙ኼ, 𝑙ኽ are sorted values of the three inter-agent
distances and 𝐿ኻ, 𝐿ኼ, 𝐿ኽ the sorted values of the targeted triangle sides.

ẋኻ = N፭(xኼ − xኻ, xኽ − xኻ) (6.24)
ẋኼ = N፭(xኽ − xኼ, xኻ − xኼ) (6.25)
ẋኽ = N፭(xኻ − xኽ, xኼ − xኽ) (6.26)

𝑓፭ = (𝐿ኼኻ − 𝑙ኼኻ)ኼ + (𝐿ኼኼ − 𝑙ኼኼ)ኼ + (𝐿ኼኽ − 𝑙ኼኽ)ኼ + |𝑣ኼኻ | + |𝑣ኼኼ | + |𝑣ኼኽ | (6.27)

Fitness evaluation for N፫
Similarly to the evaluation of the translational network, the different N፫ networks are evaluated using
a fitness function. The agent dynamics are simulated integrating equation 6.28, where 4 defines the
quaternion kinematics similar to the work by Hughes and using randomly generated unit quaternions
according to the procedure described by Shoemake[51, 52], and subsequently evaluated at time 𝑡 = 𝑇
using the fitness function given in equation 6.29.

Ṫ = 4𝜔̃፝ = 4 [N፫(&n)
0 ] (6.28)

𝑓፫ = acos (𝑏̂ኽ ⋅ 𝑛̂) (6.29)

6.5.5. Conclusion
The ER approach discussed in this section is an extension of the equilibrium shaping method by Izzo and
Petazzi discussed in section 6.4. Whereas the equilibrium shaping method can only autonomously solve
the target assignment problem for symmetrical shapes, the ER approach proposed by Izzo, Simões and
de Croon solves this problem even for asymmetrical shapes.

Using the ER approach they have achieved automated asymmetrical formation flight. Using evo-
lution, artificial neural networks were obtained capable of the position and attitude control of the agent.
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Even though micrometre and microradian precision were achieved in low ”reality gap” simulations,
the simulations were only conducted using three agents. As identified by Izzo, Simões and de Croon
themselves, their ER approach has to be redefined in order to extend it to larger groups of agents and
further investigation into achievable formations is required.

Additionally, the efficiency of the variable step numerical integrator, which allowed fast evolution
using large populations, might deteriorate when considering larger groups of agents.

Computational requirements are also expected to rise drastically when using larger swarms. This could
cause the neural networks to run slower than required aboard the MAVs. Also, since the neural net-
works require extensive training in order to solve the target assignment problem, the flexibility of the
swarm could be compromised.

The ER approach, although promising, seems to be restricted mainly by computation power and the
uncertainty when considering larger groups of agents. Whilst the approach itself is quite straightfor-
ward, the knowledge developed in the neural networks is black-box and therefore extensions to the
method might prove difficult.

6.6. Alpha-lattice: collective potential flocking
In this section a theoretical framework by Olfati-Saber for a distributed flocking algorithms is explained
[53]. First the underlying graph theory is explained and defined and later a flocking algorithm is pre-
sented which forms swarms into 𝛼-lattices.

Olfati-Saber proposes three different algorithms which incorporate Reynolds’ three behaviours covered
in section 6.1. The proposed algorithms achieve flocking excluding and including a migratory urge and
flocking including both a migratory urge and environmental collision avoidance[5].

Since the first algorithm, without a migratory urge, leads to regular separation of the flock, which
is not desired, this algorithm will not be considered. Additionally, including a migratory urge enables
the control of the flock.

The proposed form of collision avoidance, although excellent in simulation results, will be hard and
computationally costly to implement and will thus be omitted. Therefore sections thus focusses on the
flocking algorithm including only a migratory urge.

6.6.1. Topology: Graphs & Proximity nets
Consider a graph 𝐺 = (𝒱, ℰ) consisting of vertices 𝒱 = {1, 2...𝑛} and edges ℰ ⊆ {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝒱, 𝑗 ≠ 𝑖}.
Now |𝒱| and |ℰ| are respectively called the order and size of the graph.

The adjacency matrix 𝐴 = [𝑎።፣] of the graph is a matrix with elements satisfying 𝑎።፣ ≠ 0 ⟺ (𝑖, 𝑗) ∈ ℰ.

Now the set of neighbours of each node 𝑖 can be defined as in equation 6.30.

𝑁። = {𝑗 ∈ 𝒱 ∶ 𝑎።፣ ≠ 0} = {𝑗 ∈ 𝒱 ∶ (𝑖, 𝑗) ∈ ℰ} (6.30)

Let 𝑞። ∈ ℝ፦ denote the position of node 𝑖 for all 𝑖 ∈ 𝒱. The configuration of all nodes of the graph is
then defined by 𝑞 = col(𝑞ኻ, ..., 𝑞፧) ∈ 𝑄 = ℝ፦፧. The framework is a pair (𝐺, 𝑞) that consists of a graph
and the configuration of its nodes.

Now consider a group of agents with equations of motion as in equation 6.31.

{𝑞̇። = 𝑝።𝑝̇። = 𝑢።
where 𝑞። , 𝑝። , 𝑢። ∈ ℝ፦ and 𝑖 ∈ 𝒱 (6.31)

Let 𝑟 > 0 denote the interaction range between two agents. In this model a sphere with radius 𝑟
determines the set of spatial neighbours of agent 𝑖 denoted by equation 6.32.

𝑁። = {𝑗 ∈ 𝒱 ∶ ‖𝑞፣ − 𝑞።‖ < 𝑟} (6.32)

Given an interaction range 𝑟 > 0, a proximity net 𝐺(𝑞) = (𝒱, ℰ(𝑞)) can be defined by 𝒱 and the set of
edges as denoted in equation 6.33. The framework (𝐺(𝑞), 𝑞) is called a proximity structure.
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ℰ(𝑞) = {(𝑖, 𝑗) ∈ 𝒱 × 𝒱 ∶ ‖𝑞፣ − 𝑞።‖ < 𝑟, 𝑖 ≠ 𝑗} (6.33)

If the interaction range 𝑟 of all agents is identical the proximity net 𝐺(𝑞) becomes an undirected
graph. The proximity net is generically a digraph under the assumption that every agent uses a conic
neighbourhood to determine its neighbours, as suggested by Reynolds[5]. The graphs considered by
Olfati-Saber are all bidirectional[53].

6.6.2. Geometry: alpha-Lattices
The structure used to model the desired configuration of the geometry of the flock is a lattice-type
structure. Ideally every agents would be equally distanced from all of its neighbours on a proximity
net. This can be described a the solutions of equation 6.34.

‖𝑞፣ − 𝑞።‖ = 𝑑 ∀𝑗 ∈ 𝑁።(𝑞) (6.34)

The solutions 𝑞 of the conditions in equation 6.34 are the desired formations of agents in a flock. Since
this geometric object appears throughout his paper, Olfati-Saber defines it as a lattice-type object as
in definition 4[53].

Definition 4 𝛼-Lattice
A configuration 𝑞 satisfying the set of constraints in equation 6.34. We refer to 𝑑 and 𝑘 = ፫/፝ as the
scale and ratio of the lattice, respectively.

Equation 6.35 describes conformations 𝑞ᖣ that are very close to an 𝛼-lattice and are referred to as quasi
𝛼-lattices.

