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Identification of Driving Heterogeneity using Action-chains

Xue Yao*, Simeon C. Calvert, and Serge P. Hoogendoorn

Abstract— Current approaches to identifying driving hetero-
geneity face challenges in capturing the diversity of driving
characteristics and understanding the fundamental patterns
from a driving behaviour mechanism standpoint. This study
introduces a comprehensive framework for identifying driv-
ing heterogeneity from an Action-chain perspective. First, a
rule-based segmentation technique that considers the physical
meanings of driving behaviour is proposed. Next, an Action
phase Library including descriptions of various driving be-
haviour patterns is created based on the segmentation findings.
The Action-chain concept is then introduced by implementing
Action phase transition probability, followed by a method for
evaluating driving heterogeneity. Employing real-world datasets
for evaluation, our approach effectively identifies driving het-
erogeneity for both individual drivers and traffic flow while
providing clear interpretations. These insights can aid the
development of accurate driving behaviour theory and traffic
flow models, ultimately benefiting traffic performance, and
potentially leading to aspects such as improved road capacity
and safety.

I. INTRODUCTION

Driving behaviour plays a pivotal role in determining

vehicle motion, substantially affecting traffic flow, fuel con-

sumption, and emission. It is widely acknowledged that

driving heterogeneity, which is defined as the difference

between driving behaviours of driver/vehicle combinations

under comparable conditions [1], does exist. Research has

shown that this heterogeneity contributes to increased traf-

fic accidents and congestion [2]. Additionally, in mixed

automated-human traffic, accurate descriptions and predic-

tions of human-driven vehicle (HDV) behaviour are crucial

for the decision-making and control of connected and auto-

mated vehicles (CAVs). These have underlined the necessity

of a better understanding and identification of the hetero-

geneity in human driving.

It is well established that driving heterogeneity encom-

passes both intra-heterogeneity, which refers to driver-

independent variability, and inter-driving heterogeneity,

which involves differences in driving behaviour among

drivers [1], [3]. However, directly measuring or detecting

driving heterogeneity is challenging due to its reliance on

human cognitive and physiological processes. With the in-

creasing availability of naturalistic driving data, various ef-

forts have been made to comprehensively and quantitatively

analyse driving heterogeneity. The identification of driving

heterogeneity from observed driving behaviour is typically
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approached in two ways [4]: 1) Employing techniques to

characterise driving behaviour by inferring driving profiles

from distinct driving events, and 2) Analysing driving be-

haviour without explicitly creating driving behaviour profiles.

The former approach addressed the identification of driv-

ing heterogeneity as a classification or clustering problem, re-

sulting in categorical output with discrete scales or numerical

output with continuous scores. For example, Hoogendoorn

et al. [5] developed a method to categorise driver states into

low, medium, and high workload categories. Or, clustering

techniques have been employed to define a few driving style

groups such as aggressive, normal, and mild [2]. However,

due to the stochastic and uncertain nature of driving be-

haviour, these limited groups are insufficient for capturing the

diverse characteristics of driving behaviour. Additionally, the

criteria used to define these groups are somewhat ambiguous

and subjective, posing challenges in effectively eliminating

individual biases.

In contrast to employing subjectively defined classes, some

research has focused on identifying driving heterogeneity by

presenting a driving style space containing a vast array of

categories without explicitly establishing driving behaviour

profiles. For example, Qi et al. distinguished driving styles

based on a space that included over 20 different types

[6]. Another study converted car-following sequences into

a comprehensive array of primitive driving patterns, and the

distributions of these patterns were then utilised to analyse

individual driving styles [7]. This approach allows for the

recognition of a greater degree of variability in driving

behaviour by encompassing various driving characteristics.

However, it is essential to acknowledge that this broader

categorisation of driving heterogeneity may lead to reduced

clarity of the fundamental driving behaviours and a limited

understanding of driving heterogeneity. Consequently, further

research in this area is necessary to address these challenges.