− 𝛿 ≤ ‖𝑞፣ − 𝑞።‖ − 𝑑 ≤ 𝛿 ∀𝑗 ∈ 𝑁።(𝑞) (6.35)

6.6.3. Adjacency elements & collective potential functions
Since ‖𝑧‖ is not differentiable at 𝑧 = 0, we need to define a new norm. The nonnegative map called
a 𝜎-norm is defined as in equation 6.36, this new map ‖𝑧‖᎟ is differentiable everywhere. With a fixed
parameter 𝜖 > 0 and gradient 𝜎Ꭸ(𝑧) = ∇‖𝑧‖᎟ as given in equation 6.37.We can then use this property
to construct smooth collective potential functions for groups of nodes.

‖𝑧‖᎟ = ኻ/Ꭸ [√1 + 𝜖‖𝑧‖ኼ − 1] (6.36)

𝜎Ꭸ(𝑧) =
𝑧

√1 + 𝜖‖𝑧‖ኼ
= 𝑧
1 + 𝜖‖𝑧‖᎟

(6.37)

In order to construct smooth potential functions with finite cut-offs and smooth adjacency matrices
a bump function is used. A bump function is a scalar function 𝜌፡(𝑧) that varies smoothly between
0 and 1. Olfati-Saber proposes the bump function given in equation 6.38, though there are other
possibilities[53, 54].

𝜌፡(𝑧) = {
1 𝑧 ∈ [0, ℎ]
ኻ/ኼ [1+ cos(𝜋 (፳ዅ፡)ኻዅ፡ )] 𝑧 ∈ [ℎ, 1]
0 otherwise

where ℎ ∈ (0, 1) (6.38)

The bump function is a Cኻ-smooth function with the property that 𝜌ᖣ፡(𝑧) = 0 over the interval [1,∞)
and |𝜌ᖣ፡(𝑧)| is uniformly bounded in 𝑧. Equation 6.39 defines the spatial adjacency matrix 𝐴(𝑞) via its
elements using the chosen bump function, where 𝑟ᎎ = ‖𝑟‖᎟ and 𝑎።።(𝑞) = 0 for all 𝑖 and 𝑞.

𝑎።፣(𝑞) = 𝜌፡ (
‖𝑞፣ − 𝑞።‖᎟

𝑟ᎎ
) ∈ [0, 1] 𝑖 ≠ 𝑗 (6.39)

Next we integrate an action function 𝜙ᎎ(𝑧), defined in equation 6.40, that vanishes for all 𝑧 ≥ 𝑟ᎎ with
𝑟ᎎ = ‖𝑟‖᎟ and 𝑑ᎎ = ‖𝑑‖᎟.
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𝜙ᎎ(𝑧) = 𝜌፡ (
𝑧
𝑟ᎎ
)𝜙(𝑧 − 𝑑ᎎ) (6.40)

𝜙(𝑧) = ኻ/ኼ[(𝑎 + 𝑏)𝜎ኻ(𝑧 + 𝑐) + (𝑎 − 𝑏)] 0 < 𝑎 ≤ 𝑏, 𝑐 = |ፚዅ፛|/√ኾፚ፛
𝜎ኻ(𝑧) =

𝑧
√1 + 𝑧ኼ

Then the pairwise attractive/repulsive potential 𝜓ᎎ(𝑧) can be defined as in equation 6.41. To construct
a smooth collective potential function as denoted in equation 6.42.

𝜓ᎎ(𝑧) = ∫
፳

፝ᒆ
𝜙ᎎ(𝑠)𝑑𝑠 (6.41)

𝑉(𝑞) = ኻ/ኼ∑
።
∑
፣ጽ።
𝜓ᎎ(‖𝑞፣ − 𝑞።‖᎟) (6.42)

6.6.4. Flocking algorithm
Now that all the definitions and functions related to the 𝛼-lattices are derived, the flocking algorithm
can be constructed. Physical agents are referred to as 𝛼-agents whilst virtual agents, which model the
collective objective, are referred to as 𝛾-agents. The primary objective of all 𝛼-agents is to construct
an 𝛼-lattice with its neighbouring agents.

The control input of an agent is composed of three terms as depicted in equation 6.43. Where 𝑓፠። =
−∇፪ᑚ𝑉(𝑞) is a gradient-based term, 𝑓፝። is a velocity consensus term which acts as a damper and 𝑓᎐። is
a navigational feedback term corresponding to the group objective.

𝑢። = 𝑓፠። + 𝑓፝። + 𝑓
᎐
። (6.43)

𝑢። = ∑
፣∈ፍᑚ

𝜙ᎎ (||𝑞፣ − 𝑞።||᎟)n።፣
⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

gradient-based term

+ ∑
፣∈ፍᑚ

𝑎።፣(𝑞)(𝑝፣ − 𝑝።)
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

consensus term

− 𝑐ኻ(𝑞። − 𝑞፫) − 𝑐ኼ(𝑝። − 𝑝፫)
⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝

navigational feedback

𝑐ኻ, 𝑐ኼ > 0

In equation 6.43 n።፣ = 𝜎Ꭸ(𝑞፣ −𝑞።) is a vector along the line connecting 𝑞። to 𝑞፣ and the pair (𝑞፫ , 𝑝፫) is
the state of the 𝛾-agent.

The state of the 𝛾-agent can be seen as a dynamic/static rendezvous point.

Olfati-Saber demonstrates that his flocking algorithm embodies all three rules of Reynolds, explained
in section 6.1, in a single equation[5, 53]. He shows the 𝑓፠። term embodies both collision avoidance
and flock centering and the 𝑓፝። term embodies velocity matching. The virtual 𝛾-agent embodies the
migratory urge only proposed by Reynolds[5].

6.6.5. Conclusion
Flocking using alpha-lattices is, of the algorithms considered, the control strategy which most resem-
bles natural swarming as it can be observed in bird flocks. The three separate components to the
flocking algorithm resemble the three basic building behaviours identified by Reynolds.

Although there is no direct control over the formation and shape of the swarm, its objectives can be
controlled using the navigational feedback term. Additional terms can relatively easily be introduced
to the flocking algorithm in order to model additional behaviour such as for instance environmental
collision avoidance. Additionally, the control model can be analysed analytically using graph theory,
which is yet another advantage to the strategy.

Olfati-Saber analyses the algorithm in both three and two-dimensional environments where all agents
are able to detect each other regardless of their direction. In a three dimensional environment the



24 6. Swarming control theory

chosen platform only has a semi-spheric neighbourhood to detect other agents which results in not all
agents being detected and consequently could lead to undesired results.

When using a two-dimensional environment the requirements imposed on the platform can be met.
Agents can be able to see in every direction when using a top-mounted camera due to the semi-spheric
field of view.

The approach proposed by Olfati-Saber thus provides a feasible two-dimensional model which can
easily be extended to the third dimension.

The control strategy proposed is build on a solid theoretical basis but is computationally quite complex.
This could cause the algorithm to update too slow when running on the MAVs.

Concluding, this algorithm might be too computationally complex. Although a two-dimensional model
might prove feasible, limited control over the shape of the flock and the computational requirements
for the platform reduce its practicality.

6.7. Scalable shape formation
The swarming approaches discussed in sections 6.2 - 6.6 have not been specifically been designed
nor tested to work with swarms consisting of a large number of agents. An approach that is specif-
ically designed to be scalable up to a large number of autonomous agents is the algorithm designed
by Pinciroli et al.[17]. The control strategy proposed autonomously forms a 2-dimensional hexagonal
lattice in space around a predefined meeting point. Pinciroli et al. have conducted simulations using
the method including up to 500 agents.

The control method proposed by Pinciroli et al. resembles the artificial potential approach, discussed in
section 6.3[37]. However, in previous approaches potential fields were composed of both an attractive
and repulsive part.

In this approach however, the artificial potential field is a combination of a local and global contri-
bution and a dissipative term. This definition allows for defining the local lattice structure and global
external shape separately.

Three behaviours can be identified in this control approach:

• Flattening & Gathering – This behaviour causes all agents to adhere to a 2-dimensional flat
surface on the 𝑥𝑦 plane and attracts all agents to the centre of the swarm, preventing separation.

• Lattice formation & Collision avoidance – This behaviour causes the agents to form a lattice
on the 𝑥𝑦 plane whilst avoiding collisions.

• Damping – This behaviour, comparable to viscosity, causes the agents to converge to a steady
state and prevents undesired oscillations around equilibrium positions and the swarm centre.

The control strategy X። can now be expressed according to the before mentioned behaviours as in
equation 6.44.

In equation 6.44 J። is the force corresponding to the flattening & gathering behaviour, attracting the
agents towards the desired centre of the swarm; l። is the force corresponding to the lattice formation
& collision avoidance, creating local clusters with neighbouring agents and G is the a damping force,
used to stabilise the swarm and ensure convergence.

X። = J። + l። + G። (6.44)

In order to realistically implement the proposed control method, the magnitude of X።, in equation 6.44,
is limited to a maximum 𝑢ፌፀፗ. Similarly a change the direction of X። between two successive control
actions is considered to be bounded by Δ𝜃ፌፀፗ.

6.7.1. Gathering
When we define point S as the desired centre of the swarm, we can define vector T። = [𝑞፱ᑚ , 𝑞፲ᑚ , 𝑞፳ᑚ]ፓ
as the relative position between the agent position and S and the normalised position vector as
T̂። = [𝑞̂፱ᑚ , 𝑞̂፲ᑚ , 𝑞̂፳ᑚ]ፓ = T።/‖Tይ‖.
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(a) The Lennard-Jones potential ፋ. At ᎟ the poten-
tial presents a minimum whose value is Ꭸ.

(b) The points of minimum energy, when using the
Lennard-Jones potential to model the interactions
between agents, are conjectured to form a hexag-
onal lattice.

Figure 6.5: Illustrations of the Lennard-Jones potential and the conjectured hexagonal lattice formed by its point of minimum
energy. Source: Pinciroli et al. [17]

Using these notations we can define the flattening & gathering component J። as in equation 6.45.
Where 𝜂፱፲ is a parameter accounting for the attraction of all agents towards S on the 𝑥𝑦 plane, and
𝜂፳ attracts all agents towards the 𝑥𝑦 plane parallel to the 𝑧 axis.

J። = [
−𝜂፱፲‖Tይ‖ኼ𝑞̂፱ᑚ
−𝜂፱፲‖Tይ‖ኼ𝑞̂፲ᑚ

−𝜂፳𝑞፳ᑚ
] (6.45)

The outer shape of the swarm is controlled by the J። component. For the function in equation 6.45
the component is a paraboloid in the subspace 𝑥𝑦, with circular cross-sections parallel to the 𝑥𝑦 plane.
The outer shape will therefore be circular.

Substituting the 𝑥 and 𝑦 components of J። with other types of functions other external shapes can
be obtained.

6.7.2. Lattice formation
The compontent l።, to autonomously create the desired lattices, draws inspiration from a model of
molecular interaction: the Lennard-Jones pair potential, given in equation 6.46 and depicted in figure
6.5a[55].

𝐿(𝑟) = 𝜖 [(𝜎𝑟 )
ኻኼ
− 2(𝜎𝑟 )

ዀ
] (6.46)

When using the Lennard-Jones potential to model the interaction between agents the derivative of
this potential, with respect to the distance 𝑟, gives the force acting between agents. When 𝑟 < 𝜎 the
agents experience a repulsive force, thus introducing collision avoidance behaviour, when 𝑟 > 𝜎 the
force between agents is attractive and for either 𝑟 = 𝜎 or 𝑟 → ∞ the force is null, as can be derived from
figure 6.5a. The Lennard-Jones potential thus causes two agents to achieve and maintain a distance
𝜎 from each other.

When considering more than two agents the Lennard-Jones potential is the sum of the pair-potentials
of all possible pairs. It is conjectured that the stable arrangement on a flat plant is a hexagon, as can
be seen in figure 6.5b.

In order to incorporate the communication range of an agent only its 𝑀 closest neighbours are
concerned.

The magnitude of the artificial force acting between an agent 𝑖 and its 𝑗-th neighbour is obtained by
differentiating equation 6.46 with respect to their distance 𝑟 resulting in equation 6.47.

𝑙።፣ = −
𝑑𝐿
𝑑𝑟 =

12𝜖
‖T፣ − T።‖

[( 𝜎
‖T፣ − T።‖

)
ኻኼ
− ( 𝜎

‖T፣ − T።‖
)
ዀ
] (6.47)
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In order to obtain the total force vector acting between agents 𝑖 and its 𝑗-th neighbour, equation 6.47
has to be multiplied by their normative position difference as shown in equation 6.48.

l።፣ = 𝑙።፣ [
𝑞̂፱ᑛ − 𝑞̂፱ᑚ
𝑞̂፲ᑛ − 𝑞̂፲ᑚ

0
] (6.48)

The total contribution of all forces acting on agent 𝑖 due to its 𝑀 closest neighbours is defined as the
average of all contributions, as described by equation 6.49.

Without averaging l። would be dependent on 𝑀; which in turn would, since J። and l። are summed,
also make the choice of parameters 𝜂፱፲ and 𝜂፳ dependant on 𝑀. Averaging removes this undesired
dependancy.

l። =
1
𝑀

ፌ

∑
፣዆ኻ

l።፣ (6.49)

6.7.3. Energy dissipation
A third term is added to the control strategy X። in order to dissipate the energy contained in the con-
servative fields that define the forces J። and l።. Without the dissipative term convergence would be
impossible.

The expression for dissipative term G። is analogous to the physical property of viscosity, and is shown
in equation 6.50. Where 𝜉 is a design parameter usually < 0.2.

G። = −𝜉Ṫ። (6.50)

After the conversion of the swarm has finished, residual oscillations around the equilibrium points are
present. In order to dampen the oscillations the virtual viscosity can be increased, by increasing param-
eter 𝜉 until the residual speed of the agents is not sufficient to overcome the viscosity. The resulting
stabilisation will trap the agents in the desired equilibrium positions.

Pinciroli et al. suggest on either triggering the final stabilisation after a certain time threshold 𝑇, which
would be another design parameter; or to trigger the stabilisation more elegantly with a distributed
consensus algorithm, which however would impose higher limitations on the inter-agent or agent-
groundstation communication bandwidth[56].

6.7.4. Flocking algorithm
All terms in equation 6.44, the control strategy for X።, have now been defined and can be combined
as shown in equation 6.51. Where the bounds 𝑢ፌፀፗ and Δ𝜃ፌፀፗ, discussed at the beginning of this
section, are not yet included.