To bridge these research gaps, a novel framework is

proposed to identify heterogeneity in longitudinal driving

behaviour from an Action-chain perspective. An Action-chain
is defined as a series of Action phases over time. The contri-

butions of this research are two-fold: i) A rule-based segmen-

tation technique is presented to divide driving trajectories,

considering the clear physical meanings of driving behaviour.

ii) The concept of Action phase and Action-chain are first

introduced to interpret driving behaviours, based on which

a method for evaluating driving heterogeneity is proposed.

The effectiveness of the framework was evaluated using real-

world datasets, and the results demonstrate that the proposed

methods can effectively identify driving heterogeneity at both

individual drivers and traffic flow levels, providing clear
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Decreasing           keeping Low         Increasing             Decreasing                  keeping Low    

Fig. 1: Visualization of time-series driving trajectory: An example of velocity

interpretations. This approach offers valuable insights into

understanding driving behaviour by uncovering underlying

heterogeneity, which supports the development of accurate

and robust driving behaviour and traffic flow models.

II. FRAMEWORK DESCRIPTION

A. Defining Action Phase and Action-chain
The concept of “action points”, which refers to specific

moments of change in acceleration during driving [8], serves

as the foundation to introduce the concept of action trend
in this study. While action points capture acceleration or

deceleration, they do not fully capture the complexity of

driving behaviours. To overcome this limitation, we further

propose the concept of Action phase, which expands the

scope by incorporating additional variables to provide more

comprehensive information about driving behaviour.
By examining the univariate trajectory of driving be-

haviour, illustrated by the example of velocity (v) in Figure

1, distinct states are obviously observed. Some trajectories

exhibit upward trends, others display downward trends, while

some maintain a relatively stable range of fluctuations that

can be considered as a keeping trend. We refer to these

moments of driving behaviour different tendencies as action
trends, which are segmented by turning points. Specifically,

action trends are classified as “Increasing (I)”, “Decreasing

(D)”, or “Stable (S)”. To further refine the “Stable” trend,

it is categorised as “Stable in a high value (H)” or “Stable

in a lower value (L)”. Thus, the action trend space can be

represented as S = {I,D,H,L}, and the driving trajectory

shown in Figure 1 can be expressed as Sv = {D,L, I,D, L}.
It is worth noting that while driving behaviour variables

often exhibit synchronisation, our definition of action trends
allows for variations in the temporal changes of different

variables. For example, when the velocity state is “Increas-

ing”, the acceleration state can be “Increasing”, “Decreas-

ing”, “Stable”, or a combination of them. Consequently,

the definition of action trends can be extended to other

driving behaviour variables, such as acceleration and space

headway. Thereafter, the concept of Action phase is proposed

by encompassing multiple variables, and each Action phase
label consists of multiple action trend names. These action
trend names are estimated using uniform criteria derived

from the group level of drivers in a certain traffic flow.
To account for the inherent sequential nature of driving be-

haviour, it is essential to consider the temporal dependencies

between Actions phases. Hence, the concept of an Action-
chain is introduced to represent a sequence of Action phases

and their relations. The behaviour of a vehicle over time may

consist of one or more Action-chains, each corresponding to

different responses to the environment. With the Action-chain
structure, driving behaviour over time can be characterised,

which provides valuable insights into the underlying patterns

and heterogeneity of driving behaviour.

B. Introducing the Novel Framework

The proposed framework for identifying driving hetero-

geneity aims to estimate frame-wise driving trajectories and

identify driving heterogeneity within specific traffic flow

conditions. The entire procedure is illustrated in Figure 2,

consisting of five main steps: Data Preparation, Trajectory

Segmentation, Action phase Extraction, Action-chain Estab-

lishment, and Heterogeneity Evaluation. The extraction of

Action phase and the establishment of Action-chains involve

the preceding steps called Driving Behaviour Interpretation

and Action-chain Implementation, respectively.