X። = [
−𝜂፱፲‖Tይ‖ኼ𝑞̂፱ᑚ
−𝜂፱፲‖Tይ‖ኼ𝑞̂፲ᑚ

−𝜂፳𝑞፳ᑚ
]

⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
ያᑚ

+ 1
𝑀

ፌ

∑
፣዆ኻ

12𝜖
‖T፣ − T።‖

[( 𝜎
‖T፣ − T።‖

)
ኻኼ
− ( 𝜎

‖T፣ − T።‖
)
ዀ
] [
𝑞̂፱ᑛ − 𝑞̂፱ᑚ
𝑞̂፲ᑛ − 𝑞̂፡ᑚ

0
]

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
ደᑚ

−𝜉Ṫ።
⏟
የᑚ

(6.51)

6.7.5. Conclusion
Since scalability is an important requirement of this project a definite advantage of the control strategy
proposed by Pinciroli et al. is that they specifically designed their algorithms to be scalable to large
numbers of contributing agents. In their work successful simulation results using up to 500 agents are
shown.

Similar to the approaches proposed by Gazi & Passino and Izzo & Petazzi this algorithm is based on
artificial potential fields. However, in contrast to the other potential field strategies Pinciroli et al.
include a local, global and dissipative term.
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These terms allow the outer shape of the formation to be controlled using different functions for
J(⋅), shown in equation 6.45.

Also, since the model includes the visibility range of an agent by only including its M closest neigh-
bours, the computational load of the agent and the types of lattices formed and can be considered as
design parameters.

The control strategy considered uses a two-dimensional environment which significantly simplifies the
requirements for field of view and reduces the overall complexity of the formations. Whilst a three-
dimensional formation might eventually be desirable, it will prove easier to start with a two-dimensional
approach.

A disadvantage, also encountered by Pinciroli et al., are the residual oscillations around the equilibrium
points. In order to reduce these oscillations a stabilisation procedure is proposed by increasing the
virtual viscosity.

However, this introduces an additional problem: when to trigger the stabilisation. The easiest
approach is to trigger after a pre-defined time, although this would reduce the autonomy of the swarm.

Pinciroli et al. conclude that local minima problem only seldom occur and the overall lattice formation
is very accurate in simulations.

6.8. Bio-inspired self-propelled flocking
This section describes a control algorithm developed by Virágh et al. and Vásárhelyi et al. inspired by
bird flocks and realistic robotic features[25, 57]. The algorithm is designed to be implementable on
autonomously flying MAVs, and has been tested successfully using up to 10 agents.

6.8.1. Realistic model of a flying robot
First a model is presented based on general robotic features present in many realistic robotic systems.
In the type of system considered the motion of the robots is controlled by a low-level control algorithm
such as a PID controller. The low-level control algorithm typically has the desired velocity vector as
input. The time-dependance of the desired velocity of the 𝑖-th agent is a function of the positions x።
and velocities Y። of the other agents, as described by equation 6.52. Where 𝑁 is the number of agents
and 𝑓።(⋅) contains the controlling dynamics.

Y፝። = 𝑓። ({x፣(𝑡)}
ፍ
፣዆ኻ , {Y፣(𝑡)}

ፍ
፣዆ኻ) (6.52)

In the ideal case the desired velocity vector Y፝። (𝑡) is realised instantly. However, a robotic system
possesses some typical deficiencies which should included in the model.

• Inertia – An agent cannot instantly change its attitude or velocity. An assumption is made that
in an optimal setup the system reaches the desired velocity with exponential convergence with
characteristic time 𝜏ፂፓፑፋ. Additionally, the magnitude of acceleration is limited to 𝑎፦ፚ፱.

• Inner noise – The inaccuracy of the onboard sensors that provide position and velocity informa-
tion has to be taken into account. A stochastic function 𝜂፬። (𝑡), characterised by standard deviation
𝜎፬, is used to model the sensor uncertainty.

• Sensor refresh rate – The reaction time and agility of an agent is fundamentally defined by the
refresh rate of the sensory inputs. A limited constant sensor refresh rate with frequency 𝑡ዅኻ፬ is
included in the model.

• Communication locality – Agents have a finite communication range 𝑟፜. Thus function 𝑓።(⋅) is
dependant on 𝑥፣ only if |𝑥፣ − 𝑥።| < 𝑟፜.

• Time delay – Due to data processing and transmission delays a time delay is introduced. A
constant time delay of 𝑡፝፞፥ is assumed.

• General noise – In order to model an unpredictable environment, for instance due to wind, an
outer noise term 𝜂።(𝑡) with standard deviation 𝜎 is included in the acceleration of the agent.
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The considered model is thus defined by the set: {𝜏ፂፓፑፋ , 𝑎፦ፚ፱ , 𝑟፜ , 𝑡፝፞፥ , 𝑡፬ , {𝜂፣(𝑡), 𝜂፬፣(𝑡)}
ፍ

፣዆ኻ
} and the

model for the acceleration a።(𝑡) of agent 𝑖 is given by equation 6.53 where Y፝። (𝑡) is defined by equation
6.54. Where x፬። (𝑡) and Y፬። (𝑡) are measures of the integrated noise for random variable 𝜂፬። (𝑡) and {… }፣ጽ።
denotes a set with iterator 𝑗 ≠ 𝑖. The function 𝑓።(⋅) is dependant on the actual velocity and position of
agent 𝑖 and the delayed velocity and position of the other agents within radius 𝑟፜ and updates with 𝑡ዅኻ፬
frequency.

a።(𝑡) = 𝜂።(𝑡) +
Y፝። (𝑡) − Y።(𝑡) − Y፬። (𝑡)
|Y፝። (𝑡) − Y።(𝑡) − Y፬። (𝑡)|

⋅ min {Y
፝
። (𝑡) − Y።(𝑡) − Y፬። (𝑡)

𝜏ፂፓፑፋ
, 𝑎፦ፚ፱} (6.53)

Y፝። (𝑡) = 𝑓። ({x፣(𝑡 − 𝑡፝፞፥) + x፬፣(𝑡 − 𝑡፝፞፥)}፣ጽ። , x።(𝑡) + x፬። (𝑡), {Y፣(𝑡 − 𝑡፝፞፥) + Y፬፣(𝑡 − 𝑡፝፞፥)}፣ጽ። , Y።(𝑡) + Y፬። (𝑡))
(6.54)

Equation 6.54 can be simplified under the assumptions that 𝑓።(⋅) is only dependant on relative coordi-
nates of the agents and it can be expressed as a sum of local pairwise interactions 𝑓።፣(⋅). Additionally,
the communication range is defined as function 𝜃(𝑥) which equals 0 if 𝑥 < 0 and 1 otherwise and 𝑥̃
and 𝑣̃ are defined as the measured values including the modelled inner noise term so: 𝑥̃። = 𝑥። + 𝑥፬።
and 𝑣̃። = 𝑣። + 𝑣፬። . Under said assumptions equation 6.54 can be rewritten to equation 6.55.

Y፝። (𝑡) =
ፍ

∑
፣዆ኻ
𝑓።፣ (x̃፣ − x̃። , Ỹ። , Ỹ፣) 𝜃 (𝑟፜ − |x̃። − x̃፣|) (6.55)

6.8.2. The self-propelled flocking model
Using the agent model discussed in section 6.8.1 a minimal algorithm is proposed capable of driving
collective robotic systems towards a table, collision-less, self-organised correlated flocking state. The
algorithm is based on animal swarms similar to Reynolds work discussed in section 6.1.

The desired velocity Y፝። is decomposed into a sum of interaction terms and the self-propelling pre-
ferred velocity 𝑣፟፥፨፜፤.

Self-propelling velocity
The agents are defined as self-propelling particles with preferred velocity 𝑣፟፥፨፜፤, this behaviour is
defined by equation 6.56.

Yፒፏፏ። = 𝑣፟፥፨፜፤
Y።
|Y።|

(6.56)

Short-range repulsion
In order to avoid collisions with neighbouring agents a local linear repulsion between agents is defined
by equation 6.57. Where G።፣ = x፣ − x።, 𝐷 is the repulsive strength and 𝑟ኺ is the interaction range.

Virágh et al. consider a linear in-stead of higher-order repulsion due to the inner-noise affecting
the measured range. Since fluctuations are considered to be possible in the same range as 𝑟ኺ linear
repulsion is superior because it does not cause sudden changes or singularities in the output. However,
when the position accuracy increases higher-order functions like the Lennard-Jones potential, described
in equation 6.46 in section 6.7, could be used.

Y፫፞፩።፣ =
𝐷 (|G።፣| − 𝑟ኺ)

|G።፣|
G።፣𝜃 (𝑟ኺ − |G።፣|) (6.57)

Velocity alignment of neighbours
The velocity alignment term should satisfy three assumptions. First it should relax the velocity difference
between neighbouring agents. Secondly it should only act locally. And lastly it should have an upper
threshold, even when inter-agent distances approach zero. Virágh et al. chose a viscous friction-like
interaction term as defined in equation 6.58. Where 𝐶፟፫።፜፭ is the strength of the alignment and 𝑟፦።፧
defines a threshold to avoid division by close-to-zero distances.
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Y፟፫።፜፭።፣ = 𝐶፟፫።፜፭
Y፣ − Y።

max {𝑟፦።፧ , |G።፣|}
ኼ (6.58)

Flocking model
The terms contributing to the desired agent velocity Y፝። can now be added in order to obtain the
self-propelled flocking model given by equation 6.59.

Y፝። = Yፒፏፏ። +
ፍ

∑
፣ጽ።
(Y፫፞፩።፣ + Y፟፫።፜፭።፣ ) 𝜃 (𝑟፜ − |G።፣|) (6.59)

Virágh et al. include an additional term bounding the flight area using repulsive virtual walls. Such a
global positional constraint is an important contribution to the integrity of the flock. However, in this
section we will consider the collective target tracking extension proposed by Virágh et al. discussed in
the next section.

6.8.3. Collective target tracking
An extension to the flocking model described by equation 6.59 is a collective target tracking algorithm
using an a priori defined target point. Using both algorithms the flock is able to smoothly transition
between flocking, far away from the target, and collective hovering, close to the target. During the
transitional phase between flocking and hovering the preferred velocity has to smoothly approach
zero and the coherence and robustness of the flock should be maintained without any jamming or
oscillations.

Suppose the centre of mass of the flock is a virtual agent with preferred velocity 𝑣ኺ, then every
agent is tasked to approach this virtual agent, in order to join the flock, and move parallel to it, in order
to reach the target.

However, since interactions between the agents are assumed local, determining the centre of mass
of the flock is impossible for an agent. Therefore the agent calculates a local centre of mass (CoM),
based on the information available within its communication range.

Attraction toward the target point can then be defined as in equation 6.60. Where 𝑣ኺ is the magni-
tude of the preferred velocity, x፭፫፠ is the target position, 𝑥ፂ፨ፌ። the perceived centre of mass as seen by
the 𝑖-th agent, 𝑟፭፫፠ the target area radius, 𝑟ፂ፨ፌ the perceived flock radius and 𝑠(⋅) a sigmoid function
as defined in equation 6.61.

Y፭፫፠። = 𝑣ኺ [𝑠(|xፂ፨ፌ። | − x።|, 𝑟ፂ፨ፌ , 𝑑)
xፂ፨ፌ። − x።
|xፂ፨ፌ። − x።|

+ 𝑠(|x፭፫፠| − xፂ፨ፌ። |, 𝑟፭፫፠ , 𝑑)
x፭፫፠ − xፂ፨ፌ።
|x፭፫፠ − xፂ፨ፌ። | ] (6.60)

𝑠(𝑥, 𝑅, 𝑑) = {
0 𝑥 ∈ [0, 𝑅]
sin(᎝፝ (𝑥 −𝑅)−

᎝
ኼ ) 𝑥 ∈ [𝑅, 𝑅 + 𝑑]

1 𝑥 > 𝑅 + 𝑑
(6.61)

The magnitude of the target tracking term is saturated at 𝑣ኺ as defined in equation 6.62. The flocking
algorithm including collective target tracking is then given by equation 6.63.

Ỹ፭፫፠። = Y፭፫፠።
|Y፭፫፠። |

min {𝑣ኺ, |Y፭፫፠። } (6.62)

Y፝። = Ỹ፭፫፠። +
ፍ

∑
፣ጽ።
(Y፫፞፩።፣ + Y፟፫።፜፭።፣ ) 𝜃 (𝑟፜ − |G።፣|) (6.63)
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6.8.4. Conclusion
In their papers Virágh, Vásárhelyi et al. present a realistic flocking and simulation framework for decen-
tralised control of autonomous MAVs. In addition to simulating flocks of agents real-life experiments
were conducted to check the validity using 9 MAVs. The experiment was conducted outdoor in order
to to test the stability under realistic environmental conditions.

A definite advantage to the approach discussed in this section is the fact that it takes into account sev-
eral realistic, yet not robot specific, features such as delays and noise, refresh rates and inertial effects.
The algorithm is inspired by natural bird flocks and successfully mimics the robustness to disturbances
found in said natural swarms.

The considered approach is computationally not too complex, since it computes only based on agents
in range and does not rely on numerically complex functions. The simulation framework can cope with
realistic disturbances and is thus able to realistically simulate outdoor conditions.

Although the considered quadcopters used the XBee protocol in order to relay their position information,
the approach could be implementing using vision feedback.
The control method could be applied in both two and three dimensional environments, allowing for a
step-based increase in complexity of the swarm.

6.9. Algorithm comparison
In this section the algorithms considered in the current chapter will be compared and the most promis-
ing algorithms will be selected for further study, as described in chapter 9.

From the control strategies considered in this chapter the scalable shape formation proposed by Pinciroli
et al., discussed in section 6.7, could be implemented most straightforwardly using a large group of
agents. The theory assumes a two-dimensional space in which agents have a limited field of view and
the shape of both the lattice structure and the external shape can be controlled.

This in turn allows for a limited form of formation control. The shaping capabilities are somewhat
limited however, when they are compared to the equilibrium shaping approach proposed by Izzo and
Petazzi, covered in section 6.4 or the extension by Izzo, Simões and de Croon. These extensions to the
control strategy devised by Gazi solve the target assignment problem autonomously for symmetrical
and both symmetrical and asymmetrical shapes respectively. Althoug, due to computational complexity
and the required evolutionary training in the ER approach cause the approach of Izzo and Petazzi to
be preferred over that by Gazi or Izzo, Simõs and de Croon.

In three dimensions the approach by Izzo and Petazzi allows for the shaping of complicated Bravais
lattices and simplifications to two-dimensional space still grant a higher degree of formation control
where shapes are made possible.

Several control strategies, excluding the work by Olfati-Saber, Pinciroly et al. and Vásárhelyi et al.,
assume unrestricted field of view, which could lead to possible problems when scaling the algorithm,
for instance due to computational constraints or inaccuracies measuring the inter-agent distances.