Data plays a crucial role in the identification of hetero-

geneity and serves as a fundamental aspect of the analytical

process. After data tracing and preprocessing, the time-series

driving behaviour data are used as input for the segmentation

algorithm (Algorithm 1). It is represented as x1, x2, ..., xt,

where xt denotes the driving behaviour variable feature at

the t-th frame. The segmentation algorithm (Algorithm 1)

outputs lmn , which represents the action trend names of

variable m to be recognised for the n-th segment, where

n = 1, 2, ..., N . Based on the segmentation results, the

driving behaviour of individual drivers can be visualised

using driving behaviour maps, which highlight the unique

characteristics of each driver. In the driving behaviour map,

at the t-th frame, the state of driving behaviour is denoted as

St = {l1, l2, ..., lm}. Subsequently, Algorithm 2 is designed

to detect driving behaviour segments in which all variables

have a single action trend. The output, denoted as Action
phase and represented as Sn′ = {l1, l2, ..., lm}, signifies the

Action phase for the n′-th segment, where n′ ∈ N ′, N ′

denotes the total number of Action phases for an individual

driver. All the output Action phases form the Action phase
Library under a specific traffic flow. The actual size of this

Library is generally smaller than the theoretical value m4 due

to the nonexistence of certain state combinations in the real

world, in accordance with fundamental driving behaviour

theories. The length of the Action phase at the n′-th segment,

referred to as the time label, is denoted as Tn′ .

Considering the time-series nature of driving behaviour,

an Action phase transition probability algorithm (Algorithm

6002
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Fig. 2: A novel framework of identifying driving heterogeneity

3) is implemented to capture the temporal dependencies

between Action phases. An Action phase and the next Action
phase obtained through the maximum transition probability

constitute an Action-chain, representing the most probable

driving behaviour adopted by drivers. The Action-chain
serves as a description of homogeneous driving behaviour

and is used to distinguish heterogeneity in driving be-

haviour. Drivers who deviate more from the Action-chains
are considered to exhibit greater heterogeneity (conducted

by Algorithm 4).

III. METHOD IMPLEMENTATION

A. Rule-based Segmentation

Traditional classification algorithms, such as the K-nearest

neighbour method, support vector machines, and Convo-

lutional Neural Networks have been commonly used for

classifying driving styles or recognising driving patterns [9].

However, the segments obtained using these algorithms often

lack clear interpretability in terms of physical characteristics.

In contrast, rule-based segmentation is a relatively simple

and interpretable method for dividing driving behaviour

trajectories into meaningful segments. Therefore, we propose

a rule-based method, referred to as Algorithm 1 within the

framework, to segment driving behaviour trajectories.

Let V = {v1, v2, ..., vm} be a set of driving behaviour

variables, such as velocity, acceleration, distance, etc. P =
{(x1, y1), ..., (xn, yn)} represents a set of turning points

for a single variable, which are calculated using calculus,

specifically the first and second derivatives. Algorithm 1
consists of the following steps:

1. Data preparation: Load the turning points of the se-

lected variable. Calculate the variable changes Δy and time

intervals Δx between neighbouring turning points.

2. Threshold setting: Define threshold values θ1, θ2 to

differentiate between segments with state Increasing (I),

Decreasing (D), or Stable (S). Set γ to determine whether

a segment is too short and should be merged with its

neighbouring segments.

3. Initial categorisation: If Δy > θ1, meaning that the

variable increases to a certain extent, which cannot be

ignored, then label the segment as I. If Δy < θ2, in which

case the variable decreases to a non-negligible level, then

label it as D. When θ2 < Δy < θ1, the variable keeps within

a small range of changes and is labelled as S.

4. Merging: For each segment labelled as S, if the time

interval Δxn < γ, and Δxn−1 > γ,Δxn+1 > γ, merge the

segment with its neighbouring segment n+ 1.

5. “Stable” refinement: For the updated S segments, calcu-

late the mean value of the variable for each segment. Update

the labels S as stable in High (H) or Low (L) values based

on the threshold δ.

By implementing the above Algorithm 1, each variable

in V is assigned action trend labels with clear physical

meanings. This rule-based method allows for effective seg-

mentation of driving behaviour trajectories based on single

variables.

Subsequently, Algorithm 2 is proposed to extract Action
phases with simple steps including 1) segmenting the tra-

jectory using turning points of all considered variables, and

2) removing segments shorter than the threshold of drivers’

reaction time τ .