Although the equilibrium shaping and ER approach allow for the highest degree of formation control,
the only algorithms which are designed with large groups of agents in mind are those by Olfati-Saber
and Pinciroli et al., discussed in sections 6.6 and 6.7 respectively. When these algorithm are individu-
ally compared, the approach suggested by Olfati-Saber is computationally more complex and does not
allow for the same degree of shaping.

The realistic features, such as delays, noise, refresh rates and inertial effect, included in the framework
developed by Vásárhelyi et al. can not be found in any other method discussed. They allow for the
evaluation of the swarms sensitivity to several realistic parameters such as wind or communication
delay or error.

The decision by Vásárhelyi et al. to implement such realistic features in their simulation framework
is a definite tribute to their approach. The simulation framework developed in the course of this project
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could be based upon their realistic design in order to test robustness with respect to wind gusts for
instance.

Lastly, there are several control strategies, by Izzo & Petazzi, Pinciroli et al., Vásárhelyi et al. and Izzo,
Simões and de Croon, which allow for straightforward adaptation to a two-dimensional implementation.
A two-dimensional swarm is more feasible at this point in time than a three-dimensional swarm, since
it reduces the computational and vision requirements for the platform. When a two-dimensional set-up
proves successful an extension to the third dimension could be made.

Concluding, the algorithms proposed by Izzo & Petazzi, Pinciroli et al. and Vásárhelyi et al., discussed
in sections 6.4, 6.7 and 6.8 respectively, are selected for further study. They all show great promise in
a two-dimensional environment, which could later be extended to three dimensions.

The work by Pinciroli et al. shows most promise when considering scalability to a large number
of agents, the work by Izzo & Petazzi especially excels at detailed shape formation and the work by
Vásárhelyi et al. is the only to consider wind gusts and time delays.

These control strategies will be tested for feasibility and compared further in Matlab simulations in the
next stage of the project.





7
Neighbour sensing techniques

The successful implementation of any swarming technique is heavilly dependant on the ability of every
agent to detect its neighbours. A slight variation might not be undesirable, since in natural swarms the
robustness of the swarm appears to result from the variance in accuracy[30]. However, an inability to
sufficiently accurately detect its closest neighbours could result in collisions between agents or flock
segmentation and separation.

When considering real world implementations of multi-agent systems several approaches to neighbour
sensing techniques have been tried, as briefly discussed in chapter 3. This chapter will focus on vision
and radio frequency based sensing .

7.1. Image recognition
Although image recognition has been around for over two decades, fast and robust image recognition
algorithms for different applications are still an active topic of research[58, 59].

Ideally every agent in a multi-agents system would be able to detect location, range and pose of neigh-
bouring agents. Considering the advanced, but nevertheless limited, processing power of the current
generation of MAVs, detecting relative position and an estimate for the range would possibly suffice in
order to achieve robust swarm dynamics. However, the scarcity of an MAV’s computational power and
processing time determine the restraints when using image recognition.

Generally, image recognition is a computationally intensive task, especially in real-time. Additionally, in
order to attain accurate estimates of distances intensive training, using large sets of sample images, is
often required[60]. Therefore this chapter will focus on relatively computationally less intensive forms
of image recognition.

7.1.1. Classifier cascade
A paper on a multi-agent ground-based robotic swarm proposes an extremely rapid approach using
trained classifier cascade for real-time pose and position tracking[61]. Using a cascade of simple
classifiers, only detecting objects or non-objects, the algorithm is trained to detect only other agents
and rejects all other frames.

In order to estimate the position and pose a multi-coloured agent is used as depicted in figure 7.1b.
An illustration of this approach is given in figure 7.1a.

Whilst Katalenic et al. achieve impressive accuracies (>90%) and timing (15fps) on their mobile plat-
form, a classifier cascade approach might not suffice for this project.

First, the considered distances are smaller than would be encountered in outdoor MAV flight. In-
creasing the distance will significantly reduce the accuracy.

Secondly, the on-board camera uses a low resolution sensor. When substituting the low-resolution
sensor with a 14MP sensor, as is included on our platform, the computational demand will drastically

33
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(a) Classifier cascade block diagram (b) Multi-coloured agent (l: red, r: green)

Figure 7.1: Algorithm and agent used for cascade detection. source: Katalenic, Draganjac, Mutka et al.[61]

increase and the frame-rate will drop.
This will cause the classifier cascade approach to either not be accurate or fast enough.

7.1.2. Light / Infrared markers
The use of LED lighting is also an efficient way to enhance the image recognition effectiveness[62].
Since LED lights emit brightly coloured or infrared (IR) light they are relatively easy to recognise due
to the lack of other similarly bright objects in the field of view, reducing the chance of a false-positive.
Additionally, since the objects stand out more compared to the environment less interference is to be
expected. Examples of this approach are shown in figures 7.2a and 7.2b.

Distance measurement using only LED markers might prove complicated in a dynamic multi-MAV
setup. In a two-dimensional scenario only the sides of other MAVs can be identified, hence a recog-
nisable structure of LEDs should be visible from all viewing angles which in turn would require a large
number of LEDS per MAV.

However, light markers can also be combined with other image recognition techniques to accentuate
or enhance certain features in the image. Also in low-light conditions LED lighting can prove to be very
beneficiary.

7.1.3. Fiducial markers
Fiducial markers are another computationally effective method to recognise objects in images[11, 63–
66]. Since there is no need for an internal model, and the markers are constructed such that lighting
and camera sensitivity play a minimal role the object can be recognised faster and relatively computa-
tionally efficient.

In recent years fiducial markers have been successfully used for small scale MAV formation flight[11].
Nägeli et al. propose a distributed control algorithm for environment-independent formation flight of
MAVs, relying only on embedded sensing and agent-to-agent communication. Using on-board monoc-
ular cameras in order to estimate the relative distances, and UART bridges to transmit and receive
inter-agent communication. They reach consensus on an inertial reference frame and estimate the for-
mation state. Stable three-agent formation flight is achieved independent from any external sensing

(a) Multiple ground-based robots. (b) Single ceiling-suspended robot.

Figure 7.2: Position determination using LED lighting. Source: Dorigo, Floreano, Gambardella et al.[62]
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(a) Close up of the agents and the fiducial marker. (b) Three agents flying independently in formation.

Figure 7.3: Overview of the agent and result of the distributed formation flight. Source: Nägeli et al.[11]

structure such as e.g. GPS.

Figures 7.3a and 7.3b show the agents used by Nägeli et al. and a picture of their three agent formation
in an outdoor environment respectively. Standard AR markers have been used in combination with the
ARToolkitPlus library to attain the relative distance and orientation measurements of neighbouring
agents[67].
However, Nägeli et al. do admit that whilst their proposed solution is theoretically seamlessly scalable
to larger formations, practical limitations on the maximum number of members in the formation are
present due to the linear scale in communication bandwidth. A problem that could possibly be overcome
by replacing the consensus-agreed inertial frame by an accurate DGNSS reference frame and using self-
assembling distributed formation control which will eliminate the need for inter-agent communication.

7.1.4. Conclusion
Although the field of image recognition for mobile applications is fast developing only few applications
can be seen as a proven technology for MAVs[11, 61, 62]. The project requires fast robust distance
tracking of multiple neighbours at once from a MAV so a lightweight and proven concept would be
beneficial.