B. Time-series Action Phase Probability Modeling

The length of an Action phase can vary and is denoted

by the labels “Long (lg)” or “Short (st)” according to a

threshold η. Consequently, the time label space for Action
phases is represented as T = {lg, st}. Subsequently, Action
phase can be further described by a two-dimensional label

space S′ = {S, T }, which is taken as input for the Action

phase transition probability model (Algorithm 3). Let S′
n′

and S′
n′+1 represent two adjacent Action phases, where

n′ ∈ {1, 2, . . . , N ′ − 1}. The transition probability be-

tween them can be mathematically represented as a function

R
(
S′
n′ , S′

n′+1

)
, which captures the underlying character-

istics or patterns between S′
n′ and S′

n′+1. This transition

probability function provides insight into the relationship and

6003
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Fig. 3: Conditional Markov chain on the states of the future

dynamics between consecutive Action phases in the time-

series analysis.

C. Coupled Markov Chain Theory

Two main approaches are commonly used to implement

the transition of driving behaviour segments. The first ap-

proach utilises Markov models, including Markov Chains

and Hidden Markov Models (HMM) [7], which are easily

interpretable and capable of capturing underlying structures.

However, when dealing with a large number of hidden layers,

HMM may become computationally inefficient and less

accurate due to increased complexity. The second approach

involves deep learning models such as Recurrent Neural

Networks (RNN), Long Short-Term Memory (LSTM), and

Gated Recurrent Unit (GRU) Networks [7]. These models

can address the complexity limitation of HMM and capture

complex relationships between Action phases. Nevertheless,

they typically require a large amount of training data and are

computationally expensive due to their gating mechanisms.

In our case, the Markov Chain method is adopted to im-

plement the Action Probability (Algorithm 3). The concept

of a coupled chain refers to the collective behaviour of two

independent systems, each following the principles of a clas-

sical Markov chain [10]. Let’s consider two one-dimensional

Markov chains (Xi) and (Yj) that operate on the state space

{S1, S2, ..., Sn}, with positive transition probabilities defined

as

Pr(Xi+1 = Sk, Yj+1 = Sf |Xi = Sl, Yj = Sm) = plm,kf

(1)

here, the (Xi) chain describes the Action phase state S′

and the (Yi) chain describes the time label T . Then the

coupled transition probability plm,kf on the state space

{S1, S2, ..., Sn} × {S1, S2, ..., Sn} is given by

plm,kf = plk · pmf (2)

Two coupled one-dimensional Markov chains can be

utilised to construct a two-dimensional spatial stochastic

process on a lattice represented by (Zi,j). The lattice consists

of a two-dimensional domain of cells, as depicted in Figure

3. The deep blue cells represent known boundary cells, the

light blue cells indicate known cells within the domain (past

observations), and the white cells represent unknown cells.

The future state used to determine the state of cell (i, j) is

cell (Nx, j), where each cell is identified by its row number

i and column number j. Then the conditional probabilities

can be expressed as follows [11]:

Ph
lk = Pr(Xi+1 = Sk|Xi = Sl) (3)

P v
mk = Pr(Yj+1 = Sk|Yj = Sm) (4)

The stochastic process (Zij) is obtained by coupling the

Markov chains (Xi) and (Yj) while ensuring that these

chains transition to the same states. Therefore, we have:

Pr(Zi,j = Sk|Zi−1,j = Sl, Zi,j−1 = Sm)

= C Pr(Xi = Sk|Xi−1 = Sl) Pr(Yj−1 = Sm)
(5)

where C is a normalising constant that arises from restricting

transitions in the (Xi) and (Yj) chains to the same states. It

is calculated as:

C =

⎛
⎝

n∑
f=1

phlf · pvmf

⎞
⎠

−1

(6)

By combining Equation 5 and Equation 6, the required

probability can be expressed as:

plm,k := Pr(Zi,j = Sk|Zi−1,j = Sl, Zi,j−1 = Sm)

=
phlk · pvmk∑
f p

h
lf · pvmf

, k = 1, ..., n
(7)

IV. DATA-BASED EVALUATION

A. Data Preporcessing

In this study, the NGSIM highway dataset, which includes

data from I-80 and US-101, was utilised to investigate the

heterogeneity of longitudinal driving behaviour based on our

proposed framework. A comprehensive preprocessing of the

dataset, involving filtering and extraction, was conducted

as described by Sun et al. [2]. Especially, drivers with

trajectories lasting at least 50 seconds were selected to ensure

an adequate amount of data for analysing longitudinal driving

behaviour [12]. The final extracted dataset consisted of 123

drivers from the I-80 dataset and 848 drivers from the US-

101 dataset.

The driving behaviour variables considered in this study

were velocity (v), acceleration (a), distance (d) between the

preceding and following vehicles, and their speed difference

(Δv). The threshold values used in Algorithm 1 were

determined based on empirical knowledge from literature

[13], as summarised in Table I.

TABLE I: Parameter settings of Algorithm 1

Δy /(unit) θ1 θ2 δ γ τ η

v/(m/s) 2 -2 20 30 10 50

a/(m/s2) 0.25 -0.25 0.25 30 10 50

d/(m) 1 -1 1 30 10 50

Δv/(m/s) 2 -2 2 30 10 50

6004
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B. Visualisation and Analysis of Action Phase
The action trend labels for the four driving behaviour

variables are obtained using Algorithm 1. These results

are then visualised, generating unique driving behaviour

maps for each driver, as exemplified in Figure 4. In the

figure, various colours represent different driving behaviour

variables, with velocity, acceleration, distance, and speed

difference represented in that order. The varying intensity

of the same colour indicates different action trend names,

including Increasing, stable as High, stable as Low, and

Decreasing.
In Figure 4a, the dominant action trend for acceleration is

“L”, although instances of “I” and “D” can also be observed.

The distance remains relatively stable without frequent action
trend changes. When comparing the driving behaviour maps

of the four drivers shown, driver ID1264 from the I-80

dataset exhibits the fewest action trend changes across the

four variables. Conversely, drivers ID3 and ID1035 from

the US-101 dataset demonstrate a higher frequency of the

changes.
The driving behaviour map offers an intuitive approach to

interpreting driving behaviour by visualising the changes in

driving behaviour over time. It is also important to note that

this visualisation method relies on observation and should

be complemented with further quantitative evaluation, which

will be carried out in subsequent steps.

(a) Driver ID270 from I-80 dataset

(b) Driver ID1264 from I-80 dataset

(c) Driver ID33 from US-101 dataset

(d) Driver ID1035 from US-101 dataset

Fig. 4: Visualisation of actions: the driving behaviour map

The Action phase Library for a specific traffic flow was

constructed using Algorithm 2. The resulting Library con-

sists of 142 Action phases for the I-80 dataset and 228 Action
phases for the US-101 dataset. Table II presents the top

10 Action phase along with their corresponding frequencies.

Notably, both traffic flows exhibit a significant overlap in

their high-frequency Action phases, and the top three Action
phases are identical for both datasets. These top Action
phases include “((L, L, H, H), st)”, “((L, L, H, H), lg)”,

and “((L, L, L, H), st)”, which indicate common driving

behaviour across the datasets. The reason behind this is that

the two datasets were collected during evening and morning

rush hours respectively. In these periods, the density of traffic

flow is significantly high, with most vehicles exhibiting

car-following behaviour and even close to congestion. Due

to this, there is limited variability in driving behaviours,

resulting in a scarcity of “I” and “D” and a high frequency

of “Stable (H and L)”. The high-density traffic flows also

provide an explanation for the highest frequency of occurring

“L”.