The most ideal tracking solutions is presented in section 7.1.1 since it does not require any additional
structure to be added to the agent. However, the algorithm is computationally complex and requires
extensive training from sample images which can be a memory-costly and time-consuming task and
the achievable accuracy is debatable.

The main selling point for tracking using illuminated or light emitting markers is excellent tracking
quality in low-light conditions and enhanced performance over all lighting conditions. The ability to
detect each other in the dark is a definite advantage of this approach. However, the light source
consumes some of both the power and weight budget of each agent. Light or lighted markers could
serve as a solution when low-light conditions are expected but otherwise should not be necessarily
required.

The use of fiducial markers is the only concept considered which has been proven to work robustly
on MAVs. Another advantage of the technique is that it requires minimal training and set-up and the
supporting structure can be made from lightweight materials. Additionally fiducial markers can not
only assess the distance between agents but can also unambiguously identify one another.

The use of fiducial markers will be considered for this project. The combination of a proven concept,
easy implementation and set-up, low computational requirements and a low weight structure leads to
fiducial markers being the ideal choice.

Fiducial markers could be made to work in a three dimensional environment where all sides of the
agent should be marked, although they function much more efficiently in a planar two dimensional
environment.
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7.2. Radio frequency communication
Radio frequency communication can be used in order to detect nearby neighbours. Either the signal
strength can be used as a distance measure or positional data can be transmitted. However using only
the signal strength does not provide any directional data. Three types of short-range wireless networks
are considered in this section: Bluetooth, ZigBee and WiFi.

7.2.1. Bluetooth
Bluetooth, also known as the IEEE 802.15.1 standard is a wireless radio system developed for short-
range and low-cost communication. The personal operating space (POS), which defines the general
communication range, is approximate 10 metres. There are two main connection topologies defined
in the bluetooth standard: the piconet and the scatternet.

The piconet is a wireless personal area network (WPAN) formed by a Bluetooth device serving as master
and one or more devices serving as slaves. A frequency hopping channel defined by the address of
the master defines each piconet.

Slaves can only use point-to-point communication with the master whilst the master can transmit
both point-to-point and point-to-multipoint.

Every piconet can exist of a maximum number of 7 slaves and a single master.
A scatternet is a collection of overlapping operational piconets. Two piconets can be connected in or-
der to form a scatternet. Every bluetooth device may participate in several piconets at the same time,
operating as a slave several times but being limited to a single master role.

Bluetooth uses the 2.4GHz band, which is unlicensed in most countries. It uses frequency hopping
(FHSS) using 79 channels and 1MHz bandwidth, where channel collision is avoided using adaptive fre-
quency hopping.

The typical maximum data rate of a bluetooth connection is about 0.72 Mbit/s with a maximum data
payload of 339 bytes[68].

7.2.2. ZigBee
ZigBee over IEEE 802.15.4 is a standard for low-rate WPAN (LR-WPAN) developed to support simple
low-powered devices operating in a POS of 10 metres, however in some applications this can be ex-
tended to 100m.

A ZigBee network can consist of two types of devices: a full-function device (FFD) and a reduced-
function device (RFD). An FFD can communicate with RFDs and other FFDs, whilst a RFD can only
communicate with one FFD at a time.

ZigBee uses the direct sequence spread spectrum (DSSS) with 16 channels and 2 MHz bandwidth. In
order to avoid channel collision the protocol uses dynamic frequency selection and transmission power
control.

The typical maximum data rate of a ZigBee connection is approximately 0.25 Mbit/s with a maximum
data payload of 102 bytes[68].

A ZigBee star network can facilitate up to 65000 devices, whilst even more complex network-
structures can be built such as cluster tree or mesh networks.

7.2.3. WiFi
Wireless fidelity (Wi-Fi) includes IEEE 802.11a/b/g/n/ac standards for wireless local area networks
(WLAN). The basic cell of a 802.11 LAN is called a basic service set (BSS), which is a set of mobile
and/or fixed stations. When a station moves out of its BSS it can no longer communicate directly to
other members. A structured Wi-Fi BSS can cope with a maximum of 2007 devices[68].

Based on the BSS there are two additional types of service sets: the independent basic service set
and the extended service set. Figure 7.4 portrays the different service sets.
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Figure 7.4: IBSS and ESS configurations of Wi-Fi networks. Source: Lee et al.[68]

Table 7.1: Comparison of the Bluetooth, ZigBee and Wi-Fi protocols. Source: Lee et al.[68]

Bluetooth ZigBee Wi-Fi

IEEE spec. 802.15.1 802.15.4 802.11 a/b/g/n/ac

Frequency band 2.4 GHz 868/915 MHz; 2.4GHz 2.4 GHz; 5 GHz

Max signal rate 1Mb/s 250 Kb/s 11/54/150/866.7 Mb/s

Nominal range 10m 10-100m 100m

Nominal TX power 0-10 dBm (-25)-0 dBm 15-20 dBm

Number of RF channels 79 1/10;16 14 (2.4 GHz)

Channel bandwidth 1 MHz 0.3/0.6 MHz; 2 MHz 22 MHz

Coexistence mechanism Ad. freq. hopping Dyn. freq. selection Dyn. freq. selection

Basic cell Piconet Star BSS

Extension of the basic cell Scatternet Cluster tree, Mesh ESS

Max number of cell nodes 8 > 65000 2007

The IBSS allows stations to communicate directly without using an access point (AP), and is often
referred to as an ad-hoc network.

The ESS consists of multiple BSS network connected through a distribution system. The distribution
system allows for the creation of ESS networks of arbitrary size and complexity.

Wi-Fi uses DSSS (802.11), complementary code keying (CCK, 802.11b), or OFDM modulation with up
to 14 RF channels and 22 MHz bandwidth. Like the ZigBee protocol it uses dynamic frequency selection
and transmission power control in order to avoid channel collision.

It can operate, dependant on the used standard, at a maximum data rate of 11, 54, 150 or up to
866.7 Mbit/s using the b, a/g, n and ac standard respectively with a maximum data payload of 2312
bytes[68].

7.2.4. Conclusion
Three popular wireless standards have been examined in this section: Bluetooth, ZigBee and Wi-Fi. A
comparison of the different standards is given in table 7.1. A comparison of the power consumption
and normalised power consumption per Mb of data are given in figures 7.5a and 7.5b respectively.

Although a wide range of wireless standards is available, only small scale experiments, using up to 10
agents, have been conducted using wireless transmission of flight data[25]. The complexity of operat-
ing a network with hundreds of mobile agents on any standard is therefore a large uncertainty. Although
wireless communication could provide a graceful method for transmitting position and velocity data,
signal interference or error could affect the entire swarm potentially rendering them uncontrollable.
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(a) Power consumption comparison (b) Normalised power consumption comparison

Figure 7.5: Power consumption comparison of three wireless protocols: Bluetooth, ZigBee and Wi-Fi. Source: Lee et al.[68]

7.3. Sensing comparison
In order to assess whether vision or RF techniques should be implemented to detect neighbouring
agents a comparison has to be made between these methods. Sections 7.1.4 and 7.2.4 briefly com-
pare the considered methods.

Complexity is the major disadvantage and uncertainty to the RF approach. Although a swarm of a
100 agents has been demonstrated[34] it is hard to draw a definite conclusion on the feasibility of a
inter-agent communication network of that size. Complications could arise when simultaneously using
hundreds of transmitters/receivers, or achieving the imposed required bandwidth.