TABLE II: Statistics of Action phase (Top 10)

I-80 US-101
Action phase Frequency Action phase Frequency

((L,L,H,H), st) 415 ((L,L,H,H), st) 2703
((L,L,H,H), lg) 219 ((L,L,H,H), lg) 1661
((L,L,L,H), st) 156 ((L,L,L,H), st) 965
((L,L,H,I), st) 68 ((L,L,L,H), lg) 672
((L,L,L,H), lg) 65 ((D,L,H,H), st) 651
((D,L,H,H), st) 54 ((L,L,L,L), st) 480
((L,L,L,L), st) 41 ((I,L,H,H), st) 469
((L,L,H,D), st) 39 ((D,L,H,H), lg) 419
((D,L,H,I), st) 38 ((D,L,H,I), st) 412
((D,I,H,I), st) 30 ((L,L,H,I), st) 349

C. Analysis of Action-chain
The transition probabilities from one Action phase to

another within the Action phase Library were computed

using Algorithm 3. Some Action phases either have no

transitions or exhibit very low probabilities of transition.

Conversely, other Action phases tend to be transitioned to

by a greater number of Action phases. The results adhere

to the fundamental principles of driving behaviour. For

example, the Action phase “((L, L, L, H), st)” from the

US-101 dataset demonstrates higher probabilities of being

transitioned. This can be attributed to the fact that the driving

data were collected during the morning peak hour when there

is typically high traffic flow density, leading drivers to adopt

more consistent driving behaviours with lower values.
Overall, each Action phase was found to have a following

Action phase with the highest transition probability, resulting

in the formation of an Action-chain, as illustrated in the

examples provided in Table III. In the I-80 dataset, for

instance, the Action phase “((D, I, I, H), st)” has a probability

of 0.68 to transition to “((L, I, I, H), st)”, which is higher

than any other Action phases.

TABLE III: Action-chain composed by the highest joint

transition probability (JTP)

Dataset Action phase from Action phase to JTP

I-80

((D, D, I, I), st) ((D, L, L, I), st) 0.68
((D, I, I, H), st) ((L, I, I, H), st) 0.68
((D, I, D, I), lg) ((L, L, D, H), st) 0.67

. . . . . . . . .
((D, D, H, D), lg) ((L, L, H, H), st) 0.52

US-101

((D, D, D, I), st) ((L, L, L, L), st) 0.64
((D, H, L, H), st) ((L, L, L, H), st) 0.64
((I, I, L, D), st) ((L, L, L, H), st) 0.58

. . . . . . . . .
((I, I, D, I), st) ((L, L, D, L), st) 0.32
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D. Evaluation of Driving Heterogeneity
In this study, we assume that the maximum transition

probability represents the generally adopted Action phase
of drivers in a specific traffic flow, indicating the average

level of driving behaviour. However, in the real world, drivers

often deviate from this general level due to heterogeneity in

their driving behaviours. To quantify the heterogeneity, we

define this heterogeneity as the deviation between the actual

Action phase transition and the Action-chain.
The Mean Squared Error (MSE) is a commonly used

method for measuring the average squared difference be-

tween two sets of data, and it serves as the metric to quantify

driving heterogeneity in this context, see Equation 8.

DH =
1

N ′ ×
N ′∑

n′=1

(P ′
n′ − Pn′)2 (8)

where N ′ is the total number of Action phases, and P ′
n′

and Pn′ represent the transition probability of actual Action
phase and the maximum transition probability, respectively.

A higher value indicates a greater driving heterogeneity.

E. Numerical Results and Discussions
The heterogeneity of individual drivers in a specific traf-

fic flow was calculated and subjected to further statistical

analysis using the normal distribution. The 3σ rule of thumb

is commonly employed in data analysis to identify potential

outliers or unusual behaviour. By applying the 3σ principle,

drivers with atypical driving behaviour were identified, as

summarised in Table IV. These drivers may serve as potential

factors contributing to increased traffic flow heterogene-

ity and negatively affecting traffic performance. It is also

noteworthy that the degree of driving heterogeneity in the

two traffic flows exhibits the same variance, see Figure 5;

however, the drivers on US-101 (with μ = 0.08) display

overall lower levels of heterogeneity compared to those on

I-80 (with μ = 0.10).

TABLE IV: Drivers with the highest heterogeneity

I-80 US-101
Driver ID DH Driver ID DH

295 0.2172 582 0.1379
535 0.2111 628 0.1360

1174 0.2004 1157 0.1464
- - 1647 0.1916

(a) I-80 dataset (b) US-101 dataset

Fig. 5: Driving heterogeneity in a specific traffic flow

V. CONCLUSION

In this study, a novel framework was proposed to address

driving heterogeneity in a comprehensive manner. By in-

troducing the concepts of Action phase and Action-chain,

along with specialised algorithms, the framework effectively

quantified and explained driving heterogeneity at both the

individual driver and traffic flow levels. Real-world datasets

were used for evaluation, validating the framework’s ability

to offer clear interpretations. Although the contributions

of novel insights and findings of heterogeneity of driving

behaviour, further validation and justification of the methods

employed in each step are still required, which is a focus of

our ongoing research.

REFERENCES

[1] S. Ossen, S. P. Hoogendoorn, and B. G. Gorte, “Interdriver differences
in car-following: A vehicle trajectory–based study,” Transportation
Research Record, vol. 1965, no. 1, pp. 121–129, 2006.

[2] Z. Sun, X. Yao, Z. Qin, P. Zhang, and Z. Yang, “Modeling car-
following heterogeneities by considering leader–follower compositions
and driving style differences,” Transportation research record, vol.
2675, no. 11, pp. 851–864, 2021.

[3] S. Ossen and S. P. Hoogendoorn, “Heterogeneity in car-following
behavior: Theory and empirics,” Transportation research part C:
emerging technologies, vol. 19, no. 2, pp. 182–195, 2011.

[4] X. Yao, S. C. Calvert, and S. P. Hoogendoorn, “Identification of driving
heterogeneity with machine learning: A review,” IEEE Transactions on
Intelligent Transportation Systems, vol. 00, p. 00, 2023, under review.

[5] R. Hoogendoorn and B. Van Arem, “Driver workload classification
through neural network modeling using physiological indicators,” in
16th International IEEE Conference on Intelligent Transportation
Systems (ITSC 2013). IEEE, 2013, pp. 2268–2273.

[6] G. Qi, J. Wu, Y. Zhou, Y. Du, Y. Jia, N. Hounsell, and N. A. Stanton,
“Recognizing driving styles based on topic models,” Transportation
research part D: transport and environment, vol. 66, pp. 13–22, 2019.

[7] W. Wang, J. Xi, and D. Zhao, “Driving style analysis using primi-
tive driving patterns with bayesian nonparametric approaches,” IEEE
Transactions on Intelligent Transportation Systems, vol. 20, no. 8, pp.
2986–2998, 2018.

[8] V. L. Knoop and S. P. Hoogendoorn, “Relation between longitudinal
and lateral action points,” in Traffic and Granular Flow’13. Springer,
2015, pp. 571–576.

[9] X. Yao, Z. Sun, Q. Yan, and C. S. Calvert, “Performance comparison
of multi-class svm and s3vm for driving style classification,” IET
Intelligent Transport Systems, vol. 00, p. 00, 2023, under review.

[10] P. Billingsley, Probability and measure, 3rd ed. New York: Wi-
ley—Interscience, 1995.

[11] A. Elfeki and M. Dekking, “A markov chain model for subsur-
face characterization: theory and applications,” Mathematical geology,
vol. 33, pp. 569–589, 2001.

[12] W. Wang, C. Liu, and D. Zhao, “How much data are enough? a
statistical approach with case study on longitudinal driving behavior,”
IEEE Transactions on Intelligent Vehicles, vol. 2, no. 2, pp. 85–98,
2017.

[13] T. A. Dingus, V. L. Neale, S. G. Klauer, A. D. Petersen, and R. J.
Carroll, “The development of a naturalistic data collection system
to perform critical incident analysis: An investigation of safety and
fatigue issues in long-haul trucking,” Accident Analysis & Prevention,
vol. 38, no. 6, pp. 1127–1136, 2006.

6006

Authorized licensed use limited to: TU Delft Library. Downloaded on December 10,2024 at 13:43:18 UTC from IEEE Xplore.  Restrictions apply. 