The image recognition challenge, although requiring more computational power, leads to less complex-
ity when scaling up to hundreds of agents. The addition of agents will less likely cause the performance
of other agents to drop when compared to the RF approach.

Variations of both methods have been successfully realised in swarming MAVs. Therefore it is above
all a matter of practicality when selecting. All relevant hardware to minimally integrate a vision based
techniques is available, whilst from the RF techniques only on-board Wi-Fi is available out-of-the-box,
as mentioned in chapter 8. Therefore a vision based approach leaves more options to be explored
in the next stage of the project. Although a inter-agent Wi-Fi based approach could be considered
without modifying the platform, possibly as an extension or backup to the vision based approach.
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The platform

The platform that will be used for the swarming demonstration is the Parrot Bebop 2 drone, depicted
in figure 8.1. This done is lightweight and has relatively high computational power. The out-of-box
specifications can be found in table 8.1.

(a) Front view (b) Exploded view

Figure 8.1: Parrot bebop 2 drone, source: parrot.com

8.1. Flight controller
Recent studies have shown that the micro UAVs produced by Parrot offer an excellent relatively low-cost
platform for researchers to conduct experiments[69–71].

The swarming algorithm aimed to be designed in this paper will use the cascaded incremental
nonlinear dynamic inversion (INDI) controller as proposed by E. Smeur at the TU Delft [72]. The
autopilot used for the project: ”Paparazzi the open-source autopilot” is explained in more detail in
section 8.1.1 and the cascaded INDI flight controller is discussed in section 8.1.2.

8.1.1. Paparazzi open-source autopilot
Paparazzi open-source autopilot is a software collection created to give researchers and hobbyists the
opportunity to construct and program their own MAV[73]. Other similar projects include: ArduPilot and
OpenPilot[74, 75].

Researchers have successfully implemented the Paparazzi open-source autopilot on the Parrot AR
2 drone[71] and current work focusses on implementing the use of paparazzi on the Parrot Bebop 1
and 2 drones.
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Table 8.1: Out of box specification of the Parrot Bebop drone

Parameter Specification

Weight: 500g (including battery)

Dimensions: 38.2 x 32.8 cm

Battery: LiPo 2700mAh removable battery (approx. 25 minutes of flight time)

Frame: Glass fiber reinforced (15%) ABS structure

Motor: 4 brushless Outrunner motors

Propellor: three-blade 6-inch auto-block polycarbonate propellors

Camera: 180∘ fisheye lens and 14 Mega pixel sensor (full HD 30fps)

Processor: Parrot P7 dual-core CPU cortex 9, Quad core GPU, 8GB flash memory

Sensors: 3-axis magnetometer, 3-axes gyroscope, 3-axes accelerometer

Optical flow sensor, Ultrasound sensor (up to 8m), pressure sensor

Geolocation: GNSS (GPS + GLONASS)

Connectivity: Wi-Fi MIMO dual-band, 2 sets of dipole (2.4 & 5 GHz) antennas (up to 21 dBm)

8.1.2. Inner control loop
MAVs are limited in their close proximity operation by their gust sensitivity. Incremental nonlinear
dynamic inversion is an on-board sensor based control technique to control nonlinear systems subject to
disturbances. It outperforms other commonly used controllers such as Proportional Integral Derivative
(PID) control when rejecting wind gusts[72]. Due to the intended close proximity flight of the agents
in an outside environment susceptible to gusts the swarming controller will rely on INDI for low level
control.

8.2. Sensors & position determination
The Parrot Bebop 2 is equipped with a standard consumer grade GNSS sensor. Even though the
low-level flight controller, discussed in section 8.1.2, is robust to GNSS inaccuracies [72], in order to
facilitate accurate inter-agent-cooperation a more accurate GNSS technique is implemented. Section
8.2.1 explains the use of real-time kinematic GPS, a local augmentation system to GPS.

8.2.1. RTK GNSS
Most commercially available MAVs come equipped with standard low-cost GNSS receivers with a abso-
lute position accuracy of 2-15m. This accuracy can be drastically increased by using a differential GNSS
receiver. Differential GNSS uses a ground station with a known position which broadcasts disturbance
and error information measured from the satellite signal to nearby receivers in order to enhance their
accuracy.

Real Time Kinematics (RTK) is a specialised form of differential GNSS which also observes phase mea-
surements in order to estimate the measurement error of the GNSS receiver[76]. RTK is capable of
reducing GNSS accuracies from the meter level down to the centimeter or, using postprocessing, down
to the millimetre level[77].
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Project roadmap

This chapter will focus on the steps and decisions required to be made in order to achieve the goal of
this project of swarming flight. The steps are presented in chronological order.

9.1. Literature study
The Literature study is the first building block of the project, in order to examine what research has been
conducted and what developments can prove interesting a thorough review of the existing scientific
field is done.

The literature study reviews the available feasible solutions found in research and concludes with
proposed feasible control algorithms and vision based neighbour sensing strategies.

9.2. Platform selection
When the Literature study is finished a drone set-up has to be designed. This configuration of hardware
on the platform, mentioned in section 8, is dependant both on the chosen control algorithm and its
requirements and the neighbour sensing strategy and its respective requirements.

The design of the platform, after having been verified feasible, will be locked in this stage of the
project in order to prevent conflicts arising later in the project due to changing platform specifications.

9.3. Algorithm selection
In this stage of the project a selection of the control algorithms proposed in the Literature study will
be tested in oder to assess their feasibility.

A Matlab simulation model for the swarming MAVs will be designed in which different control algo-
rithms can be tested. Depending on the results and comparison between algorithms the most feasible
algorithm will be selected for implementation.

9.4. Parameter selection
When a certain control algorithm is chosen, the Matlab simulation model will be used to assess the most
optimal configuration of the parameters. In this stage parameters such as the inter-agent distance,
visible range of each agent and other algorithm specific constants have to be selected and their effects
on the stability of the swarm will have to be assessed.

9.5. Platform validation
When an optimal set of parameters is found for the theoretical model it has to be validated that the
chosen platform can perform up to the required standard. For instance the neighbour sensing strategy
has to be validated, otherwise the algorithm parameters discussed in the previous section will have to
be re-examined and set to more realistically feasible levels.
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Also the hardware and additional components of the platform will be tested such as the RTK DGNSS
and the camera. When the selected set of parameters prove to be feasible for the platform and all
components function properly the project will continue to the next stage.

9.6. Algorithm validation
Once the most optimal and feasible set of variables for the chosen control algorithm is proposed, the
design of the control laws will be frozen and the implementation of the algorithm verified and validated.
When all the aspects of the control laws have been tested against theory the design for both the control
laws and the platform will be locked.

9.7. Algorithm porting
In order to implement the chosen design laws on the platform the control and sensing strategies have
to be programmed in a language native to the platform. A combination of code in C/C++ and Paparazzi
will have to be written and tested in order to successfully port the project from it’s high-level code in
Matlab to a code which can be executed by the platform.

9.8. Small scale test
When the autopilot for the platform has been written a series of small scale tests will be conducted.
Starting with a single-agent test and incrementally moving towards a swarm of approximately 6 agents.
During this stage unforeseen changes to the control strategy can be first implemented and tested in
the Matlab simulation framework and if proven successful be implemented in the control of the agents.

9.9. Full scale test
When all small scale test have proven successful a large scale test using 20 agents will be conducted.
The completion of the full scale test will prove the project successful in realising scalable swarming
flight.
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